Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 71,505 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 |
From mathcomp Require Import all_ssreflect all_fingroup all_algebra.
From mathcomp Require Import all_solvable all_field polyrcf.
From Abel Require Import various classic_ext map_gal algR.
From Abel Require Import char0 cyclotomic_ext real_closed_ext.
(*****************************************************************************)
(* We work inside a enclosing splittingFieldType L over a base field F0 *)
(* *)
(* radical U x n := x is a radical element of degree n over U *)
(* pradical U x p := x is a radical element of prime degree p over U *)
(* r.-tower U e pw := e is a chain of elements of L such that *)
(* forall i, r <<U & take i e>> e`_i pw`_i *)
(* r.-ext U V := there exists e and pw such that <<U & e>> = V *)
(* and r.-tower U e p w. *)
(* solvable_by r E F := there is a field K, such that F <= K and r.-ext E K *)
(* if p has roots rs, solvable_by radicals E <<E, rs>> *)
(* solvable_ext_poly p := the Galois group of p is solvable in any splitting *)
(* field L for p. (i.e. p has roots rs in a splitting *)
(* then, 'Gal(<<1 & rs>>/1) is solbable. *)
(* This is equivalent to general classical existence *)
(* or constructive existence over rat, of a splitting *)
(* field for p, in which its Galois group is solvable *)
(* solvable_by_radical_poly p := solvable_by radical 1 <<1; rs>> in L *)
(* L being any splitting field L where p has roots rs *)
(* and which contains a n nth primitive root of unity, *)
(* (we me make n explicit in ext_solvable_by_radical) *)
(* This is equivalent to general classical existence *)
(* or constructive existence over rat, of a splitting *)
(* field for p, in which the roots of p are rs, and in *)
(* which solvable_by radical 1 <<1; rs>> in L. *)
(*****************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory.
Local Open Scope ring_scope.
Local Notation "p ^^ f" := (map_poly f p)
(at level 30, f at level 30, format "p ^^ f").
Local Notation "2" := 2%:R : ring_scope.
Local Notation "3" := 3%:R : ring_scope.
Local Notation "4" := 4%:R : ring_scope.
Local Notation "5" := 5%:R : ring_scope.
CoInductive unsplit_spec m n (i : 'I_(m + n)) : 'I_m + 'I_n -> bool -> Type :=
| UnsplitLo (j : 'I_m) of i = lshift _ j : unsplit_spec i (inl _ j) true
| UnsplitHi (k : 'I_n) of i = rshift _ k : unsplit_spec i (inr _ k) false.
Lemma unsplitP m n (i : 'I_(m + n)) : unsplit_spec i (split i) (i < m)%N.
Proof. by case: splitP=> j eq_j; constructor; apply/val_inj. Qed.
Section RadicalExtension.
Variables (F0 : fieldType) (L : splittingFieldType F0).
Hypothesis (charL : has_char0 L).
Section Defs.
Implicit Types (U V : {vspace L}).
Definition radical U x n := [&& (n > 0)%N & x ^+ n \in U].
Definition pradical U x p := [&& prime p & x ^+ p \in U].
Lemma radicalP U x n : reflect [/\ (n > 0)%N & x ^+ n \in U]
[&& (n > 0)%N & x ^+ n \in U].
Proof. exact/andP. Qed.
Lemma pradicalP U x p : reflect [/\ prime p & x ^+ p \in U]
[&& prime p & x ^+ p \in U].
Proof. exact/andP. Qed.
Implicit Types r : {vspace L} -> L -> nat -> bool.
Definition tower r n U (e : n.-tuple L) (pw : n.-tuple nat) :=
[forall i : 'I_n, r << U & take i e >>%VS (tnth e i) (tnth pw i)].
Lemma towerP r n U (e : n.-tuple L) (pw : n.-tuple nat) :
reflect (forall i : 'I_n, r << U & take i e >>%VS (tnth e i) (tnth pw i))
(tower r U e pw).
Proof. exact/forallP. Qed.
Local Notation "r .-tower" := (@tower r _)
(at level 2, format "r .-tower") : ring_scope.
Record ext_data := ExtData { ext_size : nat;
ext_ep : ext_size.-tuple L;
ext_pw : ext_size.-tuple nat }.
Arguments ExtData [ext_size].
Definition trivExt := ExtData [tuple] [tuple].
Definition extension_of r U V :=
exists2 e : ext_data,
r.-tower U (ext_ep e) (ext_pw e)
& << U & ext_ep e >>%VS = V.
Local Notation "r .-ext" := (extension_of r)
(at level 2, format "r .-ext") : ring_scope.
Definition solvable_by r (U V : {vspace L}) :=
exists2 E : {subfield L}, r.-ext U E & (V <= E)%VS.
End Defs.
Local Notation "r .-tower" := (@tower r _)
(at level 2, format "r .-tower") : ring_scope.
Local Notation "r .-ext" := (extension_of r)
(at level 2, format "r .-ext") : ring_scope.
Section Properties.
Implicit Types r : {vspace L} -> L -> nat -> bool.
Implicit Types (U V : {subfield L}).
Lemma rext_refl r (E : {subfield L}) : r.-ext E E.
Proof. by exists trivExt; rewrite ?Fadjoin_nil//=; apply/towerP => -[]. Qed.
Lemma rext_r r n (U : {subfield L}) x : r U x n -> r.-ext U << U; x >>%VS.
Proof.
move=> rUxn; exists (ExtData [tuple x] [tuple n]); last by rewrite adjoin_seq1.
by apply/towerP => /= i; rewrite ord1/= !tnth0 Fadjoin_nil.
Qed.
Lemma rext_trans r (F E K : {subfield L}) :
r.-ext E F -> r.-ext F K -> r.-ext E K.
Proof.
move=> [[/= n1 e1 pw1] Ee FE] [[/= n2 e2 pw2] Fe KE].
exists (ExtData [tuple of e1 ++ e2] [tuple of pw1 ++ pw2]) => /=; last first.
by rewrite adjoin_cat FE.
apply/towerP => /= i; case: (unsplitP i) => [j eq_ij|k eq_i_n1Dk].
- rewrite eq_ij !tnth_lshift takel_cat /=; last first.
by rewrite size_tuple ltnW.
by move/forallP/(_ j): Ee.
- rewrite eq_i_n1Dk take_cat size_tuple ltnNge leq_addr /= addKn.
by rewrite adjoin_cat FE !tnth_rshift; move/forallP/(_ k): Fe.
Qed.
Lemma rext_r_trans r n (E F K : {subfield L}) x :
r.-ext E F -> r F x n -> r.-ext E << F; x>>%VS.
Proof. by move=> rEF /rext_r; apply: rext_trans. Qed.
Lemma rext_subspace r E F : r.-ext E F -> (E <= F)%VS.
Proof. by case=> [[/= n e pw] _ <-]; apply: subv_adjoin_seq. Qed.
Lemma solvable_by_radicals_radicalext (E F : {subfield L}) :
radical.-ext E F -> solvable_by radical E F.
Proof. by move=> extEF; exists F. Qed.
Lemma radical_Fadjoin (n : nat) (x : L) (E : {subfield L}) :
(0 < n)%N -> x ^+ n \in E -> radical E x n.
Proof. by move=> ? ?; apply/radicalP. Qed.
Lemma pradical_Fadjoin (n : nat) (x : L) (E : {subfield L}) :
prime n -> x ^+ n \in E -> pradical E x n.
Proof. by move=> ? ?; apply/pradicalP. Qed.
Lemma radical_ext_Fadjoin (n : nat) (x : L) (E : {subfield L}) :
(0 < n)%N -> x ^+ n \in E -> radical.-ext E <<E; x>>%VS.
Proof. by move=> n_gt0 xnE; apply/rext_r/(radical_Fadjoin n_gt0 xnE). Qed.
Lemma pradical_ext_Fadjoin (p : nat) (x : L) (E : {subfield L}) :
prime p -> x ^+ p \in E -> pradical.-ext E <<E; x>>%AS.
Proof. by move=> p_prime Exn; apply/rext_r/(pradical_Fadjoin p_prime Exn). Qed.
Lemma pradicalext_radical n (x : L) (E : {subfield L}) :
radical E x n -> pradical.-ext E << E; x >>%VS.
Proof.
move=> /radicalP[n_gt0 xnE]; have [k] := ubnP n.
elim: k => // k IHk in n x E n_gt0 xnE *; rewrite ltnS => lenk.
have [prime_n|primeN_n] := boolP (prime n).
by apply: (@pradical_ext_Fadjoin n).
case/boolP: (2 <= n)%N; last first.
case: n {lenk primeN_n} => [|[]]// in xnE n_gt0 * => _.
suff ->: <<E; x>>%VS = E by apply: rext_refl.
by rewrite (Fadjoin_idP _).
move: primeN_n => /primePn[|[d /andP[d_gt1 d_ltn] dvd_dn n_gt1]].
by case: ltngtP.
have [m n_eq_md]: {k : nat | n = (k * d)%N}.
by exists (n %/ d)%N; rewrite [LHS](divn_eq _ d) (eqP dvd_dn) addn0.
have m_gt0 : (m > 0)%N.
by move: n_gt0; rewrite !lt0n n_eq_md; apply: contra_neq => ->.
apply: (@rext_trans _ <<E; x ^+ d>>) => //.
apply: (@IHk m (x ^+ d)) => //.
by rewrite -exprM mulnC -n_eq_md//.
by rewrite (leq_trans _ lenk)// n_eq_md ltn_Pmulr.
suff -> : <<E; x>>%AS = <<<<E; x ^+ d>>; x>>%AS.
apply: (IHk d) => //.
- by rewrite (leq_trans _ d_gt1)//.
- by rewrite memv_adjoin.
- by rewrite (leq_trans _ lenk).
apply/val_inj; rewrite /= adjoinC [<<_; x ^+ d>>%VS](Fadjoin_idP _)//.
by rewrite rpredX// memv_adjoin.
Qed.
Lemma tower_sub r1 r2 n E (e : n.-tuple L) (pw : n.-tuple nat) :
(forall U x n, r1 U x n -> r2 U x n) ->
r1.-tower E e pw -> r2.-tower E e pw.
Proof. by move=> sub_r /forallP /= h; apply/forallP=> /= i; apply/sub_r/h. Qed.
Lemma radical_pradical U x p : pradical U x p -> radical U x p.
Proof.
case/pradicalP=> prime_p xpU; apply/radicalP; split=> //.
by case/primeP: prime_p => /ltnW.
Qed.
Lemma radicalext_pradicalext (E F : {subfield L}) :
pradical.-ext E F -> radical.-ext E F.
Proof.
case=> [[n e pw] Ee FE]; exists (ExtData e pw) => //.
by apply: (tower_sub radical_pradical).
Qed.
Lemma pradicalext_radicalext (E F : {subfield L}) :
radical.-ext E F -> pradical.-ext E F.
Proof.
case=> [[/= n e pw]]; elim: n e pw E => [|n ih] e pw E Ee FE.
by rewrite -FE tuple0 /= Fadjoin_nil; apply: rext_refl.
apply: (@rext_trans _ << E; tnth e 0 >>).
apply: (@pradicalext_radical (tnth pw 0)).
by move/forallP/(_ ord0): Ee; rewrite take0 Fadjoin_nil.
apply: (ih [tuple of behead e] [tuple of behead pw]) => /=; last first.
by rewrite -adjoin_cons -drop1 (tnth_nth 0) -drop_nth 1?(drop0, size_tuple).
apply/forallP=> /= i; move/forallP/(_ (rshift 1 i)): Ee => /=.
rewrite !(tnth_nth 0, tnth_nth 0%N) !nth_behead [_ (rshift 1 i)]/=.
by rewrite -adjoin_cons takeD drop1 (take_nth 0) 1?size_tuple // take0.
Qed.
Lemma solvable_by_radical_pradical (E F : {subfield L}) :
solvable_by pradical E F -> solvable_by radical E F.
Proof. by case=> [R /radicalext_pradicalext ERe FR]; exists R. Qed.
