Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 113,185 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 |
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice.
From mathcomp Require Import fintype div path tuple bigop prime finset.
(******************************************************************************)
(* This file defines the main interface for finite groups : *)
(* finGroupType == the structure for finite types with a group law. *)
(* {group gT} == type of groups with elements of type gT. *)
(* baseFinGroupType == the structure for finite types with a monoid law *)
(* and an involutive antimorphism; finGroupType is *)
(* derived from baseFinGroupType (via a telescope). *)
(* FinGroupType mulVg == the finGroupType structure for an existing *)
(* baseFinGroupType structure, built from a proof of *)
(* the left inverse group axiom for that structure's *)
(* operations. *)
(* BaseFinGroupType bgm == the baseFingroupType structure built by packaging *)
(* bgm : FinGroup.mixin_of T for a type T with an *)
(* existing finType structure. *)
(* FinGroup.BaseMixin mulA mul1x invK invM == *)
(* the mixin for a baseFinGroupType structure, built *)
(* from proofs of the baseFinGroupType axioms. *)
(* FinGroup.Mixin mulA mul1x mulVg == *)
(* the mixin for a baseFinGroupType structure, built *)
(* from proofs of the group axioms. *)
(* [baseFinGroupType of T] == a clone of an existing baseFinGroupType *)
(* structure on T, for T (the existing structure *)
(* might be for some delta-expansion of T). *)
(* [finGroupType of T] == a clone of an existing finGroupType structure on *)
(* T, for the canonical baseFinGroupType structure *)
(* of T (the existing structure might be for the *)
(* baseFinGroupType of some delta-expansion of T). *)
(* [group of G] == a clone for an existing {group gT} structure on *)
(* G : {set gT} (the existing structure might be for *)
(* some delta-expansion of G). *)
(* If gT implements finGroupType, then we can form {set gT}, the type of *)
(* finite sets with elements of type gT (as finGroupType extends finType). *)
(* The group law extends pointwise to {set gT}, which thus implements a sub- *)
(* interface baseFinGroupType of finGroupType. To be consistent with the *)
(* predType interface, this is done by coercion to FinGroup.arg_sort, an *)
(* alias for FinGroup.sort. Accordingly, all pointwise group operations below *)
(* have arguments of type (FinGroup.arg_sort) gT and return results of type *)
(* FinGroup.sort gT. *)
(* The notations below are declared in two scopes: *)
(* group_scope (delimiter %g) for point operations and set constructs. *)
(* Group_scope (delimiter %G) for explicit {group gT} structures. *)
(* These scopes should not be opened globally, although group_scope is often *)
(* opened locally in group-theory files (via Import GroupScope). *)
(* As {group gT} is both a subtype and an interface structure for {set gT}, *)
(* the fact that a given G : {set gT} is a group can (and usually should) be *)
(* inferred by type inference with canonical structures. This means that all *)
(* `group' constructions (e.g., the normaliser 'N_G(H)) actually define sets *)
(* with a canonical {group gT} structure; the %G delimiter can be used to *)
(* specify the actual {group gT} structure (e.g., 'N_G(H)%G). *)
(* Operations on elements of a group: *)
(* x * y == the group product of x and y. *)
(* x ^+ n == the nth power of x, i.e., x * ... * x (n times). *)
(* x^-1 == the group inverse of x. *)
(* x ^- n == the inverse of x ^+ n (notation for (x ^+ n)^-1). *)
(* 1 == the unit element. *)
(* x ^ y == the conjugate of x by y (i.e., y^-1 * (x * y)). *)
(* [~ x, y] == the commutator of x and y (i.e., x^-1 * x ^ y). *)
(* [~ x1, ..., xn] == the commutator of x1, ..., xn (associating left). *)
(* \prod_(i ...) x i == the product of the x i (order-sensitive). *)
(* commute x y <-> x and y commute. *)
(* centralises x A <-> x centralises A. *)
(* 'C[x] == the set of elements that commute with x. *)
(* 'C_G[x] == the set of elements of G that commute with x. *)
(* <[x]> == the cyclic subgroup generated by the element x. *)
(* #[x] == the order of the element x, i.e., #|<[x]>|. *)
(* Operations on subsets/subgroups of a finite group: *)
(* H * G == {xy | x \in H, y \in G}. *)
(* 1 or [1] or [1 gT] == the unit group. *)
(* [set: gT]%G == the group of all x : gT (in Group_scope). *)
(* group_set G == G contains 1 and is closed under binary product; *)
(* this is the characteristic property of the *)
(* {group gT} subtype of {set gT}. *)
(* [subg G] == the subtype, set, or group of all x \in G: this *)
(* notation is defined simultaneously in %type, %g *)
(* and %G scopes, and G must denote a {group gT} *)
(* structure (G is in the %G scope). *)
(* subg, sgval == the projection into and injection from [subg G]. *)
(* H^# == the set H minus the unit element. *)
(* repr H == some element of H if 1 \notin H != set0, else 1. *)
(* (repr is defined over sets of a baseFinGroupType, *)
(* so it can be used, e.g., to pick right cosets.) *)
(* x *: H == left coset of H by x. *)
(* lcosets H G == the set of the left cosets of H by elements of G. *)
(* H :* x == right coset of H by x. *)
(* rcosets H G == the set of the right cosets of H by elements of G. *)
(* #|G : H| == the index of H in G, i.e., #|rcosets G H|. *)
(* H :^ x == the conjugate of H by x. *)
(* x ^: H == the conjugate class of x in H. *)
(* classes G == the set of all conjugate classes of G. *)
(* G :^: H == {G :^ x | x \in H}. *)
(* class_support G H == {x ^ y | x \in G, y \in H}. *)
(* commg_set G H == {[~ x, y] | x \in G, y \in H}; NOT the commutator! *)
(* <<H>> == the subgroup generated by the set H. *)
(* [~: G, H] == the commmutator subgroup of G and H, i.e., *)
(* <<commg_set G H>>>. *)
(* [~: H1, ..., Hn] == commutator subgroup of H1, ..., Hn (left assoc.). *)
(* H <*> G == the subgroup generated by sets H and G (H join G). *)
(* (H * G)%G == the join of G H : {group gT} (convertible, but not *)
(* identical to (G <*> H)%G). *)
(* (\prod_(i ...) H i)%G == the group generated by the H i. *)
(* {in G, centralised H} <-> G centralises H. *)
(* {in G, normalised H} <-> G normalises H. *)
(* <-> forall x, x \in G -> H :^ x = H. *)
(* 'N(H) == the normaliser of H. *)
(* 'N_G(H) == the normaliser of H in G. *)
(* H <| G <=> H is a normal subgroup of G. *)
(* 'C(H) == the centraliser of H. *)
(* 'C_G(H) == the centraliser of H in G. *)
(* gcore H G == the largest subgroup of H normalised by G. *)
(* If H is a subgroup of G, this is the largest *)
(* normal subgroup of G contained in H). *)
(* abelian H <=> H is abelian. *)
(* subgroups G == the set of subgroups of G, i.e., the set of all *)
(* H : {group gT} such that H \subset G. *)
(* In the notation below G is a variable that is bound in P. *)
(* [max G | P] <=> G is the largest group such that P holds. *)
(* [max H of G | P] <=> H is the largest group G such that P holds. *)
(* [max G | P & Q] := [max G | P && Q], likewise [max H of G | P & Q]. *)
(* [min G | P] <=> G is the smallest group such that P holds. *)
(* [min G | P & Q] := [min G | P && Q], likewise [min H of G | P & Q]. *)
(* [min H of G | P] <=> H is the smallest group G such that P holds. *)
(* In addition to the generic suffixes described in ssrbool.v and finset.v, *)
(* we associate the following suffixes to group operations: *)
(* 1 - identity element, as in group1 : 1 \in G. *)
(* M - multiplication, as is invMg : (x * y)^-1 = y^-1 * x^-1. *)
(* Also nat multiplication, for expgM : x ^+ (m * n) = x ^+ m ^+ n. *)
(* D - (nat) addition, for expgD : x ^+ (m + n) = x ^+ m * x ^+ n. *)
(* V - inverse, as in mulgV : x * x^-1 = 1. *)
(* X - exponentiation, as in conjXg : (x ^+ n) ^ y = (x ^ y) ^+ n. *)
(* J - conjugation, as in orderJ : #[x ^ y] = #[x]. *)
(* R - commutator, as in conjRg : [~ x, y] ^ z = [~ x ^ z, y ^ z]. *)
(* Y - join, as in centY : 'C(G <*> H) = 'C(G) :&: 'C(H). *)
(* We sometimes prefix these with an `s' to indicate a set-lifted operation, *)
(* e.g., conjsMg : (A * B) :^ x = A :^ x * B :^ x. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope group_scope.
Declare Scope Group_scope.
Delimit Scope group_scope with g.
Delimit Scope Group_scope with G.
(* This module can be imported to open the scope for group element *)
(* operations locally to a file, without exporting the Open to *)
(* clients of that file (as Open would do). *)
Module GroupScope.
Open Scope group_scope.
End GroupScope.
Import GroupScope.
(* These are the operation notations introduced by this file. *)
Reserved Notation "[ ~ x1 , x2 , .. , xn ]" (at level 0,
format "'[ ' [ ~ x1 , '/' x2 , '/' .. , '/' xn ] ']'").
Reserved Notation "[ 1 gT ]" (at level 0, format "[ 1 gT ]").
Reserved Notation "[ 1 ]" (at level 0, format "[ 1 ]").
Reserved Notation "[ 'subg' G ]" (at level 0, format "[ 'subg' G ]").
Reserved Notation "A ^#" (at level 2, format "A ^#").
Reserved Notation "A :^ x" (at level 35, right associativity).
Reserved Notation "x ^: B" (at level 35, right associativity).
Reserved Notation "A :^: B" (at level 35, right associativity).
Reserved Notation "#| B : A |" (at level 0, B, A at level 99,
format "#| B : A |").
Reserved Notation "''N' ( A )" (at level 8, format "''N' ( A )").
Reserved Notation "''N_' G ( A )" (at level 8, G at level 2,
format "''N_' G ( A )").
Reserved Notation "A <| B" (at level 70, no associativity).
Reserved Notation "A <*> B" (at level 40, left associativity).
Reserved Notation "[ ~: A1 , A2 , .. , An ]" (at level 0,
format "[ ~: '[' A1 , '/' A2 , '/' .. , '/' An ']' ]").
Reserved Notation "[ 'max' A 'of' G | gP ]" (at level 0,
format "[ '[hv' 'max' A 'of' G '/ ' | gP ']' ]").
Reserved Notation "[ 'max' G | gP ]" (at level 0,
format "[ '[hv' 'max' G '/ ' | gP ']' ]").
Reserved Notation "[ 'max' A 'of' G | gP & gQ ]" (at level 0,
format "[ '[hv' 'max' A 'of' G '/ ' | gP '/ ' & gQ ']' ]").
Reserved Notation "[ 'max' G | gP & gQ ]" (at level 0,
format "[ '[hv' 'max' G '/ ' | gP '/ ' & gQ ']' ]").
Reserved Notation "[ 'min' A 'of' G | gP ]" (at level 0,
format "[ '[hv' 'min' A 'of' G '/ ' | gP ']' ]").
Reserved Notation "[ 'min' G | gP ]" (at level 0,
format "[ '[hv' 'min' G '/ ' | gP ']' ]").
Reserved Notation "[ 'min' A 'of' G | gP & gQ ]" (at level 0,
format "[ '[hv' 'min' A 'of' G '/ ' | gP '/ ' & gQ ']' ]").
Reserved Notation "[ 'min' G | gP & gQ ]" (at level 0,
format "[ '[hv' 'min' G '/ ' | gP '/ ' & gQ ']' ]").
Module FinGroup.
(* We split the group axiomatisation in two. We define a *)
(* class of "base groups", which are basically monoids *)
(* with an involutive antimorphism, from which we derive *)
(* the class of groups proper. This allows use to reuse *)
(* much of the group notation and algebraic axioms for *)
(* group subsets, by defining a base group class on them. *)
(* We use class/mixins here rather than telescopes to *)
(* be able to interoperate with the type coercions. *)
(* Another potential benefit (not exploited here) would *)
(* be to define a class for infinite groups, which could *)
(* share all of the algebraic laws. *)
Record mixin_of (T : Type) : Type := BaseMixin {
mul : T -> T -> T;
one : T;
inv : T -> T;
_ : associative mul;
_ : left_id one mul;
_ : involutive inv;
_ : {morph inv : x y / mul x y >-> mul y x}
}.
Structure base_type : Type := PackBase {
sort : Type;
_ : mixin_of sort;
_ : Finite.class_of sort
}.
(* We want to use sort as a coercion class, both to infer *)
(* argument scopes properly, and to allow groups and cosets to *)
(* coerce to the base group of group subsets. *)
(* However, the return type of group operations should NOT be a *)
(* coercion class, since this would trump the real (head-normal) *)
(* coercion class for concrete group types, thus spoiling the *)
(* coercion of A * B to pred_sort in x \in A * B, or rho * tau to *)
(* ffun and Funclass in (rho * tau) x, when rho tau : perm T. *)
(* Therefore we define an alias of sort for argument types, and *)
(* make it the default coercion FinGroup.base_type >-> Sortclass *)
(* so that arguments of a functions whose parameters are of type, *)
(* say, gT : finGroupType, can be coerced to the coercion class *)
(* of arg_sort. Care should be taken, however, to declare the *)
(* return type of functions and operators as FinGroup.sort gT *)
(* rather than gT, e.g., mulg : gT -> gT -> FinGroup.sort gT. *)
(* Note that since we do this here and in quotient.v for all the *)
(* basic functions, the inferred return type should generally be *)
(* correct. *)
Definition arg_sort := sort.
Definition mixin T :=
let: PackBase _ m _ := T return mixin_of (sort T) in m.
Definition finClass T :=
let: PackBase _ _ m := T return Finite.class_of (sort T) in m.
Structure type : Type := Pack {
base : base_type;
_ : left_inverse (one (mixin base)) (inv (mixin base)) (mul (mixin base))
}.
(* We only need three axioms to make a true group. *)
Section Mixin.
Variables (T : Type) (one : T) (mul : T -> T -> T) (inv : T -> T).
Hypothesis mulA : associative mul.
Hypothesis mul1 : left_id one mul.
Hypothesis mulV : left_inverse one inv mul.
Notation "1" := one.
Infix "*" := mul.
Notation "x ^-1" := (inv x).
Lemma mk_invgK : involutive inv.
Proof.
have mulV21 x: x^-1^-1 * 1 = x by rewrite -(mulV x) mulA mulV mul1.
by move=> x; rewrite -[_ ^-1]mulV21 -(mul1 1) mulA !mulV21.
Qed.
Lemma mk_invMg : {morph inv : x y / x * y >-> y * x}.
Proof.
have mulxV x: x * x^-1 = 1 by rewrite -{1}[x]mk_invgK mulV.
move=> x y /=; rewrite -[y^-1 * _]mul1 -(mulV (x * y)) -2!mulA (mulA y).
by rewrite mulxV mul1 mulxV -(mulxV (x * y)) mulA mulV mul1.
Qed.
Definition Mixin := BaseMixin mulA mul1 mk_invgK mk_invMg.
End Mixin.
Definition pack_base T m :=
fun c cT & phant_id (Finite.class cT) c => @PackBase T m c.
Definition clone_base T :=
fun bT & sort bT -> T =>
fun m c (bT' := @PackBase T m c) & phant_id bT' bT => bT'.
Definition clone T :=
fun bT gT & sort bT * sort (base gT) -> T * T =>
fun m (gT' := @Pack bT m) & phant_id gT' gT => gT'.
Section InheritedClasses.
Variable bT : base_type.
Local Notation T := (arg_sort bT).
Local Notation rT := (sort bT).
Local Notation class := (finClass bT).
Canonical eqType := Equality.Pack class.
Canonical choiceType := Choice.Pack class.
Canonical countType := Countable.Pack class.
Canonical finType := Finite.Pack class.
Definition arg_eqType := Eval hnf in [eqType of T].
Definition arg_choiceType := Eval hnf in [choiceType of T].
Definition arg_countType := Eval hnf in [countType of T].
Definition arg_finType := Eval hnf in [finType of T].
End InheritedClasses.
Module Import Exports.
(* Declaring sort as a Coercion is clearly redundant; it only *)
(* serves the purpose of eliding FinGroup.sort in the display of *)
(* return types. The warning could be eliminated by using the *)
(* functor trick to replace Sortclass by a dummy target. *)
Coercion arg_sort : base_type >-> Sortclass.
Coercion sort : base_type >-> Sortclass.
Coercion mixin : base_type >-> mixin_of.
Coercion base : type >-> base_type.
Canonical eqType.
Canonical choiceType.
Canonical countType.
Canonical finType.
Coercion arg_eqType : base_type >-> Equality.type.
Canonical arg_eqType.
Coercion arg_choiceType : base_type >-> Choice.type.
Canonical arg_choiceType.
Coercion arg_countType : base_type >-> Countable.type.
Canonical arg_countType.
Coercion arg_finType : base_type >-> Finite.type.
Canonical arg_finType.
Bind Scope group_scope with sort.
Bind Scope group_scope with arg_sort.
Notation baseFinGroupType := base_type.
Notation finGroupType := type.
Notation BaseFinGroupType T m := (@pack_base T m _ _ id).
Notation FinGroupType := Pack.
Notation "[ 'baseFinGroupType' 'of' T ]" := (@clone_base T _ id _ _ id)
(at level 0, format "[ 'baseFinGroupType' 'of' T ]") : form_scope.
Notation "[ 'finGroupType' 'of' T ]" := (@clone T _ _ id _ id)
(at level 0, format "[ 'finGroupType' 'of' T ]") : form_scope.
End Exports.
End FinGroup.
Export FinGroup.Exports.
Section ElementOps.
Variable T : baseFinGroupType.
Notation rT := (FinGroup.sort T).
Definition oneg : rT := FinGroup.one T.
Definition mulg : T -> T -> rT := FinGroup.mul T.
Definition invg : T -> rT := FinGroup.inv T.
Definition expgn_rec (x : T) n : rT := iterop n mulg x oneg.
End ElementOps.
Definition expgn := nosimpl expgn_rec.
Notation "1" := (oneg _) : group_scope.
Notation "x1 * x2" := (mulg x1 x2) : group_scope.
Notation "x ^-1" := (invg x) : group_scope.
Notation "x ^+ n" := (expgn x n) : group_scope.
Notation "x ^- n" := (x ^+ n)^-1 : group_scope.
