Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 29,026 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
(******************************************************************************)
(* This file contains the definitions of: *)
(* choiceType == interface for types with a choice operator. *)
(* countType == interface for countable types (implies choiceType). *)
(* subCountType == interface for types that are both subType and countType. *)
(* xchoose exP == a standard x such that P x, given exP : exists x : T, P x *)
(* when T is a choiceType. The choice depends only on the *)
(* extent of P (in particular, it is independent of exP). *)
(* choose P x0 == if P x0, a standard x such that P x. *)
(* pickle x == a nat encoding the value x : T, where T is a countType. *)
(* unpickle n == a partial inverse to pickle: unpickle (pickle x) = Some x *)
(* pickle_inv n == a sharp partial inverse to pickle pickle_inv n = Some x *)
(* if and only if pickle x = n. *)
(* choiceMixin T == type of choice mixins; the exact contents is *)
(* documented below in the Choice submodule. *)
(* ChoiceType T m == the packed choiceType class for T and mixin m. *)
(* [choiceType of T for cT] == clone for T of the choiceType cT. *)
(* [choiceType of T] == clone for T of the choiceType inferred for T. *)
(* CountType T m == the packed countType class for T and mixin m. *)
(* [countType of T for cT] == clone for T of the countType cT. *)
(* [count Type of T] == clone for T of the countType inferred for T. *)
(* [choiceMixin of T by <:] == Choice mixin for T when T has a subType p *)
(* structure with p : pred cT and cT has a Choice *)
(* structure; the corresponding structure is Canonical.*)
(* [countMixin of T by <:] == Count mixin for a subType T of a countType. *)
(* PcanChoiceMixin fK == Choice mixin for T, given f : T -> cT where cT has *)
(* a Choice structure, a left inverse partial function *)
(* g and fK : pcancel f g. *)
(* CanChoiceMixin fK == Choice mixin for T, given f : T -> cT, g and *)
(* fK : cancel f g. *)
(* PcanCountMixin fK == Count mixin for T, given f : T -> cT where cT has *)
(* a Countable structure, a left inverse partial *)
(* function g and fK : pcancel f g. *)
(* CanCountMixin fK == Count mixin for T, given f : T -> cT, g and *)
(* fK : cancel f g. *)
(* GenTree.tree T == generic n-ary tree type with nat-labeled nodes and *)
(* T-labeled leaves, for example GenTree.Leaf (x : T), *)
(* GenTree.Node 5 [:: t; t']. GenTree.tree is equipped *)
(* with canonical eqType, choiceType, and countType *)
(* instances, and so simple datatypes can be similarly *)
(* equipped by encoding into GenTree.tree and using *)
(* the mixins above. *)
(* CodeSeq.code == bijection from seq nat to nat. *)
(* CodeSeq.decode == bijection inverse to CodeSeq.code. *)
(* In addition to the lemmas relevant to these definitions, this file also *)
(* contains definitions of a Canonical choiceType and countType instances for *)
(* all basic datatypes (e.g., nat, bool, subTypes, pairs, sums, etc.). *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* Technical definitions about coding and decoding of nat sequences, which *)
(* are used below to define various Canonical instances of the choice and *)
(* countable interfaces. *)
Module CodeSeq.
(* Goedel-style one-to-one encoding of seq nat into nat. *)
(* The code for [:: n1; ...; nk] has binary representation *)
(* 1 0 ... 0 1 ... 1 0 ... 0 1 0 ... 0 *)
(* <-----> <-----> <-----> *)
(* nk 0s n2 0s n1 0s *)
Definition code := foldr (fun n m => 2 ^ n * m.*2.+1) 0.
Fixpoint decode_rec (v q r : nat) {struct q} :=
match q, r with
| 0, _ => [:: v]
| q'.+1, 0 => v :: [rec 0, q', q']
| q'.+1, 1 => [rec v.+1, q', q']
| q'.+1, r'.+2 => [rec v, q', r']
end where "[ 'rec' v , q , r ]" := (decode_rec v q r).
Arguments decode_rec : simpl nomatch.
Definition decode n := if n is 0 then [::] else [rec 0, n.-1, n.-1].
Lemma decodeK : cancel decode code.
Proof.
have m2s: forall n, n.*2 - n = n by move=> n; rewrite -addnn addnK.
case=> //= n; rewrite -[n.+1]mul1n -(expn0 2) -[n in RHS]m2s.
elim: n {2 4}n {1 3}0 => [|q IHq] [|[|r]] v //=; rewrite {}IHq ?mul1n ?m2s //.
by rewrite expnSr -mulnA mul2n.