Lemma solvable_by_pradical_radical (E F : {subfield L}) :
solvable_by radical E F -> solvable_by pradical E F.
Proof. by case=> [R /pradicalext_radicalext ERe FR]; exists R. Qed.
Lemma radicalext_Fadjoin_cyclotomic (E : {subfield L}) (w : L) (n : nat) :
n.-primitive_root w -> radical.-ext E <<E; w>>%AS.
Proof.
move=> wprim; apply: (@radical_ext_Fadjoin n w E).
exact: prim_order_gt0 wprim.
by rewrite (prim_expr_order wprim) mem1v.
Qed.
End Properties.
End RadicalExtension.
Arguments tower {F0 L}.
Arguments extension_of {F0 L}.
Arguments radical {F0 L}.
Local Notation "r .-tower" := (tower r)
(at level 2, format "r .-tower") : ring_scope.
Local Notation "r .-ext" := (extension_of r)
(at level 2, format "r .-ext") : ring_scope.
(* Following the french wikipedia proof :
https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_d%27Abel_(alg%C3%A8bre)#D%C3%A9monstration_du_th%C3%A9or%C3%A8me_de_Galois
*)
Section Abel.
(******************************************************************************)
(* *)
(* Part 1 : solvable -> radical.-ext *)
(* *)
(* With the hypothesis that F has a (order of the galois group)-primitive *)
(* root of the unity : *)
(* Part 1a : if G = Gal(F/E) is abelian, then F has a basis (as an E-vspace) *)
(* with only radical elements on E *)
(* Part 1b : recurrence on the solvability chain or the order of the group, *)
(* using part1a and radicalext_fixedField *)
(* *)
(* With the hypothesis that L contains a (order of the galois group) - *)
(* primitive root of the unity : *)
(* Part 1c : F is once again a radical extension of E *)
(* *)
(******************************************************************************)
Section Part1.
Variables (F0 : fieldType) (L : splittingFieldType F0).
Implicit Types (E F K : {subfield L}) (w : L) (n : nat).
Lemma cyclic_radical_ext w E F (n := \dim_E F) :
n.-primitive_root w -> w \in E -> galois E F ->
cyclic 'Gal(F / E) -> radical.-ext E F.
Proof.
set G := (X in cyclic X) => w_root wE galois_EF /cyclicP[g GE].
have EF := galois_subW galois_EF.
have n_gt0 : (n > 0)%N by rewrite /n -dim_aspaceOver ?adim_gt0.
have Gg : generator G g by rewrite GE generator_cycle.
have gG : g \in G by rewrite GE cycle_id.
have HT90g := Hilbert's_theorem_90 Gg (subvP EF _ wE).
have /eqP/HT90g[x [xF xN0]] : galNorm E F w = 1.
rewrite /galNorm; under eq_bigr => g' g'G. rewrite (fixed_gal EF g'G)//. over.
by rewrite prodr_const -galois_dim// (prim_expr_order w_root).
have gxN0 : g x != 0 by rewrite fmorph_eq0.
have wN0 : w != 0 by rewrite (primitive_root_eq0 w_root) -lt0n.
move=> /(canLR (mulfVK gxN0))/(canRL (mulKf wN0)) gx.
have gXx i : (g ^+ i)%g x = w ^- i * x.
elim: i => [|i IHi].
by rewrite expg0 expr0 invr1 mul1r gal_id.
rewrite expgSr exprSr invfM galM// IHi rmorphM/= gx mulrA.
by rewrite (fixed_gal EF gG) ?rpredV ?rpredX.
have ExF : (<<E; x>> <= F)%VS by exact/FadjoinP.
suff -> : F = <<E; x>>%AS.
apply: radical_ext_Fadjoin n_gt0 _.
rewrite -(galois_fixedField galois_EF) -/G GE.
apply/fixedFieldP; first by rewrite rpredX.
move=> _ /cycleP[i ->]; rewrite rmorphX/= gXx exprMn exprVn exprAC.
by rewrite (prim_expr_order w_root)// expr1n invr1 mul1r.
apply/val_inj/eqP => /=.
have -> : F = fixedField (1%g : {set gal_of F}) :> {vspace L}.
by apply/esym/eqP; rewrite -galois_eq ?galvv ?galois_refl//.
rewrite -galois_eq; last by apply: galoisS galois_EF; rewrite subv_adjoin.
rewrite -subG1; apply/subsetP => g' g'G'.
have /cycleP[i g'E]: g' \in <[g]>%g.
rewrite -GE gal_kHom//; apply/kAHomP => y yE.
by rewrite (fixed_gal _ g'G') ?subvP_adjoin.
rewrite g'E in g'G' *.
have : (g ^+ i)%g x = x by rewrite (fixed_gal _ g'G') ?memv_adjoin.
rewrite gXx => /(canRL (mulfK xN0))/eqP; rewrite divff// invr_eq1.
rewrite -(prim_order_dvd w_root) => dvdni.
have /exponentP->// : (exponent G %| i)%N.
by rewrite GE exponent_cycle orderE -GE -galois_dim.
Qed.
Lemma solvableWradical_ext w E F (n := \dim_E F) :
n.-primitive_root w -> w \in E -> galois E F ->
solvable 'Gal(F / E) -> radical.-ext E F.
Proof.
move=> + + galEF; have [k] := ubnP n; elim: k => // k IHk in w E F n galEF *.
rewrite ltnS => le_nk; have subEF : (E <= F)%VS by case/andP: galEF.
have n_gt0 : (0 < n)%N by rewrite ltn_divRL ?field_dimS// mul0n adim_gt0.
move=> wn Ew solEF; have [n_le1|n_gt1] := leqP n 1%N.
have /eqP : n = 1%N by case: {+}n n_gt0 n_le1 => [|[]].
rewrite -eqn_mul ?adim_gt0 ?field_dimS// mul1n eq_sym dimv_leqif_eq//.
by rewrite val_eqE => /eqP<-; apply: rext_refl.
have /sol_prime_factor_exists[|H Hnormal] := solEF.
by rewrite -cardG_gt1 -galois_dim.
have [<-|H_neq] := eqVneq H ('Gal(F / E))%G; first by rewrite indexgg.
have galEH := normal_fixedField_galois galEF Hnormal.
have subEH : (E <= fixedField H)%VS by case/andP: galEH.
rewrite -dim_fixed_galois ?normal_sub// galois_dim//=.
pose d := \dim_E (fixedField H); pose p := \dim_(fixedField H) F.
have p_gt0 : (p > 0)%N by rewrite divn_gt0 ?adim_gt0 ?dimvS ?fixedField_bound.
have n_eq : n = (p * d)%N by rewrite /p /d -dim_fixedField dim_fixed_galois;
rewrite ?Lagrange ?normal_sub -?galois_dim.
have Ewm : w ^+ (n %/ d) \in E by rewrite rpredX.
move=> /prime_cyclic/cyclic_radical_ext-/(_ _ _ Ewm galEH)/=.
rewrite dvdn_prim_root// => [/(_ isT)|]; last by rewrite n_eq dvdn_mull.
move=> /rext_trans; apply; apply: (IHk (w ^+ (n %/ p))) => /=.
- exact: fixedField_galois.
- rewrite (leq_trans _ le_nk)// -dim_fixedField /n galois_dim// proper_card//.
by rewrite properEneq H_neq normal_sub.
- by rewrite dvdn_prim_root// n_eq dvdn_mulr.
- by rewrite rpredX//; apply: subvP Ew.
- by rewrite gal_fixedField (solvableS (normal_sub Hnormal)).
Qed.
Lemma galois_solvable_by_radical w E F (n := \dim_E F) :
n.-primitive_root w -> galois E F ->
solvable 'Gal(F / E) -> solvable_by radical E F.
Proof.
move=> w_root galEF solEF; have [EF Ew] := (galois_subW galEF, subv_adjoin E w).
exists (F * <<E; w>>)%AS; last by rewrite field_subvMr.
apply: rext_trans (radicalext_Fadjoin_cyclotomic _ w_root) _.
have galEwFEw: galois <<E; w>> (F * <<E; w>>) by apply: galois_prodvr galEF.
pose m := \dim_<<E; w>> (F * <<E; w>>); pose w' := w ^+ (n %/ m).
have w'Ew : w' \in <<E; w>>%VS by rewrite rpredX ?memv_adjoin.
have w'prim : m.-primitive_root w'.
rewrite dvdn_prim_root // /m /n !galois_dim//.
by rewrite (card_isog (galois_isog galEF _)) ?cardSg ?galS ?subv_cap ?EF//.
apply: (@solvableWradical_ext w'); rewrite // (isog_sol (galois_isog galEF _))//.
by rewrite (solvableS _ solEF) ?galS// subv_cap EF.
Qed.
(* Main lemma of part 1 *)
Lemma ext_solvable_by_radical w E F (n := \dim_E (normalClosure E F)) :
n.-primitive_root w -> solvable_ext E F -> solvable_by radical E F.
Proof.
move=> wprim /andP[sepEF]; have galEF := normalClosure_galois sepEF.
move=> /(galois_solvable_by_radical wprim galEF) [M EM EFM]; exists M => //.
by rewrite (subv_trans _ EFM) ?normalClosureSr.
Qed.
End Part1.
(******************************************************************************)
(* *)
(* Part 2 : solvable_by_radicals -> solvable *)
(* *)
(******************************************************************************)
Section RadicalRoots.
Variables (F : fieldType) (n : nat) (x w : F).
Hypothesis w_root : (n.-primitive_root w)%R.
Notation ws := [seq x * w ^+ val i | i : 'I_n].
Lemma uniq_roots_Xn_sub_xn : x != 0 -> uniq ws.
Proof using w_root.
move=> xN0; rewrite /image_mem (map_comp (fun i => x * w ^+ i)) val_enum_ord.
apply/(uniqP 0) => i j; rewrite !inE size_map size_iota/= => ip jp.
rewrite !(nth_map 0%N) ?size_iota// ?nth_iota// => /(mulfI xN0).
by move/eqP; rewrite (eq_prim_root_expr w_root) !modn_small// => /eqP.
Qed.
Lemma Xn_sub_xnE : (n > 0)%N ->
'X^n - (x ^+ n)%:P = \prod_(i < n) ('X - (x * w ^+ i)%:P).
Proof using w_root.
move=> n_gt0; have [->|xN0] := eqVneq x 0.
under eq_bigr do rewrite mul0r subr0.
by rewrite expr0n gtn_eqF// subr0 prodr_const card_ord.
rewrite [LHS](@all_roots_prod_XsubC _ _ ws).
- by rewrite (monicP _) ?monic_XnsubC// scale1r big_map big_enum.
- by rewrite size_XnsubC// size_map size_enum_ord.
- rewrite all_map; apply/allP => i _ /=; rewrite /root !hornerE hornerXn.
by rewrite exprMn exprAC [w ^+ _]prim_expr_order// expr1n mulr1 subrr.
- by rewrite uniq_rootsE uniq_roots_Xn_sub_xn.
Qed.
End RadicalRoots.
Section galois_pradical.
Variables (p : nat) (F0 : fieldType) (L : splittingFieldType F0).
Variables (w : L) (x : L).
Hypothesis w_root : (p.-primitive_root w)%R.
Implicit Types (E : {subfield L}).
Lemma dvdp_minpoly_Xn_subn E :
(x ^+ p)%R \in E -> minPoly E x %| ('X^p - (x ^+ p)%:P).
Proof using.
move=> xpE; have [->|p_gt0] := posnP p; first by rewrite !expr0 subrr dvdp0.
by rewrite minPoly_dvdp /root ?poly_XnsubC_over// !hornerE hornerXn subrr.
Qed.
Lemma galois_cyclo_radical E : (p > 0)%N -> x ^+ p \in E ->
galois E <<<<E; w>>; x>>.