(* Arguments of conjg are restricted to true groups to avoid an *)
(* improper interpretation of A ^ B with A and B sets, namely: *)
(* {x^-1 * (y * z) | y \in A, x, z \in B} *)
Definition conjg (T : finGroupType) (x y : T) := y^-1 * (x * y).
Notation "x1 ^ x2" := (conjg x1 x2) : group_scope.
Definition commg (T : finGroupType) (x y : T) := x^-1 * x ^ y.
Notation "[ ~ x1 , x2 , .. , xn ]" := (commg .. (commg x1 x2) .. xn)
: group_scope.
Prenex Implicits mulg invg expgn conjg commg.
Notation "\prod_ ( i <- r | P ) F" :=
(\big[mulg/1]_(i <- r | P%B) F%g) : group_scope.
Notation "\prod_ ( i <- r ) F" :=
(\big[mulg/1]_(i <- r) F%g) : group_scope.
Notation "\prod_ ( m <= i < n | P ) F" :=
(\big[mulg/1]_(m <= i < n | P%B) F%g) : group_scope.
Notation "\prod_ ( m <= i < n ) F" :=
(\big[mulg/1]_(m <= i < n) F%g) : group_scope.
Notation "\prod_ ( i | P ) F" :=
(\big[mulg/1]_(i | P%B) F%g) : group_scope.
Notation "\prod_ i F" :=
(\big[mulg/1]_i F%g) : group_scope.
Notation "\prod_ ( i : t | P ) F" :=
(\big[mulg/1]_(i : t | P%B) F%g) (only parsing) : group_scope.
Notation "\prod_ ( i : t ) F" :=
(\big[mulg/1]_(i : t) F%g) (only parsing) : group_scope.
Notation "\prod_ ( i < n | P ) F" :=
(\big[mulg/1]_(i < n | P%B) F%g) : group_scope.
Notation "\prod_ ( i < n ) F" :=
(\big[mulg/1]_(i < n) F%g) : group_scope.
Notation "\prod_ ( i 'in' A | P ) F" :=
(\big[mulg/1]_(i in A | P%B) F%g) : group_scope.
Notation "\prod_ ( i 'in' A ) F" :=
(\big[mulg/1]_(i in A) F%g) : group_scope.
Section PreGroupIdentities.
Variable T : baseFinGroupType.
Implicit Types x y z : T.
Local Notation mulgT := (@mulg T).
Lemma mulgA : associative mulgT. Proof. by case: T => ? []. Qed.
Lemma mul1g : left_id 1 mulgT. Proof. by case: T => ? []. Qed.
Lemma invgK : @involutive T invg. Proof. by case: T => ? []. Qed.
Lemma invMg x y : (x * y)^-1 = y^-1 * x^-1. Proof. by case: T x y => ? []. Qed.
Lemma invg_inj : @injective T T invg. Proof. exact: can_inj invgK. Qed.
Lemma eq_invg_sym x y : (x^-1 == y) = (x == y^-1).
Proof. by apply: (inv_eq invgK). Qed.
Lemma invg1 : 1^-1 = 1 :> T.
Proof. by apply: invg_inj; rewrite -{1}[1^-1]mul1g invMg invgK mul1g. Qed.
Lemma eq_invg1 x : (x^-1 == 1) = (x == 1).
Proof. by rewrite eq_invg_sym invg1. Qed.
Lemma mulg1 : right_id 1 mulgT.
Proof. by move=> x; apply: invg_inj; rewrite invMg invg1 mul1g. Qed.
Canonical finGroup_law := Monoid.Law mulgA mul1g mulg1.
Lemma expgnE x n : x ^+ n = expgn_rec x n. Proof. by []. Qed.
Lemma expg0 x : x ^+ 0 = 1. Proof. by []. Qed.
Lemma expg1 x : x ^+ 1 = x. Proof. by []. Qed.
Lemma expgS x n : x ^+ n.+1 = x * x ^+ n.
Proof. by case: n => //; rewrite mulg1. Qed.
Lemma expg1n n : 1 ^+ n = 1 :> T.
Proof. by elim: n => // n IHn; rewrite expgS mul1g. Qed.
Lemma expgD x n m : x ^+ (n + m) = x ^+ n * x ^+ m.
Proof. by elim: n => [|n IHn]; rewrite ?mul1g // !expgS IHn mulgA. Qed.
Lemma expgSr x n : x ^+ n.+1 = x ^+ n * x.
Proof. by rewrite -addn1 expgD expg1. Qed.
Lemma expgM x n m : x ^+ (n * m) = x ^+ n ^+ m.
Proof.
elim: m => [|m IHm]; first by rewrite muln0 expg0.
by rewrite mulnS expgD IHm expgS.
Qed.
Lemma expgAC x m n : x ^+ m ^+ n = x ^+ n ^+ m.
Proof. by rewrite -!expgM mulnC. Qed.
Definition commute x y := x * y = y * x.
Lemma commute_refl x : commute x x.
Proof. by []. Qed.
Lemma commute_sym x y : commute x y -> commute y x.
Proof. by []. Qed.
Lemma commute1 x : commute x 1.
Proof. by rewrite /commute mulg1 mul1g. Qed.
Lemma commuteM x y z : commute x y -> commute x z -> commute x (y * z).
Proof. by move=> cxy cxz; rewrite /commute -mulgA -cxz !mulgA cxy. Qed.
Lemma commuteX x y n : commute x y -> commute x (y ^+ n).
Proof.
by move=> cxy; case: n; [apply: commute1 | elim=> // n; apply: commuteM].
Qed.
Lemma commuteX2 x y m n : commute x y -> commute (x ^+ m) (y ^+ n).
Proof. by move=> cxy; apply/commuteX/commute_sym/commuteX. Qed.
Lemma expgVn x n : x^-1 ^+ n = x ^- n.
Proof. by elim: n => [|n IHn]; rewrite ?invg1 // expgSr expgS invMg IHn. Qed.
Lemma expgMn x y n : commute x y -> (x * y) ^+ n = x ^+ n * y ^+ n.
Proof.
move=> cxy; elim: n => [|n IHn]; first by rewrite mulg1.
by rewrite !expgS IHn -mulgA (mulgA y) (commuteX _ (commute_sym cxy)) !mulgA.
Qed.
End PreGroupIdentities.
#[global] Hint Resolve commute1 : core.
Arguments invg_inj {T} [x1 x2].
Prenex Implicits commute invgK.
Section GroupIdentities.
Variable T : finGroupType.
Implicit Types x y z : T.
Local Notation mulgT := (@mulg T).
Lemma mulVg : left_inverse 1 invg mulgT.
Proof. by case T. Qed.
Lemma mulgV : right_inverse 1 invg mulgT.
Proof. by move=> x; rewrite -{1}(invgK x) mulVg. Qed.
Lemma mulKg : left_loop invg mulgT.
Proof. by move=> x y; rewrite mulgA mulVg mul1g. Qed.
Lemma mulKVg : rev_left_loop invg mulgT.
Proof. by move=> x y; rewrite mulgA mulgV mul1g. Qed.
Lemma mulgI : right_injective mulgT.
Proof. by move=> x; apply: can_inj (mulKg x). Qed.
Lemma mulgK : right_loop invg mulgT.
Proof. by move=> x y; rewrite -mulgA mulgV mulg1. Qed.
Lemma mulgKV : rev_right_loop invg mulgT.
Proof. by move=> x y; rewrite -mulgA mulVg mulg1. Qed.
Lemma mulIg : left_injective mulgT.
Proof. by move=> x; apply: can_inj (mulgK x). Qed.
Lemma eq_invg_mul x y : (x^-1 == y :> T) = (x * y == 1 :> T).
Proof. by rewrite -(inj_eq (@mulgI x)) mulgV eq_sym. Qed.
Lemma eq_mulgV1 x y : (x == y) = (x * y^-1 == 1 :> T).
Proof. by rewrite -(inj_eq invg_inj) eq_invg_mul. Qed.
Lemma eq_mulVg1 x y : (x == y) = (x^-1 * y == 1 :> T).
Proof. by rewrite -eq_invg_mul invgK. Qed.
Lemma commuteV x y : commute x y -> commute x y^-1.
Proof. by move=> cxy; apply: (@mulIg y); rewrite mulgKV -mulgA cxy mulKg. Qed.
Lemma conjgE x y : x ^ y = y^-1 * (x * y). Proof. by []. Qed.
Lemma conjgC x y : x * y = y * x ^ y.
Proof. by rewrite mulKVg. Qed.
Lemma conjgCV x y : x * y = y ^ x^-1 * x.
Proof. by rewrite -mulgA mulgKV invgK. Qed.
Lemma conjg1 x : x ^ 1 = x.
Proof. by rewrite conjgE commute1 mulKg. Qed.
Lemma conj1g x : 1 ^ x = 1.
Proof. by rewrite conjgE mul1g mulVg. Qed.
Lemma conjMg x y z : (x * y) ^ z = x ^ z * y ^ z.
Proof. by rewrite !conjgE !mulgA mulgK. Qed.
Lemma conjgM x y z : x ^ (y * z) = (x ^ y) ^ z.
Proof. by rewrite !conjgE invMg !mulgA. Qed.
Lemma conjVg x y : x^-1 ^ y = (x ^ y)^-1.
Proof. by rewrite !conjgE !invMg invgK mulgA. Qed.
Lemma conjJg x y z : (x ^ y) ^ z = (x ^ z) ^ y ^ z.
Proof. by rewrite 2!conjMg conjVg. Qed.
Lemma conjXg x y n : (x ^+ n) ^ y = (x ^ y) ^+ n.
Proof. by elim: n => [|n IHn]; rewrite ?conj1g // !expgS conjMg IHn. Qed.
Lemma conjgK : @right_loop T T invg conjg.
Proof. by move=> y x; rewrite -conjgM mulgV conjg1. Qed.
Lemma conjgKV : @rev_right_loop T T invg conjg.
Proof. by move=> y x; rewrite -conjgM mulVg conjg1. Qed.
Lemma conjg_inj : @left_injective T T T conjg.
Proof. by move=> y; apply: can_inj (conjgK y). Qed.
Lemma conjg_eq1 x y : (x ^ y == 1) = (x == 1).
Proof. by rewrite (canF_eq (conjgK _)) conj1g. Qed.
Lemma conjg_prod I r (P : pred I) F z :
(\prod_(i <- r | P i) F i) ^ z = \prod_(i <- r | P i) (F i ^ z).
Proof.
by apply: (big_morph (conjg^~ z)) => [x y|]; rewrite ?conj1g ?conjMg.
Qed.
Lemma commgEl x y : [~ x, y] = x^-1 * x ^ y. Proof. by []. Qed.
Lemma commgEr x y : [~ x, y] = y^-1 ^ x * y.
Proof. by rewrite -!mulgA. Qed.
Lemma commgC x y : x * y = y * x * [~ x, y].
Proof. by rewrite -mulgA !mulKVg. Qed.
Lemma commgCV x y : x * y = [~ x^-1, y^-1] * (y * x).
Proof. by rewrite commgEl !mulgA !invgK !mulgKV. Qed.
Lemma conjRg x y z : [~ x, y] ^ z = [~ x ^ z, y ^ z].
Proof. by rewrite !conjMg !conjVg. Qed.
Lemma invg_comm x y : [~ x, y]^-1 = [~ y, x].
Proof. by rewrite commgEr conjVg invMg invgK. Qed.
Lemma commgP x y : reflect (commute x y) ([~ x, y] == 1 :> T).
Proof. by rewrite [[~ x, y]]mulgA -invMg -eq_mulVg1 eq_sym; apply: eqP. Qed.
Lemma conjg_fixP x y : reflect (x ^ y = x) ([~ x, y] == 1 :> T).
Proof. by rewrite -eq_mulVg1 eq_sym; apply: eqP. Qed.
Lemma commg1_sym x y : ([~ x, y] == 1 :> T) = ([~ y, x] == 1 :> T).
Proof. by rewrite -invg_comm (inv_eq invgK) invg1. Qed.
Lemma commg1 x : [~ x, 1] = 1.
Proof. exact/eqP/commgP. Qed.
Lemma comm1g x : [~ 1, x] = 1.
Proof. by rewrite -invg_comm commg1 invg1. Qed.
Lemma commgg x : [~ x, x] = 1.
Proof. exact/eqP/commgP. Qed.
Lemma commgXg x n : [~ x, x ^+ n] = 1.
Proof. exact/eqP/commgP/commuteX. Qed.
Lemma commgVg x : [~ x, x^-1] = 1.
Proof. exact/eqP/commgP/commuteV. Qed.
Lemma commgXVg x n : [~ x, x ^- n] = 1.
Proof. exact/eqP/commgP/commuteV/commuteX. Qed.
(* Other commg identities should slot in here. *)
End GroupIdentities.
Hint Rewrite mulg1 mul1g invg1 mulVg mulgV (@invgK) mulgK mulgKV
invMg mulgA : gsimpl.
Ltac gsimpl := autorewrite with gsimpl; try done.
Definition gsimp := (mulg1 , mul1g, (invg1, @invgK), (mulgV, mulVg)).
Definition gnorm := (gsimp, (mulgK, mulgKV, (mulgA, invMg))).
Arguments mulgI [T].
Arguments mulIg [T].
Arguments conjg_inj {T} x [x1 x2].
Arguments commgP {T x y}.
Arguments conjg_fixP {T x y}.
Section Repr.
(* Plucking a set representative. *)
Variable gT : baseFinGroupType.
Implicit Type A : {set gT}.
Definition repr A := if 1 \in A then 1 else odflt 1 [pick x in A].
Lemma mem_repr A x : x \in A -> repr A \in A.
Proof.
by rewrite /repr; case: ifP => // _; case: pickP => // A0; rewrite [x \in A]A0.
Qed.
Lemma card_mem_repr A : #|A| > 0 -> repr A \in A.
Proof. by rewrite lt0n => /existsP[x]; apply: mem_repr. Qed.
Lemma repr_set1 x : repr [set x] = x.
Proof. by apply/set1P/card_mem_repr; rewrite cards1. Qed.
Lemma repr_set0 : repr set0 = 1.
Proof. by rewrite /repr; case: pickP => [x|_] /[!inE]. Qed.
End Repr.
Arguments mem_repr [gT A].
Section BaseSetMulDef.
(* We only assume a baseFinGroupType to allow this construct to be iterated. *)
Variable gT : baseFinGroupType.
Implicit Types A B : {set gT}.
(* Set-lifted group operations. *)
Definition set_mulg A B := mulg @2: (A, B).
Definition set_invg A := invg @^-1: A.
(* The pre-group structure of group subsets. *)
Lemma set_mul1g : left_id [set 1] set_mulg.
Proof.
move=> A; apply/setP=> y; apply/imset2P/idP=> [[_ x /set1P-> Ax ->] | Ay].
by rewrite mul1g.
by exists (1 : gT) y; rewrite ?(set11, mul1g).
Qed.
Lemma set_mulgA : associative set_mulg.
Proof.
move=> A B C; apply/setP=> y.
apply/imset2P/imset2P=> [[x1 z Ax1 /imset2P[x2 x3 Bx2 Cx3 ->] ->]| [z x3]].
by exists (x1 * x2) x3; rewrite ?mulgA //; apply/imset2P; exists x1 x2.
case/imset2P=> x1 x2 Ax1 Bx2 -> Cx3 ->.
by exists x1 (x2 * x3); rewrite ?mulgA //; apply/imset2P; exists x2 x3.
Qed.
Lemma set_invgK : involutive set_invg.
Proof. by move=> A; apply/setP=> x; rewrite !inE invgK. Qed.
Lemma set_invgM : {morph set_invg : A B / set_mulg A B >-> set_mulg B A}.
Proof.
move=> A B; apply/setP=> z; rewrite inE.
apply/imset2P/imset2P=> [[x y Ax By /(canRL invgK)->] | [y x]].
by exists y^-1 x^-1; rewrite ?invMg // inE invgK.
by rewrite !inE => By1 Ax1 ->; exists x^-1 y^-1; rewrite ?invMg.
Qed.
Definition group_set_baseGroupMixin : FinGroup.mixin_of (set_type gT) :=
FinGroup.BaseMixin set_mulgA set_mul1g set_invgK set_invgM.
Canonical group_set_baseGroupType :=
Eval hnf in BaseFinGroupType (set_type gT) group_set_baseGroupMixin.
Canonical group_set_of_baseGroupType :=
Eval hnf in [baseFinGroupType of {set gT}].
End BaseSetMulDef.
(* Time to open the bag of dirty tricks. When we define groups down below *)
(* as a subtype of {set gT}, we need them to be able to coerce to sets in *)
(* both set-style contexts (x \in G) and monoid-style contexts (G * H), *)
(* and we need the coercion function to be EXACTLY the structure *)
(* projection in BOTH cases -- otherwise the canonical unification breaks.*)
(* Alas, Coq doesn't let us use the same coercion function twice, even *)
(* when the targets are convertible. Our workaround (ab)uses the module *)
(* system to declare two different identity coercions on an alias class. *)
Module GroupSet.
Definition sort (gT : baseFinGroupType) := {set gT}.
End GroupSet.
Identity Coercion GroupSet_of_sort : GroupSet.sort >-> set_of.
Module Type GroupSetBaseGroupSig.
Definition sort gT := group_set_of_baseGroupType gT : Type.
End GroupSetBaseGroupSig.
Module MakeGroupSetBaseGroup (Gset_base : GroupSetBaseGroupSig).
Identity Coercion of_sort : Gset_base.sort >-> FinGroup.arg_sort.
End MakeGroupSetBaseGroup.
Module Export GroupSetBaseGroup := MakeGroupSetBaseGroup GroupSet.
Canonical group_set_eqType gT := Eval hnf in [eqType of GroupSet.sort gT].
Canonical group_set_choiceType gT :=
Eval hnf in [choiceType of GroupSet.sort gT].
Canonical group_set_countType gT := Eval hnf in [countType of GroupSet.sort gT].
Canonical group_set_finType gT := Eval hnf in [finType of GroupSet.sort gT].
Section GroupSetMulDef.
(* Some of these constructs could be defined on a baseFinGroupType. *)
(* We restrict them to proper finGroupType because we only develop *)
(* the theory for that case. *)
Variable gT : finGroupType.
Implicit Types A B : {set gT}.
Implicit Type x y : gT.
Definition lcoset A x := mulg x @: A.
Definition rcoset A x := mulg^~ x @: A.
Definition lcosets A B := lcoset A @: B.
Definition rcosets A B := rcoset A @: B.
Definition indexg B A := #|rcosets A B|.
