Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 71,505 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
From mathcomp Require Import all_ssreflect all_fingroup all_algebra.
From mathcomp Require Import all_solvable all_field polyrcf.
From Abel Require Import various classic_ext map_gal algR.
From Abel Require Import char0 cyclotomic_ext real_closed_ext.

(*****************************************************************************)
(* We work inside a enclosing splittingFieldType L over a base field F0      *)
(*                                                                           *)
(*     radical U x n := x is a radical element of degree n over U            *)
(*    pradical U x p := x is a radical element of prime degree p over U      *)
(*   r.-tower U e pw := e is a chain of elements of L such that              *)
(*                      forall i, r <<U & take i e>> e`_i pw`_i              *)
(*        r.-ext U V := there exists e and pw such that <<U & e>> = V        *)
(*                      and r.-tower U e p  w.                               *)
(* solvable_by r E F := there is a field K, such that F <= K and r.-ext E K  *)
(*                      if p has roots rs, solvable_by radicals E <<E, rs>>  *)
(* solvable_ext_poly p := the Galois group of p is solvable in any splitting *)
(*                      field L for p. (i.e. p has roots rs in a splitting   *)
(*                      then, 'Gal(<<1 & rs>>/1) is solbable.                *)
(*                      This is equivalent to general classical existence    *)
(*                      or constructive existence over rat, of a splitting   *)
(*                      field for p, in which its  Galois group is solvable  *)
(* solvable_by_radical_poly p := solvable_by radical 1 <<1; rs>> in L        *)
(*                      L being any splitting field L where p has roots rs   *)
(*                      and which contains a n nth primitive root of unity,  *)
(*                      (we me make n explicit in ext_solvable_by_radical)   *)
(*                      This is equivalent to general classical existence    *)
(*                      or constructive existence over rat, of a splitting   *)
(*                      field for p, in which the roots of p are rs, and in  *)
(*                      which solvable_by radical 1 <<1; rs>> in L.          *)
(*****************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GRing.Theory.

Local Open Scope ring_scope.

Local Notation "p ^^ f" := (map_poly f p)
  (at level 30, f at level 30, format "p  ^^  f").
Local Notation "2" := 2%:R : ring_scope.
Local Notation "3" := 3%:R : ring_scope.
Local Notation "4" := 4%:R : ring_scope.
Local Notation "5" := 5%:R : ring_scope.

CoInductive unsplit_spec m n (i : 'I_(m + n)) : 'I_m + 'I_n -> bool -> Type :=
  | UnsplitLo (j : 'I_m) of i = lshift _ j : unsplit_spec i (inl _ j) true
  | UnsplitHi (k : 'I_n) of i = rshift _ k : unsplit_spec i (inr _ k) false.

Lemma unsplitP m n (i : 'I_(m + n)) : unsplit_spec i (split i) (i < m)%N.
Proof. by case: splitP=> j eq_j; constructor; apply/val_inj. Qed.

Section RadicalExtension.

Variables (F0 : fieldType) (L : splittingFieldType F0).
Hypothesis (charL : has_char0 L).

Section Defs.

Implicit Types (U V : {vspace L}).

Definition radical U x n  := [&& (n > 0)%N & x ^+ n \in U].
Definition pradical U x p := [&& prime p & x ^+ p \in U].

Lemma radicalP U x n : reflect  [/\ (n > 0)%N & x ^+ n \in U]
                                [&& (n > 0)%N & x ^+ n \in U].
Proof. exact/andP. Qed.

Lemma pradicalP U x p : reflect [/\ prime p & x ^+ p \in U]
                                [&& prime p & x ^+ p \in U].
Proof. exact/andP. Qed.

Implicit Types r : {vspace L} -> L -> nat -> bool.

Definition tower r n U (e : n.-tuple L) (pw : n.-tuple nat) :=
  [forall i : 'I_n, r << U & take i e >>%VS (tnth e i) (tnth pw i)].

Lemma towerP r n U (e : n.-tuple L) (pw : n.-tuple nat) :
  reflect (forall i : 'I_n, r << U & take i e >>%VS (tnth e i) (tnth pw i))
          (tower r U e pw).
Proof. exact/forallP. Qed.

Local Notation "r .-tower" := (@tower r _)
  (at level 2, format "r .-tower") : ring_scope.

Record ext_data := ExtData { ext_size : nat;
                             ext_ep : ext_size.-tuple L;
                             ext_pw : ext_size.-tuple nat }.
Arguments ExtData [ext_size].

Definition trivExt := ExtData [tuple] [tuple].

Definition extension_of r U V :=
  exists2 e : ext_data,
    r.-tower U (ext_ep e) (ext_pw e)
    & << U & ext_ep e >>%VS = V.

Local Notation "r .-ext" := (extension_of r)
  (at level 2, format "r .-ext") : ring_scope.

Definition solvable_by r (U V : {vspace L}) :=
  exists2 E : {subfield L}, r.-ext U E & (V <= E)%VS.

End Defs.

Local Notation "r .-tower" := (@tower r _)
  (at level 2, format "r .-tower") : ring_scope.
Local Notation "r .-ext" := (extension_of r)
  (at level 2, format "r .-ext") : ring_scope.

Section Properties.

Implicit Types r : {vspace L} -> L -> nat -> bool.
Implicit Types (U V : {subfield L}).

Lemma rext_refl r (E : {subfield L}) : r.-ext E E.
Proof. by exists trivExt; rewrite ?Fadjoin_nil//=; apply/towerP => -[]. Qed.

Lemma rext_r r n (U : {subfield L}) x : r U x n -> r.-ext U << U; x >>%VS.
Proof.
move=> rUxn; exists (ExtData [tuple x] [tuple n]); last by rewrite adjoin_seq1.
by apply/towerP => /= i; rewrite ord1/= !tnth0 Fadjoin_nil.
Qed.

Lemma rext_trans r (F E K : {subfield L}) :
  r.-ext E F -> r.-ext F K -> r.-ext E K.
Proof.
move=> [[/= n1 e1 pw1] Ee FE] [[/= n2 e2 pw2] Fe KE].
exists (ExtData [tuple of e1 ++ e2] [tuple of pw1 ++ pw2]) => /=; last first.
  by rewrite adjoin_cat FE.
apply/towerP => /= i; case: (unsplitP i) => [j eq_ij|k eq_i_n1Dk].
- rewrite eq_ij !tnth_lshift takel_cat /=; last first.
    by rewrite size_tuple ltnW.
  by move/forallP/(_ j): Ee.
- rewrite eq_i_n1Dk take_cat size_tuple ltnNge leq_addr /= addKn.
  by rewrite adjoin_cat FE !tnth_rshift; move/forallP/(_ k): Fe.
Qed.

Lemma rext_r_trans r n (E F K : {subfield L}) x :
  r.-ext E F -> r F x n -> r.-ext E << F; x>>%VS.
Proof. by move=> rEF /rext_r; apply: rext_trans. Qed.

Lemma rext_subspace r E F : r.-ext E F -> (E <= F)%VS.
Proof. by case=> [[/= n e pw] _ <-]; apply: subv_adjoin_seq. Qed.

Lemma solvable_by_radicals_radicalext (E F : {subfield L}) :
  radical.-ext E F -> solvable_by radical E F.
Proof. by move=> extEF; exists F. Qed.

Lemma radical_Fadjoin (n : nat) (x : L) (E : {subfield L}) :
  (0 < n)%N -> x ^+ n \in E -> radical E x n.
Proof. by move=> ? ?; apply/radicalP. Qed.

Lemma pradical_Fadjoin (n : nat) (x : L) (E : {subfield L}) :
  prime n -> x ^+ n \in E -> pradical E x n.
Proof. by move=> ? ?; apply/pradicalP. Qed.

Lemma radical_ext_Fadjoin (n : nat) (x : L) (E : {subfield L}) :
  (0 < n)%N -> x ^+ n \in E -> radical.-ext E <<E; x>>%VS.
Proof. by move=> n_gt0 xnE; apply/rext_r/(radical_Fadjoin n_gt0 xnE). Qed.

Lemma pradical_ext_Fadjoin (p : nat) (x : L) (E : {subfield L}) :
  prime p -> x ^+ p \in E -> pradical.-ext E <<E; x>>%AS.
Proof. by move=> p_prime Exn; apply/rext_r/(pradical_Fadjoin p_prime Exn). Qed.

Lemma pradicalext_radical n (x : L) (E : {subfield L}) :
  radical E x n -> pradical.-ext E << E; x >>%VS.
Proof.
move=> /radicalP[n_gt0 xnE]; have [k] := ubnP n.
elim: k => // k IHk in n x E n_gt0 xnE *; rewrite ltnS => lenk.
have [prime_n|primeN_n] := boolP (prime n).
  by apply: (@pradical_ext_Fadjoin n).
case/boolP: (2 <= n)%N; last first.
  case: n {lenk primeN_n} => [|[]]// in xnE n_gt0 * => _.
  suff ->:  <<E; x>>%VS = E by apply: rext_refl.
  by rewrite (Fadjoin_idP _).
move: primeN_n => /primePn[|[d /andP[d_gt1 d_ltn] dvd_dn n_gt1]].
  by case: ltngtP.
have [m n_eq_md]: {k : nat | n = (k * d)%N}.
  by exists (n %/ d)%N; rewrite [LHS](divn_eq _ d) (eqP dvd_dn) addn0.
have m_gt0 : (m > 0)%N.
  by move: n_gt0; rewrite !lt0n n_eq_md; apply: contra_neq => ->.
apply: (@rext_trans _ <<E; x ^+ d>>) => //.
  apply: (@IHk m (x ^+ d)) => //.
    by rewrite -exprM mulnC -n_eq_md//.
  by rewrite (leq_trans _ lenk)// n_eq_md ltn_Pmulr.
suff -> : <<E; x>>%AS = <<<<E; x ^+ d>>; x>>%AS.
  apply: (IHk d) => //.
  - by rewrite (leq_trans _ d_gt1)//.
  - by rewrite memv_adjoin.
  - by rewrite (leq_trans _ lenk).
apply/val_inj; rewrite /= adjoinC [<<_; x ^+ d>>%VS](Fadjoin_idP _)//.
by rewrite rpredX// memv_adjoin.
Qed.

Lemma tower_sub r1 r2 n E (e : n.-tuple L) (pw : n.-tuple nat) :
  (forall U x n, r1 U x n -> r2 U x n) ->
    r1.-tower E e pw -> r2.-tower E e pw.
Proof. by move=> sub_r /forallP /= h; apply/forallP=> /= i; apply/sub_r/h. Qed.

Lemma radical_pradical U x p : pradical U x p -> radical U x p.
Proof.
case/pradicalP=> prime_p xpU; apply/radicalP; split=> //.
by case/primeP: prime_p => /ltnW.
Qed.

Lemma radicalext_pradicalext (E F : {subfield L}) :
  pradical.-ext E F -> radical.-ext E F.
Proof.
case=> [[n e pw] Ee FE]; exists (ExtData e pw) => //.
by apply: (tower_sub radical_pradical).
Qed.

Lemma pradicalext_radicalext (E F : {subfield L}) :
  radical.-ext E F -> pradical.-ext E F.
Proof.
case=> [[/= n e pw]]; elim: n e pw E => [|n ih] e pw E Ee FE.
  by rewrite -FE tuple0 /= Fadjoin_nil; apply: rext_refl.
apply: (@rext_trans _ << E; tnth e 0 >>).
  apply: (@pradicalext_radical (tnth pw 0)).
  by move/forallP/(_ ord0): Ee; rewrite take0 Fadjoin_nil.
apply: (ih [tuple of behead e] [tuple of behead pw]) => /=; last first.
  by rewrite -adjoin_cons -drop1 (tnth_nth 0) -drop_nth 1?(drop0, size_tuple).
apply/forallP=> /= i; move/forallP/(_ (rshift 1 i)): Ee => /=.
rewrite !(tnth_nth 0, tnth_nth 0%N) !nth_behead [_ (rshift 1 i)]/=.
by rewrite -adjoin_cons takeD drop1 (take_nth 0) 1?size_tuple // take0.
Qed.