Proof.
move=> p_gt0 xpE; have [xE|xNE] := boolP (x \in E).
rewrite (Fadjoin_idP _) ?(galois_Fadjoin_cyclotomic _ w_root)//.
by rewrite (subvP (subv_adjoin _ _)).
have [x0|xN0] := eqVneq x 0; first by rewrite x0 rpred0 in xNE.
have [pB1_eq0|pB1_gt0] := posnP p.-1.
by case: {+}p p_gt0 pB1_eq0 xpE xNE => [|[]]//=; rewrite expr1 => _ _ ->.
apply/splitting_galoisField; exists ('X^p - (x ^+ p)%:P)%R.
split; first by rewrite rpredB ?rpredX ?polyOverX ?polyOverC//.
rewrite (Xn_sub_xnE _ w_root)// -(big_map _ predT (fun x => 'X - x%:P)).
rewrite separable_prod_XsubC -[index_enum _]enumT.
by rewrite (uniq_roots_Xn_sub_xn w_root).
exists [seq x * w ^+ val i | i : 'I_p].
by rewrite (Xn_sub_xnE _ w_root)// big_map big_enum//= eqpxx.
apply/eqP; rewrite /image_mem (map_comp (fun i => x * w ^+ i)) val_enum_ord.
rewrite -[p]prednK//= mulr1 -[p.-1]prednK//= expr1 !adjoin_cons.
have -> : <<<<E; x>>; x * w>>%VS = <<<<E; w>>; x>>%VS.
apply/eqP; rewrite [X in _ == X]adjoinC eqEsubv/= !Fadjoin_sub//.
by rewrite -(@fpredMl _ _ _ _ x)// ?memv_adjoin//= adjoinC memv_adjoin.
by rewrite rpredM// ?memv_adjoin//= adjoinC memv_adjoin.
rewrite (Fadjoin_seq_idP _)// all_map; apply/allP => i _/=.
by rewrite rpredM ?rpredX//= ?memv_adjoin// adjoinC memv_adjoin.
Qed.
Lemma galois_radical E : w \in E -> (p > 0)%N -> x ^+ p \in E ->
galois E <<E; x>>.
Proof. by move=> + pp /(galois_cyclo_radical pp) => /(@Fadjoin_idP _)->. Qed.
Variable (E : {subfield L}).
Hypothesis p_prime : prime p.
Hypothesis wE : w \in E.
Hypothesis xNE : x \notin E.
Hypothesis xpE : x ^+ p \in E.
Let p_gt0 := prime_gt0 p_prime.
Lemma minPoly_pradical : minPoly E x = 'X^p - (x ^+ p)%:P.
Proof using w_root p_prime wE xNE xpE p_gt0.
have xN0 : x != 0 by apply: contraNneq xNE => ->; rewrite rpred0.
have := dvdp_minpoly_Xn_subn xpE; rewrite (Xn_sub_xnE _ w_root)// -big_enum/=.
move=> /dvdp_prod_XsubC[m]; rewrite eqp_monic ?monic_minPoly//; last first.
by rewrite monic_prod// => i _; rewrite monic_XsubC.
have [{}m sm ->] := resize_mask m (enum 'I_p); set s := mask _ _ => /eqP mEx.
have [|smp_gt0] := posnP (size s).
case: s mEx => // /(congr1 (horner^~x))/esym/eqP.
by rewrite minPolyxx big_nil hornerC oner_eq0.
suff leq_pm : (p <= size s)%N.
move: mEx; suff /eqP->: s == enum 'I_p by [].
by rewrite -(geq_leqif (size_subseq_leqif _)) ?mask_subseq// size_enum_ord.
have xXE (i : nat) : x ^+ i \in E -> (p %| i)%N.
move=> xiE; apply: contraNT xNE; rewrite -prime_coprime// => /coprimeP[]// u.
have [/eqP->//|uip] := leqP (u.1 * p)%N (u.2 * i)%N; rewrite -[x]expr1 => <-.
by rewrite expfB// rpredM ?rpredV// mulnC exprM rpredX.
have /polyOverP/(_ 0%N) := minPolyOver E x; rewrite {}mEx coef0_prod.
under eq_bigr do rewrite coefB coefX coefC add0r -mulrN/=.
have w_neq0 : w != 0 by rewrite (primitive_root_eq0 w_root) -lt0n.
rewrite big_split/= fpredMr; last first.
- by rewrite prodf_seq_eq0; apply/hasPn => i _/=; rewrite oppr_eq0 expf_neq0.
- by rewrite rpred_prod// => i _/=; rewrite rpredN rpredX.
by rewrite big_tnth prodr_const cardT/= size_enum_ord => /xXE; apply: dvdn_leq.
Qed.
Lemma size_minPoly_pradical: size (minPoly E x) = p.+1.
Proof. by rewrite minPoly_pradical ?size_XnsubC. Qed.
Local Notation G := 'Gal(<<E; x>> / E)%g.
(* - Gal(E(x) / E) has order n *)
Lemma order_galois_pradical : #|G| = p.
Proof.
rewrite -galois_dim 1?galois_radical// -adjoin_degreeE.
by have := size_minPoly E x; rewrite size_minPoly_pradical// => -[].
Qed.
Lemma pradical_cyclic : cyclic G.
Proof. by apply/prime_cyclic; rewrite order_galois_pradical. Qed.
Lemma pradical_abelian : abelian G.
Proof. exact/cyclic_abelian/pradical_cyclic. Qed.
Lemma pradical_solvable : solvable G.
Proof. by rewrite abelian_sol ?pradical_abelian/= ?subvv. Qed.
End galois_pradical.
Lemma pradical_solvable_ext (p : nat)
(F0 : fieldType) (L : splittingFieldType F0)
(E : {subfield L}) (x : L) : prime p ->
p%:R != 0 :> F0 -> x ^+ p \in E -> solvable_ext E <<E; x>>.
Proof.
move=> p_prime p_neq0 xpE; have p_gt0 := prime_gt0 p_prime.
wlog [w w_root] : L E x xpE / {w : L | p.-primitive_root w} => [hwlog|].
apply: (@classic_cycloSplitting _ L p p_neq0) => -[L' [w [f wf rw]]].
rewrite -(solvable_ext_aimg f) aimg_adjoin hwlog -?rmorphX ?memv_img//.
by exists w.
have galEw := galois_Fadjoin_cyclotomic E w_root.
have solEw := solvable_Fadjoin_cyclotomic E w_root.
have [xEw|xNEw] := boolP (x \in <<E; w>>%VS).
by apply/solvable_extP; exists <<E; w>>%AS; rewrite galEw solEw Fadjoin_sub.
have xpEw : x ^+ p \in <<E; w>>%VS by rewrite (subvP (subv_adjoin _ _)).
have galEwx : galois E <<<<E; w>>; x>> by rewrite (@galois_cyclo_radical p).
apply/solvable_extP; exists <<<<E; x>>; w>>%AS; rewrite subv_adjoin/= adjoinC.
rewrite galEwx (@series_sol _ _ ('Gal(<<<<E; w>>; x>> / <<E; w>>)));
last by rewrite normalField_normal ?subv_adjoin ?galois_normalW.
rewrite (@pradical_solvable p _ _ w)// ?memv_adjoin//.
by rewrite (isog_sol (normalField_isog _ _ _)) ?galois_normalW ?subv_adjoin.
Qed.
Lemma radical_ext_solvable_ext (F0 : fieldType) (L : splittingFieldType F0)
(E F : {subfield L}) : has_char0 L -> (E <= F)%VS ->
solvable_by radical E F -> solvable_ext E F.
Proof.
move=> charL EF.
move=> [_ /pradicalext_radicalext[[/= n e pw] /towerP epwP <- FK]].
have charF0 : [char F0] =i pred0 by move=> i; rewrite -charL char_lalg.
pose k := n; suff {FK} : solvable_ext E <<E & take k e>>.
by rewrite take_oversize ?size_tuple//; apply: sub_solvable_ext.
elim: k => /= [|k IHsol]; first by rewrite take0 Fadjoin_nil.
have [kn|nk] := ltnP k n; last first.
by move: IHsol; rewrite !take_oversize ?size_tuple// leqW.
rewrite (take_nth 0) ?size_tuple// adjoin_rcons.
apply: solvable_ext_trans IHsol _.
by rewrite /= subv_adjoin_seq subv_adjoin.
have := epwP (Ordinal kn); rewrite (tnth_nth 0) (tnth_nth 0%N)/=.
move=> /pradicalP[pwk_prime epwEk].
apply: (pradical_solvable_ext pwk_prime) => //.
by have /charf0P-> := charF0; rewrite -lt0n prime_gt0.
Qed.
(******************************************************************************)
(* *)
(* Abel/Galois Theorem *)
(* *)
(******************************************************************************)
(** Ok **)
Lemma AbelGalois (F0 : fieldType) (L : splittingFieldType F0) (w : L)
(E F : {subfield L}) : (E <= F)%VS -> has_char0 L ->
(\dim_E (normalClosure E F)).-primitive_root w ->
solvable_by radical E F <-> solvable_ext E F.
Proof.
move=> EF charL wprim; split; first exact: radical_ext_solvable_ext.
exact: (ext_solvable_by_radical wprim).
Qed.
End Abel.
Definition solvable_by_radical_poly (F : fieldType) (p : {poly F}) :=
forall (L : splittingFieldType F) (rs : seq L),
p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) ->
forall w : L, (\dim <<1 & rs>>%VS).-primitive_root w ->
solvable_by radical 1 <<1 & rs>>.
Definition solvable_ext_poly (F : fieldType) (p : {poly F}) :=
forall (L : splittingFieldType F) (rs : seq L),
p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) ->
solvable 'Gal(<<1 & rs>> / 1).
Lemma galois_solvable (F0 : fieldType) (L : splittingFieldType F0)
(E F : {subfield L}) :
galois E F -> solvable_ext E F = solvable 'Gal(F / E).
Proof.
by move=> /and3P[EF sEF nEF]; rewrite /solvable_ext sEF normalClosure_id.
Qed.
Lemma normal_solvable (F0 : fieldType) (L : splittingFieldType F0)
(E F : {subfield L}) : has_char0 L ->
(E <= F)%VS -> normalField E F -> solvable_ext E F = solvable 'Gal(F / E).
Proof. by move=> charL EF /(char0_galois charL EF)/galois_solvable. Qed.
Lemma AbelGaloisPoly (F : fieldType) (p : {poly F}) : has_char0 F ->
solvable_ext_poly p <-> solvable_by_radical_poly p.
Proof.
move=> charF; split=> + L rs pE => [/(_ L rs pE) + w w_prim|solrs]/=.
have charL : has_char0 L by move=> i; rewrite char_lalg.
have normal_rs : normalField 1 <<1 & rs>>.
apply/splitting_normalField; rewrite ?sub1v//.
by exists (p ^^ in_alg _); [apply/polyOver1P; exists p | exists rs].
by move=> solrs; apply/(@AbelGalois _ _ w);
rewrite ?char0_solvable_extE ?normalClosure_id ?sub1v ?dimv1 ?divn1.
have charL : has_char0 L by move=> i; rewrite char_lalg.
have seprs: separable 1 <<1 & rs>> by apply/char0_separable.
have normal_rs : normalField 1 <<1 & rs>>.
apply/splitting_normalField; rewrite ?sub1v//.
by exists (p ^^ in_alg _); [apply/polyOver1P; exists p | exists rs].
pose n := \dim <<1 & rs>>.
have nFN0 : n%:R != 0 :> F by have /charf0P-> := charF; rewrite -lt0n adim_gt0.
apply: (@classic_cycloSplitting _ L _ nFN0) => - [L' [w [iota wL' w_prim]]].
suff: solvable_ext 1 <<1 & rs>>.
by rewrite /solvable_ext seprs normalClosure_id ?sub1v.
rewrite -(solvable_ext_aimg iota).
have charL' : [char L'] =i pred0 by move=> i; rewrite char_lalg.
apply/(@AbelGalois _ _ w) => //.
- by rewrite limgS// sub1v.
