Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 23,837 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C.              *)
From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum finmap.
From mathcomp Require Import matrix interval zmodp vector fieldext falgebra.
Require Import boolp ereal reals mathcomp_extra functions.
Require Import classical_sets signed topology prodnormedzmodule.
Require Import cardinality normedtype derive.

(******************************************************************************)
(* This file provides properties of standard real-valued functions over real  *)
(* numbers (e.g., the continuity of the inverse of a continuous function).    *)
(******************************************************************************)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.

Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

Import numFieldNormedType.Exports.

Section real_inverse_functions.
Variable R : realType.
Implicit Types (a b : R) (f g : R -> R).

(* TODO: this is a workaround to weaken {in I, continuous f} to use IVT.
   Updating this whole file to use {within [set` I], continuous f} is the
   better, but more labor intensive approach *)
Lemma continuous_subspace_itv (I : interval R) (f : R -> R) :
  {in I, continuous f} -> {within [set` I], continuous f}.
Proof.
move=> ctsf; apply: continuous_subspaceT => x Ix; apply: ctsf.
by move: Ix; rewrite inE.
Qed.

Lemma itv_continuous_inj_le f (I : interval R) :
  (exists x y, [/\ x \in I, y \in I, x < y & f x <= f y]) ->
  {in I, continuous f} -> {in I &, injective f} ->
  {in I &, {mono f : x y / x <= y}}.
Proof.
gen have fxy : f / {in I &, injective f} ->
    {in I &, forall x y, x < y -> f x != f y}.
  move=> fI x y xI yI xLy; apply/negP => /eqP /fI => /(_ xI yI) xy.
  by move: xLy; rewrite xy ltxx.
gen have main : f / forall c, {in I, continuous f} -> {in I &, injective f} ->
    {in I &, forall a b, f a < f b -> a < c -> c < b -> f a < f c /\ f c < f b}.
  move=> c fC fI a b aI bI faLfb aLc cLb.
  have intP := interval_is_interval aI bI.
  have cI : c \in I by rewrite intP// (ltW aLc) ltW.
  have ctsACf : {within `[a, c], continuous f}.
    apply: continuous_subspaceT => x; rewrite inE => /itvP axc; apply: fC.
    by rewrite intP// axc/= (le_trans _ (ltW cLb))// axc.
  have ctsCBf : {within `[c,b], continuous f}.
    apply: continuous_subspaceT => x; rewrite inE => /itvP axc; apply: fC.
    by rewrite intP// axc andbT (le_trans (ltW aLc)) ?axc.
  have [aLb alb'] : a < b /\ a <= b by rewrite ltW (lt_trans aLc).
  have [faLfc|fcLfa|/eqP faEfc] /= := ltrgtP (f a) (f c).
  - split; rewrite // lt_neqAle fxy // leNgt; apply/negP => fbLfc.
    move: (fbLfc); suff /eqP -> : c == b by rewrite ltxx.
    rewrite eq_le (ltW cLb) /=.
    have [d /andP[ad dc] fdEfb] : exists2 d, a <= d <= c & f d = f b.
      have aLc' : a <= c by rewrite ltW.
      apply: IVT => //; last first.
        by case: ltrgtP faLfc; rewrite // (ltW faLfb) // ltW.
    rewrite -(fI _ _ _ _ fdEfb) //.
    move: ad dc; rewrite le_eqVlt =>/predU1P[<-//| /ltW L] dc.
    by rewrite intP// L (le_trans _ (ltW cLb)).
  - have [fbLfc | fcLfb | fbEfc] /= := ltrgtP (f b) (f c).