Lemma solvable_by_radical_pradical (E F : {subfield L}) :
  solvable_by pradical E F -> solvable_by radical E F.
Proof. by case=> [R /radicalext_pradicalext ERe FR]; exists R. Qed.

Lemma solvable_by_pradical_radical (E F : {subfield L}) :
  solvable_by radical E F -> solvable_by pradical E F.
Proof. by case=> [R /pradicalext_radicalext ERe FR]; exists R. Qed.

Lemma radicalext_Fadjoin_cyclotomic (E : {subfield L}) (w : L) (n : nat) :
  n.-primitive_root w -> radical.-ext E <<E; w>>%AS.
Proof.
move=> wprim; apply: (@radical_ext_Fadjoin n w E).
  exact: prim_order_gt0 wprim.
by rewrite (prim_expr_order wprim) mem1v.
Qed.

End Properties.
End RadicalExtension.

Arguments tower {F0 L}.
Arguments extension_of {F0 L}.
Arguments radical {F0 L}.

Local Notation "r .-tower" := (tower r)
  (at level 2, format "r .-tower") : ring_scope.
Local Notation "r .-ext" := (extension_of r)
  (at level 2, format "r .-ext") : ring_scope.

(* Following the french wikipedia proof :
https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_d%27Abel_(alg%C3%A8bre)#D%C3%A9monstration_du_th%C3%A9or%C3%A8me_de_Galois
*)

Section Abel.

(******************************************************************************)
(*                                                                            *)
(* Part 1 : solvable -> radical.-ext                                          *)
(*                                                                            *)
(* With the hypothesis that F has a (order of the galois group)-primitive     *)
(*  root of the unity :                                                       *)
(* Part 1a : if G = Gal(F/E) is abelian, then F has a basis (as an E-vspace)  *)
(*           with only radical elements on E                                  *)
(* Part 1b : recurrence on the solvability chain or the order of the group,   *)
(*           using part1a and radicalext_fixedField                           *)
(*                                                                            *)
(* With the hypothesis that L contains a (order of the galois group) -        *)
(*  primitive root of the unity :                                             *)
(* Part 1c : F is once again a radical extension of E                         *)
(*                                                                            *)
(******************************************************************************)

Section Part1.
Variables (F0 : fieldType) (L : splittingFieldType F0).
Implicit Types (E F K : {subfield L}) (w : L) (n : nat).

Lemma cyclic_radical_ext w E F (n := \dim_E F) :
    n.-primitive_root w -> w \in E -> galois E F ->
  cyclic 'Gal(F / E) -> radical.-ext E F.
Proof.
set G := (X in cyclic X) => w_root wE galois_EF /cyclicP[g GE].
have EF := galois_subW galois_EF.
have n_gt0 : (n > 0)%N by rewrite /n -dim_aspaceOver ?adim_gt0.
have Gg : generator G g by rewrite GE generator_cycle.
have gG : g \in G by rewrite GE cycle_id.
have HT90g := Hilbert's_theorem_90 Gg (subvP EF _ wE).
have /eqP/HT90g[x [xF xN0]] : galNorm E F w = 1.
  rewrite /galNorm; under eq_bigr => g' g'G. rewrite (fixed_gal EF g'G)//. over.
  by rewrite prodr_const -galois_dim// (prim_expr_order w_root).
have gxN0 : g x != 0 by rewrite fmorph_eq0.
have wN0 : w != 0 by rewrite (primitive_root_eq0 w_root) -lt0n.
move=> /(canLR (mulfVK gxN0))/(canRL (mulKf wN0)) gx.
have gXx i : (g ^+ i)%g x = w ^- i * x.
  elim: i =>  [|i IHi].
    by rewrite expg0 expr0 invr1 mul1r gal_id.
  rewrite expgSr exprSr invfM galM// IHi rmorphM/= gx mulrA.
  by rewrite (fixed_gal EF gG) ?rpredV ?rpredX.
have ExF : (<<E; x>> <= F)%VS by exact/FadjoinP.
suff -> : F = <<E; x>>%AS.
  apply: radical_ext_Fadjoin n_gt0 _.
  rewrite -(galois_fixedField galois_EF) -/G GE.
  apply/fixedFieldP; first by rewrite rpredX.
  move=> _ /cycleP[i ->]; rewrite rmorphX/= gXx exprMn exprVn exprAC.
  by rewrite (prim_expr_order w_root)// expr1n invr1 mul1r.
apply/val_inj/eqP => /=.
have -> : F = fixedField (1%g : {set gal_of F}) :> {vspace L}.
  by apply/esym/eqP; rewrite -galois_eq ?galvv ?galois_refl//.
rewrite -galois_eq; last by apply: galoisS galois_EF; rewrite subv_adjoin.
rewrite -subG1; apply/subsetP => g' g'G'.
have /cycleP[i g'E]: g' \in <[g]>%g.
  rewrite -GE gal_kHom//; apply/kAHomP => y yE.
  by rewrite (fixed_gal _ g'G') ?subvP_adjoin.
rewrite g'E in g'G' *.
have : (g ^+ i)%g x = x by rewrite (fixed_gal _ g'G') ?memv_adjoin.
rewrite gXx => /(canRL (mulfK xN0))/eqP; rewrite divff// invr_eq1.
rewrite -(prim_order_dvd w_root) => dvdni.
have /exponentP->// : (exponent G %| i)%N.
by rewrite GE exponent_cycle orderE -GE -galois_dim.
Qed.

Lemma solvableWradical_ext w E F (n := \dim_E F) :
    n.-primitive_root w -> w \in E -> galois E F ->
  solvable 'Gal(F / E) -> radical.-ext E F.
Proof.
move=> + + galEF; have [k] := ubnP n; elim: k => // k IHk in w E F n galEF *.
rewrite ltnS => le_nk; have subEF : (E <= F)%VS by case/andP: galEF.
have n_gt0 : (0 < n)%N by rewrite ltn_divRL ?field_dimS// mul0n adim_gt0.
move=> wn Ew solEF; have [n_le1|n_gt1] := leqP n 1%N.
  have /eqP : n = 1%N by case: {+}n n_gt0 n_le1 => [|[]].
  rewrite -eqn_mul ?adim_gt0 ?field_dimS// mul1n eq_sym dimv_leqif_eq//.
  by rewrite val_eqE => /eqP<-; apply: rext_refl.
have /sol_prime_factor_exists[|H Hnormal] := solEF.
  by rewrite -cardG_gt1 -galois_dim.
have [<-|H_neq] := eqVneq H ('Gal(F / E))%G; first by rewrite indexgg.
have galEH := normal_fixedField_galois galEF Hnormal.
have subEH : (E <= fixedField H)%VS by case/andP: galEH.
rewrite -dim_fixed_galois ?normal_sub// galois_dim//=.
pose d := \dim_E (fixedField H); pose p := \dim_(fixedField H) F.
have p_gt0 : (p > 0)%N by rewrite divn_gt0 ?adim_gt0 ?dimvS ?fixedField_bound.
have n_eq : n = (p * d)%N by rewrite /p /d -dim_fixedField dim_fixed_galois;
                             rewrite ?Lagrange ?normal_sub -?galois_dim.
have Ewm : w ^+ (n %/ d) \in E by rewrite rpredX.
move=> /prime_cyclic/cyclic_radical_ext-/(_ _ _ Ewm galEH)/=.
rewrite dvdn_prim_root// => [/(_ isT)|]; last by rewrite n_eq dvdn_mull.
move=> /rext_trans; apply; apply: (IHk (w ^+ (n %/ p))) => /=.
- exact: fixedField_galois.
- rewrite (leq_trans _ le_nk)// -dim_fixedField /n galois_dim// proper_card//.
  by rewrite properEneq H_neq normal_sub.
- by rewrite dvdn_prim_root// n_eq dvdn_mulr.
- by rewrite rpredX//; apply: subvP Ew.
- by rewrite gal_fixedField (solvableS (normal_sub Hnormal)).
Qed.

Lemma galois_solvable_by_radical w E F (n := \dim_E F) :
    n.-primitive_root w -> galois E F ->
  solvable 'Gal(F / E) -> solvable_by radical E F.
Proof.
move=> w_root galEF solEF; have [EF Ew] := (galois_subW galEF, subv_adjoin E w).
exists (F * <<E; w>>)%AS; last by rewrite field_subvMr.
apply: rext_trans (radicalext_Fadjoin_cyclotomic _ w_root) _.
have galEwFEw: galois <<E; w>> (F * <<E; w>>) by apply: galois_prodvr galEF.
pose m := \dim_<<E; w>> (F * <<E; w>>); pose w' := w ^+ (n %/ m).
have w'Ew : w' \in <<E; w>>%VS by rewrite rpredX ?memv_adjoin.
have w'prim : m.-primitive_root w'.
  rewrite dvdn_prim_root // /m /n !galois_dim//.
  by rewrite (card_isog (galois_isog galEF _)) ?cardSg ?galS ?subv_cap ?EF//.
apply: (@solvableWradical_ext w'); rewrite // (isog_sol (galois_isog galEF _))//.
by rewrite (solvableS _ solEF) ?galS// subv_cap EF.
Qed.

(* Main lemma of part 1 *)
Lemma ext_solvable_by_radical w E F (n := \dim_E (normalClosure E F)) :
  n.-primitive_root w -> solvable_ext E F -> solvable_by radical E F.
Proof.
move=> wprim /andP[sepEF]; have galEF := normalClosure_galois sepEF.
move=> /(galois_solvable_by_radical wprim galEF) [M EM EFM]; exists M => //.
by rewrite (subv_trans _ EFM) ?normalClosureSr.
Qed.

End Part1.

(******************************************************************************)
(*                                                                            *)
(* Part 2 : solvable_by_radicals -> solvable                                  *)
(*                                                                            *)
(******************************************************************************)

Section RadicalRoots.
Variables (F : fieldType) (n : nat) (x w : F).
Hypothesis w_root : (n.-primitive_root w)%R.
Notation ws := [seq x * w ^+ val i | i : 'I_n].

Lemma uniq_roots_Xn_sub_xn : x != 0 -> uniq ws.
Proof using w_root.
move=> xN0; rewrite /image_mem (map_comp (fun i => x * w ^+ i)) val_enum_ord.
apply/(uniqP 0) => i j; rewrite !inE size_map size_iota/= => ip jp.
rewrite !(nth_map 0%N) ?size_iota// ?nth_iota// => /(mulfI xN0).
by move/eqP; rewrite (eq_prim_root_expr w_root) !modn_small// => /eqP.
Qed.

Lemma Xn_sub_xnE : (n > 0)%N ->
 'X^n - (x ^+ n)%:P = \prod_(i < n) ('X - (x * w ^+ i)%:P).
Proof using w_root.
move=> n_gt0; have [->|xN0] := eqVneq x 0.
  under eq_bigr do rewrite mul0r subr0.
  by rewrite expr0n gtn_eqF// subr0 prodr_const card_ord.
rewrite [LHS](@all_roots_prod_XsubC _ _ ws).
- by rewrite (monicP _) ?monic_XnsubC// scale1r big_map big_enum.
- by rewrite size_XnsubC// size_map size_enum_ord.
- rewrite all_map; apply/allP => i _ /=; rewrite /root !hornerE hornerXn.
  by rewrite exprMn exprAC [w ^+ _]prim_expr_order// expr1n mulr1 subrr.
- by rewrite uniq_rootsE uniq_roots_Xn_sub_xn.
Qed.

End RadicalRoots.

Section galois_pradical.
Variables (p : nat) (F0 : fieldType) (L : splittingFieldType F0).
Variables (w : L) (x : L).
Hypothesis w_root : (p.-primitive_root w)%R.
Implicit Types (E : {subfield L}).

Lemma dvdp_minpoly_Xn_subn E :
  (x ^+ p)%R \in E -> minPoly E x %| ('X^p - (x ^+ p)%:P).
Proof using.
move=> xpE; have [->|p_gt0] := posnP p; first by rewrite !expr0 subrr dvdp0.
by rewrite minPoly_dvdp /root ?poly_XnsubC_over// !hornerE hornerXn subrr.
Qed.