- rewrite -aimg_normalClosure //= aimg1 dimv1 divn1 dim_aimg/=.
by rewrite normalClosure_id ?dimv1 ?divn1 ?sub1v//.
have /= := solrs L' (map iota rs) _ w.
rewrite -(aimg1 iota) -!aimg_adjoin_seq dim_aimg.
apply => //; have := pE; rewrite -(eqp_map [rmorphism of iota]).
by rewrite -map_poly_comp/= (eq_map_poly (rmorph_alg _)) map_prod_XsubC.
Qed.
Lemma solvable_ext_polyP (F : fieldType) (p : {poly F}) : p != 0 ->
has_char0 F ->
solvable_ext_poly p <->
classically (exists (L : splittingFieldType F) (rs : seq L),
p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) /\
solvable 'Gal(<<1 & rs>> / 1)).
Proof.
move=> p_neq0 charF; split => sol_p.
have FoE (v : F^o) : v = in_alg F^o v by rewrite /= /(_%:A)/= mulr1.
apply: classic_bind (@classic_fieldExtFor _ _ (p : {poly F^o}) p_neq0).
move=> [L [rs [iota rsf p_eq]]]; apply/classicW.
have iotaF : iota =1 in_alg L by move=> v; rewrite [v in LHS]FoE rmorph_alg.
have splitL : SplittingField.axiom L.
exists (p ^^ iota).
by apply/polyOver1P; exists p; apply: eq_map_poly.
exists rs => //; suff <- : limg iota = 1%VS by [].
apply/eqP; rewrite eqEsubv sub1v andbT; apply/subvP => v.
by move=> /memv_imgP[u _ ->]; rewrite iotaF/= rpredZ// rpred1.
pose S := SplittingFieldType F L splitL.
exists S, rs; split => //=; first by rewrite -(eq_map_poly iotaF).
by apply: (sol_p S rs); rewrite -(eq_map_poly iotaF).
move=> L rs prs; apply: sol_p => -[M [rs' [prs']]].
have charL : has_char0 L by move=> n; rewrite char_lalg charF.
have charM : has_char0 M by move=> n; rewrite char_lalg charF.
pose K := [fieldExtType F of subvs_of <<1 & rs>>%VS].
pose rsK := map (vsproj <<1 & rs>>%VS) rs.
have pKrs : p ^^ in_alg K %= \prod_(x <- rsK) ('X - x%:P).
rewrite -(eqp_map [rmorphism of vsval])/= map_prod_XsubC/= -map_poly_comp/=.
rewrite -map_comp (@eq_map_poly _ _ _ (in_alg L)); last first.
by move=> v; rewrite /= algid1.
have /eq_in_map-> : {in rs, cancel (vsproj <<1 & rs>>%VS) vsval}.
by move=> x xrs; rewrite vsprojK// seqv_sub_adjoin.
by rewrite big_map.
have splitK : splittingFieldFor 1 (p ^^ in_alg K) fullv.
exists rsK => //; apply/eqP; rewrite eqEsubv subvf/=.
rewrite -(@limg_ker0 _ _ _ (linfun vsval)) ?AHom_lker0//.
rewrite aimg_adjoin_seq/= aimg1 -map_comp/=.
have /eq_in_map-> : {in rs, cancel (vsproj <<1 & rs>>%VS) (linfun vsval)}.
by move=> x xrs; rewrite lfunE/= vsprojK// seqv_sub_adjoin.
rewrite map_id; apply/subvP => _/memv_imgP[v _ ->].
by rewrite lfunE subvsP.
have sfK : SplittingField.axiom K.
by exists (p ^^ in_alg K) => //; apply/polyOver1P; exists p.
pose S := SplittingFieldType F K sfK.
have splitS : splittingFieldFor 1 (p ^^ in_alg S) fullv by [].
have splitM : splittingFieldFor 1 (p ^^ in_alg M) <<1 & rs'>> by exists rs'.
have splitL : splittingFieldFor 1 (p ^^ in_alg L) <<1 & rs>> by exists rs.
have [f imgf] := splitting_ahom splitS splitM.
have [g imgg] := splitting_ahom splitS splitL.
rewrite -imgf -(aimg1 f)/= -img_map_gal injm_sol ?map_gal_inj ?subsetT//.
by rewrite -imgg -(aimg1 g)/= -img_map_gal injm_sol ?map_gal_inj ?subsetT//.
Qed.
Lemma solvable_by_radical_polyP (F : fieldType) (p : {poly F}) : p != 0 ->
has_char0 F ->
solvable_by_radical_poly p <->
classically (exists (L : splittingFieldType F) (rs : seq L),
p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) /\
solvable_by radical 1 <<1 & rs>>).
Proof.
move=> p_neq0 charF0;
split => sol_p; last first.
apply/AbelGaloisPoly => //; apply/solvable_ext_polyP => //.
apply: classic_bind sol_p => -[L [rs [prs sol_p]]]; apply/classicW.
exists L, rs; split => //; rewrite -galois_solvable.
apply: radical_ext_solvable_ext; rewrite ?sub1v// => v.
by rewrite char_lalg charF0.
have charL : has_char0 L by move=> n; rewrite char_lalg charF0.
rewrite char0_galois// ?sub1v//.
apply/splitting_normalField; rewrite ?sub1v//.
by exists (p ^^ in_alg _); [apply/polyOver1P; exists p | exists rs].
have FoE (v : F^o) : v = in_alg F^o v by rewrite /= /(_%:A)/= mulr1.
apply: classic_bind (@classic_fieldExtFor _ _ (p : {poly F^o}) p_neq0).
move=> [L [rs [f rsf p_eq]]].
have fF : f =1 in_alg L by move=> v; rewrite [v in LHS]FoE rmorph_alg.
have splitL : SplittingField.axiom L.
exists (p ^^ f); first by apply/polyOver1P; exists p; apply: eq_map_poly.
exists rs => //; suff <- : limg f = 1%VS by [].
apply/eqP; rewrite eqEsubv sub1v andbT; apply/subvP => v.
by move=> /memv_imgP[u _ ->]; rewrite fF/= rpredZ// rpred1.
pose S := SplittingFieldType F L splitL.
pose d := \dim <<1 & (rs : seq S)>>.
have /classic_cycloSplitting-/(_ S) : d%:R != 0 :> F.
by have /charf0P-> := charF0; rewrite -lt0n adim_gt0.
apply/classic_bind => -[C [w [g wg w_prim]]]; apply/classicW.
have gf : g \o f =1 in_alg C by move=> v /=; rewrite fF rmorph_alg.
have pgrs : p ^^ in_alg C %= \prod_(x <- [seq g i | i <- rs]) ('X - x%:P).
by rewrite -(eq_map_poly gf) map_poly_comp/= -map_prod_XsubC eqp_map//.
exists C, (map g rs); split => //=; apply: (sol_p C (map g rs) _ w) => //.
by rewrite -(aimg1 g) -aimg_adjoin_seq dim_aimg.
Qed.
Import GRing.Theory Order.Theory Num.Theory.
Lemma solvable_poly_rat (p : {poly rat}) : p != 0 ->
solvable_by_radical_poly p ->
{L : splittingFieldType rat & {iota : {rmorphism L -> algC} & { rs : seq L |
p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) /\
solvable_by radical 1 <<1 & rs>>}}}.
Proof.
move=> p_neq0 p_sol.
have [/= rsalg pE] := closed_field_poly_normal (p ^^ (ratr : _ -> algC)).
have {}pE : p ^^ ratr %= \prod_(z <- rsalg) ('X - z%:P).
rewrite pE (eqp_trans (eqp_scale _ _)) ?eqpxx//.
by rewrite lead_coef_map//= fmorph_eq0 lead_coef_eq0.
have [L [iota [rs iota_rs rsf]]] := num_field_exists rsalg.
have prs : p ^^ in_alg L %= \prod_(z <- rs) ('X - z%:P).
rewrite -(eqp_map iota) map_prod_XsubC iota_rs -map_poly_comp.
by rewrite (eq_map_poly (fmorph_eq_rat _)).
have splitL : SplittingField.axiom L.
by exists (p ^^ in_alg L); [by apply/polyOver1P; exists p | exists rs].
pose S := SplittingFieldType rat L splitL.
pose d := \dim <<1 & (rs : seq S)>>.
have d_gt0 : (d > 0)%N by rewrite adim_gt0.
have [ralg ralg_prim] := C_prim_root_exists d_gt0.
have [L' [iota' [[]//= w rs' [iotaw iota_rs' wrsf]]]] :=
num_field_exists (ralg :: rsalg).
have prs' : p ^^ in_alg L' %= \prod_(z <- rs') ('X - z%:P).
rewrite -(eqp_map iota') map_prod_XsubC iota_rs' -map_poly_comp.
by rewrite (eq_map_poly (fmorph_eq_rat _)).
have w_prim : d.-primitive_root w.
by move: ralg_prim; rewrite -iotaw fmorph_primitive_root.
have splitL' : SplittingField.axiom L'.
exists (cyclotomic w d * p ^^ in_alg L').
by rewrite rpredM ?cyclotomic_over//; apply/polyOver1P; exists p.
have [us cycloE usw] := splitting_Fadjoin_cyclotomic 1%AS w_prim.
exists (us ++ rs'); last by rewrite adjoin_cat usw -adjoin_cons.
by rewrite big_cat/= (eqp_trans (eqp_mulr _ cycloE))// eqp_mull//.
pose S' := SplittingFieldType rat L' splitL'.
have splitS : splittingFieldFor 1 (p ^^ in_alg S) fullv by exists rs.
have splitS' : splittingFieldFor 1 (p ^^ in_alg S') <<1 & rs'>> by exists rs'.
have [f /= imgf] := splitting_ahom splitS splitS'.
exists S', iota', rs'; split => //.
by apply: (p_sol S' rs' prs' w); rewrite -imgf dim_aimg/= -rsf.
Qed.
Lemma splitting_num_field (p : {poly rat}) :
{L : splittingFieldType rat & { LtoC : {rmorphism L -> algC} |
(p != 0 -> splittingFieldFor 1 (p ^^ in_alg L) {:L})
/\ (p = 0 -> L = [splittingFieldType rat of rat^o]) }}.
Proof.
have [->|p_neq0] := eqVneq p 0.
by exists [splittingFieldType rat of rat^o], [rmorphism of ratr]; split.
have [/= rsalg pE] := closed_field_poly_normal (p ^^ (ratr : _ -> algC)).
have {}pE : p ^^ ratr %= \prod_(z <- rsalg) ('X - z%:P).
by rewrite pE (eqp_trans (eqp_scale _ _)) ?eqpxx// lead_coef_eq0 map_poly_eq0.
have [L' [L'toC [rs' rs'E rs'f]]] := num_field_exists rsalg.
have splitL' : splittingFieldFor 1 (p ^^ in_alg L') {: L'}%AS.
exists rs' => //; rewrite -(eqp_map L'toC).
by rewrite -map_poly_comp map_prod_XsubC rs'E (eq_map_poly (fmorph_eq_rat _)).
have splitaxL' : SplittingField.axiom L'.
by exists (p ^^ in_alg L'); first by apply/polyOver1P; exists p.
exists (SplittingFieldType rat L' splitaxL'), L'toC; split => //.
by move=> p_eq0; rewrite p_eq0 eqxx in p_neq0.
Qed.
Lemma solvable_poly_ratP (p : {poly rat}) : p != 0 ->
solvable_by_radical_poly p <->
exists L : splittingFieldType rat, exists2 K : {subfield L},
splittingFieldFor 1 (p ^^ in_alg L) K & solvable_by radical 1 K.
Proof.
move=> p_neq0; split.
move=> /(solvable_poly_rat p_neq0)[L [_ [rs [prs rssol]]]].
by exists L, <<1 & rs>>%AS; first by exists rs.
have charrat : [char rat] =i pred0 by exact: char_num.
move=> [L [K [rs prs <-] solK]]; apply/solvable_by_radical_polyP => //.
by apply/classicW; exists L, rs.
Qed.