    + by have := lt_trans fbLfc fcLfa; rewrite ltNge (ltW faLfb).
    + have [d /andP[cLd dLb] /eqP] : exists2 d, c <= d <= b & f d = f a.
        have cLb' : c <= b by rewrite ltW.
        apply: IVT => //; last by case: ltrgtP fcLfb; rewrite // !ltW.
      have /(fxy f fI) : a < d by rewrite (lt_le_trans aLc).
      suff dI' : d \in I by rewrite eq_sym=> /(_ aI dI') => /negbTE ->.
      move: dLb; rewrite le_eqVlt => /predU1P[->//|/ltW db].
      by rewrite intP// db  (le_trans (ltW aLc)).
    + by move: fcLfa; rewrite -fbEfc ltNge (ltW faLfb).
  by move/(fxy _ fI) : aLc=> /(_ aI cI); rewrite faEfc.
move=> [u [v [uI vI ulv +]]] fC fI; rewrite le_eqVlt => /predU1P[fufv|fuLfv].
  by move/fI: fufv => /(_ uI vI) uv; move: ulv; rewrite uv ltxx.
have aux a c b : a \in I -> b \in I -> a < c -> c < b ->
   (f a < f c -> f a < f b /\ f c < f b) /\
   (f c < f b -> f a < f b /\ f a < f c).
  move=> aI bI aLc cLb; have aLb := lt_trans aLc cLb.
  have cI : c \in I by rewrite (interval_is_interval aI bI)// (ltW aLc)/= ltW.
  have fanfb : f a != f b by apply: (fxy f fI).
  have decr : f b  < f a -> f b < f c /\ f c < f a.
    have ofC : {in I, continuous (-f)} by move=>> ?; apply/continuousN/fC.
    have ofI : {in I &, injective (-f)} by move=>> ? ? /oppr_inj/fI ->.
    rewrite -[X in X < _ -> _](opprK (f b)) ltr_oppl => ofaLofb.
    have := main _ c ofC ofI a b aI bI ofaLofb aLc cLb.
    by (do 2 rewrite ltr_oppl opprK); rewrite and_comm.
  split=> [faLfc|fcLfb].
    suff L : f a < f b by have [] := main f c fC fI a b aI bI L aLc cLb.
    by case: ltgtP decr fanfb => // fbfa []//; case: ltgtP faLfc.
  suff L : f a < f b by have [] := main f c fC fI a b aI bI L aLc cLb.
  by case: ltgtP decr fanfb => // fbfa []//; case: ltgtP fcLfb.
have{main fC} whole a c b := main f c fC fI a b.
have low a c b : f a < f c -> a \in I -> b \in I ->
       a < c -> c < b -> f a < f b /\ f c < f b.
  by move=> L aI bI ac cb; case: (aux a c b aI bI ac cb)=> [/(_ L)].
have high a c b : f c < f b -> a \in I -> b \in I ->
     a < c -> c < b -> f a < f b /\ f a < f c.
  by move=> L aI bI ac cb; case: (aux a c b aI bI ac cb)=> [_ /(_ L)].
apply: le_mono_in => x y xI yI xLy.
have [uLx | xLu | xu] := ltrgtP u x.
- suff fuLfx : f u < f x by have [] := low u x y fuLfx uI yI uLx xLy.
  have [xLv | vLx | -> //] := ltrgtP x v; first by case: (whole u x v).
  by case: (low u v x).
- have fxLfu : f x < f u by have [] := high x u v fuLfv xI vI xLu ulv.
  have [yLu | uLy | -> //] := ltrgtP y u; first by case: (whole x y u).
  by case: (low x u y).
move: xLy; rewrite -xu => uLy.
have [yLv | vLy | -> //] := ltrgtP y v; first by case: (whole u y v).
by case: (low u v y).
Qed.

Lemma itv_continuous_inj_ge f (I : interval R) :
  (exists x y, [/\ x \in I, y \in I, x < y & f y <= f x]) ->
  {in I, continuous f} -> {in I &, injective f} ->
  {in I &, {mono f : x y /~ x <= y}}.
Proof.
move=> [a [b [aI bI ab fbfa]]] fC fI x y xI yI.
suff : (- f) y <= (- f) x = (y <= x) by rewrite ler_oppl opprK.
apply: itv_continuous_inj_le xI => // [|x1 x1I | x1 x2 x1I x2I].
- by exists a, b; split => //; rewrite ler_oppl opprK.
- by apply/continuousN/fC.
by move/oppr_inj; apply/fI.
Qed.