Lemma galois_cyclo_radical E : (p > 0)%N -> x ^+ p \in E ->
   galois E <<<<E; w>>; x>>.
Proof.
move=> p_gt0 xpE; have [xE|xNE] := boolP (x \in E).
  rewrite (Fadjoin_idP _) ?(galois_Fadjoin_cyclotomic _ w_root)//.
  by rewrite (subvP (subv_adjoin _ _)).
have [x0|xN0] := eqVneq x 0; first by rewrite x0 rpred0 in xNE.
have [pB1_eq0|pB1_gt0] := posnP p.-1.
  by case: {+}p p_gt0 pB1_eq0 xpE xNE => [|[]]//=; rewrite expr1 => _ _ ->.
apply/splitting_galoisField; exists ('X^p - (x ^+ p)%:P)%R.
split; first by rewrite rpredB ?rpredX ?polyOverX ?polyOverC//.
  rewrite (Xn_sub_xnE _ w_root)// -(big_map _ predT (fun x => 'X - x%:P)).
  rewrite separable_prod_XsubC -[index_enum _]enumT.
  by rewrite (uniq_roots_Xn_sub_xn w_root).
exists [seq x * w ^+ val i | i : 'I_p].
  by rewrite (Xn_sub_xnE _ w_root)// big_map big_enum//= eqpxx.
apply/eqP; rewrite /image_mem (map_comp (fun i => x * w ^+ i)) val_enum_ord.
rewrite -[p]prednK//= mulr1 -[p.-1]prednK//= expr1 !adjoin_cons.
have -> : <<<<E; x>>; x * w>>%VS = <<<<E; w>>; x>>%VS.
  apply/eqP; rewrite [X in _ == X]adjoinC eqEsubv/= !Fadjoin_sub//.
    by rewrite -(@fpredMl _ _ _ _ x)// ?memv_adjoin//= adjoinC memv_adjoin.
  by rewrite rpredM// ?memv_adjoin//= adjoinC memv_adjoin.
rewrite (Fadjoin_seq_idP _)// all_map; apply/allP => i _/=.
by rewrite rpredM ?rpredX//= ?memv_adjoin// adjoinC memv_adjoin.
Qed.

Lemma galois_radical E : w \in E -> (p > 0)%N -> x ^+ p \in E ->
  galois E <<E; x>>.
Proof. by move=> + pp /(galois_cyclo_radical pp) => /(@Fadjoin_idP _)->. Qed.

Variable (E : {subfield L}).
Hypothesis p_prime : prime p.
Hypothesis wE : w \in E.
Hypothesis xNE : x \notin E.
Hypothesis xpE : x ^+ p \in E.
Let p_gt0 := prime_gt0 p_prime.

Lemma minPoly_pradical :  minPoly E x = 'X^p - (x ^+ p)%:P.
Proof using w_root p_prime wE xNE xpE p_gt0.
have xN0 : x != 0 by apply: contraNneq xNE => ->; rewrite rpred0.
have := dvdp_minpoly_Xn_subn xpE; rewrite (Xn_sub_xnE _ w_root)// -big_enum/=.
move=> /dvdp_prod_XsubC[m]; rewrite eqp_monic ?monic_minPoly//; last first.
  by rewrite monic_prod// => i _; rewrite monic_XsubC.
have [{}m sm ->] := resize_mask m (enum 'I_p); set s := mask _ _ => /eqP mEx.
have [|smp_gt0] := posnP (size s).
  case: s mEx => // /(congr1 (horner^~x))/esym/eqP.
  by rewrite minPolyxx big_nil hornerC oner_eq0.
suff leq_pm : (p <= size s)%N.
  move: mEx; suff /eqP->: s == enum 'I_p by [].
  by rewrite -(geq_leqif (size_subseq_leqif _)) ?mask_subseq// size_enum_ord.
have xXE (i : nat) : x ^+ i \in E -> (p %| i)%N.
  move=> xiE; apply: contraNT xNE; rewrite -prime_coprime// => /coprimeP[]// u.
  have [/eqP->//|uip] := leqP (u.1 * p)%N (u.2 * i)%N; rewrite -[x]expr1 => <-.
  by rewrite expfB// rpredM ?rpredV// mulnC exprM rpredX.
have /polyOverP/(_ 0%N) := minPolyOver E x; rewrite {}mEx coef0_prod.
under eq_bigr do rewrite coefB coefX coefC add0r -mulrN/=.
have w_neq0 : w != 0 by rewrite (primitive_root_eq0 w_root) -lt0n.
rewrite big_split/= fpredMr; last first.
- by rewrite prodf_seq_eq0; apply/hasPn => i _/=; rewrite oppr_eq0 expf_neq0.
- by rewrite rpred_prod// => i _/=; rewrite rpredN rpredX.
by rewrite big_tnth prodr_const cardT/= size_enum_ord => /xXE; apply: dvdn_leq.
Qed.

Lemma size_minPoly_pradical: size (minPoly E x) = p.+1.
Proof. by rewrite minPoly_pradical ?size_XnsubC. Qed.

Local Notation G := 'Gal(<<E; x>> / E)%g.

(* - Gal(E(x) / E) has order n *)
Lemma order_galois_pradical : #|G| = p.
Proof.
rewrite -galois_dim 1?galois_radical// -adjoin_degreeE.
by have := size_minPoly E x; rewrite size_minPoly_pradical// => -[].
Qed.

Lemma pradical_cyclic : cyclic G.
Proof. by apply/prime_cyclic; rewrite order_galois_pradical. Qed.

Lemma pradical_abelian : abelian G.
Proof. exact/cyclic_abelian/pradical_cyclic. Qed.

Lemma pradical_solvable : solvable G.
Proof. by rewrite abelian_sol ?pradical_abelian/= ?subvv. Qed.

End galois_pradical.

Lemma pradical_solvable_ext (p : nat)
   (F0 : fieldType) (L : splittingFieldType F0)
   (E : {subfield L}) (x : L) : prime p ->
   p%:R != 0 :> F0 -> x ^+ p \in E -> solvable_ext E <<E; x>>.
Proof.
move=> p_prime p_neq0 xpE; have p_gt0 := prime_gt0 p_prime.
wlog [w w_root] : L E x xpE / {w : L | p.-primitive_root w} => [hwlog|].
  apply: (@classic_cycloSplitting _ L p p_neq0) => -[L' [w [f wf rw]]].
  rewrite -(solvable_ext_aimg f) aimg_adjoin hwlog -?rmorphX ?memv_img//.
  by exists w.
have galEw := galois_Fadjoin_cyclotomic E w_root.
have solEw := solvable_Fadjoin_cyclotomic E w_root.
have [xEw|xNEw] := boolP (x \in <<E; w>>%VS).
  by apply/solvable_extP; exists <<E; w>>%AS; rewrite galEw solEw Fadjoin_sub.
have xpEw : x ^+ p \in <<E; w>>%VS by rewrite (subvP (subv_adjoin _ _)).
have galEwx : galois E <<<<E; w>>; x>> by rewrite (@galois_cyclo_radical p).
apply/solvable_extP; exists <<<<E; x>>; w>>%AS; rewrite subv_adjoin/= adjoinC.
rewrite galEwx (@series_sol _ _ ('Gal(<<<<E; w>>; x>> / <<E; w>>)));
  last by rewrite normalField_normal ?subv_adjoin ?galois_normalW.
rewrite (@pradical_solvable p _ _ w)// ?memv_adjoin//.
by rewrite (isog_sol (normalField_isog _ _ _)) ?galois_normalW ?subv_adjoin.
Qed.

Lemma radical_ext_solvable_ext (F0 : fieldType) (L : splittingFieldType F0)
    (E F : {subfield L}) : has_char0 L -> (E <= F)%VS ->
  solvable_by radical E F -> solvable_ext E F.
Proof.
move=> charL EF.
move=> [_ /pradicalext_radicalext[[/= n e pw] /towerP epwP <- FK]].
have charF0 : [char F0] =i pred0 by move=> i; rewrite -charL char_lalg.
pose k := n; suff {FK} : solvable_ext E <<E & take k e>>.
  by rewrite take_oversize ?size_tuple//; apply: sub_solvable_ext.
elim: k => /= [|k IHsol]; first by rewrite take0 Fadjoin_nil.
have [kn|nk] := ltnP k n; last first.
  by move: IHsol; rewrite !take_oversize ?size_tuple// leqW.
rewrite (take_nth 0) ?size_tuple// adjoin_rcons.
apply: solvable_ext_trans IHsol _.
  by rewrite /= subv_adjoin_seq subv_adjoin.
have := epwP (Ordinal kn); rewrite (tnth_nth 0) (tnth_nth 0%N)/=.
move=> /pradicalP[pwk_prime epwEk].
apply: (pradical_solvable_ext pwk_prime) => //.
by have /charf0P-> := charF0; rewrite -lt0n prime_gt0.
Qed.

(******************************************************************************)
(*                                                                            *)
(* Abel/Galois Theorem                                                        *)
(*                                                                            *)
(******************************************************************************)

(** Ok **)
Lemma AbelGalois  (F0 : fieldType) (L : splittingFieldType F0) (w : L)
  (E F : {subfield L}) : (E <= F)%VS -> has_char0 L ->
  (\dim_E (normalClosure E F)).-primitive_root w ->
  solvable_by radical E F <-> solvable_ext E F.
Proof.
move=> EF charL wprim; split; first exact: radical_ext_solvable_ext.
exact: (ext_solvable_by_radical wprim).
Qed.

End Abel.

Definition solvable_by_radical_poly (F : fieldType) (p : {poly F}) :=
  forall (L : splittingFieldType F) (rs : seq L),
    p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) ->
    forall w : L, (\dim <<1 & rs>>%VS).-primitive_root w ->
    solvable_by radical 1 <<1 & rs>>.

Definition solvable_ext_poly (F : fieldType) (p : {poly F}) :=
  forall (L : splittingFieldType F) (rs : seq L),
    p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) ->
    solvable 'Gal(<<1 & rs>> / 1).

Lemma galois_solvable (F0 : fieldType) (L : splittingFieldType F0)
      (E F : {subfield L}) :
  galois E F -> solvable_ext E F = solvable 'Gal(F / E).
Proof.
by move=> /and3P[EF sEF nEF]; rewrite /solvable_ext sEF normalClosure_id.
Qed.

Lemma normal_solvable  (F0 : fieldType) (L : splittingFieldType F0)
      (E F : {subfield L}) : has_char0 L ->
  (E <= F)%VS -> normalField E F -> solvable_ext E F = solvable 'Gal(F / E).
Proof. by move=> charL EF /(char0_galois charL EF)/galois_solvable. Qed.

Lemma AbelGaloisPoly (F : fieldType) (p : {poly F}) : has_char0 F ->
  solvable_ext_poly p <-> solvable_by_radical_poly p.
Proof.
move=> charF; split=> + L rs pE => [/(_ L rs pE) + w w_prim|solrs]/=.
  have charL : has_char0 L by move=> i; rewrite char_lalg.
  have normal_rs : normalField 1 <<1 & rs>>.
    apply/splitting_normalField; rewrite ?sub1v//.
    by exists (p ^^ in_alg _); [apply/polyOver1P; exists p | exists rs].
  by move=> solrs; apply/(@AbelGalois _ _ w);
     rewrite ?char0_solvable_extE ?normalClosure_id ?sub1v ?dimv1 ?divn1.
have charL : has_char0 L by move=> i; rewrite char_lalg.
have seprs: separable 1 <<1 & rs>> by apply/char0_separable.
have normal_rs : normalField 1 <<1 & rs>>.
  apply/splitting_normalField; rewrite ?sub1v//.
  by exists (p ^^ in_alg _); [apply/polyOver1P; exists p | exists rs].
pose n := \dim <<1 & rs>>.
have nFN0 : n%:R != 0 :> F by have /charf0P-> := charF; rewrite -lt0n adim_gt0.
apply: (@classic_cycloSplitting _ L _ nFN0) => - [L' [w [iota wL' w_prim]]].
suff: solvable_ext 1 <<1 & rs>>.
  by rewrite /solvable_ext seprs normalClosure_id ?sub1v.
rewrite -(solvable_ext_aimg iota).
have charL' : [char L'] =i pred0 by move=> i; rewrite char_lalg.
apply/(@AbelGalois _ _ w) => //.
- by rewrite limgS// sub1v.
- rewrite -aimg_normalClosure //= aimg1 dimv1 divn1 dim_aimg/=.
  by rewrite normalClosure_id ?dimv1 ?divn1 ?sub1v//.
have /= := solrs L' (map iota rs) _ w.
rewrite -(aimg1 iota) -!aimg_adjoin_seq dim_aimg.
apply => //; have := pE; rewrite -(eqp_map [rmorphism of iota]).
by rewrite -map_poly_comp/= (eq_map_poly (rmorph_alg _)) map_prod_XsubC.
Qed.