Definition numfield (p : {poly rat}) : splittingFieldType rat :=
projT1 (splitting_num_field p).
Lemma numfield0 : numfield 0 = [splittingFieldType rat of rat^o].
Proof. by rewrite /numfield; case: splitting_num_field => //= ? [? [_ ->]]. Qed.
Definition numfield_inC (p : {poly rat}) :
{rmorphism numfield p -> algC} :=
projT1 (projT2 (splitting_num_field p)).
Lemma numfieldP (p : {poly rat}) : p != 0 ->
splittingFieldFor 1 (p ^^ in_alg (numfield p)) fullv.
Proof. by rewrite /numfield; case: splitting_num_field => //= ? [? []]. Qed.
Lemma char_numfield (p : {poly rat}) : [char (numfield p)] =i pred0.
Proof. exact: char_ext. Qed.
Hint Resolve char_numfield : core.
Lemma normal_numfield (p : {poly rat}) : normalField 1 {: numfield p}.
Proof.
have [{p}->|p_neq0] := eqVneq p 0.
by rewrite numfield0 regular_fullv normalField_refl.
apply/splitting_normalField; rewrite ?sub1v//.
exists (p ^^ in_alg _); last exact: numfieldP.
by apply/polyOver1P; exists p.
Qed.
Lemma galois_numfield (p : {poly rat}) : galois 1 {: numfield p}.
Proof.
by apply/char0_galois; [exact/char_ext|rewrite sub1v|exact: normal_numfield].
Qed.
Theorem AbelGaloisPolyRat (p : {poly rat}) :
reflect (solvable_by_radical_poly p) (solvable 'Gal({: numfield p} / 1)).
Proof.
have [{p}->|p_neq0] := eqVneq p 0.
rewrite numfield0 regular_fullv galvv solvable1; constructor.
move=> L rs; rewrite eqp_sym rmorph0 eqp0 prodf_seq_eq0.
by move=> /hasP[x _ /=]; rewrite polyXsubC_eq0.
have charrat : [char rat] =i pred0 by exact: char_num.
pose charnumfield := char_ext (numfield p).
apply: (equivP idP); rewrite -AbelGaloisPoly//.
have [rs prs <-] := numfieldP p_neq0.
split; last by move=> /(_ (numfield p) rs prs).
move=> solp; apply/solvable_ext_polyP => //.
by apply/classicW; exists (numfield p); exists rs; split.
Qed.
Definition numfield_roots (p : {poly rat}) :=
if (p != 0) =P true isn't ReflectT p_neq0 then [::]
else projT1 (sig2_eqW (numfieldP p_neq0)).
Lemma poly_numfield_eqp (p : {poly rat}) : p != 0 ->
p ^^ in_alg _ %= \prod_(x <- numfield_roots p) ('X - x%:P).
Proof.
by move=> p_neq0; rewrite /numfield_roots; case: eqP => //= ?; case: sig2_eqW.
Qed.
Lemma adjoin_numfield_roots (p : {poly rat}) :
(<<1 & numfield_roots p>> = fullv)%VS.
Proof.
rewrite /numfield_roots; case: eqP => [p0|/negP]; first by case: sig2_eqW.
by rewrite negbK => /eqP->; rewrite numfield0 regular_fullv Fadjoin_nil.
Qed.
Open Scope ring_scope.
Module PrimeDegreeTwoNonRealRoots.
Section PrimeDegreeTwoNonRealRoots.
Variables (p : {poly rat}).
Let L := numfield p.
Let charL : has_char0 L := char_numfield p.
Let iota : {rmorphism L -> algC} := numfield_inC p.
Let rp' : seq L := numfield_roots p.
Hypothesis p_irr : irreducible_poly p.
Let p_neq0 : p != 0.
Proof.
have := p_irr; rewrite /irreducible_poly => -[+ _].
by apply: contraTneq => ->; rewrite size_poly0.
Qed.
Let ratr_p' : map_poly ratr p %= \prod_(x <- rp') ('X - x%:P).
Proof.
by have := poly_numfield_eqp p_neq0; rewrite (eq_map_poly (fmorph_eq_rat _)).
Qed.
Let rp'_uniq : uniq rp'.
Proof.
rewrite -separable_prod_XsubC -(eqp_separable ratr_p').
rewrite -char0_ratrE separable_map.
apply/coprimepP => d; have [sp_gt1 eqp] := p_irr => /eqp.
rewrite size_poly_eq1; have [//|dN1 /(_ isT)] := boolP (d %= 1).
move=> /eqp_dvdl-> /dvdp_leq; rewrite -size_poly_eq0 polyorder.size_deriv.
by case: (size p) sp_gt1 => [|[|n]]//= _; rewrite ltnn; apply.
Qed.
Let d := (size p).-1.
Hypothesis d_prime : prime d.
Hypothesis count_rp' : count [pred x | iota x \isn't Num.real] rp' = 2%N.
Let rp := [seq x <- rp' | iota x \isn't Num.real]
++ [seq x <- rp' | iota x \is Num.real].
Let rp_perm : perm_eq rp rp'. Proof. by rewrite perm_catC perm_filterC. Qed.
Let rp_uniq : uniq rp. Proof. by rewrite (perm_uniq rp_perm). Qed.
Let ratr_p : map_poly ratr p %= \prod_(x <- rp) ('X - x%:P).
Proof.
rewrite (eqp_trans ratr_p')// eqp_monic ?monic_prod_XsubC//.
exact/eqP/esym/perm_big.
Qed.
Lemma nth_rp_real i : (iota rp`_i \is Num.real) = (i > 1)%N.
Proof.
rewrite nth_cat size_filter count_rp'; case: ltnP => // iP; [apply/negbTE|].
apply: (allP (filter_all [predC (mem Creal) \o iota] _)) _ (mem_nth 0 _).
by rewrite size_filter count_rp'.
have [i_big|i_small] := leqP (size [seq x <- rp' | iota x \is Creal]) (i - 2).
by rewrite nth_default// rmorph0 rpred0.
exact: (allP (filter_all (mem Creal \o iota) _)) _ (mem_nth 0 _).
Qed.
Let K := <<1 & rp'>>%AS.
Let K_eq : K = <<1 & rp>>%AS :> {vspace _}.
Proof. exact/esym/eq_adjoin/perm_mem. Qed.
Let K_split_p : splittingFieldFor 1%AS (map_poly ratr p) K.
Proof. by exists rp => //; rewrite ratr_p eqpxx. Qed.
Let p_sep : separable_poly p.
Proof.
rewrite -(separable_map [rmorphism of char0_ratr charL]).
by rewrite (eqp_separable ratr_p) separable_prod_XsubC.
Qed.
Let d_gt0 : (d > 0)%N.
Proof. by rewrite prime_gt0. Qed.
Let d_gt1 : (d > 1)%N.
Proof. by rewrite prime_gt1. Qed.
Lemma size_rp : size rp = d.
Proof.
have /eqp_size := ratr_p; rewrite -char0_ratrE size_map_poly.
by rewrite size_prod_XsubC polySpred// => -[].
Qed.
Let i0 := Ordinal d_gt0.
Let i1 := Ordinal d_gt1.
Lemma ratr_p_over : map_poly (ratr : rat -> L) p \is a polyOver 1%AS.
Proof.
apply/polyOverP => i; rewrite -char0_ratrE coef_map /=.
by rewrite char0_ratrE -alg_num_field rpredZ ?mem1v.
Qed.
Lemma galois1K : galois 1%VS K.
Proof.
apply/splitting_galoisField; exists (map_poly ratr p); split => //.
exact: ratr_p_over.
by rewrite -char0_ratrE separable_map.
Qed.
Lemma all_rpK : all (mem K) rp.
Proof. by rewrite K_eq; apply/allP/seqv_sub_adjoin. Qed.
Lemma root_p : root (p ^^ ratr) =i rp.
Proof. by move=> x; rewrite -topredE/= (eqp_root ratr_p) root_prod_XsubC. Qed.
Lemma rp_roots : all (root (map_poly ratr p)) rp.
Proof. by apply/allP => x; rewrite -root_p. Qed.
Lemma ratr_p_rp i : (i < d)%N -> (map_poly ratr p).[rp`_i] = 0.
Proof. by move=> ltid; apply/eqP; rewrite [_ == _]root_p mem_nth ?size_rp. Qed.
Lemma rpK i : (i < d)%N -> rp`_i \in K.
Proof. by move=> ltid; rewrite [_ \in _](allP all_rpK) ?mem_nth ?size_rp. Qed.
Lemma eq_size_rp : size rp == d. Proof. exact/eqP/size_rp. Qed.
Let trp := Tuple eq_size_rp.
Lemma gal_perm_eq (g : gal_of K) : perm_eq [seq g x | x <- trp] trp.
Proof.
apply: prod_XsubC_eq; apply/eqP; rewrite -eqp_monic ?monic_prod_XsubC//.
rewrite -(eqp_rtrans ratr_p) big_map.
apply: (@eqp_trans _ (map_poly (g \o ratr) p)); last first.
apply/eqpW/eq_map_poly => x /=; rewrite (fixed_gal _ (gal1 g)) ?sub1v//.
by rewrite -alg_num_field rpredZ ?mem1v.
rewrite map_poly_comp/=; have := ratr_p; rewrite -(eqp_map [rmorphism of g])/=.
move=> /eqp_rtrans/=->; apply/eqpW; rewrite rmorph_prod.
by apply: eq_bigr => x; rewrite rmorphB/= map_polyX map_polyC/=.
Qed.
Definition gal_perm g : 'S_d := projT1 (sig_eqW (tuple_permP (gal_perm_eq g))).
Lemma gal_permP g i : rp`_(gal_perm g i) = g (rp`_i).
Proof.
rewrite /gal_perm; case: sig_eqW => /= s.
move=> /(congr1 (((@nth _ 0))^~ i)); rewrite (nth_map 0) ?size_rp// => ->.
by rewrite (nth_map i) ?size_enum_ord// (tnth_nth 0)/= nth_ord_enum.
Qed.
(** N/A **)
Lemma gal_perm_is_morphism :
{in ('Gal(K / 1%AS))%G &, {morph gal_perm : x y / (x * y)%g >-> (x * y)%g}}.
Proof.
move=> u v _ _; apply/permP => i; apply/val_inj.
apply: (uniqP 0 rp_uniq); rewrite ?inE ?size_rp ?ltn_ord//=.
by rewrite permM !gal_permP galM// ?rpK.
Qed.
Canonical gal_perm_morphism := Morphism gal_perm_is_morphism.
Lemma minPoly_rp x : x \in rp -> minPoly 1%VS x %= map_poly ratr p.
Proof.
move=> xrp; have : minPoly 1 x %| map_poly ratr p.
by rewrite minPoly_dvdp ?ratr_p_over ?[root _ _]root_p//=.
have : size (minPoly 1 x) != 1%N by rewrite size_minPoly.
have /polyOver1P[q ->] := minPolyOver 1 x.
have /eq_map_poly -> : in_alg L =1 ratr.
by move=> r; rewrite in_algE alg_num_field.
by rewrite -char0_ratrE /eqp !dvdp_map -/(_ %= _) size_map_poly; apply: p_irr.
Qed.
Lemma injm_gal_perm : ('injm gal_perm)%g.
Proof.
apply/subsetP => u /mker/= gu1; apply/set1gP/eqP/gal_eqP => x Kx.
have fixrp : all (fun r => frel u r r) rp.
apply/allP => r/= /(nthP 0)[i]; rewrite size_rp => ltid <-.
have /permP/(_ (Ordinal ltid))/(congr1 val)/= := gu1.
by rewrite perm1/= => {2}<-; rewrite gal_permP.
rewrite K_eq /= in Kx.
elim/last_ind: rp x Kx fixrp => [|s r IHs] x.
rewrite adjoin_nil subfield_closed => x1 _.
by rewrite (fixed_gal _ (gal1 u)) ?sub1v ?gal_id.
rewrite adjoin_rcons => /Fadjoin_poly_eq <-.
rewrite all_rcons => /andP[/eqP ur /IHs us].
rewrite gal_id -horner_map/= ur map_poly_id//=.
move=> a /(nthP 0)[i i_lt <-]; rewrite us ?gal_id//.
exact/polyOverP/Fadjoin_polyOver.