Lemma itv_continuous_inj_mono f (I : interval R) :
    {in I, continuous f} -> {in I &, injective f} -> monotonous I f.
Proof.
move=> fC fI.
case: (pselect (exists a b, [/\ a \in I , b \in I & a < b])); last first.
  move=> N2I; left => x y xI yI; suff -> : x = y by rewrite ?lexx.
  by apply: contra_notP N2I => /eqP; case: ltgtP; [exists x, y|exists y, x|].
move=> [a [b [aI bI lt_ab]]].
have /orP[faLfb|fbLfa] := le_total (f a) (f b).
  by left; apply: itv_continuous_inj_le => //; exists a, b; rewrite ?faLfb.
by right; apply: itv_continuous_inj_ge => //; exists a, b; rewrite ?fbLfa.
Qed.

Lemma segment_continuous_inj_le f a b :
    f a <= f b -> {in `[a, b], continuous f} -> {in `[a, b] &, injective f} ->
  {in `[a, b] &, {mono f : x y / x <= y}}.
Proof.
move=> fafb fct finj; have [//|] := itv_continuous_inj_mono fct finj.
have [aLb|bLa|<-] := ltrgtP a b; first 1 last.
- by move=> _ x ?; rewrite itv_ge// -ltNge.
- by move=> _ x y /itvxxP-> /itvxxP->; rewrite !lexx.
move=> /(_ a b); rewrite !bound_itvE fafb.
by move=> /(_ (ltW aLb) (ltW aLb)); rewrite lt_geF.
Qed.

Lemma segment_continuous_inj_ge f a b :
    f a >= f b -> {in `[a, b], continuous f} -> {in `[a, b] &, injective f} ->
  {in `[a, b] &, {mono f : x y /~ x <= y}}.
Proof.
move=> fafb fct finj; have [|//] := itv_continuous_inj_mono fct finj.
have [aLb|bLa|<-] := ltrgtP a b; first 1 last.
- by move=> _ x ?; rewrite itv_ge// -ltNge.
- by move=> _ x y /itvxxP-> /itvxxP->; rewrite !lexx.
move=> /(_ b a); rewrite !bound_itvE fafb.
by move=> /(_ (ltW aLb) (ltW aLb)); rewrite lt_geF.
Qed.

(* The condition "f a <= f b" is unnecessary because the last                *)
(* interval condition is vacuously true otherwise.                           *)
Lemma segment_can_le a b f g : a <= b ->
    {in `[a, b], continuous f} ->
    {in `[a, b], cancel f g} ->
  {in `[f a, f b] &, {mono g : x y / x <= y}}.
Proof.
move=> aLb ctf fK; have [fbLfa | faLfb] := ltrP (f b) (f a).
  by move=> x y; rewrite itv_ge// -ltNge.
have [aab bab] : a \in `[a, b] /\ b \in `[a, b] by rewrite !bound_itvE.
case: ltgtP faLfb => // [faLfb _|-> _ _ _ /itvxxP-> /itvxxP->]; rewrite ?lexx//.
have lt_ab : a < b by case: (ltgtP a b) aLb faLfb => // ->; rewrite ltxx.
have w : exists x y, [/\ x \in `[a, b], y \in `[a, b], x < y & f x <= f y].
  by exists a, b; rewrite !bound_itvE (ltW faLfb).
have fle := itv_continuous_inj_le w ctf (can_in_inj fK).
move=> x y xin yin; have := IVT aLb (continuous_subspace_itv ctf).
case: (ltrgtP (f a) (f b)) faLfb => // _ _ ivt.
by have [[u uin <-] [v vin <-]] := (ivt _ xin, ivt _ yin); rewrite !fK// !fle.
Qed.

(* The condition "f b <= f a" is unnecessary---see seg...increasing above    *)
Lemma segment_can_ge a b f g : a <= b ->
    {in `[a, b], continuous f} ->
    {in `[a, b], cancel f g} ->
  {in `[f b, f a] &, {mono g : x y /~ x <= y}}.
Proof.
move=> aLb fC fK x y xfbfa yfbfa; rewrite -ler_opp2.
apply: (@segment_can_le (- b) (- a) (f \o -%R) (- g));
    rewrite /= ?ler_opp2 ?opprK//.
  move=> z zab; apply: continuous_comp; first exact: continuousN.
  by apply: fC; rewrite oppr_itvcc.
by move=> z zab; rewrite -[- g]/(@GRing.opp _ \o g)/= fK ?opprK// oppr_itvcc.
Qed.