Qed.
Lemma codeK : cancel code decode.
Proof.
elim=> //= v s IHs; rewrite -[_ * _]prednK ?muln_gt0 ?expn_gt0 //=.
set two := 2; rewrite -[v in RHS]addn0; elim: v 0 => [|v IHv {IHs}] q.
rewrite mul1n add0n /= -{}[in RHS]IHs; case: (code s) => // u; pose n := u.+1.
by transitivity [rec q, n + u.+1, n.*2]; [rewrite addnn | elim: n => //=].
rewrite expnS -mulnA mul2n -{1}addnn -[_ * _]prednK ?muln_gt0 ?expn_gt0 //.
set u := _.-1 in IHv *; set n := u; rewrite [in u1 in _ + u1]/n.
by rewrite [in RHS]addSnnS -{}IHv; elim: n.
Qed.
Lemma ltn_code s : all (fun j => j < code s) s.
Proof.
elim: s => //= i s IHs; rewrite -[_.+1]muln1 leq_mul 1?ltn_expl //=.
apply: sub_all IHs => j /leqW lejs; rewrite -[j.+1]mul1n leq_mul ?expn_gt0 //.
by rewrite ltnS -[j]mul1n -mul2n leq_mul.
Qed.
Lemma gtn_decode n : all (ltn^~ n) (decode n).
Proof. by rewrite -{1}[n]decodeK ltn_code. Qed.
End CodeSeq.
Section OtherEncodings.
(* Miscellaneous encodings: option T -c-> seq T, T1 * T2 -c-> {i : T1 & T2} *)
(* T1 + T2 -c-> option T1 * option T2, unit -c-> bool; bool -c-> nat is *)
(* already covered in ssrnat by the nat_of_bool coercion, the odd predicate, *)
(* and their "cancellation" lemma oddb. We use these encodings to propagate *)
(* canonical structures through these type constructors so that ultimately *)
(* all Choice and Countable instanced derive from nat and the seq and sigT *)
(* constructors. *)
Variables T T1 T2 : Type.
Definition seq_of_opt := @oapp T _ (nseq 1) [::].
Lemma seq_of_optK : cancel seq_of_opt ohead. Proof. by case. Qed.
Definition tag_of_pair (p : T1 * T2) := @Tagged T1 p.1 (fun _ => T2) p.2.
Definition pair_of_tag (u : {i : T1 & T2}) := (tag u, tagged u).
Lemma tag_of_pairK : cancel tag_of_pair pair_of_tag. Proof. by case. Qed.
Lemma pair_of_tagK : cancel pair_of_tag tag_of_pair. Proof. by case. Qed.
Definition opair_of_sum (s : T1 + T2) :=
match s with inl x => (Some x, None) | inr y => (None, Some y) end.
Definition sum_of_opair p :=
oapp (some \o @inr T1 T2) (omap (@inl _ T2) p.1) p.2.
Lemma opair_of_sumK : pcancel opair_of_sum sum_of_opair. Proof. by case. Qed.
Lemma bool_of_unitK : cancel (fun _ => true) (fun _ => tt).
Proof. by case. Qed.
End OtherEncodings.
Prenex Implicits seq_of_opt tag_of_pair pair_of_tag opair_of_sum sum_of_opair.
Prenex Implicits seq_of_optK tag_of_pairK pair_of_tagK opair_of_sumK.
(* Generic variable-arity tree type, providing an encoding target for *)
(* miscellaneous user datatypes. The GenTree.tree type can be combined with *)
(* a sigT type to model multi-sorted concrete datatypes. *)
Module GenTree.
Section Def.
Variable T : Type.
Unset Elimination Schemes.
Inductive tree := Leaf of T | Node of nat & seq tree.
Definition tree_rect K IH_leaf IH_node :=
fix loop t : K t := match t with
| Leaf x => IH_leaf x
| Node n f0 =>
let fix iter_pair f : foldr (fun t => prod (K t)) unit f :=
if f is t :: f' then (loop t, iter_pair f') else tt in
IH_node n f0 (iter_pair f0)
end.
Definition tree_rec (K : tree -> Set) := @tree_rect K.
Definition tree_ind K IH_leaf IH_node :=
fix loop t : K t : Prop := match t with
| Leaf x => IH_leaf x
| Node n f0 =>
let fix iter_conj f : foldr (fun t => and (K t)) True f :=
if f is t :: f' then conj (loop t) (iter_conj f') else Logic.I
in IH_node n f0 (iter_conj f0)
end.