Qed.
Lemma dvd_dG : (d %| #|'Gal(K / 1%VS)%g|)%N.
Proof.
rewrite dim_fixedField (galois_fixedField _) ?galois1K ?dimv1 ?divn1//.
rewrite (@dvdn_trans (\dim_(1%VS : {vspace L}) <<1; rp`_0>>%VS))//.
rewrite -adjoin_degreeE -[X in (_ %| X)%N]/(_.+1.-1).
rewrite -size_minPoly (eqp_size (minPoly_rp _)) ?mem_nth ?size_rp//.
by rewrite -char0_ratrE size_map_poly.
rewrite dimv1 divn1 K_eq field_dimS//= -adjoin_seq1 adjoin_seqSr//.
have: (0 < size rp)%N by rewrite size_rp.
by case: rp => //= x l _ y; rewrite inE => /eqP->; rewrite inE eqxx.
Qed.
Definition gal_cycle : gal_of K := projT1 (Cauchy d_prime dvd_dG).
Lemma gal_cycle_order : #[gal_cycle]%g = d.
Proof. by rewrite /gal_cycle; case: Cauchy. Qed.
Lemma gal_perm_cycle_order : #[(gal_perm gal_cycle)]%g = d.
Proof. by rewrite order_injm ?gal_cycle_order ?injm_gal_perm ?gal1. Qed.
Definition conjL : {lrmorphism L -> L} :=
projT1 (restrict_aut_to_normal_num_field iota conjC).
Definition iotaJ : {morph iota : x / conjL x >-> x^*} :=
projT2 (restrict_aut_to_normal_num_field _ _).
Lemma conjLK : involutive conjL.
Proof. by move=> x; apply: (fmorph_inj iota); rewrite !iotaJ conjCK. Qed.
Lemma conjL_rp : {mono conjL : x / x \in rp}.
Proof.
suff rpJ : {homo conjL : x / x \in rp}.
by move=> x; apply/idP/idP => /rpJ//; rewrite conjLK.
move=> ?/(nthP 0)[i]; rewrite size_rp => ltid <-.
rewrite -!root_p -!topredE /root/=.
have /eq_map_poly<- : conjL \o char0_ratr charL =1 _ := fmorph_eq_rat _.
by rewrite map_poly_comp horner_map ratr_p_rp ?rmorph0.
Qed.
Lemma conjL_K : {mono conjL : x / x \in K}.
Proof.
suff rpJ : {homo conjL : x / x \in K}.
by move=> x; apply/idP/idP => /rpJ//; rewrite conjLK.
move=> x; rewrite K_eq => xK.
have : conjL x \in (linfun conjL @: <<1 & rp>>)%VS.
by apply/memv_imgP; exists x => //; rewrite lfunE.
rewrite aimg_adjoin_seq aimg1/= (@eq_adjoin _ _ _ _ rp)// => y.
apply/mapP/idP => [[z zrp->]|yrp]; first by rewrite lfunE conjL_rp.
by exists (conjL y); rewrite ?conjL_rp//= !lfunE [RHS]conjLK.
Qed.
Lemma conj_rp0 : conjL rp`_i0 = rp`_i1.
Proof.
have /(nthP 0)[j jlt /esym rpj_eq]: conjL rp`_i0 \in rp.
by rewrite conjL_rp mem_nth ?size_rp.
rewrite size_rp in jlt; rewrite rpj_eq; congr nth.
have: j != i0.
apply: contra_eq_neq rpj_eq => ->.
by rewrite -(inj_eq (fmorph_inj iota)) iotaJ -CrealE nth_rp_real.
have: (j < 2)%N by rewrite ltnNge -nth_rp_real -rpj_eq iotaJ CrealJ nth_rp_real.
by case: j {jlt rpj_eq} => [|[|[]]].
Qed.
Lemma conj_rp1 : conjL rp`_i1 = rp`_i0.
Proof. by apply: (canLR conjLK); rewrite conj_rp0. Qed.
Lemma conj_nth_rp (i : 'I_d) : conjL (rp`_i) = rp`_(tperm i0 i1 i).
Proof.
rewrite permE/=; case: eqVneq => [->|Ni0]; first by rewrite conj_rp0.
case: eqVneq => [->|Ni1]; first by rewrite conj_rp1.
have i_gt : (i > 1)%N by case: i Ni0 Ni1 => [[|[|[]]]].
apply: (fmorph_inj iota); rewrite iotaJ.
by rewrite conj_Creal ?nth_rp_real// tpermD// -val_eqE/= ltn_eqF// ltnW.
Qed.
Definition galJ : gal_of K := gal K (AHom (linfun_is_ahom conjL)).
Lemma galJ_tperm : gal_perm galJ = tperm i0 i1.
Proof.
apply/permP => i; apply/val_inj.
apply: (uniqP 0 rp_uniq); rewrite ?inE ?size_rp ?ltn_ord//=.
rewrite gal_permP /galJ/= galK ?rpK//= ?lfunE ?[LHS]conj_nth_rp//.
by apply/subvP => /= _/memv_imgP[x Ex ->]; rewrite lfunE conjL_K.
Qed.
Lemma surj_gal_perm : (gal_perm @* 'Gal (K / 1%AS) = 'Sym_('I_d))%g.
Proof.
apply/eqP; rewrite eqEsubset subsetT/=.
rewrite -(@gen_tperm_cycle _ i0 i1 (gal_perm gal_cycle));
do ?by rewrite ?dpair_ij0 ?card_ord ?gal_perm_cycle_order.
by rewrite gen_subG; apply/subsetP => s /set2P[]->;
rewrite -?galJ_tperm ?mem_morphim ?gal1.
Qed.
Lemma isog_gal_perm : 'Gal (K / 1%AS) \isog 'Sym_('I_d).
Proof.
apply/isogP; exists gal_perm_morphism; first exact: injm_gal_perm.
exact: surj_gal_perm.
Qed.
Lemma isog_gal : 'Gal ({:numfield p} / 1%AS) \isog 'Sym_('I_d).
Proof. by rewrite -adjoin_numfield_roots isog_gal_perm. Qed.
End PrimeDegreeTwoNonRealRoots.
End PrimeDegreeTwoNonRealRoots.
Module PDTNRR := PrimeDegreeTwoNonRealRoots.
Section Example1.
Definition poly_example_int : {poly int} := 'X^5 - 4 *: 'X + 2.
Definition poly_example : {poly rat} := 'X^5 - 4 *: 'X + 2.
Local Definition pesimp := (coefD, coefN, coefB, coefZ, coefXn, coefX, coefC,
hornerD, hornerN, hornerC, hornerZ, hornerX, hornerXn, rmorph_nat).
Lemma polyCn (R : ringType) n : n%:R%:P = n%:R :> {poly R}.
Proof. by rewrite rmorph_nat. Qed.
Lemma poly_exampleEint : poly_example = map_poly intr poly_example_int.
Proof.
pose simp := (rmorphB, rmorphD, map_polyZ, map_polyXn, map_polyX, map_polyC).
by do !rewrite [map_poly _ _]simp/= ?natz.
Qed.
Lemma size_poly_example_int : size poly_example_int = 6%N.
Proof.
rewrite /poly_example_int -addrA size_addl ?size_polyXn//.
by rewrite size_addl ?size_opp ?size_scale ?size_polyX -?polyCn ?size_polyC.
Qed.
Lemma size_poly_example : size poly_example = 6%N.
Proof.
rewrite /poly_example -addrA size_addl ?size_polyXn//.
by rewrite size_addl ?size_opp ?size_scale ?size_polyX -?polyCn ?size_polyC.
Qed.
Lemma poly_example_int_neq0 : poly_example_int != 0.
Proof. by rewrite -size_poly_eq0 size_poly_example_int. Qed.
Lemma poly_example_neq0 : poly_example != 0.
Proof. by rewrite -size_poly_eq0 size_poly_example. Qed.
Hint Resolve poly_example_neq0 : core.
Lemma poly_example_monic : poly_example \is monic.
Proof. by rewrite monicE lead_coefE !pesimp size_poly_example. Qed.
Hint Resolve poly_example_monic : core.
Lemma irreducible_example : irreducible_poly poly_example.
Proof.
rewrite poly_exampleEint; apply: (@eisenstein 2) => // [|||i];
rewrite ?lead_coefE ?size_poly_example_int ?pesimp//.
by move: i; do 6!case=> //.
Qed.
Hint Resolve irreducible_example : core.
Lemma separable_example : separable_poly poly_example.
Proof.
apply/coprimepP => q /(irredp_XsubCP irreducible_example) [//| eqq].
have size_deriv_example : size poly_example^`() = 5%N.
rewrite !derivCE addr0 alg_polyC -scaler_nat addr0.
by rewrite size_addl ?size_scale ?size_opp ?size_polyXn ?size_polyC.
rewrite gtNdvdp -?size_poly_eq0 ?size_deriv_example//.
by rewrite (eqp_size eqq) ?size_poly_example.
Qed.
Hint Resolve separable_example : core.
Lemma prime_example : prime (size poly_example).-1.
Proof. by rewrite size_poly_example. Qed.
(* Using the package real_closed, we should be able to monitor the sign of *)
(* the derivative, and find that the polynomial has exactly three real roots. *)
Definition example_roots : seq algC :=
map (numfield_inC poly_example) (numfield_roots poly_example).
Lemma ratr_example_poly :
poly_example ^^ ratr = \prod_(x <- example_roots) ('X - x%:P).
Proof.
rewrite /example_roots -map_prod_XsubC/=.
have := poly_numfield_eqp poly_example_neq0.
rewrite eqp_monic ?monic_prod_XsubC ?monic_map// => /eqP<-.
by rewrite -map_poly_comp [in RHS](eq_map_poly (fmorph_eq_rat _)).
Qed.
Lemma size_example_roots : size example_roots = 5%N.
Proof.
have /(congr1 (fun p : {poly _} => size p)) := ratr_example_poly.
by rewrite size_map_poly size_poly_example size_prod_XsubC => -[].
Qed.
Lemma example_roots_uniq : uniq example_roots.
Proof.
rewrite -separable_prod_XsubC -ratr_example_poly.
by rewrite separable_map separable_example.
Qed.
Lemma deriv_poly_example : poly_example^`() = 5%:R *: 'X^4 - 4%:R%:P.
Proof. by rewrite /poly_example !derivE addr0 alg_polyC scaler_nat ?addr0. Qed.
Lemma deriv_poly_example_neq0 : poly_example^`() != 0.
Proof.
apply/eqP => /(congr1 (fun p => p.[0])).
by rewrite deriv_poly_example !pesimp => /eqP; compute.
Qed.
Hint Resolve deriv_poly_example_neq0 : core.
Definition alpha : algR := Num.sqrt (2%:R / Num.sqrt 5%:R).
Lemma alpha_gt0 : alpha > 0.
Proof. by rewrite sqrtr_gt0 mulr_gt0 ?invr_gt0 ?sqrtr_gt0 ?ltr0n. Qed.
Lemma rootsR_deriv_poly_example :
rootsR (poly_example^`() ^^ ratr) = [:: - alpha; alpha].