Lemma segment_can_mono a b f g : a <= b ->
    {in `[a, b], continuous f} -> {in `[a, b], cancel f g} ->
  monotonous (f @`[a, b]) g.
Proof.
move=> le_ab fct fK; rewrite /monotonous/=; case: ltrgtP => fab; [left|right..];
  do ?by [apply: segment_can_le|apply: segment_can_ge].
by move=> x y /itvxxP<- /itvxxP<-; rewrite !lexx.
Qed.

Lemma segment_continuous_surjective a b f : a <= b ->
  {in `[a, b], continuous f} -> set_surj `[a, b] (f @`[a, b]) f.
Proof. by move=> ? /continuous_subspace_itv fct y/= /IVT[]// x; exists x. Qed.

Lemma segment_continuous_le_surjective a b f : a <= b -> f a <= f b ->
  {in `[a, b], continuous f} -> set_surj `[a, b] `[f a, f b] f.
Proof.
move=> le_ab f_ab /(segment_continuous_surjective le_ab).
by rewrite (min_idPl _)// (max_idPr _).
Qed.

Lemma segment_continuous_ge_surjective a b f : a <= b -> f b <= f a ->
  {in `[a, b], continuous f} -> set_surj `[a, b] `[f b, f a] f.
Proof.
move=> le_ab f_ab /(segment_continuous_surjective le_ab).
by rewrite (min_idPr _)// (max_idPl _).
Qed.

Lemma continuous_inj_image_segment a b f : a <= b ->
    {in `[a, b], continuous f} -> {in `[a, b] &, injective f} ->
  f @` `[a, b] = f @`[a, b]%classic.
Proof.
move=> leab fct finj; apply: mono_surj_image_segment => //.
  exact: itv_continuous_inj_mono.
exact: segment_continuous_surjective.
Qed.

Lemma continuous_inj_image_segmentP a b f : a <= b ->
    {in `[a, b], continuous f} -> {in `[a, b] &, injective f} ->
  forall y, reflect (exists2 x, x \in `[a, b] & f x = y) (y \in f @`[a, b]).
Proof.
move=> /continuous_inj_image_segment/[apply]/[apply]/predeqP + y => /(_ y) faby.
by apply/(equivP idP); symmetry.
Qed.

Lemma segment_continuous_can_sym a b f g : a <= b ->
    {in `[a, b], continuous f} -> {in `[a, b], cancel f g} ->
  {in f @`[a, b], cancel g f}.
Proof.
move=> aLb ctf fK; have g_mono := segment_can_mono aLb ctf fK.
have f_mono := itv_continuous_inj_mono ctf (can_in_inj fK).
have f_surj := segment_continuous_surjective aLb ctf.
have fIP := mono_surj_image_segmentP aLb f_mono f_surj.
suff: {in f @`[a, b], {on `[a, b], cancel g & f}}.
  by move=> gK _ /fIP[x xab <-]; rewrite fK.
have: {in f @`[a, b] &, {on `[a, b]  &, injective g}}.
  by move=> _ _ /fIP [x xab <-] /fIP[y yab <-]; rewrite !fK// => _ _ ->.
by apply/ssrbool.inj_can_sym_in_on => x xab; rewrite ?fK ?mono_mem_image_segment.
Qed.

Lemma segment_continuous_le_can_sym a b f g : a <= b ->
    {in `[a, b], continuous f} -> {in `[a, b], cancel f g} ->
  {in `[f a, f b], cancel g f}.
Proof.
move=> aLb fct fK x xfafb; apply: (segment_continuous_can_sym aLb fct fK).
have : f a <= f b by rewrite (itvP xfafb).
by case: ltrgtP xfafb => // ->.
Qed.