Definition conjugate A x := conjg^~ x @: A.
Definition conjugates A B := conjugate A @: B.
Definition class x B := conjg x @: B.
Definition classes A := class^~ A @: A.
Definition class_support A B := conjg @2: (A, B).
Definition commg_set A B := commg @2: (A, B).
(* These will only be used later, but are defined here so that we can *)
(* keep all the Notation together. *)
Definition normaliser A := [set x | conjugate A x \subset A].
Definition centraliser A := \bigcap_(x in A) normaliser [set x].
Definition abelian A := A \subset centraliser A.
Definition normal A B := (A \subset B) && (B \subset normaliser A).
(* "normalised" and "centralise[s|d]" are intended to be used with *)
(* the {in ...} form, as in abelian below. *)
Definition normalised A := forall x, conjugate A x = A.
Definition centralises x A := forall y, y \in A -> commute x y.
Definition centralised A := forall x, centralises x A.
End GroupSetMulDef.
Arguments lcoset _ _%g _%g.
Arguments rcoset _ _%g _%g.
Arguments rcosets _ _%g _%g.
Arguments lcosets _ _%g _%g.
Arguments indexg _ _%g _%g.
Arguments conjugate _ _%g _%g.
Arguments conjugates _ _%g _%g.
Arguments class _ _%g _%g.
Arguments classes _ _%g.
Arguments class_support _ _%g _%g.
Arguments commg_set _ _%g _%g.
Arguments normaliser _ _%g.
Arguments centraliser _ _%g.
Arguments abelian _ _%g.
Arguments normal _ _%g _%g.
Arguments normalised _ _%g.
Arguments centralises _ _%g _%g.
Arguments centralised _ _%g.
Notation "[ 1 gT ]" := (1 : {set gT}) : group_scope.
Notation "[ 1 ]" := [1 FinGroup.sort _] : group_scope.
Notation "A ^#" := (A :\ 1) : group_scope.
Notation "x *: A" := ([set x%g] * A) : group_scope.
Notation "A :* x" := (A * [set x%g]) : group_scope.
Notation "A :^ x" := (conjugate A x) : group_scope.
Notation "x ^: B" := (class x B) : group_scope.
Notation "A :^: B" := (conjugates A B) : group_scope.
Notation "#| B : A |" := (indexg B A) : group_scope.
(* No notation for lcoset and rcoset, which are to be used mostly *)
(* in curried form; x *: B and A :* 1 denote singleton products, *)
(* so we can use mulgA, mulg1, etc, on, say, A :* 1 * B :* x. *)
(* No notation for the set commutator generator set commg_set. *)
Notation "''N' ( A )" := (normaliser A) : group_scope.
Notation "''N_' G ( A )" := (G%g :&: 'N(A)) : group_scope.
Notation "A <| B" := (normal A B) : group_scope.
Notation "''C' ( A )" := (centraliser A) : group_scope.
Notation "''C_' G ( A )" := (G%g :&: 'C(A)) : group_scope.
Notation "''C_' ( G ) ( A )" := 'C_G(A) (only parsing) : group_scope.
Notation "''C' [ x ]" := 'N([set x%g]) : group_scope.
Notation "''C_' G [ x ]" := 'N_G([set x%g]) : group_scope.
Notation "''C_' ( G ) [ x ]" := 'C_G[x] (only parsing) : group_scope.
Prenex Implicits repr lcoset rcoset lcosets rcosets normal.
Prenex Implicits conjugate conjugates class classes class_support.
Prenex Implicits commg_set normalised centralised abelian.
Section BaseSetMulProp.
(* Properties of the purely multiplicative structure. *)
Variable gT : baseFinGroupType.
Implicit Types A B C D : {set gT}.
Implicit Type x y z : gT.
(* Set product. We already have all the pregroup identities, so we *)
(* only need to add the monotonicity rules. *)
Lemma mulsgP A B x :
reflect (imset2_spec mulg (mem A) (fun _ => mem B) x) (x \in A * B).
Proof. exact: imset2P. Qed.
Lemma mem_mulg A B x y : x \in A -> y \in B -> x * y \in A * B.
Proof. by move=> Ax By; apply/mulsgP; exists x y. Qed.
Lemma prodsgP (I : finType) (P : pred I) (A : I -> {set gT}) x :
reflect (exists2 c, forall i, P i -> c i \in A i & x = \prod_(i | P i) c i)
(x \in \prod_(i | P i) A i).
Proof.
have [r big_r [Ur mem_r] _] := big_enumP P.
pose inA c := all (fun i => c i \in A i); rewrite -big_r; set piAx := x \in _.
suffices{big_r} IHr: reflect (exists2 c, inA c r & x = \prod_(i <- r) c i) piAx.
apply: (iffP IHr) => -[c inAc ->]; do [exists c; last by rewrite big_r].
by move=> i Pi; rewrite (allP inAc) ?mem_r.
by apply/allP=> i; rewrite mem_r => /inAc.
elim: {P mem_r}r x @piAx Ur => /= [x _ | i r IHr x /andP[r'i /IHr{}IHr]].
by rewrite unlock; apply: (iffP set1P) => [-> | [] //]; exists (fun=> x).
rewrite big_cons; apply: (iffP idP) => [|[c /andP[Aci Ac] ->]]; last first.
by rewrite big_cons mem_mulg //; apply/IHr=> //; exists c.
case/mulsgP=> c_i _ Ac_i /IHr[c /allP-inAcr ->] ->{x}.
exists [eta c with i |-> c_i]; rewrite /= ?big_cons eqxx ?Ac_i.
by apply/allP=> j rj; rewrite /= ifN ?(memPn r'i) ?inAcr.
by congr (_ * _); apply: eq_big_seq => j rj; rewrite ifN ?(memPn r'i).
Qed.
Lemma mem_prodg (I : finType) (P : pred I) (A : I -> {set gT}) c :
(forall i, P i -> c i \in A i) -> \prod_(i | P i) c i \in \prod_(i | P i) A i.
Proof. by move=> Ac; apply/prodsgP; exists c. Qed.
Lemma mulSg A B C : A \subset B -> A * C \subset B * C.
Proof. exact: imset2Sl. Qed.
Lemma mulgS A B C : B \subset C -> A * B \subset A * C.
Proof. exact: imset2Sr. Qed.
Lemma mulgSS A B C D : A \subset B -> C \subset D -> A * C \subset B * D.
Proof. exact: imset2S. Qed.
Lemma mulg_subl A B : 1 \in B -> A \subset A * B.
Proof. by move=> B1; rewrite -{1}(mulg1 A) mulgS ?sub1set. Qed.
Lemma mulg_subr A B : 1 \in A -> B \subset A * B.
Proof. by move=> A1; rewrite -{1}(mul1g B) mulSg ?sub1set. Qed.
Lemma mulUg A B C : (A :|: B) * C = (A * C) :|: (B * C).
Proof. exact: imset2Ul. Qed.
Lemma mulgU A B C : A * (B :|: C) = (A * B) :|: (A * C).
Proof. exact: imset2Ur. Qed.
(* Set (pointwise) inverse. *)
Lemma invUg A B : (A :|: B)^-1 = A^-1 :|: B^-1.
Proof. exact: preimsetU. Qed.
Lemma invIg A B : (A :&: B)^-1 = A^-1 :&: B^-1.
Proof. exact: preimsetI. Qed.
Lemma invDg A B : (A :\: B)^-1 = A^-1 :\: B^-1.
Proof. exact: preimsetD. Qed.
Lemma invCg A : (~: A)^-1 = ~: A^-1.
Proof. exact: preimsetC. Qed.
Lemma invSg A B : (A^-1 \subset B^-1) = (A \subset B).
Proof. by rewrite !(sameP setIidPl eqP) -invIg (inj_eq invg_inj). Qed.
Lemma mem_invg x A : (x \in A^-1) = (x^-1 \in A).
Proof. by rewrite inE. Qed.
Lemma memV_invg x A : (x^-1 \in A^-1) = (x \in A).
Proof. by rewrite inE invgK. Qed.
Lemma card_invg A : #|A^-1| = #|A|.
Proof. exact/card_preimset/invg_inj. Qed.
(* Product with singletons. *)
Lemma set1gE : 1 = [set 1] :> {set gT}. Proof. by []. Qed.
Lemma set1gP x : reflect (x = 1) (x \in [1]).
Proof. exact: set1P. Qed.
Lemma mulg_set1 x y : [set x] :* y = [set x * y].
Proof. by rewrite [_ * _]imset2_set1l imset_set1. Qed.
Lemma invg_set1 x : [set x]^-1 = [set x^-1].
Proof. by apply/setP=> y; rewrite !inE inv_eq //; apply: invgK. Qed.
End BaseSetMulProp.
Arguments set1gP {gT x}.
Arguments mulsgP {gT A B x}.
Arguments prodsgP {gT I P A x}.
Section GroupSetMulProp.
(* Constructs that need a finGroupType *)
Variable gT : finGroupType.
Implicit Types A B C D : {set gT}.
Implicit Type x y z : gT.
(* Left cosets. *)
Lemma lcosetE A x : lcoset A x = x *: A.
Proof. by rewrite [_ * _]imset2_set1l. Qed.
Lemma card_lcoset A x : #|x *: A| = #|A|.
Proof. by rewrite -lcosetE (card_imset _ (mulgI _)). Qed.
Lemma mem_lcoset A x y : (y \in x *: A) = (x^-1 * y \in A).
Proof. by rewrite -lcosetE [_ x](can_imset_pre _ (mulKg _)) inE. Qed.
Lemma lcosetP A x y : reflect (exists2 a, a \in A & y = x * a) (y \in x *: A).
Proof. by rewrite -lcosetE; apply: imsetP. Qed.
Lemma lcosetsP A B C :
reflect (exists2 x, x \in B & C = x *: A) (C \in lcosets A B).
Proof. by apply: (iffP imsetP) => [] [x Bx ->]; exists x; rewrite ?lcosetE. Qed.
Lemma lcosetM A x y : (x * y) *: A = x *: (y *: A).
Proof. by rewrite -mulg_set1 mulgA. Qed.
Lemma lcoset1 A : 1 *: A = A.
Proof. exact: mul1g. Qed.
Lemma lcosetK : left_loop invg (fun x A => x *: A).
Proof. by move=> x A; rewrite -lcosetM mulVg mul1g. Qed.
Lemma lcosetKV : rev_left_loop invg (fun x A => x *: A).
Proof. by move=> x A; rewrite -lcosetM mulgV mul1g. Qed.
Lemma lcoset_inj : right_injective (fun x A => x *: A).
Proof. by move=> x; apply: can_inj (lcosetK x). Qed.
Lemma lcosetS x A B : (x *: A \subset x *: B) = (A \subset B).
Proof.
apply/idP/idP=> sAB; last exact: mulgS.
by rewrite -(lcosetK x A) -(lcosetK x B) mulgS.
Qed.
Lemma sub_lcoset x A B : (A \subset x *: B) = (x^-1 *: A \subset B).
Proof. by rewrite -(lcosetS x^-1) lcosetK. Qed.
Lemma sub_lcosetV x A B : (A \subset x^-1 *: B) = (x *: A \subset B).
Proof. by rewrite sub_lcoset invgK. Qed.
(* Right cosets. *)
Lemma rcosetE A x : rcoset A x = A :* x.
Proof. by rewrite [_ * _]imset2_set1r. Qed.
Lemma card_rcoset A x : #|A :* x| = #|A|.
Proof. by rewrite -rcosetE (card_imset _ (mulIg _)). Qed.
Lemma mem_rcoset A x y : (y \in A :* x) = (y * x^-1 \in A).
Proof. by rewrite -rcosetE [_ x](can_imset_pre A (mulgK _)) inE. Qed.
Lemma rcosetP A x y : reflect (exists2 a, a \in A & y = a * x) (y \in A :* x).
Proof. by rewrite -rcosetE; apply: imsetP. Qed.
Lemma rcosetsP A B C :
reflect (exists2 x, x \in B & C = A :* x) (C \in rcosets A B).
Proof. by apply: (iffP imsetP) => [] [x Bx ->]; exists x; rewrite ?rcosetE. Qed.
Lemma rcosetM A x y : A :* (x * y) = A :* x :* y.
Proof. by rewrite -mulg_set1 mulgA. Qed.
Lemma rcoset1 A : A :* 1 = A.
Proof. exact: mulg1. Qed.
Lemma rcosetK : right_loop invg (fun A x => A :* x).
Proof. by move=> x A; rewrite -rcosetM mulgV mulg1. Qed.
Lemma rcosetKV : rev_right_loop invg (fun A x => A :* x).
Proof. by move=> x A; rewrite -rcosetM mulVg mulg1. Qed.
Lemma rcoset_inj : left_injective (fun A x => A :* x).
Proof. by move=> x; apply: can_inj (rcosetK x). Qed.
Lemma rcosetS x A B : (A :* x \subset B :* x) = (A \subset B).
Proof.
apply/idP/idP=> sAB; last exact: mulSg.
by rewrite -(rcosetK x A) -(rcosetK x B) mulSg.
Qed.
Lemma sub_rcoset x A B : (A \subset B :* x) = (A :* x ^-1 \subset B).
Proof. by rewrite -(rcosetS x^-1) rcosetK. Qed.
Lemma sub_rcosetV x A B : (A \subset B :* x^-1) = (A :* x \subset B).
Proof. by rewrite sub_rcoset invgK. Qed.
(* Inverse maps lcosets to rcosets *)
Lemma invg_lcosets A B : (lcosets A B)^-1 = rcosets A^-1 B^-1.
Proof.
rewrite /A^-1/= -![_^-1](can_imset_pre _ invgK) -[RHS]imset_comp -imset_comp.
by apply: eq_imset => x /=; rewrite lcosetE rcosetE invMg invg_set1.
Qed.
(* Conjugates. *)
Lemma conjg_preim A x : A :^ x = (conjg^~ x^-1) @^-1: A.
Proof. exact: can_imset_pre (conjgK _). Qed.
Lemma mem_conjg A x y : (y \in A :^ x) = (y ^ x^-1 \in A).
Proof. by rewrite conjg_preim inE. Qed.
Lemma mem_conjgV A x y : (y \in A :^ x^-1) = (y ^ x \in A).
Proof. by rewrite mem_conjg invgK. Qed.
Lemma memJ_conjg A x y : (y ^ x \in A :^ x) = (y \in A).
Proof. by rewrite mem_conjg conjgK. Qed.
Lemma conjsgE A x : A :^ x = x^-1 *: (A :* x).
Proof. by apply/setP=> y; rewrite mem_lcoset mem_rcoset -mulgA mem_conjg. Qed.
Lemma conjsg1 A : A :^ 1 = A.
Proof. by rewrite conjsgE invg1 mul1g mulg1. Qed.
Lemma conjsgM A x y : A :^ (x * y) = (A :^ x) :^ y.
Proof. by rewrite !conjsgE invMg -!mulg_set1 !mulgA. Qed.
Lemma conjsgK : @right_loop _ gT invg conjugate.
Proof. by move=> x A; rewrite -conjsgM mulgV conjsg1. Qed.
Lemma conjsgKV : @rev_right_loop _ gT invg conjugate.
Proof. by move=> x A; rewrite -conjsgM mulVg conjsg1. Qed.
Lemma conjsg_inj : @left_injective _ gT _ conjugate.
Proof. by move=> x; apply: can_inj (conjsgK x). Qed.
Lemma cardJg A x : #|A :^ x| = #|A|.
Proof. by rewrite (card_imset _ (conjg_inj x)). Qed.
Lemma conjSg A B x : (A :^ x \subset B :^ x) = (A \subset B).
Proof. by rewrite !conjsgE lcosetS rcosetS. Qed.
Lemma properJ A B x : (A :^ x \proper B :^ x) = (A \proper B).
Proof. by rewrite /proper !conjSg. Qed.
Lemma sub_conjg A B x : (A :^ x \subset B) = (A \subset B :^ x^-1).
Proof. by rewrite -(conjSg A _ x) conjsgKV. Qed.
Lemma sub_conjgV A B x : (A :^ x^-1 \subset B) = (A \subset B :^ x).
Proof. by rewrite -(conjSg _ B x) conjsgKV. Qed.
Lemma conjg_set1 x y : [set x] :^ y = [set x ^ y].
Proof. by rewrite [_ :^ _]imset_set1. Qed.
Lemma conjs1g x : 1 :^ x = 1.
Proof. by rewrite conjg_set1 conj1g. Qed.
Lemma conjsg_eq1 A x : (A :^ x == 1%g) = (A == 1%g).
Proof. by rewrite (canF_eq (conjsgK x)) conjs1g. Qed.
Lemma conjsMg A B x : (A * B) :^ x = A :^ x * B :^ x.
Proof. by rewrite !conjsgE !mulgA rcosetK. Qed.
Lemma conjIg A B x : (A :&: B) :^ x = A :^ x :&: B :^ x.
Proof. by rewrite !conjg_preim preimsetI. Qed.
Lemma conj0g x : set0 :^ x = set0.
Proof. exact: imset0. Qed.
Lemma conjTg x : [set: gT] :^ x = [set: gT].
Proof. by rewrite conjg_preim preimsetT. Qed.
Lemma bigcapJ I r (P : pred I) (B : I -> {set gT}) x :
\bigcap_(i <- r | P i) (B i :^ x) = (\bigcap_(i <- r | P i) B i) :^ x.
Proof.
by rewrite (big_endo (conjugate^~ x)) => // [B1 B2|]; rewrite (conjTg, conjIg).
Qed.
Lemma conjUg A B x : (A :|: B) :^ x = A :^ x :|: B :^ x.
Proof. by rewrite !conjg_preim preimsetU. Qed.
Lemma bigcupJ I r (P : pred I) (B : I -> {set gT}) x :
\bigcup_(i <- r | P i) (B i :^ x) = (\bigcup_(i <- r | P i) B i) :^ x.
Proof.
rewrite (big_endo (conjugate^~ x)) => // [B1 B2|]; first by rewrite conjUg.
exact: imset0.
Qed.
Lemma conjCg A x : (~: A) :^ x = ~: A :^ x.
Proof. by rewrite !conjg_preim preimsetC. Qed.
Lemma conjDg A B x : (A :\: B) :^ x = A :^ x :\: B :^ x.
Proof. by rewrite !setDE !(conjCg, conjIg). Qed.
Lemma conjD1g A x : A^# :^ x = (A :^ x)^#.
Proof. by rewrite conjDg conjs1g. Qed.
(* Classes; not much for now. *)
Lemma memJ_class x y A : y \in A -> x ^ y \in x ^: A.