Lemma solvable_ext_polyP (F : fieldType) (p : {poly F}) : p != 0 ->
    has_char0 F ->
  solvable_ext_poly p <->
  classically (exists (L : splittingFieldType F) (rs : seq L),
                p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) /\
                solvable 'Gal(<<1 & rs>> / 1)).
Proof.
move=> p_neq0 charF; split => sol_p.
have FoE (v : F^o) : v = in_alg F^o v by rewrite /= /(_%:A)/= mulr1.
apply: classic_bind (@classic_fieldExtFor _ _ (p : {poly F^o}) p_neq0).
  move=> [L [rs [iota rsf p_eq]]]; apply/classicW.
  have iotaF : iota =1 in_alg L by move=> v; rewrite [v in LHS]FoE rmorph_alg.
  have splitL : SplittingField.axiom L.
    exists (p ^^ iota).
      by apply/polyOver1P; exists p; apply: eq_map_poly.
    exists rs => //; suff <- : limg iota = 1%VS by [].
    apply/eqP; rewrite eqEsubv sub1v andbT; apply/subvP => v.
    by move=> /memv_imgP[u _ ->]; rewrite iotaF/= rpredZ// rpred1.
  pose S := SplittingFieldType F L splitL.
  exists S, rs; split => //=; first by rewrite -(eq_map_poly iotaF).
  by apply: (sol_p S rs); rewrite -(eq_map_poly iotaF).
move=> L rs prs; apply: sol_p => -[M [rs' [prs']]].
have charL : has_char0 L by move=> n; rewrite char_lalg charF.
have charM : has_char0 M by move=> n; rewrite char_lalg charF.
pose K := [fieldExtType F of subvs_of <<1 & rs>>%VS].
pose rsK := map (vsproj <<1 & rs>>%VS) rs.
have pKrs : p ^^ in_alg K %= \prod_(x <- rsK) ('X - x%:P).
  rewrite -(eqp_map [rmorphism of vsval])/= map_prod_XsubC/= -map_poly_comp/=.
  rewrite -map_comp (@eq_map_poly _ _ _ (in_alg L)); last first.
    by move=> v; rewrite /= algid1.
  have /eq_in_map-> : {in rs, cancel (vsproj <<1 & rs>>%VS) vsval}.
    by move=> x xrs; rewrite vsprojK// seqv_sub_adjoin.
  by rewrite big_map.
have splitK : splittingFieldFor 1 (p ^^ in_alg K) fullv.
  exists rsK => //; apply/eqP; rewrite eqEsubv subvf/=.
  rewrite -(@limg_ker0 _ _ _ (linfun vsval)) ?AHom_lker0//.
  rewrite aimg_adjoin_seq/= aimg1 -map_comp/=.
  have /eq_in_map-> : {in rs, cancel (vsproj <<1 & rs>>%VS) (linfun vsval)}.
    by move=> x xrs; rewrite lfunE/= vsprojK// seqv_sub_adjoin.
  rewrite map_id; apply/subvP => _/memv_imgP[v _ ->].
  by rewrite lfunE subvsP.
have sfK : SplittingField.axiom K.
  by exists (p ^^ in_alg K) => //; apply/polyOver1P; exists p.
pose S := SplittingFieldType F K sfK.
have splitS : splittingFieldFor 1 (p ^^ in_alg S) fullv by [].
have splitM : splittingFieldFor 1 (p ^^ in_alg M) <<1 & rs'>> by exists rs'.
have splitL : splittingFieldFor 1 (p ^^ in_alg L) <<1 & rs>> by exists rs.
have [f imgf] := splitting_ahom splitS splitM.
have [g imgg] := splitting_ahom splitS splitL.
rewrite -imgf -(aimg1 f)/= -img_map_gal injm_sol ?map_gal_inj ?subsetT//.
by rewrite -imgg -(aimg1 g)/= -img_map_gal injm_sol ?map_gal_inj ?subsetT//.
Qed.

Lemma solvable_by_radical_polyP (F : fieldType) (p : {poly F}) : p != 0 ->
    has_char0 F ->
  solvable_by_radical_poly p <->
  classically (exists (L : splittingFieldType F) (rs : seq L),
                p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) /\
                solvable_by radical 1 <<1 & rs>>).
Proof.
move=> p_neq0 charF0;
split => sol_p; last first.
  apply/AbelGaloisPoly => //; apply/solvable_ext_polyP => //.
  apply: classic_bind sol_p => -[L [rs [prs sol_p]]]; apply/classicW.
  exists L, rs; split => //; rewrite -galois_solvable.
    apply: radical_ext_solvable_ext; rewrite ?sub1v// => v.
    by rewrite char_lalg charF0.
  have charL : has_char0 L by move=> n; rewrite char_lalg charF0.
  rewrite char0_galois// ?sub1v//.
  apply/splitting_normalField; rewrite ?sub1v//.
  by exists (p ^^ in_alg _); [apply/polyOver1P; exists p | exists rs].
have FoE (v : F^o) : v = in_alg F^o v by rewrite /= /(_%:A)/= mulr1.
apply: classic_bind (@classic_fieldExtFor _ _ (p : {poly F^o}) p_neq0).
move=> [L [rs [f rsf p_eq]]].
have fF : f =1 in_alg L by move=> v; rewrite [v in LHS]FoE rmorph_alg.
have splitL : SplittingField.axiom L.
  exists (p ^^ f); first by apply/polyOver1P; exists p; apply: eq_map_poly.
  exists rs => //; suff <- : limg f = 1%VS by [].
  apply/eqP; rewrite eqEsubv sub1v andbT; apply/subvP => v.
  by move=> /memv_imgP[u _ ->]; rewrite fF/= rpredZ// rpred1.
pose S := SplittingFieldType F L splitL.
pose d := \dim  <<1 & (rs : seq S)>>.
have /classic_cycloSplitting-/(_ S) : d%:R != 0 :> F.
  by have /charf0P-> := charF0; rewrite -lt0n adim_gt0.
apply/classic_bind => -[C [w [g wg w_prim]]]; apply/classicW.
have gf : g \o f =1 in_alg C by move=> v /=; rewrite fF rmorph_alg.
have pgrs : p ^^ in_alg C %= \prod_(x <- [seq g i | i <- rs]) ('X - x%:P).
  by rewrite -(eq_map_poly gf) map_poly_comp/= -map_prod_XsubC eqp_map//.
exists C, (map g rs); split => //=; apply: (sol_p C (map g rs) _ w) => //.
by rewrite -(aimg1 g) -aimg_adjoin_seq dim_aimg.
Qed.

Import GRing.Theory Order.Theory Num.Theory.

Lemma solvable_poly_rat (p : {poly rat}) : p != 0 ->
  solvable_by_radical_poly p ->
  {L : splittingFieldType rat & {iota : {rmorphism L -> algC} & { rs : seq L |
   p ^^ in_alg L %= \prod_(x <- rs) ('X - x%:P) /\
   solvable_by radical 1 <<1 & rs>>}}}.
Proof.
move=> p_neq0 p_sol.
have [/= rsalg pE] := closed_field_poly_normal (p ^^ (ratr : _ -> algC)).
have {}pE : p ^^ ratr %= \prod_(z <- rsalg) ('X - z%:P).
  rewrite pE (eqp_trans (eqp_scale _ _)) ?eqpxx//.
  by rewrite lead_coef_map//= fmorph_eq0 lead_coef_eq0.
have [L [iota [rs iota_rs rsf]]] := num_field_exists rsalg.
have prs : p ^^ in_alg L %= \prod_(z <- rs) ('X - z%:P).
  rewrite -(eqp_map iota) map_prod_XsubC iota_rs -map_poly_comp.
  by rewrite (eq_map_poly (fmorph_eq_rat _)).
have splitL : SplittingField.axiom L.
  by exists (p ^^ in_alg L); [by apply/polyOver1P; exists p | exists rs].
pose S := SplittingFieldType rat L splitL.
pose d := \dim <<1 & (rs : seq S)>>.
have d_gt0 : (d > 0)%N by rewrite adim_gt0.
have [ralg ralg_prim] := C_prim_root_exists d_gt0.
have [L' [iota' [[]//= w rs' [iotaw iota_rs' wrsf]]]] :=
  num_field_exists (ralg :: rsalg).
have prs' : p ^^ in_alg L' %= \prod_(z <- rs') ('X - z%:P).
  rewrite -(eqp_map iota') map_prod_XsubC iota_rs' -map_poly_comp.
  by rewrite (eq_map_poly (fmorph_eq_rat _)).
have w_prim : d.-primitive_root w.
  by move: ralg_prim; rewrite -iotaw fmorph_primitive_root.
have splitL' : SplittingField.axiom L'.
  exists (cyclotomic w d * p ^^ in_alg L').
    by rewrite rpredM ?cyclotomic_over//; apply/polyOver1P; exists p.
  have [us cycloE usw] := splitting_Fadjoin_cyclotomic 1%AS w_prim.
  exists (us ++ rs'); last by rewrite adjoin_cat usw -adjoin_cons.
  by rewrite big_cat/= (eqp_trans (eqp_mulr _ cycloE))// eqp_mull//.
pose S' := SplittingFieldType rat L' splitL'.
have splitS : splittingFieldFor 1 (p ^^ in_alg S) fullv by exists rs.
have splitS' : splittingFieldFor 1 (p ^^ in_alg S') <<1 & rs'>> by exists rs'.
have [f /= imgf] := splitting_ahom splitS splitS'.
exists S', iota', rs'; split => //.
by apply: (p_sol S' rs' prs' w); rewrite -imgf dim_aimg/= -rsf.
Qed.

Lemma splitting_num_field (p : {poly rat}) :
  {L : splittingFieldType rat & { LtoC : {rmorphism L -> algC} |
    (p != 0 -> splittingFieldFor 1 (p ^^ in_alg L) {:L})
    /\ (p = 0 -> L = [splittingFieldType rat of rat^o]) }}.
Proof.
have [->|p_neq0] := eqVneq p 0.
  by exists [splittingFieldType rat of rat^o], [rmorphism of ratr]; split.
have [/= rsalg pE] := closed_field_poly_normal (p ^^ (ratr : _ -> algC)).
have {}pE : p ^^ ratr %= \prod_(z <- rsalg) ('X - z%:P).
  by rewrite pE (eqp_trans (eqp_scale _ _)) ?eqpxx// lead_coef_eq0 map_poly_eq0.
have [L' [L'toC [rs' rs'E rs'f]]] := num_field_exists rsalg.
have splitL' : splittingFieldFor 1 (p ^^ in_alg L') {: L'}%AS.
  exists rs' => //; rewrite -(eqp_map L'toC).
  by rewrite -map_poly_comp map_prod_XsubC rs'E (eq_map_poly (fmorph_eq_rat _)).
have splitaxL' : SplittingField.axiom L'.
  by exists (p ^^ in_alg L'); first by apply/polyOver1P; exists p.
exists (SplittingFieldType rat L' splitaxL'), L'toC; split => //.
by move=> p_eq0; rewrite p_eq0 eqxx in p_neq0.
Qed.

Lemma solvable_poly_ratP (p : {poly rat}) : p != 0 ->
  solvable_by_radical_poly p <->
  exists L : splittingFieldType rat, exists2 K : {subfield L},
    splittingFieldFor 1 (p ^^ in_alg L) K & solvable_by radical 1 K.
Proof.
move=> p_neq0; split.
  move=> /(solvable_poly_rat p_neq0)[L [_ [rs [prs rssol]]]].
  by exists L, <<1 & rs>>%AS; first by exists rs.
have charrat : [char rat] =i pred0 by exact: char_num.
move=> [L [K [rs prs <-] solK]]; apply/solvable_by_radical_polyP => //.
by apply/classicW; exists L, rs.
Qed.