Lemma segment_continuous_ge_can_sym a b f g : a <= b ->
    {in `[a, b], continuous f} -> {in `[a, b], cancel f g} ->
  {in `[f b, f a], cancel g f}.
Proof.
move=> aLb fct fK x xfafb; apply: (segment_continuous_can_sym aLb fct fK).
have : f a >= f b by rewrite (itvP xfafb).
by case: ltrgtP xfafb => // ->.
Qed.

Lemma segment_inc_surj_continuous a b f :
    {in `[a, b] &, {mono f : x y / x <= y}} ->
    set_surj `[a, b] `[f a, f b] f ->
  {in `]a, b[, continuous f}.
Proof.
move=> fle f_surj; have [f_inj flt] := (inc_inj_in fle, leW_mono_in fle).
have [aLb|bLa] := ltP a b; last by move=> z; rewrite itv_ge//= -leNgt.
have le_ab : a <= b by rewrite ltW.
have [aab bab] : a \in `[a, b] /\ b \in `[a, b] by rewrite !bound_itvE ltW.
have fab : f @` `[a, b] = `[f a, f b]%classic by exact:inc_surj_image_segment.
pose g := pinv `[a, b] f.
have fK : {in `[a, b], cancel f g}.
  by rewrite -[mem _]mem_setE; apply: pinvKV; rewrite !mem_setE.
have gK : {in `[f a, f b], cancel g f} by move=> z zab; rewrite pinvK// fab inE.
have gle : {in `[f a, f b] &, {mono g : x y / x <= y}}.
  apply: can_mono_in (fle); first by move=> *; rewrite gK.
  move=> z zfab; have {zfab} : `[f a, f b]%classic z by [].
  by rewrite -fab => -[x xab <-]; rewrite fK.
have glt := leW_mono_in gle.
move=> x xab; have xabcc : x \in `[a, b] by apply: subset_itv_oo_cc.
have fxab : f x \in `](f a), (f b)[ by rewrite in_itv/= !flt.
have fxabcc : f x \in `[f a, f b] by apply: subset_itv_oo_cc.
apply/cvg_distP => _ /posnumP[e]; rewrite !near_simpl; near=> y.
rewrite (@le_lt_trans _ _ (e%:num / 2%:R))//; last first.
  by rewrite ltr_pdivr_mulr// ltr_pmulr// ltr1n.
rewrite ler_distlC; near: y.
pose u := minr (f x + e%:num / 2) (f b).
pose l := maxr (f x - e%:num / 2) (f a).
have ufab : u \in `[f a, f b].
  rewrite !in_itv/= le_minl ?le_minr lexx ?fle// le_ab orbT ?andbT.
  by rewrite ler_paddr// fle ?in_itv/= ?(itvP xab)// lexx.
have lfab : l \in `[f a, f b].
  rewrite !in_itv/= le_maxl ?le_maxr lexx ?fle// le_ab orbT ?andbT/=.
  by rewrite ler_subl_addr ler_paddr// fle ?(itvP xab)// lexx.
near=> y; suff: l <= f y <= u by rewrite le_maxl le_minr -!andbA => /and4P[-> _ ->].
have yab : y \in `[a, b] by apply: subset_itv_oo_cc; near: y; apply: near_in_itv.
have fyab : f y \in `[f a, f b] by rewrite in_itv/= !fle// ?ltW.
rewrite -[l <= _]gle -?[_ <= u]gle// ?fK//.
apply: subset_itv_oo_cc; near: y; apply: near_in_itv; rewrite in_itv/= -[x]fK//.
by rewrite !glt//= lt_minr lt_maxl !(itvP fxab) ?andbT ltr_subl_addr ltr_spaddr.
Unshelve. all: by end_near. Qed.

Lemma segment_dec_surj_continuous a b f :
    {in `[a, b] &, {mono f : x y /~ x <= y}} ->
    set_surj `[a, b] `[f b, f a] f ->
  {in `]a, b[, continuous f}.
Proof.
move=> fge f_surj; suff: {in `]a, b[, continuous (- f)}.
  move=> contNf x xab; rewrite -[f]opprK.
  exact/continuous_comp/opp_continuous/contNf.
apply: segment_inc_surj_continuous.
  by move=> x y xab yab; rewrite ler_opp2 fge.
by move=> y /=; rewrite -oppr_itvcc => /f_surj[x ? /(canLR opprK)<-]; exists x.
Qed.