Proof.
apply: lt_sorted_eq; rewrite ?sorted_roots//.
by rewrite /= andbT -subr_gt0 opprK ?addr_gt0 ?alpha_gt0.
move=> x; rewrite mem_rootsR ?map_poly_eq0// !inE -topredE/= orbC.
rewrite deriv_poly_example /root.
rewrite rmorphB linearZ/= map_polyC/= map_polyXn !pesimp.
rewrite -[5%:R]sqr_sqrtr ?ler0n// (exprM _ 2 2) -exprMn (natrX _ 2 2) subr_sqr.
rewrite mulf_eq0 [_ + 2%:R == 0]gt_eqF ?orbF; last first.
by rewrite ltr_spaddr ?ltr0n// mulr_ge0 ?sqrtr_ge0// exprn_even_ge0.
have sqrt5N0 : Num.sqrt (5%:R : algR) != 0 by rewrite gt_eqF// sqrtr_gt0 ?ltr0n.
rewrite subr_eq0 (can2_eq (mulKf _) (mulVKf _))// mulrC -subr_eq0.
rewrite -[X in _ - X]sqr_sqrtr; last first.
by rewrite mulr_ge0 ?invr_ge0 ?sqrtr_ge0 ?ler0n.
by rewrite subr_sqr mulf_eq0 subr_eq0 addr_eq0.
Qed.
Lemma count_roots_ex : count [predC Creal] example_roots = 2%N.
Proof.
rewrite -!sum1_count; pose pR : {poly algR} := poly_example ^^ ratr.
have pR0 : pR != 0 by rewrite map_poly_eq0.
suff cR : (\sum_(j <- example_roots | j \is Num.real) 1)%N = 3%N.
have := size_example_roots; rewrite -sum1_size (bigID (mem Num.real))/=.
by rewrite cR => -[->].
rewrite -big_filter (perm_big (map algRval (rootsR pR))); last first.
rewrite uniq_perm ?filter_uniq ?example_roots_uniq//.
by rewrite (map_inj_uniq (fmorph_inj _)) uniq_roots.
move=> x; rewrite mem_filter -root_prod_XsubC -ratr_example_poly.
rewrite -(eq_map_poly (fmorph_eq_rat [rmorphism of algRval \o ratr]))/=.
rewrite map_poly_comp/=.
apply/andP/mapP => [[xR xroot]|[y + ->]].
exists (in_algR xR); rewrite // mem_rootsR// -topredE/=.
by rewrite -(mapf_root algRval_rmorphism)/=.
rewrite mem_rootsR// -[y \in _]topredE/=.
by split; [apply/algRvalP|rewrite mapf_root].
apply/eqP; rewrite sum1_size size_map eqn_leq.
rewrite (leq_trans (size_root_leSderiv _))//=; last first.
by rewrite deriv_map rootsR_deriv_poly_example.
have pRE x : Num.sg pR.[x%:~R] = locked ratr (Num.sg poly_example.[x%:~R]).
by rewrite -lock ratr_sg -horner_map/= ratr_int.
have pN2 : Num.sg pR.[(- 2%:Z)%:~R] = - 1 by rewrite pRE !pesimp -lock rmorphN1.
have pN1 : Num.sg pR.[(- 1%:Z)%:~R] = 1 by rewrite pRE !pesimp -lock rmorph1.
have p1 : Num.sg pR.[1%:~R] = - 1 by rewrite pRE !pesimp -lock rmorphN1.
have p2 : Num.sg pR.[2%:~R] = 1 by rewrite pRE !pesimp -lock rmorph1.
have simp := (pN2, pN1, p1, p2, mulN1r, mulrN1).
have [||x0 /andP[_ x0N1] rx0] := @ivt_sign _ pR (- 2%:R) (- 1); rewrite ?simp//.
by rewrite -subr_ge0 opprK addKr ler01.
have [||x1 /andP[x10 x11] rx1] := @ivt_sign _ pR (-1) 1; rewrite ?simp//.
by rewrite -subr_ge0 opprK addr_ge0 ?ler01.
have [||x2 /andP[/= x21 _] rx2] := @ivt_sign _ pR 1 2%:R; rewrite ?simp//.
by rewrite -subr_ge0 addrK ler01.
have: sorted <%R [:: x0; x1; x2] by rewrite /= (lt_trans x0N1) ?(lt_trans x11).
rewrite lt_sorted_uniq_le => /andP[uniqx012 _].
apply: (@uniq_leq_size _ [:: x0; x1; x2]) => //.
by move=> x; rewrite !inE => /or3P[]/eqP->/=; rewrite mem_rootsR.
Qed.
Lemma example_not_solvable_by_radicals :
~ solvable_by_radical_poly ('X^5 - 4 *: 'X + 2 : {poly rat}).
Proof.
move=> /AbelGaloisPolyRat; pose sol_gal := isog_sol (PDTNRR.isog_gal _ _ _).
rewrite sol_gal ?size_poly_example ?solvable_SymF ?card_ord//.
by rewrite -(count_map _ [predC Creal]) count_roots_ex.
Qed.
End Example1.
Section Formula.
Definition prim1root_ n := projT1 (@C_prim_root_exists n.-1.+1 isT).
Lemma prim1rootP n : (n > 0)%N -> n.-primitive_root (prim1root_ n).
Proof.
by case: n => [|n]// _; rewrite /prim1root_; case: C_prim_root_exists.
Qed.
Inductive const := Zero | One | URoot of nat.
Inductive binOp := Add | Mul.
Inductive unOp := Opp | Inv | Exp of nat | Root of nat.
Inductive algterm (F : Type) : Type :=
| Base of F
| Const of const
| UnOp of unOp & algterm F
| BinOp of binOp & algterm F & algterm F.
Arguments Const {F}.
Definition encode_const (c : const) : nat :=
match c with Zero => 0 | One => 1 | URoot n => n.+2 end.
Definition decode_const (n : nat) : const :=
match n with 0 => Zero | 1 => One | n.+2 => URoot n end.
Lemma code_constK : cancel encode_const decode_const.
Proof. by case. Qed.
Definition const_eqMixin := CanEqMixin code_constK.
Canonical const_eqType := EqType const const_eqMixin.
Definition const_choiceMixin := CanChoiceMixin code_constK.
Canonical const_choiceType := ChoiceType const const_choiceMixin.
Definition const_countMixin := CanCountMixin code_constK.
Canonical const_countType := CountType const const_countMixin.
Definition encode_binOp (c : binOp) : bool :=
match c with Add => false | Mul => true end.
Definition decode_binOp (b : bool) : binOp :=
match b with false => Add | _ => Mul end.
Lemma code_binOpK : cancel encode_binOp decode_binOp.
Proof. by case. Qed.
Definition binOp_eqMixin := CanEqMixin code_binOpK.
Canonical binOp_eqType := EqType binOp binOp_eqMixin.
Definition binOp_choiceMixin := CanChoiceMixin code_binOpK.
Canonical binOp_choiceType := ChoiceType binOp binOp_choiceMixin.
Definition binOp_countMixin := CanCountMixin code_binOpK.
Canonical binOp_countType := CountType binOp binOp_countMixin.
Definition encode_unOp (c : unOp) : nat + nat :=
match c with Opp => inl _ 0%N | Inv => inl _ 1%N
| Exp n => inl _ n.+2 | Root n => inr _ n end.
Definition decode_unOp (n : nat + nat) : unOp :=
match n with inl 0 => Opp | inl 1 => Inv
| inl n.+2 => Exp n | inr n => Root n end.
Lemma code_unOpK : cancel encode_unOp decode_unOp.
Proof. by case. Qed.
Definition unOp_eqMixin := CanEqMixin code_unOpK.
Canonical unOp_eqType := EqType unOp unOp_eqMixin.
Definition unOp_choiceMixin := CanChoiceMixin code_unOpK.
Canonical unOp_choiceType := ChoiceType unOp unOp_choiceMixin.
Definition unOp_countMixin := CanCountMixin code_unOpK.
Canonical unOp_countType := CountType unOp unOp_countMixin.
Fixpoint encode_algT F (f : algterm F) : GenTree.tree (F + const) :=
let T_ isbin := if isbin then binOp else unOp in
match f with
| Base x => GenTree.Leaf (inl x)
| Const c => GenTree.Leaf (inr c)
| UnOp u f1 => GenTree.Node (pickle (inl u : unOp + binOp))
[:: encode_algT f1]
| BinOp b f1 f2 => GenTree.Node (pickle (inr b : unOp + binOp))
[:: encode_algT f1; encode_algT f2]
end.
Fixpoint decode_algT F (t : GenTree.tree (F + const)) : algterm F :=
match t with
| GenTree.Leaf (inl x) => Base x
| GenTree.Leaf (inr c) => Const c
| GenTree.Node n fs =>
match locked (unpickle n), fs with
| Some (inl u), f1 :: _ => UnOp u (decode_algT f1)
| Some (inr b), f1 :: f2 :: _ => BinOp b (decode_algT f1) (decode_algT f2)
| _, _ => Const Zero
end
end.
Lemma code_algTK F : cancel (@encode_algT F) (@decode_algT F).
Proof.
by elim => // [u f IHf|b f IHf f' IHf']/=; rewrite pickleK -lock ?IHf ?IHf'.
Qed.
Definition algT_eqMixin (F : eqType) := CanEqMixin (@code_algTK F).
Canonical algT_eqType (F : eqType) := EqType (algterm F) (@algT_eqMixin F).
Definition algT_choiceMixin (F : choiceType) := CanChoiceMixin (@code_algTK F).
Canonical algT_choiceType (F : choiceType) :=
ChoiceType (algterm F) (@algT_choiceMixin F).
Definition algT_countMixin (F : countType) := CanCountMixin (@code_algTK F).
Canonical algT_countType (F : countType) :=
CountType (algterm F) (@algT_countMixin F).
Declare Scope algT_scope.
Delimit Scope algT_scope with algT.
Bind Scope algT_scope with algterm.
Local Notation "0" := (Const Zero) : algT_scope.
Local Notation "1" := (Const One) : algT_scope.
Local Notation "- x" := (UnOp Opp x) : algT_scope.
Local Notation "- 1" := (- (1)) : algT_scope.
Local Infix "+" := (BinOp Add) : algT_scope.
Local Notation "x ^-1" := (UnOp Inv x) : algT_scope.
Local Infix "*" := (BinOp Mul) : algT_scope.
Local Notation "x ^+ n" := (UnOp (Exp n) x) : algT_scope.
Local Notation "n '.+1-root'" := (UnOp (Root n))
(at level 2, format "n '.+1-root'") : algT_scope.
Local Notation "n '.+1-prim1root'" := (Const (URoot n))
(at level 2, format "n '.+1-prim1root'") : algT_scope.
Section eval.
Variables (F : fieldType) (iota : F -> algC).
Fixpoint algT_eval (f : algterm F) : algC :=
match f with
| Base x => iota x
| 0%algT => 0
| 1%algT => 1
| (f1 + f2)%algT => algT_eval f1 + algT_eval f2
| (- f1)%algT => - algT_eval f1
| (f1 * f2)%algT => algT_eval f1 * algT_eval f2
| (f1 ^-1)%algT => (algT_eval f1)^-1
| (f1 ^+ n)%algT => (algT_eval f1) ^+ n
| (n.+1-root f1)%algT => n.+1.-root (algT_eval f1)
| (j.+1-prim1root)%algT => prim1root_ j.+1
end.
Fixpoint subeval (f : algterm F) : seq algC :=
algT_eval f :: match f with
| UnOp _ f1 => subeval f1
| BinOp _ f1 f2 => subeval f1 ++ subeval f2
| _ => [::]
end.
Lemma subevalE f : subeval f = algT_eval f :: behead (subeval f).
Proof. by case: f => *. Qed.
End eval.
Lemma solvable_formula (p : {poly rat}) : p != 0 ->
solvable_by_radical_poly p <->
{in root (p ^^ ratr), forall x,
exists f : algterm rat, algT_eval ratr f = x}.
Proof.
have Cchar := Cchar => p_neq0; split.
move=> /solvable_poly_rat[]// L [iota [rs [prs [E rE KE]]]] x.
have pirs : p ^^ ratr %= \prod_(x <- map iota rs) ('X - x%:P).
have := prs; rewrite -(eqp_map iota) map_prod_XsubC => /eqp_rtrans<-.
by rewrite -map_poly_comp (eq_map_poly (fmorph_eq_rat _)) eqpxx.
rewrite -topredE/= (eqp_root pirs) root_prod_XsubC => /mapP[{}r rrs ->].
suff [f <- /=]: exists f : algterm (subvs_of (1%VS : {vspace L})),
algT_eval (iota \o vsval) f = iota r.
elim: f => //= [[/= _/vlineP[s ->]]|cst|op|op].