Proof. exact: imset_f. Qed.
Lemma classS x A B : A \subset B -> x ^: A \subset x ^: B.
Proof. exact: imsetS. Qed.
Lemma class_set1 x y : x ^: [set y] = [set x ^ y].
Proof. exact: imset_set1. Qed.
Lemma class1g x A : x \in A -> 1 ^: A = 1.
Proof.
move=> Ax; apply/setP=> y.
by apply/imsetP/set1P=> [[a Aa]|] ->; last exists x; rewrite ?conj1g.
Qed.
Lemma classVg x A : x^-1 ^: A = (x ^: A)^-1.
Proof.
apply/setP=> xy; rewrite inE; apply/imsetP/imsetP=> [] [y Ay def_xy].
by rewrite def_xy conjVg invgK; exists y.
by rewrite -[xy]invgK def_xy -conjVg; exists y.
Qed.
Lemma mem_classes x A : x \in A -> x ^: A \in classes A.
Proof. exact: imset_f. Qed.
Lemma memJ_class_support A B x y :
x \in A -> y \in B -> x ^ y \in class_support A B.
Proof. by move=> Ax By; apply: imset2_f. Qed.
Lemma class_supportM A B C :
class_support A (B * C) = class_support (class_support A B) C.
Proof.
apply/setP=> x; apply/imset2P/imset2P=> [[a y Aa] | [y c]].
case/mulsgP=> b c Bb Cc -> ->{x y}.
by exists (a ^ b) c; rewrite ?(imset2_f, conjgM).
case/imset2P=> a b Aa Bb -> Cc ->{x y}.
by exists a (b * c); rewrite ?(mem_mulg, conjgM).
Qed.
Lemma class_support_set1l A x : class_support [set x] A = x ^: A.
Proof. exact: imset2_set1l. Qed.
Lemma class_support_set1r A x : class_support A [set x] = A :^ x.
Proof. exact: imset2_set1r. Qed.
Lemma classM x A B : x ^: (A * B) = class_support (x ^: A) B.
Proof. by rewrite -!class_support_set1l class_supportM. Qed.
Lemma class_lcoset x y A : x ^: (y *: A) = (x ^ y) ^: A.
Proof. by rewrite classM class_set1 class_support_set1l. Qed.
Lemma class_rcoset x A y : x ^: (A :* y) = (x ^: A) :^ y.
Proof. by rewrite -class_support_set1r classM. Qed.
(* Conjugate set. *)
Lemma conjugatesS A B C : B \subset C -> A :^: B \subset A :^: C.
Proof. exact: imsetS. Qed.
Lemma conjugates_set1 A x : A :^: [set x] = [set A :^ x].
Proof. exact: imset_set1. Qed.
Lemma conjugates_conj A x B : (A :^ x) :^: B = A :^: (x *: B).
Proof.
rewrite /conjugates [x *: B]imset2_set1l -imset_comp.
by apply: eq_imset => y /=; rewrite conjsgM.
Qed.
(* Class support. *)
Lemma class_supportEl A B : class_support A B = \bigcup_(x in A) x ^: B.
Proof. exact: curry_imset2l. Qed.
Lemma class_supportEr A B : class_support A B = \bigcup_(x in B) A :^ x.
Proof. exact: curry_imset2r. Qed.
(* Groups (at last!) *)
Definition group_set A := (1 \in A) && (A * A \subset A).
Lemma group_setP A :
reflect (1 \in A /\ {in A & A, forall x y, x * y \in A}) (group_set A).
Proof.
apply: (iffP andP) => [] [A1 AM]; split=> {A1}//.
by move=> x y Ax Ay; apply: (subsetP AM); rewrite mem_mulg.
by apply/subsetP=> _ /mulsgP[x y Ax Ay ->]; apply: AM.
Qed.
Structure group_type : Type := Group {
gval :> GroupSet.sort gT;
_ : group_set gval
}.
Definition group_of of phant gT : predArgType := group_type.
Local Notation groupT := (group_of (Phant gT)).
Identity Coercion type_of_group : group_of >-> group_type.
Canonical group_subType := Eval hnf in [subType for gval].
Definition group_eqMixin := Eval hnf in [eqMixin of group_type by <:].
Canonical group_eqType := Eval hnf in EqType group_type group_eqMixin.
Definition group_choiceMixin := [choiceMixin of group_type by <:].
Canonical group_choiceType :=
Eval hnf in ChoiceType group_type group_choiceMixin.
Definition group_countMixin := [countMixin of group_type by <:].
Canonical group_countType := Eval hnf in CountType group_type group_countMixin.
Canonical group_subCountType := Eval hnf in [subCountType of group_type].
Definition group_finMixin := [finMixin of group_type by <:].
Canonical group_finType := Eval hnf in FinType group_type group_finMixin.
Canonical group_subFinType := Eval hnf in [subFinType of group_type].
(* No predType or baseFinGroupType structures, as these would hide the *)
(* group-to-set coercion and thus spoil unification. *)
Canonical group_of_subType := Eval hnf in [subType of groupT].
Canonical group_of_eqType := Eval hnf in [eqType of groupT].
Canonical group_of_choiceType := Eval hnf in [choiceType of groupT].
Canonical group_of_countType := Eval hnf in [countType of groupT].
Canonical group_of_subCountType := Eval hnf in [subCountType of groupT].
Canonical group_of_finType := Eval hnf in [finType of groupT].
Canonical group_of_subFinType := Eval hnf in [subFinType of groupT].
Definition group (A : {set gT}) gA : groupT := @Group A gA.
Definition clone_group G :=
let: Group _ gP := G return {type of Group for G} -> groupT in fun k => k gP.
Lemma group_inj : injective gval. Proof. exact: val_inj. Qed.
Lemma groupP (G : groupT) : group_set G. Proof. by case: G. Qed.
Lemma congr_group (H K : groupT) : H = K -> H :=: K.
Proof. exact: congr1. Qed.
Lemma isgroupP A : reflect (exists G : groupT, A = G) (group_set A).
Proof. by apply: (iffP idP) => [gA | [[B gB] -> //]]; exists (Group gA). Qed.
Lemma group_set_one : group_set 1.
Proof. by rewrite /group_set set11 mulg1 subxx. Qed.
Canonical one_group := group group_set_one.
Canonical set1_group := @group [set 1] group_set_one.
Lemma group_setT (phT : phant gT) : group_set (setTfor phT).
Proof. by apply/group_setP; split=> [|x y _ _]; rewrite inE. Qed.
Canonical setT_group phT := group (group_setT phT).
(* These definitions come early so we can establish the Notation. *)
Definition generated A := \bigcap_(G : groupT | A \subset G) G.
Definition gcore A B := \bigcap_(x in B) A :^ x.
Definition joing A B := generated (A :|: B).
Definition commutator A B := generated (commg_set A B).
Definition cycle x := generated [set x].
Definition order x := #|cycle x|.
End GroupSetMulProp.
Arguments lcosetP {gT A x y}.
Arguments lcosetsP {gT A B C}.
Arguments rcosetP {gT A x y}.
Arguments rcosetsP {gT A B C}.
Arguments group_setP {gT A}.
Prenex Implicits group_set mulsgP set1gP.
Arguments commutator _ _%g _%g.
Arguments joing _ _%g _%g.
Arguments generated _ _%g.
Notation "{ 'group' gT }" := (group_of (Phant gT))
(at level 0, format "{ 'group' gT }") : type_scope.
Notation "[ 'group' 'of' G ]" := (clone_group (@group _ G))
(at level 0, format "[ 'group' 'of' G ]") : form_scope.
Bind Scope Group_scope with group_type.
Bind Scope Group_scope with group_of.
Notation "1" := (one_group _) : Group_scope.
Notation "[ 1 gT ]" := (1%G : {group gT}) : Group_scope.
Notation "[ 'set' : gT ]" := (setT_group (Phant gT)) : Group_scope.
(* Helper notation for defining new groups that need a bespoke finGroupType. *)
(* The actual group for such a type (say, my_gT) will be the full group, *)
(* i.e., [set: my_gT] or [set: my_gT]%G, but Coq will not recognize *)
(* specific notation for these because of the coercions inserted during type *)
(* inference, unless they are defined as [set: gsort my_gT] using the *)
(* Notation below. *)
Notation gsort gT := (FinGroup.arg_sort (FinGroup.base gT%type)) (only parsing).
Notation "<< A >>" := (generated A) : group_scope.
Notation "<[ x ] >" := (cycle x) : group_scope.
Notation "#[ x ]" := (order x) : group_scope.
Notation "A <*> B" := (joing A B) : group_scope.
Notation "[ ~: A1 , A2 , .. , An ]" :=
(commutator .. (commutator A1 A2) .. An) : group_scope.
Prenex Implicits order cycle gcore.
Section GroupProp.
Variable gT : finGroupType.
Notation sT := {set gT}.
Implicit Types A B C D : sT.
Implicit Types x y z : gT.
Implicit Types G H K : {group gT}.
Section OneGroup.
Variable G : {group gT}.
Lemma valG : val G = G. Proof. by []. Qed.
(* Non-triviality. *)
Lemma group1 : 1 \in G. Proof. by case/group_setP: (valP G). Qed.
#[local] Hint Resolve group1 : core.
Lemma group1_contra x : x \notin G -> x != 1.
Proof. by apply: contraNneq => ->. Qed.
Lemma sub1G : [1 gT] \subset G. Proof. by rewrite sub1set. Qed.
Lemma subG1 : (G \subset [1]) = (G :==: 1).
Proof. by rewrite eqEsubset sub1G andbT. Qed.
Lemma setI1g : 1 :&: G = 1. Proof. exact: (setIidPl sub1G). Qed.
Lemma setIg1 : G :&: 1 = 1. Proof. exact: (setIidPr sub1G). Qed.
Lemma subG1_contra H : G \subset H -> G :!=: 1 -> H :!=: 1.
Proof. by move=> sGH; rewrite -subG1; apply: contraNneq => <-. Qed.
Lemma repr_group : repr G = 1. Proof. by rewrite /repr group1. Qed.
Lemma cardG_gt0 : 0 < #|G|.
Proof. by rewrite lt0n; apply/existsP; exists (1 : gT). Qed.
Lemma indexg_gt0 A : 0 < #|G : A|.
Proof.
rewrite lt0n; apply/existsP; exists A.
by rewrite -{2}[A]mulg1 -rcosetE; apply: imset_f.
Qed.
Lemma trivgP : reflect (G :=: 1) (G \subset [1]).
Proof. by rewrite subG1; apply: eqP. Qed.
Lemma trivGP : reflect (G = 1%G) (G \subset [1]).
Proof. by rewrite subG1; apply: eqP. Qed.
Lemma proper1G : ([1] \proper G) = (G :!=: 1).
Proof. by rewrite properEneq sub1G andbT eq_sym. Qed.
Lemma trivgPn : reflect (exists2 x, x \in G & x != 1) (G :!=: 1).
Proof.
rewrite -subG1.
by apply: (iffP subsetPn) => [] [x Gx x1]; exists x; rewrite ?inE in x1 *.
Qed.
Lemma trivg_card_le1 : (G :==: 1) = (#|G| <= 1).
Proof. by rewrite eq_sym eqEcard cards1 sub1G. Qed.
Lemma trivg_card1 : (G :==: 1) = (#|G| == 1%N).
Proof. by rewrite trivg_card_le1 eqn_leq cardG_gt0 andbT. Qed.
Lemma cardG_gt1 : (#|G| > 1) = (G :!=: 1).
Proof. by rewrite trivg_card_le1 ltnNge. Qed.
Lemma card_le1_trivg : #|G| <= 1 -> G :=: 1.
Proof. by rewrite -trivg_card_le1; move/eqP. Qed.
Lemma card1_trivg : #|G| = 1%N -> G :=: 1.
Proof. by move=> G1; rewrite card_le1_trivg ?G1. Qed.
(* Inclusion and product. *)
Lemma mulG_subl A : A \subset A * G.
Proof. exact: mulg_subl group1. Qed.
Lemma mulG_subr A : A \subset G * A.
Proof. exact: mulg_subr group1. Qed.
Lemma mulGid : G * G = G.
Proof.
by apply/eqP; rewrite eqEsubset mulG_subr andbT; case/andP: (valP G).
Qed.
Lemma mulGS A B : (G * A \subset G * B) = (A \subset G * B).
Proof.
apply/idP/idP; first exact: subset_trans (mulG_subr A).
by move/(mulgS G); rewrite mulgA mulGid.
Qed.
Lemma mulSG A B : (A * G \subset B * G) = (A \subset B * G).
Proof.
apply/idP/idP; first exact: subset_trans (mulG_subl A).
by move/(mulSg G); rewrite -mulgA mulGid.
Qed.
Lemma mul_subG A B : A \subset G -> B \subset G -> A * B \subset G.
Proof. by move=> sAG sBG; rewrite -mulGid mulgSS. Qed.
(* Membership lemmas *)
Lemma groupM x y : x \in G -> y \in G -> x * y \in G.
Proof. by case/group_setP: (valP G) x y. Qed.
Lemma groupX x n : x \in G -> x ^+ n \in G.
Proof. by move=> Gx; elim: n => [|n IHn]; rewrite ?group1 // expgS groupM. Qed.
Lemma groupVr x : x \in G -> x^-1 \in G.
Proof.
move=> Gx; rewrite -(mul1g x^-1) -mem_rcoset ((G :* x =P G) _) //.
by rewrite eqEcard card_rcoset leqnn mul_subG ?sub1set.
Qed.
Lemma groupVl x : x^-1 \in G -> x \in G.
Proof. by move/groupVr; rewrite invgK. Qed.
Lemma groupV x : (x^-1 \in G) = (x \in G).
Proof. by apply/idP/idP; [apply: groupVl | apply: groupVr]. Qed.
Lemma groupMl x y : x \in G -> (x * y \in G) = (y \in G).
Proof.
move=> Gx; apply/idP/idP=> [Gxy|]; last exact: groupM.
by rewrite -(mulKg x y) groupM ?groupVr.
Qed.
Lemma groupMr x y : x \in G -> (y * x \in G) = (y \in G).
Proof. by move=> Gx; rewrite -[_ \in G]groupV invMg groupMl groupV. Qed.
Definition in_group := (group1, groupV, (groupMl, groupX)).
Lemma groupJ x y : x \in G -> y \in G -> x ^ y \in G.
Proof. by move=> Gx Gy; rewrite !in_group. Qed.
Lemma groupJr x y : y \in G -> (x ^ y \in G) = (x \in G).
Proof. by move=> Gy; rewrite groupMl (groupMr, groupV). Qed.
Lemma groupR x y : x \in G -> y \in G -> [~ x, y] \in G.
Proof. by move=> Gx Gy; rewrite !in_group. Qed.
Lemma group_prod I r (P : pred I) F :
(forall i, P i -> F i \in G) -> \prod_(i <- r | P i) F i \in G.
Proof. by move=> G_P; elim/big_ind: _ => //; apply: groupM. Qed.
(* Inverse is an anti-morphism. *)
Lemma invGid : G^-1 = G. Proof. by apply/setP=> x; rewrite inE groupV. Qed.
Lemma inv_subG A : (A^-1 \subset G) = (A \subset G).
Proof. by rewrite -{1}invGid invSg. Qed.
Lemma invg_lcoset x : (x *: G)^-1 = G :* x^-1.
Proof. by rewrite invMg invGid invg_set1. Qed.
Lemma invg_rcoset x : (G :* x)^-1 = x^-1 *: G.
Proof. by rewrite invMg invGid invg_set1. Qed.
Lemma memV_lcosetV x y : (y^-1 \in x^-1 *: G) = (y \in G :* x).
Proof. by rewrite -invg_rcoset memV_invg. Qed.
Lemma memV_rcosetV x y : (y^-1 \in G :* x^-1) = (y \in x *: G).
Proof. by rewrite -invg_lcoset memV_invg. Qed.
(* Product idempotence *)
Lemma mulSgGid A x : x \in A -> A \subset G -> A * G = G.
Proof.
move=> Ax sAG; apply/eqP; rewrite eqEsubset -{2}mulGid mulSg //=.
apply/subsetP=> y Gy; rewrite -(mulKVg x y) mem_mulg // groupMr // groupV.
exact: (subsetP sAG).
Qed.
Lemma mulGSgid A x : x \in A -> A \subset G -> G * A = G.
Proof.
rewrite -memV_invg -invSg invGid => Ax sAG.
by apply: invg_inj; rewrite invMg invGid (mulSgGid Ax).
Qed.
(* Left cosets *)
Lemma lcoset_refl x : x \in x *: G.
Proof. by rewrite mem_lcoset mulVg group1. Qed.
Lemma lcoset_sym x y : (x \in y *: G) = (y \in x *: G).
Proof. by rewrite !mem_lcoset -groupV invMg invgK. Qed.
Lemma lcoset_eqP {x y} : reflect (x *: G = y *: G) (x \in y *: G).
Proof.
suffices <-: (x *: G == y *: G) = (x \in y *: G) by apply: eqP.
by rewrite eqEsubset !mulSG !sub1set lcoset_sym andbb.
Qed.
Lemma lcoset_transl x y z : x \in y *: G -> (x \in z *: G) = (y \in z *: G).
Proof. by move=> Gyx; rewrite -2!(lcoset_sym z) (lcoset_eqP Gyx). Qed.
Lemma lcoset_trans x y z : x \in y *: G -> y \in z *: G -> x \in z *: G.
Proof. by move/lcoset_transl->. Qed.
Lemma lcoset_id x : x \in G -> x *: G = G.
Proof. by move=> Gx; rewrite (lcoset_eqP (_ : x \in 1 *: G)) mul1g. Qed.
(* Right cosets, with an elimination form for repr. *)
Lemma rcoset_refl x : x \in G :* x.
Proof. by rewrite mem_rcoset mulgV group1. Qed.
Lemma rcoset_sym x y : (x \in G :* y) = (y \in G :* x).
Proof. by rewrite -!memV_lcosetV lcoset_sym. Qed.
Lemma rcoset_eqP {x y} : reflect (G :* x = G :* y) (x \in G :* y).
Proof.
suffices <-: (G :* x == G :* y) = (x \in G :* y) by apply: eqP.
by rewrite eqEsubset !mulGS !sub1set rcoset_sym andbb.
Qed.
Lemma rcoset_transl x y z : x \in G :* y -> (x \in G :* z) = (y \in G :* z).
Proof. by move=> Gyx; rewrite -2!(rcoset_sym z) (rcoset_eqP Gyx). Qed.
Lemma rcoset_trans x y z : x \in G :* y -> y \in G :* z -> x \in G :* z.