Lemma segment_mono_surj_continuous a b f :
    monotonous `[a, b] f -> set_surj `[a, b] (f @`[a, b]) f ->
  {in `]a, b[, continuous f}.
Proof.
move=> -[fle|fge] f_surj x xab; have leab : a <= b by rewrite (itvP xab).
  have fafb : f a <= f b by rewrite fle // ?bound_itvE.
  by apply: segment_inc_surj_continuous x xab => //; case: ltrP f_surj fafb.
have fafb : f b <= f a by rewrite fge // ?bound_itvE.
by apply: segment_dec_surj_continuous x xab => //; case: ltrP f_surj fafb.
Qed.


Lemma segment_can_le_continuous a b f g : a <= b ->
  {in `[a, b], continuous f} ->
  {in `[a, b], cancel f g} ->
  {in `](f a), (f b)[, continuous g}.
Proof.
move=> aLb ctf fK x xab; have faLfb : f a <= f b by rewrite (itvP xab).
apply: segment_inc_surj_continuous x xab; first exact: segment_can_le.
rewrite !fK ?bound_itvE//=; apply: (@can_surj _ _ f); first by rewrite mem_setE.
exact/image_subP/mem_inc_segment/segment_continuous_inj_le/(can_in_inj fK).
Qed.

Lemma segment_can_ge_continuous a b f g : a <= b ->
  {in `[a, b], continuous f} ->
  {in `[a, b], cancel f g} ->
  {in `](f b), (f a)[, continuous g}.
Proof.
move=> aLb ctf fK x xab; have fbLfa : f b <= f a by rewrite (itvP xab).
apply: segment_dec_surj_continuous x xab; first exact: segment_can_ge.
rewrite !fK ?bound_itvE//=; apply: (@can_surj _ _ f); first by rewrite mem_setE.
exact/image_subP/mem_dec_segment/segment_continuous_inj_ge/(can_in_inj fK).
Qed.

Lemma segment_can_continuous a b f g : a <= b ->
  {in `[a, b], continuous f} ->
  {in `[a, b], cancel f g} ->
  {in f @`]a, b[, continuous g}.
Proof.
move=> aLb crf fK x; case: lerP => // _;
  by [apply: segment_can_ge_continuous|apply: segment_can_le_continuous].
Qed.

Lemma near_can_continuousAcan_sym f g (x : R) :
    {near x, cancel f g} -> {near x, continuous f} ->
  {near (f x), continuous g} /\ {near (f x), cancel g f}.
Proof.
move=> fK fct; near (at_right (0 : R)) => e.
have e_gt0 : 0 < e by near: e; exists 1 => /=.
have xBeLxDe : x - e <= x + e by rewrite ler_add2l gt0_cp.
have fcte : {in `[x - e, x + e], continuous f}.
  by near: e; apply/at_right_in_segment.
have fKe : {in `[x - e, x + e], cancel f g}
  by near: e; apply/at_right_in_segment.
have nearfx : \forall y \near f x, y \in f @`](x - e), (x + e)[.
  apply: near_in_itv; apply: mono_mem_image_itvoo; last first.
    by rewrite in_itv/= -ltr_distlC subrr normr0.
  apply: itv_continuous_inj_mono; first by near: e; apply/at_right_in_segment.
  by apply: (@can_in_inj _ _ _ _ g); near: e; apply/at_right_in_segment.
split; near=> y.
  by apply: (@segment_can_continuous (x - e) (x + e) f) => //; near: y.
rewrite (@segment_continuous_can_sym (x - e) (x + e))//.
by apply: subset_itv_oo_cc; near: y.
Unshelve. all: by end_near. Qed.

Lemma near_can_continuous f g (x : R) :
  {near x, cancel f g} -> {near x, continuous f} -> {near (f x), continuous g}.
Proof. by move=> fK fct; have [] := near_can_continuousAcan_sym fK fct. Qed.