Definition numfield (p : {poly rat}) : splittingFieldType rat :=
  projT1 (splitting_num_field p).

Lemma numfield0 : numfield 0 = [splittingFieldType rat of rat^o].
Proof. by rewrite /numfield; case: splitting_num_field => //= ? [? [_ ->]]. Qed.

Definition numfield_inC (p : {poly rat}) :
    {rmorphism numfield p -> algC} :=
  projT1 (projT2 (splitting_num_field p)).

Lemma numfieldP (p : {poly rat}) : p != 0 ->
  splittingFieldFor 1 (p ^^ in_alg (numfield p)) fullv.
Proof. by rewrite /numfield; case: splitting_num_field => //= ? [? []]. Qed.

Lemma char_numfield (p : {poly rat}) : [char (numfield p)] =i pred0.
Proof. exact: char_ext. Qed.
Hint Resolve char_numfield : core.

Lemma normal_numfield (p : {poly rat}) : normalField 1 {: numfield p}.
Proof.
have [{p}->|p_neq0] := eqVneq p 0.
  by rewrite numfield0 regular_fullv normalField_refl.
apply/splitting_normalField; rewrite ?sub1v//.
exists (p ^^ in_alg _); last exact: numfieldP.
by apply/polyOver1P; exists p.
Qed.

Lemma galois_numfield (p : {poly rat}) : galois 1 {: numfield p}.
Proof.
by apply/char0_galois; [exact/char_ext|rewrite sub1v|exact: normal_numfield].
Qed.

Theorem AbelGaloisPolyRat (p : {poly rat}) :
  reflect (solvable_by_radical_poly p) (solvable 'Gal({: numfield p} / 1)).
Proof.
have [{p}->|p_neq0] := eqVneq p 0.
  rewrite numfield0 regular_fullv galvv solvable1; constructor.
  move=> L rs; rewrite eqp_sym rmorph0 eqp0 prodf_seq_eq0.
  by move=> /hasP[x _ /=]; rewrite polyXsubC_eq0.
have charrat : [char rat] =i pred0 by exact: char_num.
pose charnumfield := char_ext (numfield p).
apply: (equivP idP); rewrite -AbelGaloisPoly//.
have [rs prs <-] := numfieldP p_neq0.
split; last by move=> /(_ (numfield p) rs prs).
move=> solp; apply/solvable_ext_polyP => //.
by apply/classicW; exists (numfield p); exists rs; split.
Qed.

Definition numfield_roots (p : {poly rat}) :=
  if (p != 0) =P true isn't ReflectT p_neq0 then [::]
  else projT1 (sig2_eqW (numfieldP p_neq0)).

Lemma poly_numfield_eqp (p : {poly rat}) : p != 0 ->
  p ^^ in_alg _ %= \prod_(x <- numfield_roots p) ('X - x%:P).
Proof.
by move=> p_neq0; rewrite /numfield_roots; case: eqP => //= ?; case: sig2_eqW.
Qed.

Lemma adjoin_numfield_roots (p : {poly rat}) :
  (<<1 & numfield_roots p>> = fullv)%VS.
Proof.
rewrite /numfield_roots; case: eqP => [p0|/negP]; first by case: sig2_eqW.
by rewrite negbK => /eqP->; rewrite numfield0 regular_fullv Fadjoin_nil.
Qed.

Open Scope ring_scope.

Module PrimeDegreeTwoNonRealRoots.
Section PrimeDegreeTwoNonRealRoots.

Variables (p : {poly rat}).

Let L := numfield p.
Let charL : has_char0 L := char_numfield p.
Let iota : {rmorphism L -> algC} := numfield_inC p.
Let rp' : seq L := numfield_roots p.

Hypothesis p_irr : irreducible_poly p.

Let p_neq0 : p != 0.
Proof.
have := p_irr; rewrite /irreducible_poly => -[+ _].
by apply: contraTneq => ->; rewrite size_poly0.
Qed.

Let ratr_p' : map_poly ratr p %= \prod_(x <- rp') ('X - x%:P).
Proof.
by have := poly_numfield_eqp p_neq0; rewrite (eq_map_poly (fmorph_eq_rat _)).
Qed.

Let rp'_uniq : uniq rp'.
Proof.
rewrite -separable_prod_XsubC -(eqp_separable ratr_p').
rewrite -char0_ratrE separable_map.
apply/coprimepP => d; have [sp_gt1 eqp] := p_irr => /eqp.
rewrite size_poly_eq1; have [//|dN1 /(_ isT)] := boolP (d %= 1).
move=> /eqp_dvdl-> /dvdp_leq; rewrite -size_poly_eq0 polyorder.size_deriv.
by case: (size p) sp_gt1 => [|[|n]]//= _; rewrite ltnn; apply.
Qed.

Let d := (size p).-1.
Hypothesis d_prime : prime d.
Hypothesis count_rp' : count [pred x | iota x \isn't Num.real] rp' = 2%N.

Let rp := [seq x <- rp' | iota x \isn't Num.real]
          ++ [seq x <- rp' | iota x \is Num.real].

Let rp_perm : perm_eq rp rp'. Proof. by rewrite perm_catC perm_filterC. Qed.
Let rp_uniq : uniq rp. Proof. by rewrite (perm_uniq rp_perm). Qed.
Let ratr_p : map_poly ratr p %= \prod_(x <- rp) ('X - x%:P).
Proof.
rewrite (eqp_trans ratr_p')// eqp_monic ?monic_prod_XsubC//.
exact/eqP/esym/perm_big.
Qed.

Lemma nth_rp_real i : (iota rp`_i \is Num.real) = (i > 1)%N.
Proof.
rewrite nth_cat size_filter count_rp'; case: ltnP => // iP; [apply/negbTE|].
  apply: (allP (filter_all [predC (mem Creal) \o iota] _)) _ (mem_nth 0 _).
  by rewrite size_filter count_rp'.
have [i_big|i_small] := leqP (size [seq x <- rp' | iota x \is Creal]) (i - 2).
  by rewrite nth_default// rmorph0 rpred0.
exact: (allP (filter_all (mem Creal \o iota) _)) _ (mem_nth 0 _).
Qed.

Let K := <<1 & rp'>>%AS.
Let K_eq : K = <<1 & rp>>%AS :> {vspace _}.
Proof. exact/esym/eq_adjoin/perm_mem. Qed.

Let K_split_p : splittingFieldFor 1%AS (map_poly ratr p) K.
Proof. by exists rp => //; rewrite ratr_p eqpxx. Qed.

Let p_sep : separable_poly p.
Proof.
rewrite -(separable_map [rmorphism of char0_ratr charL]).
by rewrite (eqp_separable ratr_p) separable_prod_XsubC.
Qed.

Let d_gt0 : (d > 0)%N.
Proof. by rewrite prime_gt0. Qed.

Let d_gt1 : (d > 1)%N.
Proof. by rewrite prime_gt1. Qed.

Lemma size_rp : size rp = d.
Proof.
have /eqp_size := ratr_p; rewrite -char0_ratrE size_map_poly.
by rewrite size_prod_XsubC polySpred// => -[].
Qed.

Let i0 := Ordinal d_gt0.
Let i1 := Ordinal d_gt1.

Lemma ratr_p_over : map_poly (ratr : rat -> L) p \is a polyOver 1%AS.
Proof.
apply/polyOverP => i; rewrite -char0_ratrE coef_map /=.
by rewrite char0_ratrE -alg_num_field rpredZ ?mem1v.
Qed.

Lemma galois1K : galois 1%VS K.
Proof.
apply/splitting_galoisField; exists (map_poly ratr p); split => //.
  exact: ratr_p_over.
by rewrite -char0_ratrE separable_map.
Qed.

Lemma all_rpK : all (mem K) rp.
Proof. by rewrite K_eq; apply/allP/seqv_sub_adjoin. Qed.

Lemma root_p : root (p ^^ ratr) =i rp.
Proof. by move=> x; rewrite -topredE/= (eqp_root ratr_p) root_prod_XsubC. Qed.

Lemma rp_roots : all (root (map_poly ratr p)) rp.
Proof. by apply/allP => x; rewrite -root_p. Qed.

Lemma ratr_p_rp i : (i < d)%N -> (map_poly ratr p).[rp`_i] = 0.
Proof. by move=> ltid; apply/eqP; rewrite [_ == _]root_p mem_nth ?size_rp. Qed.

Lemma rpK i : (i < d)%N -> rp`_i \in K.
Proof. by move=> ltid; rewrite [_ \in _](allP all_rpK) ?mem_nth ?size_rp. Qed.

Lemma eq_size_rp : size rp == d. Proof. exact/eqP/size_rp. Qed.
Let trp := Tuple eq_size_rp.

Lemma gal_perm_eq (g : gal_of K) : perm_eq [seq g x | x <- trp] trp.
Proof.
apply: prod_XsubC_eq; apply/eqP; rewrite -eqp_monic ?monic_prod_XsubC//.
rewrite -(eqp_rtrans ratr_p) big_map.
apply: (@eqp_trans _ (map_poly (g \o ratr) p)); last first.
  apply/eqpW/eq_map_poly => x /=; rewrite (fixed_gal _ (gal1 g)) ?sub1v//.
  by rewrite -alg_num_field rpredZ ?mem1v.
rewrite map_poly_comp/=; have := ratr_p; rewrite -(eqp_map [rmorphism of g])/=.
move=> /eqp_rtrans/=->; apply/eqpW; rewrite rmorph_prod.
by apply: eq_bigr => x; rewrite rmorphB/= map_polyX map_polyC/=.
Qed.

Definition gal_perm g : 'S_d := projT1 (sig_eqW (tuple_permP (gal_perm_eq g))).

Lemma gal_permP g i : rp`_(gal_perm g i) = g (rp`_i).
Proof.
rewrite /gal_perm; case: sig_eqW => /= s.
move=> /(congr1 (((@nth _ 0))^~ i)); rewrite (nth_map 0) ?size_rp// => ->.
by rewrite (nth_map i) ?size_enum_ord// (tnth_nth 0)/= nth_ord_enum.
Qed.

(** N/A **)
Lemma gal_perm_is_morphism :
  {in ('Gal(K / 1%AS))%G &, {morph gal_perm : x y / (x * y)%g >-> (x * y)%g}}.
Proof.
move=> u v _ _; apply/permP => i; apply/val_inj.
apply: (uniqP 0 rp_uniq); rewrite ?inE ?size_rp ?ltn_ord//=.
by rewrite permM !gal_permP galM// ?rpK.
Qed.
Canonical gal_perm_morphism :=  Morphism gal_perm_is_morphism.

Lemma minPoly_rp x : x \in rp -> minPoly 1%VS x %= map_poly ratr p.
Proof.
move=> xrp; have : minPoly 1 x %| map_poly ratr p.
  by rewrite minPoly_dvdp ?ratr_p_over ?[root _ _]root_p//=.
have : size (minPoly 1 x) != 1%N by rewrite size_minPoly.
have /polyOver1P[q ->] := minPolyOver 1 x.
have /eq_map_poly -> : in_alg L =1 ratr.
  by move=> r; rewrite in_algE alg_num_field.
by rewrite -char0_ratrE /eqp !dvdp_map -/(_ %= _) size_map_poly; apply: p_irr.
Qed.

Lemma injm_gal_perm : ('injm gal_perm)%g.
Proof.
apply/subsetP => u /mker/= gu1; apply/set1gP/eqP/gal_eqP => x Kx.
have fixrp : all (fun r => frel u r r) rp.
  apply/allP => r/= /(nthP 0)[i]; rewrite size_rp => ltid <-.
  have /permP/(_ (Ordinal ltid))/(congr1 val)/= := gu1.
  by rewrite perm1/= => {2}<-; rewrite gal_permP.
rewrite K_eq /= in Kx.
elim/last_ind: rp x Kx fixrp => [|s r IHs] x.
  rewrite adjoin_nil subfield_closed => x1 _.
  by rewrite (fixed_gal _ (gal1 u)) ?sub1v ?gal_id.
rewrite adjoin_rcons => /Fadjoin_poly_eq <-.
rewrite all_rcons => /andP[/eqP ur /IHs us].
rewrite gal_id -horner_map/= ur map_poly_id//=.
move=> a /(nthP 0)[i i_lt <-]; rewrite us ?gal_id//.
exact/polyOverP/Fadjoin_polyOver.
Qed.