Proof. by move/rcoset_transl->. Qed.
Lemma rcoset_id x : x \in G -> G :* x = G.
Proof. by move=> Gx; rewrite (rcoset_eqP (_ : x \in G :* 1)) mulg1. Qed.
(* Elimination form. *)
Variant rcoset_repr_spec x : gT -> Type :=
RcosetReprSpec g : g \in G -> rcoset_repr_spec x (g * x).
Lemma mem_repr_rcoset x : repr (G :* x) \in G :* x.
Proof. exact: mem_repr (rcoset_refl x). Qed.
(* This form sometimes fails because ssreflect 1.1 delegates matching to the *)
(* (weaker) primitive Coq algorithm for general (co)inductive type families. *)
Lemma repr_rcosetP x : rcoset_repr_spec x (repr (G :* x)).
Proof.
by rewrite -[repr _](mulgKV x); split; rewrite -mem_rcoset mem_repr_rcoset.
Qed.
Lemma rcoset_repr x : G :* (repr (G :* x)) = G :* x.
Proof. exact/rcoset_eqP/mem_repr_rcoset. Qed.
(* Coset spaces. *)
Lemma mem_rcosets A x : (G :* x \in rcosets G A) = (x \in G * A).
Proof.
apply/rcosetsP/mulsgP=> [[a Aa /rcoset_eqP/rcosetP[g]] | ]; first by exists g a.
by case=> g a Gg Aa ->{x}; exists a; rewrite // rcosetM rcoset_id.
Qed.
Lemma mem_lcosets A x : (x *: G \in lcosets G A) = (x \in A * G).
Proof.
rewrite -[LHS]memV_invg invg_lcoset invg_lcosets.
by rewrite -[RHS]memV_invg invMg invGid mem_rcosets.
Qed.
(* Conjugates. *)
Lemma group_setJ A x : group_set (A :^ x) = group_set A.
Proof. by rewrite /group_set mem_conjg conj1g -conjsMg conjSg. Qed.
Lemma group_set_conjG x : group_set (G :^ x).
Proof. by rewrite group_setJ groupP. Qed.
Canonical conjG_group x := group (group_set_conjG x).
Lemma conjGid : {in G, normalised G}.
Proof. by move=> x Gx; apply/setP=> y; rewrite mem_conjg groupJr ?groupV. Qed.
Lemma conj_subG x A : x \in G -> A \subset G -> A :^ x \subset G.
Proof. by move=> Gx sAG; rewrite -(conjGid Gx) conjSg. Qed.
(* Classes *)
Lemma class1G : 1 ^: G = 1. Proof. exact: class1g group1. Qed.
Lemma classes1 : [1] \in classes G. Proof. by rewrite -class1G mem_classes. Qed.
Lemma classGidl x y : y \in G -> (x ^ y) ^: G = x ^: G.
Proof. by move=> Gy; rewrite -class_lcoset lcoset_id. Qed.
Lemma classGidr x : {in G, normalised (x ^: G)}.
Proof. by move=> y Gy /=; rewrite -class_rcoset rcoset_id. Qed.
Lemma class_refl x : x \in x ^: G.
Proof. by apply/imsetP; exists 1; rewrite ?conjg1. Qed.
#[local] Hint Resolve class_refl : core.
Lemma class_eqP x y : reflect (x ^: G = y ^: G) (x \in y ^: G).
Proof.
by apply: (iffP idP) => [/imsetP[z Gz ->] | <-]; rewrite ?class_refl ?classGidl.
Qed.
Lemma class_sym x y : (x \in y ^: G) = (y \in x ^: G).
Proof. by apply/idP/idP=> /class_eqP->. Qed.
Lemma class_transl x y z : x \in y ^: G -> (x \in z ^: G) = (y \in z ^: G).
Proof. by rewrite -!(class_sym z) => /class_eqP->. Qed.
Lemma class_trans x y z : x \in y ^: G -> y \in z ^: G -> x \in z ^: G.
Proof. by move/class_transl->. Qed.
Lemma repr_class x : {y | y \in G & repr (x ^: G) = x ^ y}.
Proof.
set z := repr _; have: #|[set y in G | z == x ^ y]| > 0.
have: z \in x ^: G by apply: (mem_repr x).
by case/imsetP=> y Gy ->; rewrite (cardD1 y) inE Gy eqxx.
by move/card_mem_repr; move: (repr _) => y /setIdP[Gy /eqP]; exists y.
Qed.
Lemma classG_eq1 x : (x ^: G == 1) = (x == 1).
Proof.
apply/eqP/eqP=> [xG1 | ->]; last exact: class1G.
by have:= class_refl x; rewrite xG1 => /set1P.
Qed.
Lemma class_subG x A : x \in G -> A \subset G -> x ^: A \subset G.
Proof.
move=> Gx sAG; apply/subsetP=> _ /imsetP[y Ay ->].
by rewrite groupJ // (subsetP sAG).
Qed.
Lemma repr_classesP xG :
reflect (repr xG \in G /\ xG = repr xG ^: G) (xG \in classes G).
Proof.
apply: (iffP imsetP) => [[x Gx ->] | []]; last by exists (repr xG).
by have [y Gy ->] := repr_class x; rewrite classGidl ?groupJ.
Qed.
Lemma mem_repr_classes xG : xG \in classes G -> repr xG \in xG.
Proof. by case/repr_classesP=> _ {2}->; apply: class_refl. Qed.
Lemma classes_gt0 : 0 < #|classes G|.
Proof. by rewrite (cardsD1 1) classes1. Qed.
Lemma classes_gt1 : (#|classes G| > 1) = (G :!=: 1).
Proof.
rewrite (cardsD1 1) classes1 ltnS lt0n cards_eq0.
apply/set0Pn/trivgPn=> [[xG /setD1P[nt_xG]] | [x Gx ntx]].
by case/imsetP=> x Gx def_xG; rewrite def_xG classG_eq1 in nt_xG; exists x.
by exists (x ^: G); rewrite !inE classG_eq1 ntx; apply: imset_f.
Qed.
Lemma mem_class_support A x : x \in A -> x \in class_support A G.
Proof. by move=> Ax; rewrite -[x]conjg1 memJ_class_support. Qed.
Lemma class_supportGidl A x :
x \in G -> class_support (A :^ x) G = class_support A G.
Proof.
by move=> Gx; rewrite -class_support_set1r -class_supportM lcoset_id.
Qed.
Lemma class_supportGidr A : {in G, normalised (class_support A G)}.
Proof.
by move=> x Gx /=; rewrite -class_support_set1r -class_supportM rcoset_id.
Qed.
Lemma class_support_subG A : A \subset G -> class_support A G \subset G.
Proof.
by move=> sAG; rewrite class_supportEr; apply/bigcupsP=> x Gx; apply: conj_subG.
Qed.
Lemma sub_class_support A : A \subset class_support A G.
Proof. by rewrite class_supportEr (bigcup_max 1) ?conjsg1. Qed.
Lemma class_support_id : class_support G G = G.
Proof.
by apply/eqP; rewrite eqEsubset sub_class_support class_support_subG.
Qed.
Lemma class_supportD1 A : (class_support A G)^# = cover (A^# :^: G).
Proof.
rewrite cover_imset class_supportEr setDE big_distrl /=.
by apply: eq_bigr => x _; rewrite -setDE conjD1g.
Qed.
(* Subgroup Type construction. *)
(* We only expect to use this for abstract groups, so we don't project *)
(* the argument to a set. *)
Inductive subg_of : predArgType := Subg x & x \in G.
Definition sgval u := let: Subg x _ := u in x.
Canonical subg_subType := Eval hnf in [subType for sgval].
Definition subg_eqMixin := Eval hnf in [eqMixin of subg_of by <:].
Canonical subg_eqType := Eval hnf in EqType subg_of subg_eqMixin.
Definition subg_choiceMixin := [choiceMixin of subg_of by <:].
Canonical subg_choiceType := Eval hnf in ChoiceType subg_of subg_choiceMixin.
Definition subg_countMixin := [countMixin of subg_of by <:].
Canonical subg_countType := Eval hnf in CountType subg_of subg_countMixin.
Canonical subg_subCountType := Eval hnf in [subCountType of subg_of].
Definition subg_finMixin := [finMixin of subg_of by <:].
Canonical subg_finType := Eval hnf in FinType subg_of subg_finMixin.
Canonical subg_subFinType := Eval hnf in [subFinType of subg_of].
Lemma subgP u : sgval u \in G.
Proof. exact: valP. Qed.
Lemma subg_inj : injective sgval.
Proof. exact: val_inj. Qed.
Lemma congr_subg u v : u = v -> sgval u = sgval v.
Proof. exact: congr1. Qed.
Definition subg_one := Subg group1.
Definition subg_inv u := Subg (groupVr (subgP u)).
Definition subg_mul u v := Subg (groupM (subgP u) (subgP v)).
Lemma subg_oneP : left_id subg_one subg_mul.
Proof. by move=> u; apply: val_inj; apply: mul1g. Qed.
Lemma subg_invP : left_inverse subg_one subg_inv subg_mul.
Proof. by move=> u; apply: val_inj; apply: mulVg. Qed.
Lemma subg_mulP : associative subg_mul.
Proof. by move=> u v w; apply: val_inj; apply: mulgA. Qed.
Definition subFinGroupMixin := FinGroup.Mixin subg_mulP subg_oneP subg_invP.
Canonical subBaseFinGroupType :=
Eval hnf in BaseFinGroupType subg_of subFinGroupMixin.
Canonical subFinGroupType := FinGroupType subg_invP.
Lemma sgvalM : {in setT &, {morph sgval : x y / x * y}}. Proof. by []. Qed.
Lemma valgM : {in setT &, {morph val : x y / (x : subg_of) * y >-> x * y}}.
Proof. by []. Qed.
Definition subg : gT -> subg_of := insubd (1 : subg_of).
Lemma subgK x : x \in G -> val (subg x) = x.
Proof. by move=> Gx; rewrite insubdK. Qed.
Lemma sgvalK : cancel sgval subg.
Proof. by case=> x Gx; apply: val_inj; apply: subgK. Qed.
Lemma subg_default x : (x \in G) = false -> val (subg x) = 1.
Proof. by move=> Gx; rewrite val_insubd Gx. Qed.
Lemma subgM : {in G &, {morph subg : x y / x * y}}.
Proof. by move=> x y Gx Gy; apply: val_inj; rewrite /= !subgK ?groupM. Qed.
End OneGroup.
#[local] Hint Resolve group1 : core.
Lemma groupD1_inj G H : G^# = H^# -> G :=: H.
Proof. by move/(congr1 (setU 1)); rewrite !setD1K. Qed.
Lemma invMG G H : (G * H)^-1 = H * G.
Proof. by rewrite invMg !invGid. Qed.
Lemma mulSGid G H : H \subset G -> H * G = G.
Proof. exact: mulSgGid (group1 H). Qed.
Lemma mulGSid G H : H \subset G -> G * H = G.
Proof. exact: mulGSgid (group1 H). Qed.
Lemma mulGidPl G H : reflect (G * H = G) (H \subset G).
Proof. by apply: (iffP idP) => [|<-]; [apply: mulGSid | apply: mulG_subr]. Qed.
Lemma mulGidPr G H : reflect (G * H = H) (G \subset H).
Proof. by apply: (iffP idP) => [|<-]; [apply: mulSGid | apply: mulG_subl]. Qed.
Lemma comm_group_setP G H : reflect (commute G H) (group_set (G * H)).
Proof.
rewrite /group_set (subsetP (mulG_subl _ _)) ?group1 // andbC.
have <-: #|G * H| <= #|H * G| by rewrite -invMG card_invg.
by rewrite -mulgA mulGS mulgA mulSG -eqEcard eq_sym; apply: eqP.
Qed.
Lemma card_lcosets G H : #|lcosets H G| = #|G : H|.
Proof. by rewrite -card_invg invg_lcosets !invGid. Qed.
(* Group Modularity equations *)
Lemma group_modl A B G : A \subset G -> A * (B :&: G) = A * B :&: G.
Proof.
move=> sAG; apply/eqP; rewrite eqEsubset subsetI mulgS ?subsetIl //.
rewrite -{2}mulGid mulgSS ?subsetIr //.
apply/subsetP => _ /setIP[/mulsgP[a b Aa Bb ->] Gab].
by rewrite mem_mulg // inE Bb -(groupMl _ (subsetP sAG _ Aa)).
Qed.
Lemma group_modr A B G : B \subset G -> (G :&: A) * B = G :&: A * B.
Proof.
move=> sBG; apply: invg_inj; rewrite !(invMg, invIg) invGid !(setIC G).
by rewrite group_modl // -invGid invSg.
Qed.
End GroupProp.
#[global] Hint Extern 0 (is_true (1%g \in _)) => apply: group1 : core.
#[global] Hint Extern 0 (is_true (0 < #|_|)) => apply: cardG_gt0 : core.
#[global] Hint Extern 0 (is_true (0 < #|_ : _|)) => apply: indexg_gt0 : core.
Notation "G :^ x" := (conjG_group G x) : Group_scope.
Notation "[ 'subg' G ]" := (subg_of G) : type_scope.
Notation "[ 'subg' G ]" := [set: subg_of G] : group_scope.
Notation "[ 'subg' G ]" := [set: subg_of G]%G : Group_scope.
Prenex Implicits subg sgval subg_of.
Bind Scope group_scope with subg_of.
Arguments subgK {gT G}.
Arguments sgvalK {gT G}.
Arguments subg_inj {gT G} [u1 u2] eq_u12 : rename.
Arguments trivgP {gT G}.
Arguments trivGP {gT G}.
Arguments lcoset_eqP {gT G x y}.
Arguments rcoset_eqP {gT G x y}.
Arguments mulGidPl {gT G H}.
Arguments mulGidPr {gT G H}.
Arguments comm_group_setP {gT G H}.
Arguments class_eqP {gT G x y}.
Arguments repr_classesP {gT G xG}.
Section GroupInter.
Variable gT : finGroupType.
Implicit Types A B : {set gT}.
Implicit Types G H : {group gT}.
Lemma group_setI G H : group_set (G :&: H).
Proof.
apply/group_setP; split=> [|x y]; rewrite !inE ?group1 //.
by case/andP=> Gx Hx; rewrite !groupMl.
Qed.
Canonical setI_group G H := group (group_setI G H).
Section Nary.
Variables (I : finType) (P : pred I) (F : I -> {group gT}).
Lemma group_set_bigcap : group_set (\bigcap_(i | P i) F i).
Proof.
by elim/big_rec: _ => [|i G _ gG]; rewrite -1?(insubdK 1%G gG) groupP.
Qed.
Canonical bigcap_group := group group_set_bigcap.
End Nary.
Canonical generated_group A : {group _} := Eval hnf in [group of <<A>>].
Canonical gcore_group G A : {group _} := Eval hnf in [group of gcore G A].
Canonical commutator_group A B : {group _} := Eval hnf in [group of [~: A, B]].
Canonical joing_group A B : {group _} := Eval hnf in [group of A <*> B].
Canonical cycle_group x : {group _} := Eval hnf in [group of <[x]>].
Definition joinG G H := joing_group G H.
Definition subgroups A := [set G : {group gT} | G \subset A].
Lemma order_gt0 (x : gT) : 0 < #[x].
Proof. exact: cardG_gt0. Qed.
End GroupInter.
#[global] Hint Resolve order_gt0 : core.
Arguments generated_group _ _%g.
Arguments joing_group _ _%g _%g.
Arguments subgroups _ _%g.
Notation "G :&: H" := (setI_group G H) : Group_scope.
Notation "<< A >>" := (generated_group A) : Group_scope.
Notation "<[ x ] >" := (cycle_group x) : Group_scope.
Notation "[ ~: A1 , A2 , .. , An ]" :=
(commutator_group .. (commutator_group A1 A2) .. An) : Group_scope.
Notation "A <*> B" := (joing_group A B) : Group_scope.
Notation "G * H" := (joinG G H) : Group_scope.
Prenex Implicits joinG subgroups.
Notation "\prod_ ( i <- r | P ) F" :=
(\big[joinG/1%G]_(i <- r | P%B) F%G) : Group_scope.
Notation "\prod_ ( i <- r ) F" :=
(\big[joinG/1%G]_(i <- r) F%G) : Group_scope.
Notation "\prod_ ( m <= i < n | P ) F" :=
(\big[joinG/1%G]_(m <= i < n | P%B) F%G) : Group_scope.
Notation "\prod_ ( m <= i < n ) F" :=
(\big[joinG/1%G]_(m <= i < n) F%G) : Group_scope.
Notation "\prod_ ( i | P ) F" :=
(\big[joinG/1%G]_(i | P%B) F%G) : Group_scope.
Notation "\prod_ i F" :=
(\big[joinG/1%G]_i F%G) : Group_scope.
Notation "\prod_ ( i : t | P ) F" :=
(\big[joinG/1%G]_(i : t | P%B) F%G) (only parsing) : Group_scope.
Notation "\prod_ ( i : t ) F" :=
(\big[joinG/1%G]_(i : t) F%G) (only parsing) : Group_scope.
Notation "\prod_ ( i < n | P ) F" :=
(\big[joinG/1%G]_(i < n | P%B) F%G) : Group_scope.
Notation "\prod_ ( i < n ) F" :=
(\big[joinG/1%G]_(i < n) F%G) : Group_scope.
Notation "\prod_ ( i 'in' A | P ) F" :=
(\big[joinG/1%G]_(i in A | P%B) F%G) : Group_scope.
Notation "\prod_ ( i 'in' A ) F" :=
(\big[joinG/1%G]_(i in A) F%G) : Group_scope.
Section Lagrange.
Variable gT : finGroupType.
Implicit Types G H K : {group gT}.
Lemma LagrangeI G H : (#|G :&: H| * #|G : H|)%N = #|G|.
Proof.
rewrite -[#|G|]sum1_card (partition_big_imset (rcoset H)) /=.
rewrite mulnC -sum_nat_const; apply: eq_bigr => _ /rcosetsP[x Gx ->].
rewrite -(card_rcoset _ x) -sum1_card; apply: eq_bigl => y.
by rewrite rcosetE (sameP eqP rcoset_eqP) group_modr (sub1set, inE).
Qed.
Lemma divgI G H : #|G| %/ #|G :&: H| = #|G : H|.
Proof. by rewrite -(LagrangeI G H) mulKn ?cardG_gt0. Qed.
Lemma divg_index G H : #|G| %/ #|G : H| = #|G :&: H|.
Proof. by rewrite -(LagrangeI G H) mulnK. Qed.