Fixpoint encode t : seq (nat + T) :=
match t with
| Leaf x => [:: inr _ x]
| Node n f => inl _ n.+1 :: rcons (flatten (map encode f)) (inl _ 0)
end.
Definition decode_step c fs :=
match c with
| inr x => (Leaf x :: fs.1, fs.2)
| inl 0 => ([::], fs.1 :: fs.2)
| inl n.+1 => (Node n fs.1 :: head [::] fs.2, behead fs.2)
end.
Definition decode c := ohead (foldr decode_step ([::], [::]) c).1.
Lemma codeK : pcancel encode decode.
Proof.
move=> t; rewrite /decode; set fs := (_, _).
suffices ->: foldr decode_step fs (encode t) = (t :: fs.1, fs.2) by [].
elim: t => //= n f IHt in (fs) *; elim: f IHt => //= t f IHf [].
by rewrite rcons_cat foldr_cat => -> /= /IHf[-> -> ->].
Qed.
End Def.
End GenTree.
Arguments GenTree.codeK : clear implicits.
Definition tree_eqMixin (T : eqType) := PcanEqMixin (GenTree.codeK T).
Canonical tree_eqType (T : eqType) := EqType (GenTree.tree T) (tree_eqMixin T).
(* Structures for Types with a choice function, and for Types with countably *)
(* many elements. The two concepts are closely linked: we indeed make *)
(* Countable a subclass of Choice, as countable choice is valid in CiC. This *)
(* apparent redundancy is needed to ensure the consistency of the Canonical *)
(* inference, as the canonical Choice for a given type may differ from the *)
(* countable choice for its canonical Countable structure, e.g., for options. *)
(* The Choice interface exposes two choice functions; for T : choiceType *)
(* and P : pred T, we provide: *)
(* xchoose : (exists x, P x) -> T *)
(* choose : pred T -> T -> T *)
(* While P (xchoose exP) will always hold, P (choose P x0) will be true if *)
(* and only if P x0 holds. Both xchoose and choose are extensional in P and *)
(* do not depend on the witness exP or x0 (provided P x0 holds). Note that *)
(* xchoose is slightly more powerful, but less convenient to use. *)
(* However, neither choose nor xchoose are composable: it would not be *)
(* be possible to extend the Choice structure to arbitrary pairs using only *)
(* these functions, for instance. Internally, the interfaces provides a *)
(* subtly stronger operation, Choice.InternalTheory.find, which performs a *)
(* limited search using an integer parameter only rather than a full value as *)
(* [x]choose does. This is not a restriction in a constructive theory, where *)
(* all types are concrete and hence countable. In the case of an axiomatic *)
(* theory, such as that of the Coq reals library, postulating a suitable *)
(* axiom of choice suppresses the need for guidance. Nevertheless this *)
(* operation is just what is needed to make the Choice interface compose. *)
(* The Countable interface provides three functions; for T : countType we *)
(* get pickle : T -> nat, and unpickle, pickle_inv : nat -> option T. *)
(* The functions provide an effective embedding of T in nat: unpickle is a *)
(* left inverse to pickle, which satisfies pcancel pickle unpickle, i.e., *)
(* unpickle \o pickle =1 some; pickle_inv is a more precise inverse for which *)
(* we also have ocancel pickle_inv pickle. Both unpickle and pickle need to *)
(* be partial functions to allow for possibly empty types such as {x | P x}. *)
(* The names of these functions underline the correspondence with the *)
(* notion of "Serializable" types in programming languages. *)
(* Finally, we need to provide a join class to let type inference unify *)
(* subType and countType class constraints, e.g., for a countable subType of *)
(* an uncountable choiceType (the issue does not arise earlier with eqType or *)
(* choiceType because in practice the base type of an Equality/Choice subType *)
(* is always an Equality/Choice Type). *)
Module Choice.
Section ClassDef.
Record mixin_of T := Mixin {
find : pred T -> nat -> option T;
_ : forall P n x, find P n = Some x -> P x;
_ : forall P : pred T, (exists x, P x) -> exists n, find P n;
_ : forall P Q : pred T, P =1 Q -> find P =1 find Q
}.
Set Primitive Projections.
Record class_of T := Class {base : Equality.class_of T; mixin : mixin_of T}.
Unset Primitive Projections.
Local Coercion base : class_of >-> Equality.class_of.
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Definition clone c of phant_id class c := @Pack T c.