Lemma dvd_dG : (d %| #|'Gal(K / 1%VS)%g|)%N.
Proof.
rewrite dim_fixedField (galois_fixedField _) ?galois1K ?dimv1 ?divn1//.
rewrite (@dvdn_trans (\dim_(1%VS : {vspace L}) <<1; rp`_0>>%VS))//.
  rewrite -adjoin_degreeE -[X in (_ %| X)%N]/(_.+1.-1).
  rewrite -size_minPoly (eqp_size (minPoly_rp _)) ?mem_nth ?size_rp//.
  by rewrite -char0_ratrE size_map_poly.
rewrite dimv1 divn1 K_eq field_dimS//= -adjoin_seq1 adjoin_seqSr//.
have: (0 < size rp)%N by rewrite size_rp.
by case: rp => //= x l _ y; rewrite inE => /eqP->; rewrite inE eqxx.
Qed.

Definition gal_cycle : gal_of K := projT1 (Cauchy d_prime dvd_dG).

Lemma gal_cycle_order : #[gal_cycle]%g = d.
Proof. by rewrite /gal_cycle; case: Cauchy. Qed.

Lemma gal_perm_cycle_order : #[(gal_perm gal_cycle)]%g = d.
Proof. by rewrite order_injm ?gal_cycle_order ?injm_gal_perm ?gal1. Qed.

Definition conjL : {lrmorphism L -> L} :=
  projT1 (restrict_aut_to_normal_num_field iota conjC).

Definition iotaJ : {morph iota : x / conjL x >-> x^*} :=
  projT2 (restrict_aut_to_normal_num_field _ _).

Lemma conjLK : involutive conjL.
Proof. by move=> x; apply: (fmorph_inj iota); rewrite !iotaJ conjCK. Qed.

Lemma conjL_rp : {mono conjL : x / x \in rp}.
Proof.
suff rpJ : {homo conjL : x / x \in rp}.
  by move=> x; apply/idP/idP => /rpJ//; rewrite conjLK.
move=> ?/(nthP 0)[i]; rewrite size_rp => ltid <-.
rewrite -!root_p -!topredE /root/=.
have /eq_map_poly<- : conjL \o char0_ratr charL =1 _ := fmorph_eq_rat _.
by rewrite map_poly_comp horner_map ratr_p_rp ?rmorph0.
Qed.

Lemma conjL_K : {mono conjL : x / x \in K}.
Proof.
suff rpJ : {homo conjL : x / x \in K}.
  by move=> x; apply/idP/idP => /rpJ//; rewrite conjLK.
move=> x; rewrite K_eq => xK.
have : conjL x \in (linfun conjL @:  <<1 & rp>>)%VS.
  by apply/memv_imgP; exists x => //; rewrite lfunE.
rewrite aimg_adjoin_seq aimg1/= (@eq_adjoin _ _ _ _ rp)// => y.
apply/mapP/idP => [[z zrp->]|yrp]; first by rewrite lfunE conjL_rp.
by exists (conjL y); rewrite ?conjL_rp//= !lfunE [RHS]conjLK.
Qed.

Lemma conj_rp0 : conjL rp`_i0 = rp`_i1.
Proof.
have /(nthP 0)[j jlt /esym rpj_eq]: conjL rp`_i0 \in rp.
  by rewrite conjL_rp mem_nth ?size_rp.
rewrite size_rp in jlt; rewrite rpj_eq; congr nth.
have: j != i0.
  apply: contra_eq_neq rpj_eq => ->.
  by rewrite -(inj_eq (fmorph_inj iota)) iotaJ -CrealE nth_rp_real.
have: (j < 2)%N by rewrite ltnNge -nth_rp_real -rpj_eq iotaJ CrealJ nth_rp_real.
by case: j {jlt rpj_eq} => [|[|[]]].
Qed.

Lemma conj_rp1 : conjL rp`_i1 = rp`_i0.
Proof. by apply: (canLR conjLK); rewrite conj_rp0. Qed.

Lemma conj_nth_rp (i : 'I_d) : conjL (rp`_i) = rp`_(tperm i0 i1 i).
Proof.
rewrite permE/=; case: eqVneq => [->|Ni0]; first by rewrite conj_rp0.
case: eqVneq => [->|Ni1]; first by rewrite conj_rp1.
have i_gt : (i > 1)%N by case: i Ni0 Ni1 => [[|[|[]]]].
apply: (fmorph_inj iota); rewrite iotaJ.
by rewrite conj_Creal ?nth_rp_real// tpermD// -val_eqE/= ltn_eqF// ltnW.
Qed.

Definition galJ : gal_of K := gal K (AHom (linfun_is_ahom conjL)).

Lemma galJ_tperm : gal_perm galJ = tperm i0 i1.
Proof.
apply/permP => i; apply/val_inj.
apply: (uniqP 0 rp_uniq); rewrite ?inE ?size_rp ?ltn_ord//=.
rewrite gal_permP /galJ/= galK ?rpK//= ?lfunE ?[LHS]conj_nth_rp//.
by apply/subvP => /= _/memv_imgP[x Ex ->]; rewrite lfunE conjL_K.
Qed.

Lemma surj_gal_perm : (gal_perm @* 'Gal (K / 1%AS) = 'Sym_('I_d))%g.
Proof.
apply/eqP; rewrite eqEsubset subsetT/=.
rewrite -(@gen_tperm_cycle _ i0 i1 (gal_perm gal_cycle));
  do ?by rewrite ?dpair_ij0 ?card_ord ?gal_perm_cycle_order.
by rewrite gen_subG; apply/subsetP => s /set2P[]->;
   rewrite -?galJ_tperm ?mem_morphim ?gal1.
Qed.

Lemma isog_gal_perm : 'Gal (K / 1%AS) \isog 'Sym_('I_d).
Proof.
apply/isogP; exists gal_perm_morphism; first exact: injm_gal_perm.
exact: surj_gal_perm.
Qed.

Lemma isog_gal : 'Gal ({:numfield p} / 1%AS) \isog 'Sym_('I_d).
Proof. by rewrite -adjoin_numfield_roots isog_gal_perm. Qed.

End PrimeDegreeTwoNonRealRoots.
End PrimeDegreeTwoNonRealRoots.
Module PDTNRR := PrimeDegreeTwoNonRealRoots.

Section Example1.

Definition poly_example_int : {poly int} := 'X^5 - 4 *: 'X + 2.
Definition poly_example : {poly rat} := 'X^5 - 4 *: 'X + 2.

Local Definition pesimp := (coefD, coefN, coefB, coefZ, coefXn, coefX, coefC,
  hornerD, hornerN, hornerC, hornerZ, hornerX, hornerXn, rmorph_nat).

Lemma polyCn (R : ringType) n : n%:R%:P = n%:R :> {poly R}.
Proof. by rewrite rmorph_nat. Qed.

Lemma poly_exampleEint : poly_example = map_poly intr poly_example_int.
Proof.
pose simp := (rmorphB, rmorphD, map_polyZ, map_polyXn, map_polyX, map_polyC).
by do !rewrite [map_poly _ _]simp/= ?natz.
Qed.

Lemma size_poly_example_int : size poly_example_int = 6%N.
Proof.
rewrite /poly_example_int -addrA size_addl ?size_polyXn//.
by rewrite size_addl ?size_opp ?size_scale ?size_polyX -?polyCn ?size_polyC.
Qed.

Lemma size_poly_example : size poly_example = 6%N.
Proof.
rewrite /poly_example -addrA size_addl ?size_polyXn//.
by rewrite size_addl ?size_opp ?size_scale ?size_polyX -?polyCn ?size_polyC.
Qed.

Lemma poly_example_int_neq0 : poly_example_int != 0.
Proof. by rewrite -size_poly_eq0 size_poly_example_int. Qed.

Lemma poly_example_neq0 : poly_example != 0.
Proof. by rewrite -size_poly_eq0 size_poly_example. Qed.
Hint Resolve poly_example_neq0 : core.

Lemma poly_example_monic : poly_example \is monic.
Proof. by rewrite monicE lead_coefE !pesimp size_poly_example. Qed.
Hint Resolve poly_example_monic : core.

Lemma irreducible_example : irreducible_poly poly_example.
Proof.
rewrite poly_exampleEint; apply: (@eisenstein 2) => // [|||i];
  rewrite ?lead_coefE ?size_poly_example_int ?pesimp//.
by move: i; do 6!case=> //.
Qed.
Hint Resolve irreducible_example : core.

Lemma separable_example : separable_poly poly_example.
Proof.
apply/coprimepP => q /(irredp_XsubCP irreducible_example) [//| eqq].
have size_deriv_example : size poly_example^`() = 5%N.
  rewrite !derivCE addr0 alg_polyC -scaler_nat addr0.
  by rewrite size_addl ?size_scale ?size_opp ?size_polyXn ?size_polyC.
rewrite gtNdvdp -?size_poly_eq0 ?size_deriv_example//.
by rewrite (eqp_size eqq) ?size_poly_example.
Qed.
Hint Resolve separable_example : core.

Lemma prime_example : prime (size poly_example).-1.
Proof. by rewrite size_poly_example. Qed.

(* Using the package real_closed, we should be able to monitor the sign of    *)
(* the derivative, and find that the polynomial has exactly three real roots. *)
Definition example_roots : seq algC :=
  map (numfield_inC poly_example) (numfield_roots poly_example).

Lemma ratr_example_poly :
  poly_example ^^ ratr = \prod_(x <- example_roots) ('X - x%:P).
Proof.
rewrite /example_roots -map_prod_XsubC/=.
have := poly_numfield_eqp poly_example_neq0.
rewrite eqp_monic ?monic_prod_XsubC ?monic_map// => /eqP<-.
by rewrite -map_poly_comp [in RHS](eq_map_poly (fmorph_eq_rat _)).
Qed.

Lemma size_example_roots : size example_roots = 5%N.
Proof.
have /(congr1 (fun p : {poly _} => size p)) := ratr_example_poly.
by rewrite size_map_poly size_poly_example size_prod_XsubC => -[].
Qed.

Lemma example_roots_uniq : uniq example_roots.
Proof.
rewrite -separable_prod_XsubC -ratr_example_poly.
by rewrite separable_map separable_example.
Qed.

Lemma deriv_poly_example : poly_example^`() = 5%:R *: 'X^4 - 4%:R%:P.
Proof. by rewrite /poly_example !derivE addr0 alg_polyC scaler_nat ?addr0. Qed.

Lemma deriv_poly_example_neq0 : poly_example^`() != 0.
Proof.
apply/eqP => /(congr1 (fun p => p.[0])).
by rewrite deriv_poly_example !pesimp => /eqP; compute.
Qed.
Hint Resolve deriv_poly_example_neq0 : core.

Definition alpha : algR := Num.sqrt (2%:R / Num.sqrt 5%:R).

Lemma alpha_gt0 : alpha > 0.
Proof. by rewrite sqrtr_gt0 mulr_gt0 ?invr_gt0 ?sqrtr_gt0 ?ltr0n. Qed.

Lemma rootsR_deriv_poly_example :
  rootsR (poly_example^`() ^^ ratr) = [:: - alpha; alpha].
Proof.
apply: lt_sorted_eq; rewrite ?sorted_roots//.
 by rewrite /= andbT -subr_gt0 opprK ?addr_gt0 ?alpha_gt0.
move=> x; rewrite mem_rootsR ?map_poly_eq0// !inE -topredE/= orbC.
rewrite deriv_poly_example /root.
rewrite rmorphB linearZ/= map_polyC/= map_polyXn !pesimp.
rewrite -[5%:R]sqr_sqrtr ?ler0n// (exprM _ 2 2) -exprMn (natrX _ 2 2) subr_sqr.
rewrite mulf_eq0 [_ + 2%:R == 0]gt_eqF ?orbF; last first.
  by rewrite ltr_spaddr ?ltr0n// mulr_ge0 ?sqrtr_ge0// exprn_even_ge0.
have sqrt5N0 : Num.sqrt (5%:R : algR) != 0 by rewrite gt_eqF// sqrtr_gt0 ?ltr0n.
rewrite subr_eq0 (can2_eq (mulKf _) (mulVKf _))// mulrC -subr_eq0.
rewrite -[X in _ - X]sqr_sqrtr; last first.
  by rewrite mulr_ge0 ?invr_ge0 ?sqrtr_ge0 ?ler0n.
by rewrite subr_sqr mulf_eq0 subr_eq0 addr_eq0.
Qed.