Lemma dvdn_indexg G H : #|G : H| %| #|G|.
Proof. by rewrite -(LagrangeI G H) dvdn_mull. Qed.
Theorem Lagrange G H : H \subset G -> (#|H| * #|G : H|)%N = #|G|.
Proof. by move/setIidPr=> sHG; rewrite -{1}sHG LagrangeI. Qed.
Lemma cardSg G H : H \subset G -> #|H| %| #|G|.
Proof. by move/Lagrange <-; rewrite dvdn_mulr. Qed.
Lemma lognSg p G H : G \subset H -> logn p #|G| <= logn p #|H|.
Proof. by move=> sGH; rewrite dvdn_leq_log ?cardSg. Qed.
Lemma piSg G H : G \subset H -> {subset \pi(gval G) <= \pi(gval H)}.
Proof.
move=> sGH p; rewrite !mem_primes !cardG_gt0 => /and3P[-> _ pG].
exact: dvdn_trans (cardSg sGH).
Qed.
Lemma divgS G H : H \subset G -> #|G| %/ #|H| = #|G : H|.
Proof. by move/Lagrange <-; rewrite mulKn. Qed.
Lemma divg_indexS G H : H \subset G -> #|G| %/ #|G : H| = #|H|.
Proof. by move/Lagrange <-; rewrite mulnK. Qed.
Lemma coprimeSg G H p : H \subset G -> coprime #|G| p -> coprime #|H| p.
Proof. by move=> sHG; apply: coprime_dvdl (cardSg sHG). Qed.
Lemma coprimegS G H p : H \subset G -> coprime p #|G| -> coprime p #|H|.
Proof. by move=> sHG; apply: coprime_dvdr (cardSg sHG). Qed.
Lemma indexJg G H x : #|G :^ x : H :^ x| = #|G : H|.
Proof. by rewrite -!divgI -conjIg !cardJg. Qed.
Lemma indexgg G : #|G : G| = 1%N.
Proof. by rewrite -divgS // divnn cardG_gt0. Qed.
Lemma rcosets_id G : rcosets G G = [set G : {set gT}].
Proof.
apply/esym/eqP; rewrite eqEcard sub1set [#|_|]indexgg cards1 andbT.
by apply/rcosetsP; exists 1; rewrite ?mulg1.
Qed.
Lemma Lagrange_index G H K :
H \subset G -> K \subset H -> (#|G : H| * #|H : K|)%N = #|G : K|.
Proof.
move=> sHG sKH; apply/eqP; rewrite mulnC -(eqn_pmul2l (cardG_gt0 K)).
by rewrite mulnA !Lagrange // (subset_trans sKH).
Qed.
Lemma indexgI G H : #|G : G :&: H| = #|G : H|.
Proof. by rewrite -divgI divgS ?subsetIl. Qed.
Lemma indexgS G H K : H \subset K -> #|G : K| %| #|G : H|.
Proof.
move=> sHK; rewrite -(@dvdn_pmul2l #|G :&: K|) ?cardG_gt0 // LagrangeI.
by rewrite -(Lagrange (setIS G sHK)) mulnAC LagrangeI dvdn_mulr.
Qed.
Lemma indexSg G H K : H \subset K -> K \subset G -> #|K : H| %| #|G : H|.
Proof.
move=> sHK sKG; rewrite -(@dvdn_pmul2l #|H|) ?cardG_gt0 //.
by rewrite !Lagrange ?(cardSg, subset_trans sHK).
Qed.
Lemma indexg_eq1 G H : (#|G : H| == 1%N) = (G \subset H).
Proof.
rewrite eqn_leq -(leq_pmul2l (cardG_gt0 (G :&: H))) LagrangeI muln1.
by rewrite indexg_gt0 andbT (sameP setIidPl eqP) eqEcard subsetIl.
Qed.
Lemma indexg_gt1 G H : (#|G : H| > 1) = ~~ (G \subset H).
Proof. by rewrite -indexg_eq1 eqn_leq indexg_gt0 andbT -ltnNge. Qed.
Lemma index1g G H : H \subset G -> #|G : H| = 1%N -> H :=: G.
Proof. by move=> sHG iHG; apply/eqP; rewrite eqEsubset sHG -indexg_eq1 iHG. Qed.
Lemma indexg1 G : #|G : 1| = #|G|.
Proof. by rewrite -divgS ?sub1G // cards1 divn1. Qed.
Lemma indexMg G A : #|G * A : G| = #|A : G|.
Proof.
apply/eq_card/setP/eqP; rewrite eqEsubset andbC imsetS ?mulG_subr //.
by apply/subsetP=> _ /rcosetsP[x GAx ->]; rewrite mem_rcosets.
Qed.
Lemma rcosets_partition_mul G H : partition (rcosets H G) (H * G).
Proof.
set HG := H * G; have sGHG: {subset G <= HG} by apply/subsetP/mulG_subr.
have defHx x: x \in HG -> [set y in HG | rcoset H x == rcoset H y] = H :* x.
move=> HGx; apply/setP=> y; rewrite inE !rcosetE (sameP eqP rcoset_eqP).
by rewrite rcoset_sym; apply/andb_idl/subsetP; rewrite mulGS sub1set.
have:= preim_partitionP (rcoset H) HG; congr (partition _ _); apply/setP=> Hx.
apply/imsetP/idP=> [[x HGx ->] | ]; first by rewrite defHx // mem_rcosets.
by case/rcosetsP=> x /sGHG-HGx ->; exists x; rewrite ?defHx.
Qed.
Lemma rcosets_partition G H : H \subset G -> partition (rcosets H G) G.
Proof. by move=> sHG; have:= rcosets_partition_mul G H; rewrite mulSGid. Qed.
Lemma LagrangeMl G H : (#|G| * #|H : G|)%N = #|G * H|.
Proof.
rewrite mulnC -(card_uniform_partition _ (rcosets_partition_mul H G)) //.
by move=> _ /rcosetsP[x Hx ->]; rewrite card_rcoset.
Qed.
Lemma LagrangeMr G H : (#|G : H| * #|H|)%N = #|G * H|.
Proof. by rewrite mulnC LagrangeMl -card_invg invMg !invGid. Qed.
Lemma mul_cardG G H : (#|G| * #|H| = #|G * H|%g * #|G :&: H|)%N.
Proof. by rewrite -LagrangeMr -(LagrangeI G H) -mulnA mulnC. Qed.
Lemma dvdn_cardMg G H : #|G * H| %| #|G| * #|H|.
Proof. by rewrite mul_cardG dvdn_mulr. Qed.
Lemma cardMg_divn G H : #|G * H| = (#|G| * #|H|) %/ #|G :&: H|.
Proof. by rewrite mul_cardG mulnK ?cardG_gt0. Qed.
Lemma cardIg_divn G H : #|G :&: H| = (#|G| * #|H|) %/ #|G * H|.
Proof. by rewrite mul_cardG mulKn // (cardD1 (1 * 1)) mem_mulg. Qed.
Lemma TI_cardMg G H : G :&: H = 1 -> #|G * H| = (#|G| * #|H|)%N.
Proof. by move=> tiGH; rewrite mul_cardG tiGH cards1 muln1. Qed.
Lemma cardMg_TI G H : #|G| * #|H| <= #|G * H| -> G :&: H = 1.
Proof.
move=> leGH; apply: card_le1_trivg.
rewrite -(@leq_pmul2l #|G * H|); first by rewrite -mul_cardG muln1.
by apply: leq_trans leGH; rewrite muln_gt0 !cardG_gt0.
Qed.
Lemma coprime_TIg G H : coprime #|G| #|H| -> G :&: H = 1.
Proof.
move=> coGH; apply/eqP; rewrite trivg_card1 -dvdn1 -{}(eqnP coGH).
by rewrite dvdn_gcd /= {2}setIC !cardSg ?subsetIl.
Qed.
Lemma prime_TIg G H : prime #|G| -> ~~ (G \subset H) -> G :&: H = 1.
Proof.
case/primeP=> _ /(_ _ (cardSg (subsetIl G H))).
rewrite (sameP setIidPl eqP) eqEcard subsetIl => /pred2P[/card1_trivg|] //= ->.
by case/negP.
Qed.
Lemma prime_meetG G H : prime #|G| -> G :&: H != 1 -> G \subset H.
Proof. by move=> prG; apply: contraR; move/prime_TIg->. Qed.
Lemma coprime_cardMg G H : coprime #|G| #|H| -> #|G * H| = (#|G| * #|H|)%N.
Proof. by move=> coGH; rewrite TI_cardMg ?coprime_TIg. Qed.
Lemma coprime_index_mulG G H K :
H \subset G -> K \subset G -> coprime #|G : H| #|G : K| -> H * K = G.
Proof.
move=> sHG sKG co_iG_HK; apply/eqP; rewrite eqEcard mul_subG //=.
rewrite -(@leq_pmul2r #|H :&: K|) ?cardG_gt0 // -mul_cardG.
rewrite -(Lagrange sHG) -(LagrangeI K H) mulnAC setIC -mulnA.
rewrite !leq_pmul2l ?cardG_gt0 // dvdn_leq // -(Gauss_dvdr _ co_iG_HK).
by rewrite -(indexgI K) Lagrange_index ?indexgS ?subsetIl ?subsetIr.
Qed.
End Lagrange.
Section GeneratedGroup.
Variable gT : finGroupType.
Implicit Types x y z : gT.
Implicit Types A B C D : {set gT}.
Implicit Types G H K : {group gT}.
Lemma subset_gen A : A \subset <<A>>.
Proof. exact/bigcapsP. Qed.
Lemma sub_gen A B : A \subset B -> A \subset <<B>>.
Proof. by move/subset_trans=> -> //; apply: subset_gen. Qed.
Lemma mem_gen x A : x \in A -> x \in <<A>>.
Proof. exact: subsetP (subset_gen A) x. Qed.
Lemma generatedP x A : reflect (forall G, A \subset G -> x \in G) (x \in <<A>>).
Proof. exact: bigcapP. Qed.
Lemma gen_subG A G : (<<A>> \subset G) = (A \subset G).
Proof.
apply/idP/idP=> [|sAG]; first exact: subset_trans (subset_gen A).
by apply/subsetP=> x /generatedP; apply.
Qed.
Lemma genGid G : <<G>> = G.
Proof. by apply/eqP; rewrite eqEsubset gen_subG subset_gen andbT. Qed.
Lemma genGidG G : <<G>>%G = G.
Proof. by apply: val_inj; apply: genGid. Qed.
Lemma gen_set_id A : group_set A -> <<A>> = A.
Proof. by move=> gA; apply: (genGid (group gA)). Qed.
Lemma genS A B : A \subset B -> <<A>> \subset <<B>>.
Proof. by move=> sAB; rewrite gen_subG sub_gen. Qed.
Lemma gen0 : <<set0>> = 1 :> {set gT}.
Proof. by apply/eqP; rewrite eqEsubset sub1G gen_subG sub0set. Qed.
Lemma gen_expgs A : {n | <<A>> = (1 |: A) ^+ n}.
Proof.
set B := (1 |: A); pose N := #|gT|.
have BsubG n : B ^+ n \subset <<A>>.
by elim: n => [|n IHn]; rewrite ?expgS ?mul_subG ?subUset ?sub1G ?subset_gen.
have B_1 n : 1 \in B ^+ n.
by elim: n => [|n IHn]; rewrite ?set11 // expgS mulUg mul1g inE IHn.
case: (pickP (fun i : 'I_N => B ^+ i.+1 \subset B ^+ i)) => [n fixBn | no_fix].
exists n; apply/eqP; rewrite eqEsubset BsubG andbT.
rewrite -[B ^+ n]gen_set_id ?genS ?subsetUr //.
by apply: subset_trans fixBn; rewrite expgS mulUg subsetU ?mulg_subl ?orbT.
rewrite /group_set B_1 /=.
elim: {2}(n : nat) => [|m IHm]; first by rewrite mulg1.
by apply: subset_trans fixBn; rewrite !expgSr mulgA mulSg.
suffices: N < #|B ^+ N| by rewrite ltnNge max_card.
have [] := ubnPgeq N; elim=> [|n IHn] lt_nN; first by rewrite cards1.
apply: leq_ltn_trans (IHn (ltnW lt_nN)) (proper_card _).
by rewrite /proper (no_fix (Ordinal lt_nN)) expgS mulUg mul1g subsetUl.
Qed.
Lemma gen_prodgP A x :
reflect (exists n, exists2 c, forall i : 'I_n, c i \in A & x = \prod_i c i)
(x \in <<A>>).
Proof.
apply: (iffP idP) => [|[n [c Ac ->]]]; last first.
by apply: group_prod => i _; rewrite mem_gen ?Ac.
have [n ->] := gen_expgs A; rewrite /expgn /expgn_rec Monoid.iteropE /=.
rewrite -[n]card_ord -big_const => /prodsgP[/= c Ac def_x].
have{Ac def_x} ->: x = \prod_(i | c i \in A) c i.
rewrite big_mkcond {x}def_x; apply: eq_bigr => i _.
by case/setU1P: (Ac i isT) => -> //; rewrite if_same.
have [e <- [_ /= mem_e] _] := big_enumP [preim c of A].
pose t := in_tuple e; rewrite -[e]/(val t) big_tuple.
by exists (size e), (c \o tnth t) => // i; rewrite -mem_e mem_tnth.
Qed.
Lemma genD A B : A \subset <<A :\: B>> -> <<A :\: B>> = <<A>>.
Proof.
by move=> sAB; apply/eqP; rewrite eqEsubset genS (subsetDl, gen_subG).
Qed.
Lemma genV A : <<A^-1>> = <<A>>.
Proof.
apply/eqP; rewrite eqEsubset !gen_subG -!(invSg _ <<_>>) invgK.
by rewrite !invGid !subset_gen.
Qed.
Lemma genJ A z : <<A :^z>> = <<A>> :^ z.
Proof.
by apply/eqP; rewrite eqEsubset sub_conjg !gen_subG conjSg -?sub_conjg !sub_gen.
Qed.
Lemma conjYg A B z : (A <*> B) :^z = A :^ z <*> B :^ z.
Proof. by rewrite -genJ conjUg. Qed.
Lemma genD1 A x : x \in <<A :\ x>> -> <<A :\ x>> = <<A>>.
Proof.
move=> gA'x; apply/eqP; rewrite eqEsubset genS; last by rewrite subsetDl.
rewrite gen_subG; apply/subsetP=> y Ay.
by case: (y =P x) => [-> //|]; move/eqP=> nyx; rewrite mem_gen // !inE nyx.
Qed.
Lemma genD1id A : <<A^#>> = <<A>>.
Proof. by rewrite genD1 ?group1. Qed.
Notation joingT := (@joing gT) (only parsing).
Notation joinGT := (@joinG gT) (only parsing).
Lemma joingE A B : A <*> B = <<A :|: B>>. Proof. by []. Qed.
Lemma joinGE G H : (G * H)%G = (G <*> H)%G. Proof. by []. Qed.
Lemma joingC : commutative joingT.
Proof. by move=> A B; rewrite /joing setUC. Qed.
Lemma joing_idr A B : A <*> <<B>> = A <*> B.
Proof.
apply/eqP; rewrite eqEsubset gen_subG subUset gen_subG /=.
by rewrite -subUset subset_gen genS // setUS // subset_gen.
Qed.
Lemma joing_idl A B : <<A>> <*> B = A <*> B.
Proof. by rewrite -!(joingC B) joing_idr. Qed.
Lemma joing_subl A B : A \subset A <*> B.
Proof. by rewrite sub_gen ?subsetUl. Qed.
Lemma joing_subr A B : B \subset A <*> B.
Proof. by rewrite sub_gen ?subsetUr. Qed.
Lemma join_subG A B G : (A <*> B \subset G) = (A \subset G) && (B \subset G).
Proof. by rewrite gen_subG subUset. Qed.
Lemma joing_idPl G A : reflect (G <*> A = G) (A \subset G).
Proof.
apply: (iffP idP) => [sHG | <-]; last by rewrite joing_subr.
by rewrite joingE (setUidPl sHG) genGid.
Qed.
Lemma joing_idPr A G : reflect (A <*> G = G) (A \subset G).
Proof. by rewrite joingC; apply: joing_idPl. Qed.
Lemma joing_subP A B G :
reflect (A \subset G /\ B \subset G) (A <*> B \subset G).
Proof. by rewrite join_subG; apply: andP. Qed.
Lemma joing_sub A B C : A <*> B = C -> A \subset C /\ B \subset C.
Proof. by move <-; apply/joing_subP. Qed.
Lemma genDU A B C : A \subset C -> <<C :\: A>> = <<B>> -> <<A :|: B>> = <<C>>.
Proof.
move=> sAC; rewrite -joingE -joing_idr => <- {B}; rewrite joing_idr.
by congr <<_>>; rewrite setDE setUIr setUCr setIT; apply/setUidPr.
Qed.
Lemma joingA : associative joingT.
Proof. by move=> A B C; rewrite joing_idl joing_idr /joing setUA. Qed.
Lemma joing1G G : 1 <*> G = G.
Proof. by rewrite -gen0 joing_idl /joing set0U genGid. Qed.
Lemma joingG1 G : G <*> 1 = G.
Proof. by rewrite joingC joing1G. Qed.
Lemma genM_join G H : <<G * H>> = G <*> H.
Proof.
apply/eqP; rewrite eqEsubset gen_subG /= -{1}[G <*> H]mulGid.
rewrite genS; last by rewrite subUset mulG_subl mulG_subr.
by rewrite mulgSS ?(sub_gen, subsetUl, subsetUr).
Qed.
Lemma mulG_subG G H K : (G * H \subset K) = (G \subset K) && (H \subset K).
Proof. by rewrite -gen_subG genM_join join_subG. Qed.
Lemma mulGsubP K H G : reflect (K \subset G /\ H \subset G) (K * H \subset G).
Proof. by rewrite mulG_subG; apply: andP. Qed.
Lemma mulG_sub K H A : K * H = A -> K \subset A /\ H \subset A.
Proof. by move <-; rewrite mulG_subl mulG_subr. Qed.
Lemma trivMg G H : (G * H == 1) = (G :==: 1) && (H :==: 1).
Proof.
by rewrite !eqEsubset -{2}[1]mulGid mulgSS ?sub1G // !andbT mulG_subG.
Qed.
Lemma comm_joingE G H : commute G H -> G <*> H = G * H.
Proof.
by move/comm_group_setP=> gGH; rewrite -genM_join; apply: (genGid (group gGH)).
Qed.
Lemma joinGC : commutative joinGT.