Definition pack m :=
fun b bT & phant_id (Equality.class bT) b => Pack (@Class T b m).
(* Inheritance *)
Definition eqType := @Equality.Pack cT class.
End ClassDef.
Module Import Exports.
Coercion base : class_of >-> Equality.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Notation choiceType := type.
Notation choiceMixin := mixin_of.
Notation ChoiceType T m := (@pack T m _ _ id).
Notation "[ 'choiceType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'choiceType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'choiceType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'choiceType' 'of' T ]") : form_scope.
End Exports.
Module InternalTheory.
Section InternalTheory.
(* Inner choice function. *)
Definition find T := find (mixin (class T)).
Variable T : choiceType.
Implicit Types P Q : pred T.
Lemma correct P n x : find P n = Some x -> P x.
Proof. by case: T => _ [_ []] //= in P n x *. Qed.
Lemma complete P : (exists x, P x) -> (exists n, find P n).
Proof. by case: T => _ [_ []] //= in P *. Qed.
Lemma extensional P Q : P =1 Q -> find P =1 find Q.
Proof. by case: T => _ [_ []] //= in P Q *. Qed.
Fact xchoose_subproof P exP : {x | find P (ex_minn (@complete P exP)) = Some x}.
Proof.
by case: (ex_minnP (complete exP)) => n; case: (find P n) => // x; exists x.
Qed.
End InternalTheory.
End InternalTheory.
End Choice.
Export Choice.Exports.
Section ChoiceTheory.
Implicit Type T : choiceType.
Import Choice.InternalTheory CodeSeq.
Local Notation dc := decode.
Section OneType.
Variable T : choiceType.
Implicit Types P Q : pred T.
Definition xchoose P exP := sval (@xchoose_subproof T P exP).
Lemma xchooseP P exP : P (@xchoose P exP).
Proof. by rewrite /xchoose; case: (xchoose_subproof exP) => x /= /correct. Qed.
Lemma eq_xchoose P Q exP exQ : P =1 Q -> @xchoose P exP = @xchoose Q exQ.
Proof.
rewrite /xchoose => eqPQ.
case: (xchoose_subproof exP) => x; case: (xchoose_subproof exQ) => y /=.
case: ex_minnP => n; rewrite -(extensional eqPQ) => Pn minQn.
case: ex_minnP => m; rewrite !(extensional eqPQ) => Qm minPm.
by case: (eqVneq m n) => [-> -> [] //|]; rewrite eqn_leq minQn ?minPm.
Qed.
Lemma sigW P : (exists x, P x) -> {x | P x}.
Proof. by move=> exP; exists (xchoose exP); apply: xchooseP. Qed.
Lemma sig2W P Q : (exists2 x, P x & Q x) -> {x | P x & Q x}.
Proof.
move=> exPQ; have [|x /andP[]] := @sigW (predI P Q); last by exists x.
by have [x Px Qx] := exPQ; exists x; apply/andP.
Qed.
Lemma sig_eqW (vT : eqType) (lhs rhs : T -> vT) :
(exists x, lhs x = rhs x) -> {x | lhs x = rhs x}.
Proof.
move=> exP; suffices [x /eqP Ex]: {x | lhs x == rhs x} by exists x.
by apply: sigW; have [x /eqP Ex] := exP; exists x.
Qed.
Lemma sig2_eqW (vT : eqType) (P : pred T) (lhs rhs : T -> vT) :
(exists2 x, P x & lhs x = rhs x) -> {x | P x & lhs x = rhs x}.
Proof.
move=> exP; suffices [x Px /eqP Ex]: {x | P x & lhs x == rhs x} by exists x.
by apply: sig2W; have [x Px /eqP Ex] := exP; exists x.
Qed.
Definition choose P x0 :=
if insub x0 : {? x | P x} is Some (exist x Px) then
xchoose (ex_intro [eta P] x Px)
else x0.
Lemma chooseP P x0 : P x0 -> P (choose P x0).
Proof. by move=> Px0; rewrite /choose insubT xchooseP. Qed.
Lemma choose_id P x0 y0 : P x0 -> P y0 -> choose P x0 = choose P y0.
Proof. by move=> Px0 Py0; rewrite /choose !insubT /=; apply: eq_xchoose. Qed.
Lemma eq_choose P Q : P =1 Q -> choose P =1 choose Q.
Proof.
rewrite /choose => eqPQ x0.
do [case: insubP; rewrite eqPQ] => [[x Px] Qx0 _| ?]; last by rewrite insubN.
by rewrite insubT; apply: eq_xchoose.