- exists (Base s) => /=.
by rewrite [RHS](fmorph_eq_rat [rmorphism of iota \o in_alg L]).
- by exists (Const cst).
- by move=> _ [f1 <-]; exists (UnOp op f1).
- by move=> _ [f1 <-] _ [f2 <-]; exists (BinOp op f1 f2).
have: r \in E by rewrite (subvP KE)// seqv_sub_adjoin.
case: rE => -[/= n e pw] epw <-.
rewrite -[1%VS]/(1%AS : {vspace _}) in epw *.
elim: n 1%AS => [|n IHn] k /= in e pw epw *.
by rewrite tuple0 Fadjoin_nil => rk; exists (Base (Subvs rk)).
case: (tupleP e) (tupleP pw) epw => [u e'] [i pw']/= epw.
rewrite adjoin_cons => /IHn-/(_ pw')[].
apply/towerP => j /=.
have /towerP/(_ (lift ord0 j))/= := epw.
by rewrite !tnthS/= adjoin_cons.
move=> f <-; elim: f => //= [s|cst|op|op]; last 3 first.
- by exists (Const cst).
- by move=> _ [f1 <-]; exists (UnOp op f1).
- by move=> _ [f1 <-] _ [f2 <-]; exists (BinOp op f1 f2).
have /Fadjoin_polyP[q qk ->] := subvsP s.
have /towerP/(_ ord0) := epw; rewrite !tnth0/= Fadjoin_nil.
move=> /radicalP[]; case: i => // i in epw * => _ uik.
pose v := i.+1.-root (iota (u ^+ i.+1)).
have : ('X ^+ i.+1 - (v ^+ i.+1)%:P).[iota u] == 0.
by rewrite !hornerE hornerXn rootCK// rmorphX subrr.
have /Xn_sub_xnE->// := prim1rootP (isT : 0 < i.+1)%N.
rewrite horner_prod prodf_seq_eq0/= => /hasP[/= l _].
rewrite hornerXsubC subr_eq0 => /eqP u_eq.
pose fu := (i.+1-root (Base (Subvs uik)) * (i.+1-prim1root ^+ l))%algT.
rewrite -horner_map; have -> : iota u = algT_eval (iota \o vsval) fu by [].
move: fu => fu; elim/poly_ind: q qk => //= [|q c IHq] qXDck.
by exists 0%algT; rewrite rmorph0 horner0.
have ck : c \in k.
by have /polyOverP/(_ 0%N) := qXDck; rewrite coefD coefMX coefC/= add0r.
have qk : q \is a polyOver k.
apply/polyOverP => j; have /polyOverP/(_ j.+1) := qXDck.
by rewrite coefD coefMX coefC/= addr0.
case: IHq => // fq fq_eq.
exists (fq * fu + Base (Subvs ck))%algT => /=.
by rewrite rmorphD rmorphM/= map_polyX map_polyC !hornerE fq_eq.
move=> mkalg; apply/solvable_by_radical_polyP => //=; first exact: char_num.
have [/= rsalg pE] := closed_field_poly_normal (p ^^ (ratr : _ -> algC)).
have {}pE : p ^^ ratr %= \prod_(z <- rsalg) ('X - z%:P).
rewrite pE (eqp_trans (eqp_scale _ _)) ?eqpxx//.
by rewrite lead_coef_map//= fmorph_eq0 lead_coef_eq0.
have [fs fsE] : exists fs, map (algT_eval ratr) fs = rsalg.
have /(_ _ _)/sig_eqW-/(all_sig_cond (Base 0)) [h hE] :
forall x : algC, x \in rsalg -> exists f, algT_eval ratr f = x.
by move=> *; apply: mkalg; rewrite -topredE/= (eqp_root pE) root_prod_XsubC.
by exists (map h rsalg); rewrite -map_comp map_id_in//.
pose algs := flatten (map (subeval ratr) fs).
pose mp := \prod_(x <- algs) projT1 (minCpolyP x).
have mp_monic : mp \is monic.
by rewrite monic_prod => // i _; case: minCpolyP => /= ? [].
have mpratr : mp ^^ ratr = \prod_(x <- algs) minCpoly x.
rewrite rmorph_prod/=; apply: eq_bigr => x _.
by case: minCpolyP => //= ? [].
have [rsmpalg mpE] := closed_field_poly_normal (mp ^^ ratr : {poly algC}).
have mp_neq0 : mp != 0.
rewrite prodf_seq_eq0; apply/hasPn => /= x xalgs.
by case: minCpolyP => //= ? [_ /monic_neq0->].
have {}mpE : mp ^^ ratr = \prod_(z <- rsmpalg) ('X - z%:P).
by rewrite mpE lead_coef_map/= (eqP mp_monic) rmorph1 scale1r.
have [L [iota [rsmp iota_rs rsf]]] := num_field_exists rsmpalg.
have charL : has_char0 L by move=> x; rewrite char_lalg char_num.
have mprs : mp ^^ in_alg L %= \prod_(z <- rsmp) ('X - z%:P).
rewrite -(eqp_map iota) map_prod_XsubC iota_rs -map_poly_comp -mpE.
by rewrite -char0_ratrE// (eq_map_poly (fmorph_eq_rat _)) eqpxx.
have splitL : SplittingField.axiom L.
by exists (mp ^^ in_alg L); [apply/polyOver1P; exists mp | exists rsmp].
pose S := SplittingFieldType rat L splitL.
have algsW: {subset rsalg <= algs}.
move=> x; rewrite -fsE => /mapP[{x}f ffs ->].
apply/flattenP; exists (subeval ratr f); rewrite ?map_f//.
by rewrite subevalE mem_head.
have rsmpW: {subset algs <= rsmpalg}.
move=> x xalgs; rewrite -root_prod_XsubC -mpE mpratr.
by rewrite (big_rem _ xalgs)/= rootM root_minCpoly.
have := rsmpW; rewrite -iota_rs => /subset_mapP[als _ /esym alsE].
have := algsW; rewrite -alsE => /subset_mapP[rs _ /esym rsE].
have prs : p ^^ in_alg S %= \prod_(x <- rs) ('X - x%:P).
rewrite -(eqp_map iota) -map_poly_comp (eq_map_poly (fmorph_eq_rat _)).
by rewrite map_prod_XsubC rsE.
apply/classicW; exists S, rs; split => //.
exists <<1 & als>>%AS; last first.
rewrite adjoin_seqSr// => x /(map_f iota); rewrite rsE => /algsW.
by rewrite -[X in _ \in X]alsE (mem_map (fmorph_inj _)).
rewrite {p p_neq0 mkalg pE prs rsmp iota_rs mprs rsf rs rsE mp
mp_monic mpratr rsmpalg mp_neq0 mpE algsW rsmpW charL}/=.
suff: forall (L : splittingFieldType rat) (iota : {rmorphism L -> algC}) als,
map iota als = algs -> radical.-ext 1%VS <<1 & als>>%VS.
by move=> /(_ S iota als alsE).
move=> {}L {}iota {splitL S} {}als {}alsE; rewrite {}/algs in alsE.
elim: fs => [|f fs IHfs]//= in rsalg fsE als alsE *.
case: als => []// in alsE *.
by rewrite Fadjoin_nil; apply: rext_refl.
move: rsalg fsE => [|r rsalg]// [fr fsE].
pose n := size (subeval ratr f); rewrite -[als](cat_take_drop n).
have /(congr1 (take n)) := alsE; rewrite take_size_cat//.
rewrite -map_take; move: (take _ _) => als1 als1E.
have /(congr1 (drop n)) := alsE; rewrite drop_size_cat//.
rewrite -map_drop; move: (drop _ _) => als2 als2E.
have /rext_trans := IHfs _ fsE _ als2E; apply.
have -> : <<1 & als1 ++ als2>>%AS = <<<<1 & als2>>%AS & als1>>%AS.
apply/val_inj; rewrite /= -adjoin_cat; apply/eq_adjoin => x.
by rewrite !mem_cat orbC.
move: <<1 & als2>>%AS => /= k {als2 als2E n fs fsE IHfs rsalg als alsE}.
elim: f => //= [x|c|u f1 IHf1|b f1 IHf1 f2 IHf2] in k {r fr} als1 als1E *.
- case: als1 als1E => [|y []]//= [yx]/=.
rewrite adjoin_seq1 (Fadjoin_idP _); first exact: rext_refl.
suff: y \in 1%VS by apply/subvP; rewrite sub1v.
apply/vlineP; exists x; apply: (fmorph_inj iota); rewrite yx.
by rewrite [RHS](fmorph_eq_rat [rmorphism of iota \o in_alg _]).
- case: als1 als1E => [|y []]//= []/=; rewrite adjoin_seq1.
case: c => [/eqP|/eqP|n yomega].
+ rewrite fmorph_eq0 => /eqP->; rewrite (Fadjoin_idP _) ?rpred0//.
exact: rext_refl.
+ rewrite fmorph_eq1 => /eqP->; rewrite (Fadjoin_idP _) ?rpred1//.
exact: rext_refl.
+ apply/(@rext_r _ _ _ n.+1)/radicalP; split => //.
rewrite prim_expr_order ?rpred1//.
by rewrite -(fmorph_primitive_root iota) yomega prim1rootP.
- case: als1 als1E => //= a l [IHl IHlu].
rewrite -(eq_adjoin _ (mem_rcons _ _)) adjoin_rcons.
apply: rext_trans (IHf1 k l IHlu) _ => /=.
move: IHlu; rewrite subevalE; case: l => // x1 l [iotax1 _].
rewrite -iotax1 -rmorphN -fmorphV in IHl.
have x1kx1 : x1 \in <<k & x1 :: l>>%VS by rewrite seqv_sub_adjoin ?mem_head.
case: u => [||n|n]/= in IHl.
+ rewrite (Fadjoin_idP _); first exact: rext_refl.
by have /fmorph_inj-> := IHl; rewrite rpredN.
+ rewrite (Fadjoin_idP _); first exact: rext_refl.
by have /fmorph_inj-> := IHl; rewrite rpredV.
+ rewrite (Fadjoin_idP _); first exact: rext_refl.
by have := IHl; rewrite -rmorphX => /fmorph_inj->; rewrite rpredX.
apply/(@rext_r _ _ _ n.+1)/radicalP; split => //.
have /(congr1 ((@GRing.exp _)^~ n.+1)) := IHl.
by rewrite rootCK// -rmorphX => /fmorph_inj->.
- case: als1 als1E => //= a l [IHl IHlu].
rewrite -(eq_adjoin _ (mem_rcons _ _)) adjoin_rcons.
pose n := size (subeval ratr f1); rewrite -[l](cat_take_drop n).
have /(congr1 (take n)) := IHlu; rewrite take_size_cat//.
rewrite -map_take; move: (take _ _) => l1 l1E.
have /(congr1 (drop n)) := IHlu; rewrite drop_size_cat//.
rewrite -map_drop; move: (drop _ _) => l2 l2E.
apply: rext_trans (IHf1 _ l1 l1E) _ => /=.
apply: rext_trans (IHf2 _ l2 l2E) _ => /=.
rewrite -adjoin_cat (Fadjoin_idP _); first exact: rext_refl.
rewrite subevalE in l1E; rewrite subevalE in l2E.
case: l1 l1E => // b1 l1 [iotab1 _].
case: l2 l2E => // b2 l2 [iotab2 _].
rewrite -iotab1 -iotab2 -rmorphM -rmorphD in IHl.
have b2l : b2 \in (b1 :: l1) ++ (b2 :: l2) by rewrite mem_cat mem_head orbT.
have b1l : b1 \in (b1 :: l1) ++ (b2 :: l2) by rewrite mem_head.
by case: b IHl => /fmorph_inj ->; rewrite ?(rpredD, rpredM)// seqv_sub_adjoin.
Qed.
End Formula.
|