Lemma near_continuous_can_sym f g (x : R) :
  {near x, continuous f} -> {near x, cancel f g} -> {near (f x), cancel g f}.
Proof. by move=> fct fK; have [] := near_can_continuousAcan_sym fK fct. Qed.

End real_inverse_functions.

Section real_inverse_function_instances.

Variable R : realType.

Lemma exprn_continuous n : continuous (@GRing.exp R ^~ n).
Proof.
move=> x; elim: n=> [|n /(continuousM cvg_id) ih]; first exact: cst_continuous.
by rewrite exprS; under eq_fun do rewrite exprS; exact: ih.
Qed.

Lemma sqr_continuous : continuous (@exprz R ^~ 2).
Proof. exact: (@exprn_continuous 2%N). Qed.

Lemma sqrt_continuous : continuous (@Num.sqrt R).
Proof.
move=> x; case: (ltrgtP x 0) => [xlt0 | xgt0 | ->].
- apply: (near_cst_continuous 0); rewrite (near_shift 0 x).
  near=> z; rewrite subr0 /=; apply: ltr0_sqrtr.
  rewrite -(opprK x) subr_lt0; apply: ltr_normlW.
  by near: z; apply: nbhs0_lt; rewrite ltr_oppr oppr0.
- suff main b : 0 <= b -> {in `]0 ^+ 2, (b ^+ 2)[, continuous (@Num.sqrt R)}.
    apply: (@main (x + 1)); rewrite ?ler_paddl// ?in_itv/= ?ltW// expr0n xgt0/=.
    by rewrite sqrrD1 ltr_paddr// ltr_paddl ?sqr_ge0// (ltr_pmuln2l _ 1%N 2%N).
  move=> b0; apply: (@segment_can_le_continuous _ _ _ (@GRing.exp _^~ _)) => //.
    by apply: in1W; apply: exprn_continuous.
  by move=> y y0b; rewrite sqrtr_sqr ger0_norm// (itvP y0b).
- apply/cvg_distP => _ /posnumP[e]; rewrite !near_simpl /=; near=> y.
  rewrite sqrtr0 sub0r normrN ger0_norm ?sqrtr_ge0 //.
  have [ylt0|yge0] := ltrP y 0; first by rewrite ltr0_sqrtr//.
  have: `|y| < e%:num ^+ 2 by near: y; apply: nbhs0_lt.
  by rewrite -ltr_sqrt// ger0_norm// sqrtr_sqr ger0_norm.
Unshelve. all: by end_near. Qed.

End real_inverse_function_instances.

Section is_derive_inverse.
Variable R : realType.

(* Attempt to prove the diff of inverse *)

Lemma is_derive1_caratheodory (f : R -> R) (x a : R) :
  is_derive x 1 f a <->
  exists g, [/\ forall z, f z - f x = g z * (z - x),
        {for x, continuous g} & g x = a].
Proof.
split => [Hd|[g [fxE Cg gxE]]].
  exists (fun z => if z == x then a else (f(z) - f(x)) / (z - x)); split.
  - move=> z; case: eqP => [->|/eqP]; first by rewrite !subrr mulr0.
    by rewrite -subr_eq0 => /divfK->.
  - apply/continuous_withinNshiftx; rewrite eqxx /=.
    pose g1 h := (h^-1 *: ((f \o shift x) h%:A - f x)).
    have F1 : g1 @ 0^' --> a by case: Hd => H1 <-.
    apply: cvg_trans F1; apply: near_eq_cvg; rewrite /g1 !fctE.
    near=> i.
    rewrite ifN; first by rewrite addrK mulrC /= [_%:A]mulr1.
    rewrite -subr_eq0 addrK.
    by near: i; rewrite near_withinE /= near_simpl; near=> x1.
  by rewrite eqxx.
suff Hf : h^-1 *: ((f \o shift x) h%:A - f x) @[h --> 0^'] --> a.
  have F1 : 'D_1 f x = a by apply: cvg_lim.
  rewrite -F1 in Hf.
    by constructor.
  have F1 :  (g \o shift x) y @[y --> 0^'] --> a.
  by rewrite -gxE; apply/continuous_withinNshiftx.
apply: cvg_trans F1; apply: near_eq_cvg.
near=> y.
rewrite /= fxE /= addrK [_%:A]mulr1.
suff yNZ : y != 0 by rewrite [RHS]mulrC mulfK.
by near: y; rewrite near_withinE /= near_simpl; near=> x1.
Unshelve. all: by end_near. Qed.