Qed.
Section CanChoice.
Variables (sT : Type) (f : sT -> T).
Lemma PcanChoiceMixin f' : pcancel f f' -> choiceMixin sT.
Proof.
move=> fK; pose liftP sP := [pred x | oapp sP false (f' x)].
pose sf sP := [fun n => obind f' (find (liftP sP) n)].
exists sf => [sP n x | sP [y sPy] | sP sQ eqPQ n] /=.
- by case Df: (find _ n) => //= [?] Dx; have:= correct Df; rewrite /= Dx.
- have [|n Pn] := @complete T (liftP sP); first by exists (f y); rewrite /= fK.
exists n; case Df: (find _ n) Pn => //= [x] _.
by have:= correct Df => /=; case: (f' x).
by congr (obind _ _); apply: extensional => x /=; case: (f' x) => /=.
Qed.
Definition CanChoiceMixin f' (fK : cancel f f') :=
PcanChoiceMixin (can_pcan fK).
End CanChoice.
Section SubChoice.
Variables (P : pred T) (sT : subType P).
Definition sub_choiceMixin := PcanChoiceMixin (@valK T P sT).
Definition sub_choiceClass := @Choice.Class sT (sub_eqMixin sT) sub_choiceMixin.
Canonical sub_choiceType := Choice.Pack sub_choiceClass.
End SubChoice.
Fact seq_choiceMixin : choiceMixin (seq T).
Proof.
pose r f := [fun xs => fun x : T => f (x :: xs) : option (seq T)].
pose fix f sP ns xs {struct ns} :=
if ns is n :: ns1 then let fr := r (f sP ns1) xs in obind fr (find fr n)
else if sP xs then Some xs else None.
exists (fun sP nn => f sP (dc nn) nil) => [sP n ys | sP [ys] | sP sQ eqPQ n].
- elim: {n}(dc n) nil => [|n ns IHs] xs /=; first by case: ifP => // sPxs [<-].
by case: (find _ n) => //= [x]; apply: IHs.
- rewrite -(cats0 ys); elim/last_ind: ys nil => [|ys y IHs] xs /=.
by move=> sPxs; exists 0; rewrite /= sPxs.
rewrite cat_rcons => /IHs[n1 sPn1] {IHs}.
have /complete[n]: exists z, f sP (dc n1) (z :: xs) by exists y.
case Df: (find _ n)=> // [x] _; exists (code (n :: dc n1)).
by rewrite codeK /= Df /= (correct Df).
elim: {n}(dc n) nil => [|n ns IHs] xs /=; first by rewrite eqPQ.
rewrite (@extensional _ _ (r (f sQ ns) xs)) => [|x]; last by rewrite IHs.
by case: find => /=.
Qed.
Canonical seq_choiceType := Eval hnf in ChoiceType (seq T) seq_choiceMixin.
End OneType.
Section TagChoice.
Variables (I : choiceType) (T_ : I -> choiceType).
Fact tagged_choiceMixin : choiceMixin {i : I & T_ i}.
Proof.
pose mkT i (x : T_ i) := Tagged T_ x.
pose ft tP n i := omap (mkT i) (find (tP \o mkT i) n).
pose fi tP ni nt := obind (ft tP nt) (find (ft tP nt) ni).
pose f tP n := if dc n is [:: ni; nt] then fi tP ni nt else None.
exists f => [tP n u | tP [[i x] tPxi] | sP sQ eqPQ n].
- rewrite /f /fi; case: (dc n) => [|ni [|nt []]] //=.
case: (find _ _) => //= [i]; rewrite /ft.
by case Df: (find _ _) => //= [x] [<-]; have:= correct Df.
- have /complete[nt tPnt]: exists y, (tP \o mkT i) y by exists x.
have{tPnt}: exists j, ft tP nt j by exists i; rewrite /ft; case: find tPnt.
case/complete=> ni tPn; exists (code [:: ni; nt]); rewrite /f codeK /fi.
by case Df: find tPn => //= [j] _; have:= correct Df.
rewrite /f /fi; case: (dc n) => [|ni [|nt []]] //=.
rewrite (@extensional _ _ (ft sQ nt)) => [|i].
by case: find => //= i; congr (omap _ _); apply: extensional => x /=.
by congr (omap _ _); apply: extensional => x /=.
Qed.
Canonical tagged_choiceType :=
Eval hnf in ChoiceType {i : I & T_ i} tagged_choiceMixin.
End TagChoice.
Fact nat_choiceMixin : choiceMixin nat.