Lemma count_roots_ex : count [predC Creal] example_roots = 2%N.
Proof.
rewrite -!sum1_count; pose pR : {poly algR} := poly_example ^^ ratr.
have pR0 : pR != 0 by rewrite map_poly_eq0.
suff cR : (\sum_(j <- example_roots | j \is Num.real) 1)%N = 3%N.
  have := size_example_roots; rewrite -sum1_size (bigID (mem Num.real))/=.
  by rewrite cR => -[->].
rewrite -big_filter (perm_big (map algRval (rootsR pR))); last first.
  rewrite uniq_perm ?filter_uniq ?example_roots_uniq//.
    by rewrite (map_inj_uniq (fmorph_inj _)) uniq_roots.
  move=> x; rewrite mem_filter -root_prod_XsubC -ratr_example_poly.
  rewrite -(eq_map_poly (fmorph_eq_rat [rmorphism of algRval \o ratr]))/=.
  rewrite map_poly_comp/=.
  apply/andP/mapP => [[xR xroot]|[y + ->]].
    exists (in_algR xR); rewrite // mem_rootsR// -topredE/=.
    by rewrite -(mapf_root algRval_rmorphism)/=.
  rewrite mem_rootsR// -[y \in _]topredE/=.
  by split; [apply/algRvalP|rewrite mapf_root].
apply/eqP; rewrite sum1_size size_map eqn_leq.
rewrite (leq_trans (size_root_leSderiv _))//=; last first.
  by rewrite deriv_map rootsR_deriv_poly_example.
have pRE x : Num.sg pR.[x%:~R] = locked ratr (Num.sg poly_example.[x%:~R]).
  by rewrite -lock ratr_sg -horner_map/= ratr_int.
have pN2 : Num.sg pR.[(- 2%:Z)%:~R] = - 1 by rewrite pRE !pesimp -lock rmorphN1.
have pN1 : Num.sg pR.[(- 1%:Z)%:~R] =   1 by rewrite pRE !pesimp -lock rmorph1.
have p1  : Num.sg pR.[1%:~R]        = - 1 by rewrite pRE !pesimp -lock rmorphN1.
have p2  : Num.sg pR.[2%:~R]        =   1 by rewrite pRE !pesimp -lock rmorph1.
have simp := (pN2, pN1, p1, p2, mulN1r, mulrN1).
have [||x0 /andP[_ x0N1] rx0] := @ivt_sign _ pR (- 2%:R) (- 1); rewrite ?simp//.
  by rewrite -subr_ge0 opprK addKr ler01.
have [||x1 /andP[x10 x11] rx1] := @ivt_sign _ pR (-1) 1; rewrite ?simp//.
  by rewrite -subr_ge0 opprK addr_ge0 ?ler01.
have [||x2 /andP[/= x21 _] rx2] := @ivt_sign _ pR 1 2%:R; rewrite ?simp//.
  by rewrite -subr_ge0 addrK ler01.
have: sorted <%R [:: x0; x1; x2] by rewrite /= (lt_trans x0N1) ?(lt_trans x11).
rewrite lt_sorted_uniq_le => /andP[uniqx012 _].
apply: (@uniq_leq_size _ [:: x0; x1; x2]) => //.
by move=> x; rewrite !inE => /or3P[]/eqP->/=; rewrite mem_rootsR.
Qed.

Lemma example_not_solvable_by_radicals :
  ~ solvable_by_radical_poly ('X^5 - 4 *: 'X + 2 : {poly rat}).
Proof.
move=> /AbelGaloisPolyRat; pose sol_gal := isog_sol (PDTNRR.isog_gal _ _ _).
rewrite sol_gal ?size_poly_example ?solvable_SymF ?card_ord//.
by rewrite -(count_map _ [predC Creal]) count_roots_ex.
Qed.

End Example1.

Section Formula.
Definition prim1root_ n := projT1 (@C_prim_root_exists n.-1.+1 isT).

Lemma prim1rootP n : (n > 0)%N -> n.-primitive_root (prim1root_ n).
Proof.
by case: n => [|n]// _; rewrite /prim1root_; case: C_prim_root_exists.
Qed.

Inductive const := Zero | One | URoot of nat.
Inductive binOp := Add | Mul.
Inductive unOp := Opp | Inv | Exp of nat | Root of nat.
Inductive algterm (F : Type) : Type :=
| Base of F
| Const of const
| UnOp of unOp & algterm F
| BinOp of binOp & algterm F & algterm F.
Arguments Const {F}.

Definition encode_const (c : const) : nat :=
   match c with Zero => 0 | One => 1 | URoot n => n.+2 end.
Definition decode_const (n : nat) : const :=
   match n with 0 => Zero | 1 => One | n.+2 => URoot n end.
Lemma code_constK : cancel encode_const decode_const.
Proof. by case. Qed.
Definition const_eqMixin := CanEqMixin code_constK.
Canonical const_eqType := EqType const const_eqMixin.
Definition const_choiceMixin := CanChoiceMixin code_constK.
Canonical const_choiceType := ChoiceType const const_choiceMixin.
Definition const_countMixin := CanCountMixin code_constK.
Canonical const_countType := CountType const const_countMixin.

Definition encode_binOp (c : binOp) : bool :=
   match c with Add => false | Mul => true end.
Definition decode_binOp (b : bool) : binOp :=
   match b with false => Add | _ => Mul end.
Lemma code_binOpK : cancel encode_binOp decode_binOp.
Proof. by case. Qed.
Definition binOp_eqMixin := CanEqMixin code_binOpK.
Canonical binOp_eqType := EqType binOp binOp_eqMixin.
Definition binOp_choiceMixin := CanChoiceMixin code_binOpK.
Canonical binOp_choiceType := ChoiceType binOp binOp_choiceMixin.
Definition binOp_countMixin := CanCountMixin code_binOpK.
Canonical binOp_countType := CountType binOp binOp_countMixin.

Definition encode_unOp (c : unOp) : nat + nat :=
   match c with Opp => inl _ 0%N | Inv => inl _ 1%N
           | Exp n => inl _ n.+2 | Root n => inr _ n end.
Definition decode_unOp (n : nat + nat) : unOp :=
   match n with inl 0 => Opp | inl 1 => Inv
           | inl n.+2 => Exp n | inr n => Root n end.
Lemma code_unOpK : cancel encode_unOp decode_unOp.
Proof. by case. Qed.
Definition unOp_eqMixin := CanEqMixin code_unOpK.
Canonical unOp_eqType := EqType unOp unOp_eqMixin.
Definition unOp_choiceMixin := CanChoiceMixin code_unOpK.
Canonical unOp_choiceType := ChoiceType unOp unOp_choiceMixin.
Definition unOp_countMixin := CanCountMixin code_unOpK.
Canonical unOp_countType := CountType unOp unOp_countMixin.

Fixpoint encode_algT F (f : algterm F) : GenTree.tree (F + const) :=
  let T_ isbin := if isbin then binOp else unOp in
  match f with
  | Base x => GenTree.Leaf (inl x)
  | Const c => GenTree.Leaf (inr c)
  | UnOp u f1 => GenTree.Node (pickle (inl u : unOp + binOp))
                              [:: encode_algT f1]
  | BinOp b f1 f2 => GenTree.Node (pickle (inr b : unOp + binOp))
                                  [:: encode_algT f1; encode_algT f2]
  end.
Fixpoint decode_algT F (t : GenTree.tree (F + const)) : algterm F :=
  match t with
  | GenTree.Leaf (inl x) => Base x
  | GenTree.Leaf (inr c) => Const c
  | GenTree.Node n fs =>
    match locked (unpickle n), fs with
    | Some (inl u), f1 :: _ => UnOp u (decode_algT f1)
    | Some (inr b), f1 :: f2 :: _ => BinOp b (decode_algT f1) (decode_algT f2)
    | _, _ => Const Zero
    end
  end.
Lemma code_algTK F : cancel (@encode_algT F) (@decode_algT F).
Proof.
by elim => // [u f IHf|b f IHf f' IHf']/=; rewrite pickleK -lock ?IHf ?IHf'.
Qed.
Definition algT_eqMixin (F : eqType) := CanEqMixin (@code_algTK F).
Canonical algT_eqType (F : eqType) := EqType (algterm F) (@algT_eqMixin F).
Definition algT_choiceMixin (F : choiceType) := CanChoiceMixin (@code_algTK F).
Canonical algT_choiceType (F : choiceType) :=
  ChoiceType (algterm F) (@algT_choiceMixin F).
Definition algT_countMixin (F : countType) := CanCountMixin (@code_algTK F).
Canonical algT_countType (F : countType) :=
  CountType (algterm F) (@algT_countMixin F).

Declare Scope algT_scope.
Delimit Scope algT_scope with algT.
Bind Scope algT_scope with algterm.
Local Notation "0" := (Const Zero) : algT_scope.
Local Notation "1" := (Const One) : algT_scope.
Local Notation "- x" := (UnOp Opp x) : algT_scope.
Local Notation "- 1" := (- (1)) : algT_scope.
Local Infix "+" := (BinOp Add) : algT_scope.
Local Notation "x ^-1" := (UnOp Inv x) : algT_scope.
Local Infix "*" := (BinOp Mul) : algT_scope.
Local Notation "x ^+ n" := (UnOp (Exp n) x) : algT_scope.
Local Notation "n '.+1-root'" := (UnOp (Root n))
  (at level 2, format "n '.+1-root'") : algT_scope.
Local Notation "n '.+1-prim1root'" := (Const (URoot n))
  (at level 2, format "n '.+1-prim1root'") : algT_scope.

Section eval.
Variables (F : fieldType) (iota : F -> algC).
Fixpoint algT_eval (f : algterm F) : algC :=
  match f with
  | Base x                => iota x
  | 0%algT                => 0
  | 1%algT                => 1
  | (f1 + f2)%algT        => algT_eval f1 + algT_eval f2
  | (- f1)%algT           => - algT_eval f1
  | (f1 * f2)%algT        => algT_eval f1 * algT_eval f2
  | (f1 ^-1)%algT         => (algT_eval f1)^-1
  | (f1 ^+ n)%algT        => (algT_eval f1) ^+ n
  | (n.+1-root f1)%algT   => n.+1.-root (algT_eval f1)
  | (j.+1-prim1root)%algT => prim1root_ j.+1
  end.

Fixpoint subeval (f : algterm F) : seq algC :=
  algT_eval f :: match f with
  | UnOp _ f1 => subeval f1
  | BinOp _ f1 f2 => subeval f1 ++ subeval f2
  | _ => [::]
  end.

Lemma subevalE f : subeval f = algT_eval f :: behead (subeval f).
Proof. by case: f => *. Qed.

End eval.