Proof. by move=> G H; apply: val_inj; apply: joingC. Qed.
Lemma joinGA : associative joinGT.
Proof. by move=> G H K; apply: val_inj; apply: joingA. Qed.
Lemma join1G : left_id 1%G joinGT.
Proof. by move=> G; apply: val_inj; apply: joing1G. Qed.
Lemma joinG1 : right_id 1%G joinGT.
Proof. by move=> G; apply: val_inj; apply: joingG1. Qed.
Canonical joinG_law := Monoid.Law joinGA join1G joinG1.
Canonical joinG_abelaw := Monoid.ComLaw joinGC.
Lemma bigprodGEgen I r (P : pred I) (F : I -> {set gT}) :
(\prod_(i <- r | P i) <<F i>>)%G :=: << \bigcup_(i <- r | P i) F i >>.
Proof.
elim/big_rec2: _ => /= [|i A _ _ ->]; first by rewrite gen0.
by rewrite joing_idl joing_idr.
Qed.
Lemma bigprodGE I r (P : pred I) (F : I -> {group gT}) :
(\prod_(i <- r | P i) F i)%G :=: << \bigcup_(i <- r | P i) F i >>.
Proof.
rewrite -bigprodGEgen /=; apply: congr_group.
by apply: eq_bigr => i _; rewrite genGidG.
Qed.
Lemma mem_commg A B x y : x \in A -> y \in B -> [~ x, y] \in [~: A, B].
Proof. by move=> Ax By; rewrite mem_gen ?imset2_f. Qed.
Lemma commSg A B C : A \subset B -> [~: A, C] \subset [~: B, C].
Proof. by move=> sAC; rewrite genS ?imset2S. Qed.
Lemma commgS A B C : B \subset C -> [~: A, B] \subset [~: A, C].
Proof. by move=> sBC; rewrite genS ?imset2S. Qed.
Lemma commgSS A B C D :
A \subset B -> C \subset D -> [~: A, C] \subset [~: B, D].
Proof. by move=> sAB sCD; rewrite genS ?imset2S. Qed.
Lemma der1_subG G : [~: G, G] \subset G.
Proof.
by rewrite gen_subG; apply/subsetP=> _ /imset2P[x y Gx Gy ->]; apply: groupR.
Qed.
Lemma comm_subG A B G : A \subset G -> B \subset G -> [~: A, B] \subset G.
Proof.
by move=> sAG sBG; apply: subset_trans (der1_subG G); apply: commgSS.
Qed.
Lemma commGC A B : [~: A, B] = [~: B, A].
Proof.
rewrite -[[~: A, B]]genV; congr <<_>>; apply/setP=> z; rewrite inE.
by apply/imset2P/imset2P=> [] [x y Ax Ay]; last rewrite -{1}(invgK z);
rewrite -invg_comm => /invg_inj->; exists y x.
Qed.
Lemma conjsRg A B x : [~: A, B] :^ x = [~: A :^ x, B :^ x].
Proof.
wlog suffices: A B x / [~: A, B] :^ x \subset [~: A :^ x, B :^ x].
move=> subJ; apply/eqP; rewrite eqEsubset subJ /= -sub_conjgV.
by rewrite -{2}(conjsgK x A) -{2}(conjsgK x B).
rewrite -genJ gen_subG; apply/subsetP=> _ /imsetP[_ /imset2P[y z Ay Bz ->] ->].
by rewrite conjRg mem_commg ?memJ_conjg.
Qed.
End GeneratedGroup.
Arguments gen_prodgP {gT A x}.
Arguments joing_idPl {gT G A}.
Arguments joing_idPr {gT A G}.
Arguments mulGsubP {gT K H G}.
Arguments joing_subP {gT A B G}.
Section Cycles.
(* Elementary properties of cycles and order, needed in perm.v. *)
(* More advanced results on the structure of cyclic groups will *)
(* be given in cyclic.v. *)
Variable gT : finGroupType.
Implicit Types x y : gT.
Implicit Types G : {group gT}.
Import Monoid.Theory.
Lemma cycle1 : <[1]> = [1 gT].
Proof. exact: genGid. Qed.
Lemma order1 : #[1 : gT] = 1%N.
Proof. by rewrite /order cycle1 cards1. Qed.
Lemma cycle_id x : x \in <[x]>.
Proof. by rewrite mem_gen // set11. Qed.
Lemma mem_cycle x i : x ^+ i \in <[x]>.
Proof. by rewrite groupX // cycle_id. Qed.
Lemma cycle_subG x G : (<[x]> \subset G) = (x \in G).
Proof. by rewrite gen_subG sub1set. Qed.
Lemma cycle_eq1 x : (<[x]> == 1) = (x == 1).
Proof. by rewrite eqEsubset sub1G andbT cycle_subG inE. Qed.
Lemma orderE x : #[x] = #|<[x]>|. Proof. by []. Qed.
Lemma order_eq1 x : (#[x] == 1%N) = (x == 1).
Proof. by rewrite -trivg_card1 cycle_eq1. Qed.
Lemma order_gt1 x : (#[x] > 1) = (x != 1).
Proof. by rewrite ltnNge -trivg_card_le1 cycle_eq1. Qed.
Lemma cycle_traject x : <[x]> =i traject (mulg x) 1 #[x].
Proof.
set t := _ 1; apply: fsym; apply/subset_cardP; last first.
by apply/subsetP=> _ /trajectP[i _ ->]; rewrite -iteropE mem_cycle.
rewrite (card_uniqP _) ?size_traject //; case def_n: #[_] => // [n].
rewrite looping_uniq; apply: contraL (card_size (t n)) => /loopingP t_xi.
rewrite -ltnNge size_traject -def_n ?subset_leq_card //.
rewrite -(eq_subset_r (in_set _)) {}/t; set G := finset _.
rewrite -[x]mulg1 -[G]gen_set_id ?genS ?sub1set ?inE ?(t_xi 1%N)//.
apply/group_setP; split=> [|y z]; rewrite !inE ?(t_xi 0) //.
by do 2!case/trajectP=> ? _ ->; rewrite -!iteropE -expgD [x ^+ _]iteropE.
Qed.
Lemma cycle2g x : #[x] = 2 -> <[x]> = [set 1; x].
Proof. by move=> ox; apply/setP=> y; rewrite cycle_traject ox !inE mulg1. Qed.
Lemma cyclePmin x y : y \in <[x]> -> {i | i < #[x] & y = x ^+ i}.
Proof.
rewrite cycle_traject; set tx := traject _ _ #[x] => tx_y; pose i := index y tx.
have lt_i_x : i < #[x] by rewrite -index_mem size_traject in tx_y.
by exists i; rewrite // [x ^+ i]iteropE /= -(nth_traject _ lt_i_x) nth_index.
Qed.
Lemma cycleP x y : reflect (exists i, y = x ^+ i) (y \in <[x]>).
Proof.
by apply: (iffP idP) => [/cyclePmin[i _]|[i ->]]; [exists i | apply: mem_cycle].
Qed.
Lemma expg_order x : x ^+ #[x] = 1.
Proof.
have: uniq (traject (mulg x) 1 #[x]).
by apply/card_uniqP; rewrite size_traject -(eq_card (cycle_traject x)).
case/cyclePmin: (mem_cycle x #[x]) => [] [//|i] ltix.
rewrite -(subnKC ltix) addSnnS /= expgD; move: (_ - _) => j x_j1.
case/andP=> /trajectP[]; exists j; first exact: leq_addl.
by apply: (mulgI (x ^+ i.+1)); rewrite -iterSr iterS -iteropE -expgS mulg1.
Qed.
Lemma expg_mod p k x : x ^+ p = 1 -> x ^+ (k %% p) = x ^+ k.
Proof.
move=> xp.
by rewrite {2}(divn_eq k p) expgD mulnC expgM xp expg1n mul1g.
Qed.
Lemma expg_mod_order x i : x ^+ (i %% #[x]) = x ^+ i.
Proof. by rewrite expg_mod // expg_order. Qed.
Lemma invg_expg x : x^-1 = x ^+ #[x].-1.
Proof. by apply/eqP; rewrite eq_invg_mul -expgS prednK ?expg_order. Qed.
Lemma invg2id x : #[x] = 2 -> x^-1 = x.
Proof. by move=> ox; rewrite invg_expg ox. Qed.
Lemma cycleX x i : <[x ^+ i]> \subset <[x]>.
Proof. by rewrite cycle_subG; apply: mem_cycle. Qed.
Lemma cycleV x : <[x^-1]> = <[x]>.
Proof.
by apply/eqP; rewrite eq_sym eqEsubset !cycle_subG groupV -groupV !cycle_id.
Qed.
Lemma orderV x : #[x^-1] = #[x].
Proof. by rewrite /order cycleV. Qed.
Lemma cycleJ x y : <[x ^ y]> = <[x]> :^ y.
Proof. by rewrite -genJ conjg_set1. Qed.
Lemma orderJ x y : #[x ^ y] = #[x].
Proof. by rewrite /order cycleJ cardJg. Qed.
End Cycles.
Section Normaliser.
Variable gT : finGroupType.
Implicit Types x y z : gT.
Implicit Types A B C D : {set gT}.
Implicit Type G H K : {group gT}.
Lemma normP x A : reflect (A :^ x = A) (x \in 'N(A)).
Proof.
suffices ->: (x \in 'N(A)) = (A :^ x == A) by apply: eqP.
by rewrite eqEcard cardJg leqnn andbT inE.
Qed.
Arguments normP {x A}.
Lemma group_set_normaliser A : group_set 'N(A).
Proof.
apply/group_setP; split=> [|x y Nx Ny]; rewrite inE ?conjsg1 //.
by rewrite conjsgM !(normP _).
Qed.
Canonical normaliser_group A := group (group_set_normaliser A).
Lemma normsP A B : reflect {in A, normalised B} (A \subset 'N(B)).
Proof.
apply: (iffP subsetP) => nBA x Ax; last by rewrite inE nBA //.
by apply/normP; apply: nBA.
Qed.
Arguments normsP {A B}.
Lemma memJ_norm x y A : x \in 'N(A) -> (y ^ x \in A) = (y \in A).
Proof. by move=> Nx; rewrite -{1}(normP Nx) memJ_conjg. Qed.
Lemma norms_cycle x y : (<[y]> \subset 'N(<[x]>)) = (x ^ y \in <[x]>).
Proof. by rewrite cycle_subG inE -cycleJ cycle_subG. Qed.
Lemma norm1 : 'N(1) = setT :> {set gT}.
Proof. by apply/setP=> x; rewrite !inE conjs1g subxx. Qed.
Lemma norms1 A : A \subset 'N(1).
Proof. by rewrite norm1 subsetT. Qed.
Lemma normCs A : 'N(~: A) = 'N(A).
Proof. by apply/setP=> x; rewrite -groupV !inE conjCg setCS sub_conjg. Qed.
Lemma normG G : G \subset 'N(G).
Proof. by apply/normsP; apply: conjGid. Qed.
Lemma normT : 'N([set: gT]) = [set: gT].
Proof. by apply/eqP; rewrite -subTset normG. Qed.
Lemma normsG A G : A \subset G -> A \subset 'N(G).
Proof. by move=> sAG; apply: subset_trans (normG G). Qed.
Lemma normC A B : A \subset 'N(B) -> commute A B.
Proof.
move/subsetP=> nBA; apply/setP=> u.
apply/mulsgP/mulsgP=> [[x y Ax By] | [y x By Ax]] -> {u}.
by exists (y ^ x^-1) x; rewrite -?conjgCV // memJ_norm // groupV nBA.
by exists x (y ^ x); rewrite -?conjgC // memJ_norm // nBA.
Qed.
Lemma norm_joinEl G H : G \subset 'N(H) -> G <*> H = G * H.
Proof. by move/normC/comm_joingE. Qed.
Lemma norm_joinEr G H : H \subset 'N(G) -> G <*> H = G * H.
Proof. by move/normC=> cHG; apply: comm_joingE. Qed.
Lemma norm_rlcoset G x : x \in 'N(G) -> G :* x = x *: G.
Proof. by rewrite -sub1set => /normC. Qed.
Lemma rcoset_mul G x y : x \in 'N(G) -> (G :* x) * (G :* y) = G :* (x * y).
Proof.
move/norm_rlcoset=> GxxG.
by rewrite mulgA -(mulgA _ _ G) -GxxG mulgA mulGid -mulgA mulg_set1.
Qed.
Lemma normJ A x : 'N(A :^ x) = 'N(A) :^ x.
Proof.
by apply/setP=> y; rewrite mem_conjg !inE -conjsgM conjgCV conjsgM conjSg.
Qed.
Lemma norm_conj_norm x A B :
x \in 'N(A) -> (A \subset 'N(B :^ x)) = (A \subset 'N(B)).
Proof. by move=> Nx; rewrite normJ -sub_conjgV (normP _) ?groupV. Qed.
Lemma norm_gen A : 'N(A) \subset 'N(<<A>>).
Proof. by apply/normsP=> x Nx; rewrite -genJ (normP Nx). Qed.
Lemma class_norm x G : G \subset 'N(x ^: G).
Proof. by apply/normsP=> y; apply: classGidr. Qed.
Lemma class_normal x G : x \in G -> x ^: G <| G.
Proof. by move=> Gx; rewrite /normal class_norm class_subG. Qed.
Lemma class_sub_norm G A x : G \subset 'N(A) -> (x ^: G \subset A) = (x \in A).
Proof.
move=> nAG; apply/subsetP/idP=> [-> // | Ax xy]; first exact: class_refl.
by case/imsetP=> y Gy ->; rewrite memJ_norm ?(subsetP nAG).
Qed.
Lemma class_support_norm A G : G \subset 'N(class_support A G).
Proof. by apply/normsP; apply: class_supportGidr. Qed.
Lemma class_support_sub_norm A B G :
A \subset G -> B \subset 'N(G) -> class_support A B \subset G.
Proof.
move=> sAG nGB; rewrite class_supportEr.
by apply/bigcupsP=> x Bx; rewrite -(normsP nGB x Bx) conjSg.
Qed.
Section norm_trans.
Variables (A B C D : {set gT}).
Hypotheses (nBA : A \subset 'N(B)) (nCA : A \subset 'N(C)).
Lemma norms_gen : A \subset 'N(<<B>>).
Proof. exact: subset_trans nBA (norm_gen B). Qed.
Lemma norms_norm : A \subset 'N('N(B)).
Proof. by apply/normsP=> x Ax; rewrite -normJ (normsP nBA). Qed.
Lemma normsI : A \subset 'N(B :&: C).
Proof. by apply/normsP=> x Ax; rewrite conjIg !(normsP _ x Ax). Qed.
Lemma normsU : A \subset 'N(B :|: C).
Proof. by apply/normsP=> x Ax; rewrite conjUg !(normsP _ x Ax). Qed.
Lemma normsIs : B \subset 'N(D) -> A :&: B \subset 'N(C :&: D).
Proof.
move/normsP=> nDB; apply/normsP=> x; case/setIP=> Ax Bx.
by rewrite conjIg (normsP nCA) ?nDB.
Qed.
Lemma normsD : A \subset 'N(B :\: C).
Proof. by apply/normsP=> x Ax; rewrite conjDg !(normsP _ x Ax). Qed.
Lemma normsM : A \subset 'N(B * C).
Proof. by apply/normsP=> x Ax; rewrite conjsMg !(normsP _ x Ax). Qed.
Lemma normsY : A \subset 'N(B <*> C).
Proof. by apply/normsP=> x Ax; rewrite -genJ conjUg !(normsP _ x Ax). Qed.
Lemma normsR : A \subset 'N([~: B, C]).
Proof. by apply/normsP=> x Ax; rewrite conjsRg !(normsP _ x Ax). Qed.
Lemma norms_class_support : A \subset 'N(class_support B C).
Proof.
apply/subsetP=> x Ax; rewrite inE sub_conjg class_supportEr.
apply/bigcupsP=> y Cy; rewrite -sub_conjg -conjsgM conjgC conjsgM.
by rewrite (normsP nBA) // bigcup_sup ?memJ_norm ?(subsetP nCA).
Qed.
End norm_trans.
Lemma normsIG A B G : A \subset 'N(B) -> A :&: G \subset 'N(B :&: G).
Proof. by move/normsIs->; rewrite ?normG. Qed.
Lemma normsGI A B G : A \subset 'N(B) -> G :&: A \subset 'N(G :&: B).
Proof. by move=> nBA; rewrite !(setIC G) normsIG. Qed.
Lemma norms_bigcap I r (P : pred I) A (B_ : I -> {set gT}) :
A \subset \bigcap_(i <- r | P i) 'N(B_ i) ->
A \subset 'N(\bigcap_(i <- r | P i) B_ i).
Proof.
elim/big_rec2: _ => [|i B N _ IH /subsetIP[nBiA /IH]]; last exact: normsI.
by rewrite normT.
Qed.
Lemma norms_bigcup I r (P : pred I) A (B_ : I -> {set gT}) :
A \subset \bigcap_(i <- r | P i) 'N(B_ i) ->
A \subset 'N(\bigcup_(i <- r | P i) B_ i).
Proof.
move=> nBA; rewrite -normCs setC_bigcup norms_bigcap //.
by rewrite (eq_bigr _ (fun _ _ => normCs _)).
Qed.
Lemma normsD1 A B : A \subset 'N(B) -> A \subset 'N(B^#).
Proof. by move/normsD->; rewrite ?norms1. Qed.
Lemma normD1 A : 'N(A^#) = 'N(A).
Proof.
apply/eqP; rewrite eqEsubset normsD1 //.
rewrite -{2}(setID A 1) setIC normsU //; apply/normsP=> x _; apply/setP=> y.
by rewrite conjIg conjs1g !inE mem_conjg; case: eqP => // ->; rewrite conj1g.
Qed.
Lemma normalP A B : reflect (A \subset B /\ {in B, normalised A}) (A <| B).
Proof. by apply: (iffP andP)=> [] [sAB]; move/normsP. Qed.
Lemma normal_sub A B : A <| B -> A \subset B.
Proof. by case/andP. Qed.
Lemma normal_norm A B : A <| B -> B \subset 'N(A).
Proof. by case/andP. Qed.
Lemma normalS G H K : K \subset H -> H \subset G -> K <| G -> K <| H.
Proof.
by move=> sKH sHG /andP[_ nKG]; rewrite /(K <| _) sKH (subset_trans sHG).
Qed.
Lemma normal1 G : 1 <| G.
Proof. by rewrite /normal sub1set group1 norms1. Qed.
Lemma normal_refl G : G <| G.