Lemma is_derive_0_is_cst (f : R -> R) x y :
  (forall x, is_derive x 1 f 0) -> f x = f y.
Proof.
move=> Hd.
wlog xLy : x y / x <= y by move=> H; case: (leP x y) => [/H |/ltW /H].
rewrite -(subKr (f y) (f x)).
have [| _ _] := MVT_segment xLy; last by rewrite mul0r => ->; rewrite subr0.
apply/continuous_subspaceT => r _.
exact/differentiable_continuous/derivable1_diffP.
Qed.

Global Instance is_derive1_comp (f g : R -> R) (x a b : R) :
  is_derive (g x) 1 f a -> is_derive x 1 g b ->
  is_derive x 1 (f \o g) (a * b).
Proof.
move=> [fgxv <-{a}] [gv <-{b}]; apply: (@DeriveDef _ _ _ _ _ (f \o g)).
  apply/derivable1_diffP/differentiable_comp; first exact/derivable1_diffP.
  by move/derivable1_diffP in fgxv.
by rewrite -derive1E (derive1_comp gv fgxv) 2!derive1E.
Qed.

Lemma is_deriveV (f : R -> R) (x t v : R) :
  f x != 0 -> is_derive x v f t ->
  is_derive x v (fun y => (f y)^-1) (- (f x) ^- 2 *: t).
Proof.
move=> fxNZ Df.
constructor; first by apply: derivableV => //; case: Df.
by rewrite deriveV //; case: Df => _ ->.
Qed.

Lemma is_derive_inverse (f g : R -> R) l x :
  {near x, cancel f g}  ->
  {near x, continuous f}  ->
  is_derive x 1 f l -> l != 0 -> is_derive (f x) 1 g l^-1.
Proof.
move=> fgK fC fD lNZ.
have /is_derive1_caratheodory [h [fE hC hxE]] := fD.
(* There should be something simpler *)
have gfxE : g (f x) = x by have [d Hd]:= nbhs_ex fgK; apply: Hd.
pose g1 y := if y == f x then (h (g y))^-1
             else (g y - g (f x)) / (y - f x).
apply/is_derive1_caratheodory.
exists g1; split; first 2 last.
- by rewrite /g1 eqxx gfxE hxE.
- move=> z; rewrite /g1; case: eqP => [->|/eqP]; first by rewrite !subrr mulr0.
  by rewrite -subr_eq0 => /divfK.
have F1 : (h (g x))^-1 @[x --> f x] --> g1 (f x).
  rewrite /g1 eqxx; apply: continuousV; first by rewrite /= gfxE hxE.
  apply: continuous_comp; last by rewrite gfxE.
  by apply: nbhs_singleton (near_can_continuous _ _).
apply: cvg_sub0 F1.
apply/cvg_distP => eps eps_gt0 /=; rewrite !near_simpl /=.
near=> y; rewrite sub0r normrN !fctE.
have fgyE : f (g y) = y by near: y; apply: near_continuous_can_sym.
rewrite /g1; case: eqP => [_|/eqP x1Dfx]; first by rewrite subrr normr0.
have -> : y - f x  = h (g y) * (g y - x) by rewrite -fE fgyE.
rewrite gfxE invfM mulrC divfK ?subrr ?normr0 // subr_eq0.
by apply: contra x1Dfx => /eqP<-; apply/eqP.
Unshelve. all: by end_near. Qed.

End is_derive_inverse.

#[global] Hint Extern 0 (is_derive _ _ (fun _ => (_ _)^-1) _) =>
  (eapply is_deriveV; first by []) : typeclass_instances.