Lemma solvable_formula (p : {poly rat}) : p != 0 ->
  solvable_by_radical_poly p <->
  {in root (p ^^ ratr), forall x,
     exists f : algterm rat, algT_eval ratr f = x}.
Proof.
have Cchar := Cchar => p_neq0; split.
  move=> /solvable_poly_rat[]// L [iota [rs [prs [E rE KE]]]] x.
  have pirs : p ^^ ratr %= \prod_(x <- map iota rs) ('X - x%:P).
    have := prs; rewrite -(eqp_map iota) map_prod_XsubC => /eqp_rtrans<-.
    by rewrite -map_poly_comp (eq_map_poly (fmorph_eq_rat _)) eqpxx.
  rewrite -topredE/= (eqp_root pirs) root_prod_XsubC => /mapP[{}r rrs ->].
  suff [f <- /=]: exists f : algterm (subvs_of (1%VS : {vspace L})),
      algT_eval (iota \o vsval) f = iota r.
    elim: f => //= [[/= _/vlineP[s ->]]|cst|op|op].
    - exists (Base s) => /=.
      by rewrite [RHS](fmorph_eq_rat [rmorphism of iota \o in_alg L]).
    - by exists (Const cst).
    - by move=> _ [f1 <-]; exists (UnOp op f1).
    - by move=> _ [f1 <-] _ [f2 <-]; exists (BinOp op f1 f2).
  have: r \in E by rewrite (subvP KE)// seqv_sub_adjoin.
  case: rE => -[/= n e pw] epw <-.
  rewrite -[1%VS]/(1%AS : {vspace _}) in epw *.
  elim: n 1%AS => [|n IHn] k /= in e pw epw *.
    by rewrite tuple0 Fadjoin_nil => rk; exists (Base (Subvs rk)).
  case: (tupleP e) (tupleP pw) epw => [u e'] [i pw']/= epw.
  rewrite adjoin_cons => /IHn-/(_ pw')[].
    apply/towerP => j /=.
    have /towerP/(_ (lift ord0 j))/= := epw.
    by rewrite !tnthS/= adjoin_cons.
  move=> f <-; elim: f => //= [s|cst|op|op]; last 3 first.
  - by exists (Const cst).
  - by move=> _ [f1 <-]; exists (UnOp op f1).
  - by move=> _ [f1 <-] _ [f2 <-]; exists (BinOp op f1 f2).
  have /Fadjoin_polyP[q qk ->] := subvsP s.
  have /towerP/(_ ord0) := epw; rewrite !tnth0/= Fadjoin_nil.
  move=> /radicalP[]; case: i => // i in epw * => _ uik.
  pose v := i.+1.-root (iota (u ^+ i.+1)).
  have : ('X ^+ i.+1 - (v ^+ i.+1)%:P).[iota u] == 0.
    by rewrite !hornerE hornerXn rootCK// rmorphX subrr.
  have /Xn_sub_xnE->// := prim1rootP (isT : 0 < i.+1)%N.
  rewrite horner_prod prodf_seq_eq0/= => /hasP[/= l _].
  rewrite hornerXsubC subr_eq0 => /eqP u_eq.
  pose fu := (i.+1-root (Base (Subvs uik)) * (i.+1-prim1root ^+ l))%algT.
  rewrite -horner_map; have -> : iota u = algT_eval (iota \o vsval) fu by [].
  move: fu => fu; elim/poly_ind: q qk => //= [|q c IHq] qXDck.
    by exists 0%algT; rewrite rmorph0 horner0.
  have ck : c \in k.
    by have /polyOverP/(_ 0%N) := qXDck; rewrite coefD coefMX coefC/= add0r.
  have qk : q \is a polyOver k.
    apply/polyOverP => j; have /polyOverP/(_ j.+1) := qXDck.
    by rewrite coefD coefMX coefC/= addr0.
  case: IHq => // fq fq_eq.
  exists (fq * fu + Base (Subvs ck))%algT => /=.
  by rewrite rmorphD rmorphM/= map_polyX map_polyC !hornerE fq_eq.
move=> mkalg; apply/solvable_by_radical_polyP => //=; first exact: char_num.
have [/= rsalg pE] := closed_field_poly_normal (p ^^ (ratr : _ -> algC)).
have {}pE : p ^^ ratr %= \prod_(z <- rsalg) ('X - z%:P).
  rewrite pE (eqp_trans (eqp_scale _ _)) ?eqpxx//.
  by rewrite lead_coef_map//= fmorph_eq0 lead_coef_eq0.
have [fs fsE] : exists fs, map (algT_eval ratr) fs = rsalg.
  have /(_ _ _)/sig_eqW-/(all_sig_cond (Base 0)) [h hE] :
      forall x : algC, x \in rsalg -> exists f, algT_eval ratr f = x.
    by move=> *; apply: mkalg; rewrite -topredE/= (eqp_root pE) root_prod_XsubC.
  by exists (map h rsalg); rewrite -map_comp map_id_in//.
pose algs := flatten (map (subeval ratr) fs).
pose mp := \prod_(x <- algs) projT1 (minCpolyP x).
have mp_monic : mp \is monic.
  by rewrite monic_prod => // i _; case: minCpolyP => /= ? [].
have mpratr : mp ^^ ratr = \prod_(x <- algs) minCpoly x.
  rewrite rmorph_prod/=; apply: eq_bigr => x _.
  by case: minCpolyP => //= ? [].
have [rsmpalg mpE] := closed_field_poly_normal (mp ^^ ratr : {poly algC}).
have mp_neq0 : mp != 0.
  rewrite prodf_seq_eq0; apply/hasPn => /= x xalgs.
  by case: minCpolyP => //= ? [_ /monic_neq0->].
have {}mpE : mp ^^ ratr = \prod_(z <- rsmpalg) ('X - z%:P).
  by rewrite mpE lead_coef_map/= (eqP mp_monic) rmorph1 scale1r.
have [L [iota [rsmp iota_rs rsf]]] := num_field_exists rsmpalg.
have charL : has_char0 L by move=> x; rewrite char_lalg char_num.
have mprs : mp ^^ in_alg L %= \prod_(z <- rsmp) ('X - z%:P).
  rewrite -(eqp_map iota) map_prod_XsubC iota_rs -map_poly_comp -mpE.
  by rewrite -char0_ratrE// (eq_map_poly (fmorph_eq_rat _)) eqpxx.
have splitL : SplittingField.axiom L.
  by exists (mp ^^ in_alg L); [apply/polyOver1P; exists mp | exists rsmp].
pose S := SplittingFieldType rat L splitL.
have algsW: {subset rsalg <= algs}.
  move=> x; rewrite -fsE => /mapP[{x}f ffs ->].
  apply/flattenP; exists (subeval ratr f); rewrite ?map_f//.
  by rewrite subevalE mem_head.
have rsmpW: {subset algs <= rsmpalg}.
  move=> x xalgs; rewrite -root_prod_XsubC -mpE mpratr.
  by rewrite (big_rem _ xalgs)/= rootM root_minCpoly.
have := rsmpW; rewrite -iota_rs => /subset_mapP[als _ /esym alsE].
have := algsW; rewrite -alsE => /subset_mapP[rs _ /esym rsE].
have prs : p ^^ in_alg S %= \prod_(x <- rs) ('X - x%:P).
  rewrite -(eqp_map iota) -map_poly_comp (eq_map_poly (fmorph_eq_rat _)).
  by rewrite map_prod_XsubC rsE.
apply/classicW; exists S, rs; split => //.
exists <<1 & als>>%AS; last first.
  rewrite adjoin_seqSr// => x /(map_f iota); rewrite rsE => /algsW.
  by rewrite -[X in _ \in X]alsE (mem_map (fmorph_inj _)).
rewrite {p p_neq0 mkalg pE prs rsmp iota_rs mprs rsf rs rsE mp
        mp_monic mpratr rsmpalg mp_neq0 mpE algsW rsmpW charL}/=.
suff: forall (L : splittingFieldType rat) (iota : {rmorphism L -> algC}) als,
        map iota als = algs -> radical.-ext 1%VS <<1 & als>>%VS.
  by move=> /(_ S iota als alsE).
move=> {}L {}iota {splitL S} {}als {}alsE; rewrite {}/algs in alsE.
elim: fs => [|f fs IHfs]//= in rsalg fsE als alsE *.
  case: als => []// in alsE *.
  by rewrite Fadjoin_nil; apply: rext_refl.
move: rsalg fsE => [|r rsalg]// [fr fsE].
pose n := size (subeval ratr f); rewrite -[als](cat_take_drop n).
have /(congr1 (take n)) := alsE; rewrite take_size_cat//.
rewrite -map_take; move: (take _ _) => als1 als1E.
have /(congr1 (drop n)) := alsE; rewrite drop_size_cat//.
rewrite -map_drop; move: (drop _ _) => als2 als2E.
have /rext_trans := IHfs _ fsE _ als2E; apply.
have -> : <<1 & als1 ++ als2>>%AS = <<<<1 & als2>>%AS & als1>>%AS.
  apply/val_inj; rewrite /= -adjoin_cat; apply/eq_adjoin => x.
  by rewrite !mem_cat orbC.
move: <<1 & als2>>%AS => /= k {als2 als2E n fs fsE IHfs rsalg als alsE}.
elim: f => //= [x|c|u f1 IHf1|b f1 IHf1 f2 IHf2] in k {r fr} als1 als1E *.
- case: als1 als1E => [|y []]//= [yx]/=.
  rewrite adjoin_seq1 (Fadjoin_idP _); first exact: rext_refl.
  suff: y \in 1%VS by apply/subvP; rewrite sub1v.
  apply/vlineP; exists x; apply: (fmorph_inj iota); rewrite yx.
  by rewrite [RHS](fmorph_eq_rat [rmorphism of iota \o in_alg _]).
- case: als1 als1E => [|y []]//= []/=; rewrite adjoin_seq1.
  case: c => [/eqP|/eqP|n yomega].
  + rewrite fmorph_eq0 => /eqP->; rewrite (Fadjoin_idP _) ?rpred0//.
    exact: rext_refl.
  + rewrite fmorph_eq1 => /eqP->; rewrite (Fadjoin_idP _) ?rpred1//.
    exact: rext_refl.
  + apply/(@rext_r _ _ _ n.+1)/radicalP; split => //.
    rewrite prim_expr_order ?rpred1//.
    by rewrite -(fmorph_primitive_root iota) yomega prim1rootP.
- case: als1 als1E => //= a l [IHl IHlu].
  rewrite -(eq_adjoin _ (mem_rcons _ _)) adjoin_rcons.
  apply: rext_trans (IHf1 k l IHlu) _ => /=.
  move: IHlu; rewrite subevalE; case: l => // x1 l [iotax1 _].
  rewrite -iotax1 -rmorphN -fmorphV in IHl.
  have x1kx1 : x1 \in <<k & x1 :: l>>%VS by rewrite seqv_sub_adjoin ?mem_head.
  case: u => [||n|n]/= in IHl.
  + rewrite (Fadjoin_idP _); first exact: rext_refl.
    by have /fmorph_inj-> := IHl; rewrite rpredN.
  + rewrite (Fadjoin_idP _); first exact: rext_refl.
    by have /fmorph_inj-> := IHl; rewrite rpredV.
  + rewrite (Fadjoin_idP _); first exact: rext_refl.
    by have := IHl; rewrite -rmorphX => /fmorph_inj->; rewrite rpredX.
  apply/(@rext_r _ _ _ n.+1)/radicalP; split => //.
  have /(congr1 ((@GRing.exp _)^~ n.+1)) := IHl.
  by rewrite rootCK// -rmorphX => /fmorph_inj->.
- case: als1 als1E => //= a l [IHl IHlu].
  rewrite -(eq_adjoin _ (mem_rcons _ _)) adjoin_rcons.
  pose n := size (subeval ratr f1); rewrite -[l](cat_take_drop n).
  have /(congr1 (take n)) := IHlu; rewrite take_size_cat//.
  rewrite -map_take; move: (take _ _) => l1 l1E.
  have /(congr1 (drop n)) := IHlu; rewrite drop_size_cat//.
  rewrite -map_drop; move: (drop _ _) => l2 l2E.
  apply: rext_trans (IHf1 _ l1 l1E) _ => /=.
  apply: rext_trans (IHf2 _ l2 l2E) _ => /=.
  rewrite -adjoin_cat (Fadjoin_idP _); first exact: rext_refl.
  rewrite subevalE in l1E; rewrite subevalE in l2E.
  case: l1 l1E => // b1 l1 [iotab1 _].
  case: l2 l2E => // b2 l2 [iotab2 _].
  rewrite -iotab1 -iotab2 -rmorphM -rmorphD in IHl.
  have b2l : b2 \in (b1 :: l1) ++ (b2 :: l2) by rewrite mem_cat mem_head orbT.
  have b1l : b1 \in (b1 :: l1) ++ (b2 :: l2) by rewrite mem_head.
  by case: b IHl => /fmorph_inj ->; rewrite ?(rpredD, rpredM)// seqv_sub_adjoin.
Qed.

End Formula.