Proof. by rewrite /(G <| _) normG subxx. Qed.
Lemma normalG G : G <| 'N(G).
Proof. by rewrite /(G <| _) normG subxx. Qed.
Lemma normalSG G H : H \subset G -> H <| 'N_G(H).
Proof. by move=> sHG; rewrite /normal subsetI sHG normG subsetIr. Qed.
Lemma normalJ A B x : (A :^ x <| B :^ x) = (A <| B).
Proof. by rewrite /normal normJ !conjSg. Qed.
Lemma normalM G A B : A <| G -> B <| G -> A * B <| G.
Proof.
by case/andP=> sAG nAG /andP[sBG nBG]; rewrite /normal mul_subG ?normsM.
Qed.
Lemma normalY G A B : A <| G -> B <| G -> A <*> B <| G.
Proof.
by case/andP=> sAG ? /andP[sBG ?]; rewrite /normal join_subG sAG sBG ?normsY.
Qed.
Lemma normalYl G H : (H <| H <*> G) = (G \subset 'N(H)).
Proof. by rewrite /normal joing_subl join_subG normG. Qed.
Lemma normalYr G H : (H <| G <*> H) = (G \subset 'N(H)).
Proof. by rewrite joingC normalYl. Qed.
Lemma normalI G A B : A <| G -> B <| G -> A :&: B <| G.
Proof.
by case/andP=> sAG nAG /andP[_ nBG]; rewrite /normal subIset ?sAG // normsI.
Qed.
Lemma norm_normalI G A : G \subset 'N(A) -> G :&: A <| G.
Proof. by move=> nAG; rewrite /normal subsetIl normsI ?normG. Qed.
Lemma normalGI G H A : H \subset G -> A <| G -> H :&: A <| H.
Proof.
by move=> sHG /andP[_ nAG]; apply: norm_normalI (subset_trans sHG nAG).
Qed.
Lemma normal_subnorm G H : (H <| 'N_G(H)) = (H \subset G).
Proof. by rewrite /normal subsetIr subsetI normG !andbT. Qed.
Lemma normalD1 A G : (A^# <| G) = (A <| G).
Proof. by rewrite /normal normD1 subDset (setUidPr (sub1G G)). Qed.
Lemma gcore_sub A G : gcore A G \subset A.
Proof. by rewrite (bigcap_min 1) ?conjsg1. Qed.
Lemma gcore_norm A G : G \subset 'N(gcore A G).
Proof.
apply/subsetP=> x Gx; rewrite inE; apply/bigcapsP=> y Gy.
by rewrite sub_conjg -conjsgM bigcap_inf ?groupM ?groupV.
Qed.
Lemma gcore_normal A G : A \subset G -> gcore A G <| G.
Proof.
by move=> sAG; rewrite /normal gcore_norm (subset_trans (gcore_sub A G)).
Qed.
Lemma gcore_max A B G : B \subset A -> G \subset 'N(B) -> B \subset gcore A G.
Proof.
move=> sBA nBG; apply/bigcapsP=> y Gy.
by rewrite -sub_conjgV (normsP nBG) ?groupV.
Qed.
Lemma sub_gcore A B G :
G \subset 'N(B) -> (B \subset gcore A G) = (B \subset A).
Proof.
move=> nBG; apply/idP/idP=> [sBAG | sBA]; last exact: gcore_max.
exact: subset_trans (gcore_sub A G).
Qed.
(* An elementary proof that subgroups of index 2 are normal; it is almost as *)
(* short as the "advanced" proof using group actions; besides, the fact that *)
(* the coset is equal to the complement is used in extremal.v. *)
Lemma rcoset_index2 G H x :
H \subset G -> #|G : H| = 2 -> x \in G :\: H -> H :* x = G :\: H.
Proof.
move=> sHG indexHG => /setDP[Gx notHx]; apply/eqP.
rewrite eqEcard -(leq_add2l #|G :&: H|) cardsID -(LagrangeI G H) indexHG muln2.
rewrite (setIidPr sHG) card_rcoset addnn leqnn andbT.
apply/subsetP=> _ /rcosetP[y Hy ->]; apply/setDP.
by rewrite !groupMl // (subsetP sHG).
Qed.
Lemma index2_normal G H : H \subset G -> #|G : H| = 2 -> H <| G.
Proof.
move=> sHG indexHG; rewrite /normal sHG; apply/subsetP=> x Gx.
case Hx: (x \in H); first by rewrite inE conjGid.
rewrite inE conjsgE mulgA -sub_rcosetV -invg_rcoset.
by rewrite !(rcoset_index2 sHG) ?inE ?groupV ?Hx // invDg !invGid.
Qed.
Lemma cent1P x y : reflect (commute x y) (x \in 'C[y]).
Proof.
rewrite inE conjg_set1 sub1set inE (sameP eqP conjg_fixP)commg1_sym.
exact: commgP.
Qed.
Lemma cent1id x : x \in 'C[x]. Proof. exact/cent1P. Qed.
Lemma cent1E x y : (x \in 'C[y]) = (x * y == y * x).
Proof. by rewrite (sameP (cent1P x y) eqP). Qed.
Lemma cent1C x y : (x \in 'C[y]) = (y \in 'C[x]).
Proof. by rewrite !cent1E eq_sym. Qed.
Canonical centraliser_group A : {group _} := Eval hnf in [group of 'C(A)].
Lemma cent_set1 x : 'C([set x]) = 'C[x].
Proof. by apply: big_pred1 => y /=; rewrite inE. Qed.
Lemma cent1J x y : 'C[x ^ y] = 'C[x] :^ y.
Proof. by rewrite -conjg_set1 normJ. Qed.
Lemma centP A x : reflect (centralises x A) (x \in 'C(A)).
Proof. by apply: (iffP bigcapP) => cxA y /cxA/cent1P. Qed.
Lemma centsP A B : reflect {in A, centralised B} (A \subset 'C(B)).
Proof. by apply: (iffP subsetP) => cAB x /cAB/centP. Qed.
Lemma centsC A B : (A \subset 'C(B)) = (B \subset 'C(A)).
Proof. by apply/centsP/centsP=> cAB x ? y ?; rewrite /commute -cAB. Qed.
Lemma cents1 A : A \subset 'C(1).
Proof. by rewrite centsC sub1G. Qed.
Lemma cent1T : 'C(1) = setT :> {set gT}.
Proof. by apply/eqP; rewrite -subTset cents1. Qed.
Lemma cent11T : 'C[1] = setT :> {set gT}.
Proof. by rewrite -cent_set1 cent1T. Qed.
Lemma cent_sub A : 'C(A) \subset 'N(A).
Proof.
apply/subsetP=> x /centP cAx; rewrite inE.
by apply/subsetP=> _ /imsetP[y Ay ->]; rewrite /conjg -cAx ?mulKg.
Qed.
Lemma cents_norm A B : A \subset 'C(B) -> A \subset 'N(B).
Proof. by move=> cAB; apply: subset_trans (cent_sub B). Qed.
Lemma centC A B : A \subset 'C(B) -> commute A B.
Proof. by move=> cAB; apply: normC (cents_norm cAB). Qed.
Lemma cent_joinEl G H : G \subset 'C(H) -> G <*> H = G * H.
Proof. by move=> cGH; apply: norm_joinEl (cents_norm cGH). Qed.
Lemma cent_joinEr G H : H \subset 'C(G) -> G <*> H = G * H.
Proof. by move=> cGH; apply: norm_joinEr (cents_norm cGH). Qed.
Lemma centJ A x : 'C(A :^ x) = 'C(A) :^ x.
Proof.
apply/setP=> y; rewrite mem_conjg; apply/centP/centP=> cAy z Az.
by apply: (conjg_inj x); rewrite 2!conjMg conjgKV cAy ?memJ_conjg.
by apply: (conjg_inj x^-1); rewrite 2!conjMg cAy -?mem_conjg.
Qed.
Lemma cent_norm A : 'N(A) \subset 'N('C(A)).
Proof. by apply/normsP=> x nCx; rewrite -centJ (normP nCx). Qed.
Lemma norms_cent A B : A \subset 'N(B) -> A \subset 'N('C(B)).
Proof. by move=> nBA; apply: subset_trans nBA (cent_norm B). Qed.
Lemma cent_normal A : 'C(A) <| 'N(A).
Proof. by rewrite /(_ <| _) cent_sub cent_norm. Qed.
Lemma centS A B : B \subset A -> 'C(A) \subset 'C(B).
Proof. by move=> sAB; rewrite centsC (subset_trans sAB) 1?centsC. Qed.
Lemma centsS A B C : A \subset B -> C \subset 'C(B) -> C \subset 'C(A).
Proof. by move=> sAB cCB; apply: subset_trans cCB (centS sAB). Qed.
Lemma centSS A B C D :
A \subset C -> B \subset D -> C \subset 'C(D) -> A \subset 'C(B).
Proof. by move=> sAC sBD cCD; apply: subset_trans (centsS sBD cCD). Qed.
Lemma centI A B : 'C(A) <*> 'C(B) \subset 'C(A :&: B).
Proof. by rewrite gen_subG subUset !centS ?(subsetIl, subsetIr). Qed.
Lemma centU A B : 'C(A :|: B) = 'C(A) :&: 'C(B).
Proof.
apply/eqP; rewrite eqEsubset subsetI 2?centS ?(subsetUl, subsetUr) //=.
by rewrite centsC subUset -centsC subsetIl -centsC subsetIr.
Qed.
Lemma cent_gen A : 'C(<<A>>) = 'C(A).
Proof. by apply/setP=> x; rewrite -!sub1set centsC gen_subG centsC. Qed.
Lemma cent_cycle x : 'C(<[x]>) = 'C[x].
Proof. by rewrite cent_gen cent_set1. Qed.
Lemma sub_cent1 A x : (A \subset 'C[x]) = (x \in 'C(A)).
Proof. by rewrite -cent_cycle centsC cycle_subG. Qed.
Lemma cents_cycle x y : commute x y -> <[x]> \subset 'C(<[y]>).
Proof. by move=> cxy; rewrite cent_cycle cycle_subG; apply/cent1P. Qed.
Lemma cycle_abelian x : abelian <[x]>.
Proof. exact: cents_cycle. Qed.
Lemma centY A B : 'C(A <*> B) = 'C(A) :&: 'C(B).
Proof. by rewrite cent_gen centU. Qed.
Lemma centM G H : 'C(G * H) = 'C(G) :&: 'C(H).
Proof. by rewrite -cent_gen genM_join centY. Qed.
Lemma cent_classP x G : reflect (x ^: G = [set x]) (x \in 'C(G)).
Proof.
apply: (iffP (centP _ _)) => [Cx | Cx1 y Gy].
apply/eqP; rewrite eqEsubset sub1set class_refl andbT.
by apply/subsetP=> _ /imsetP[y Gy ->]; rewrite inE conjgE Cx ?mulKg.
by apply/commgP/conjg_fixP/set1P; rewrite -Cx1; apply/imsetP; exists y.
Qed.
Lemma commG1P A B : reflect ([~: A, B] = 1) (A \subset 'C(B)).
Proof.
apply: (iffP (centsP A B)) => [cAB | cAB1 x Ax y By].
apply/trivgP; rewrite gen_subG; apply/subsetP=> _ /imset2P[x y Ax Ay ->].
by rewrite inE; apply/commgP; apply: cAB.
by apply/commgP; rewrite -in_set1 -[[set 1]]cAB1 mem_commg.
Qed.
Lemma abelianE A : abelian A = (A \subset 'C(A)). Proof. by []. Qed.
Lemma abelian1 : abelian [1 gT]. Proof. exact: sub1G. Qed.
Lemma abelianS A B : A \subset B -> abelian B -> abelian A.
Proof. by move=> sAB; apply: centSS. Qed.
Lemma abelianJ A x : abelian (A :^ x) = abelian A.
Proof. by rewrite /abelian centJ conjSg. Qed.
Lemma abelian_gen A : abelian <<A>> = abelian A.
Proof. by rewrite /abelian cent_gen gen_subG. Qed.
Lemma abelianY A B :
abelian (A <*> B) = [&& abelian A, abelian B & B \subset 'C(A)].
Proof.
rewrite /abelian join_subG /= centY !subsetI -!andbA; congr (_ && _).
by rewrite centsC andbA andbb andbC.
Qed.
Lemma abelianM G H :
abelian (G * H) = [&& abelian G, abelian H & H \subset 'C(G)].
Proof. by rewrite -abelian_gen genM_join abelianY. Qed.
Section SubAbelian.
Variable A B C : {set gT}.
Hypothesis cAA : abelian A.
Lemma sub_abelian_cent : C \subset A -> A \subset 'C(C).
Proof. by move=> sCA; rewrite centsC (subset_trans sCA). Qed.
Lemma sub_abelian_cent2 : B \subset A -> C \subset A -> B \subset 'C(C).
Proof. by move=> sBA; move/sub_abelian_cent; apply: subset_trans. Qed.
Lemma sub_abelian_norm : C \subset A -> A \subset 'N(C).
Proof. by move=> sCA; rewrite cents_norm ?sub_abelian_cent. Qed.
Lemma sub_abelian_normal : (C \subset A) = (C <| A).
Proof.
by rewrite /normal; case sHG: (C \subset A); rewrite // sub_abelian_norm.
Qed.
End SubAbelian.
End Normaliser.
Arguments normP {gT x A}.
Arguments centP {gT A x}.
Arguments normsP {gT A B}.
Arguments cent1P {gT x y}.
Arguments normalP {gT A B}.
Arguments centsP {gT A B}.
Arguments commG1P {gT A B}.
Arguments normaliser_group _ _%g.
Arguments centraliser_group _ _%g.
Notation "''N' ( A )" := (normaliser_group A) : Group_scope.
Notation "''C' ( A )" := (centraliser_group A) : Group_scope.
Notation "''C' [ x ]" := (normaliser_group [set x%g]) : Group_scope.
Notation "''N_' G ( A )" := (setI_group G 'N(A)) : Group_scope.
Notation "''C_' G ( A )" := (setI_group G 'C(A)) : Group_scope.
Notation "''C_' ( G ) ( A )" := (setI_group G 'C(A))
(only parsing) : Group_scope.
Notation "''C_' G [ x ]" := (setI_group G 'C[x]) : Group_scope.
Notation "''C_' ( G ) [ x ]" := (setI_group G 'C[x])
(only parsing) : Group_scope.
#[global] Hint Extern 0 (is_true (_ \subset _)) => apply: normG : core.
#[global] Hint Extern 0 (is_true (_ <| _)) => apply: normal_refl : core.
Section MinMaxGroup.
Variable gT : finGroupType.
Implicit Types gP : pred {group gT}.
Definition maxgroup A gP := maxset (fun A => group_set A && gP <<A>>%G) A.
Definition mingroup A gP := minset (fun A => group_set A && gP <<A>>%G) A.
Variable gP : pred {group gT}.
Arguments gP _%G.
Lemma ex_maxgroup : (exists G, gP G) -> {G : {group gT} | maxgroup G gP}.
Proof.
move=> exP; have [A maxA]: {A | maxgroup A gP}.
apply: ex_maxset; case: exP => G gPG.
by exists (G : {set gT}); rewrite groupP genGidG.
by exists <<A>>%G; rewrite /= gen_set_id; case/andP: (maxsetp maxA).
Qed.
Lemma ex_mingroup : (exists G, gP G) -> {G : {group gT} | mingroup G gP}.
Proof.
move=> exP; have [A minA]: {A | mingroup A gP}.
apply: ex_minset; case: exP => G gPG.
by exists (G : {set gT}); rewrite groupP genGidG.
by exists <<A>>%G; rewrite /= gen_set_id; case/andP: (minsetp minA).
Qed.
Variable G : {group gT}.
Lemma mingroupP :
reflect (gP G /\ forall H, gP H -> H \subset G -> H :=: G) (mingroup G gP).
Proof.
apply: (iffP minsetP); rewrite /= groupP genGidG /= => [] [-> minG].
by split=> // H gPH sGH; apply: minG; rewrite // groupP genGidG.
by split=> // A; case/andP=> gA gPA; rewrite -(gen_set_id gA); apply: minG.
Qed.
Lemma maxgroupP :
reflect (gP G /\ forall H, gP H -> G \subset H -> H :=: G) (maxgroup G gP).
Proof.
apply: (iffP maxsetP); rewrite /= groupP genGidG /= => [] [-> maxG].
by split=> // H gPH sGH; apply: maxG; rewrite // groupP genGidG.
by split=> // A; case/andP=> gA gPA; rewrite -(gen_set_id gA); apply: maxG.
Qed.
Lemma maxgroupp : maxgroup G gP -> gP G. Proof. by case/maxgroupP. Qed.
Lemma mingroupp : mingroup G gP -> gP G. Proof. by case/mingroupP. Qed.
Hypothesis gPG : gP G.
Lemma maxgroup_exists : {H : {group gT} | maxgroup H gP & G \subset H}.
Proof.
have [A maxA sGA]: {A | maxgroup A gP & G \subset A}.
by apply: maxset_exists; rewrite groupP genGidG.
by exists <<A>>%G; rewrite /= gen_set_id; case/andP: (maxsetp maxA).
Qed.
Lemma mingroup_exists : {H : {group gT} | mingroup H gP & H \subset G}.
Proof.
have [A maxA sGA]: {A | mingroup A gP & A \subset G}.
by apply: minset_exists; rewrite groupP genGidG.
by exists <<A>>%G; rewrite /= gen_set_id; case/andP: (minsetp maxA).
Qed.
End MinMaxGroup.
Arguments mingroup {gT} A%g gP.
Arguments maxgroup {gT} A%g gP.
Arguments mingroupP {gT gP G}.
Arguments maxgroupP {gT gP G}.
Notation "[ 'max' A 'of' G | gP ]" :=
(maxgroup A (fun G : {group _} => gP)) : group_scope.
Notation "[ 'max' G | gP ]" := [max gval G of G | gP] : group_scope.
Notation "[ 'max' A 'of' G | gP & gQ ]" :=
[max A of G | gP && gQ] : group_scope.
Notation "[ 'max' G | gP & gQ ]" := [max G | gP && gQ] : group_scope.
Notation "[ 'min' A 'of' G | gP ]" :=
(mingroup A (fun G : {group _} => gP)) : group_scope.
Notation "[ 'min' G | gP ]" := [min gval G of G | gP] : group_scope.
Notation "[ 'min' A 'of' G | gP & gQ ]" :=
[min A of G | gP && gQ] : group_scope.
Notation "[ 'min' G | gP & gQ ]" := [min G | gP && gQ] : group_scope.
|