Proof.
pose f := [fun (P : pred nat) n => if P n then Some n else None].
exists f => [P n m | P [n Pn] | P Q eqPQ n] /=; last by rewrite eqPQ.
by case: ifP => // Pn [<-].
by exists n; rewrite Pn.
Qed.
Canonical nat_choiceType := Eval hnf in ChoiceType nat nat_choiceMixin.
Definition bool_choiceMixin := CanChoiceMixin oddb.
Canonical bool_choiceType := Eval hnf in ChoiceType bool bool_choiceMixin.
Canonical bitseq_choiceType := Eval hnf in [choiceType of bitseq].
Definition unit_choiceMixin := CanChoiceMixin bool_of_unitK.
Canonical unit_choiceType := Eval hnf in ChoiceType unit unit_choiceMixin.
Definition void_choiceMixin := PcanChoiceMixin (of_voidK unit).
Canonical void_choiceType := Eval hnf in ChoiceType void void_choiceMixin.
Definition option_choiceMixin T := CanChoiceMixin (@seq_of_optK T).
Canonical option_choiceType T :=
Eval hnf in ChoiceType (option T) (option_choiceMixin T).
Definition sig_choiceMixin T (P : pred T) : choiceMixin {x | P x} :=
sub_choiceMixin _.
Canonical sig_choiceType T (P : pred T) :=
Eval hnf in ChoiceType {x | P x} (sig_choiceMixin P).
Definition prod_choiceMixin T1 T2 := CanChoiceMixin (@tag_of_pairK T1 T2).
Canonical prod_choiceType T1 T2 :=
Eval hnf in ChoiceType (T1 * T2) (prod_choiceMixin T1 T2).
Definition sum_choiceMixin T1 T2 := PcanChoiceMixin (@opair_of_sumK T1 T2).
Canonical sum_choiceType T1 T2 :=
Eval hnf in ChoiceType (T1 + T2) (sum_choiceMixin T1 T2).
Definition tree_choiceMixin T := PcanChoiceMixin (GenTree.codeK T).
Canonical tree_choiceType T := ChoiceType (GenTree.tree T) (tree_choiceMixin T).
End ChoiceTheory.
Prenex Implicits xchoose choose.
Notation "[ 'choiceMixin' 'of' T 'by' <: ]" :=
(sub_choiceMixin _ : choiceMixin T)
(at level 0, format "[ 'choiceMixin' 'of' T 'by' <: ]") : form_scope.
Module Countable.
Record mixin_of (T : Type) : Type := Mixin {
pickle : T -> nat;
unpickle : nat -> option T;
pickleK : pcancel pickle unpickle
}.
Definition EqMixin T m := PcanEqMixin (@pickleK T m).
Definition ChoiceMixin T m := PcanChoiceMixin (@pickleK T m).
Section ClassDef.
Set Primitive Projections.
Record class_of T := Class { base : Choice.class_of T; mixin : mixin_of T }.
Unset Primitive Projections.
Local Coercion base : class_of >-> Choice.class_of.
Structure type : Type := Pack {sort : Type; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Definition clone c of phant_id class c := @Pack T c.
Definition pack m :=
fun bT b & phant_id (Choice.class bT) b => Pack (@Class T b m).
Definition eqType := @Equality.Pack cT class.
Definition choiceType := @Choice.Pack cT class.
End ClassDef.
Module Exports.
Coercion base : class_of >-> Choice.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Notation countType := type.
Notation CountType T m := (@pack T m _ _ id).
Notation CountMixin := Mixin.
Notation CountChoiceMixin := ChoiceMixin.
Notation "[ 'countType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'countType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'countType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'countType' 'of' T ]") : form_scope.
End Exports.
End Countable.
Export Countable.Exports.
Definition unpickle T := Countable.unpickle (Countable.class T).
Definition pickle T := Countable.pickle (Countable.class T).
Arguments unpickle {T} n.
Arguments pickle {T} x.
Section CountableTheory.
Variable T : countType.
Lemma pickleK : @pcancel nat T pickle unpickle.
Proof. exact: Countable.pickleK. Qed.
Definition pickle_inv n :=
obind (fun x : T => if pickle x == n then Some x else None) (unpickle n).
Lemma pickle_invK : ocancel pickle_inv pickle.
Proof.
by rewrite /pickle_inv => n; case def_x: (unpickle n) => //= [x]; case: eqP.
Qed.
Lemma pickleK_inv : pcancel pickle pickle_inv.
Proof. by rewrite /pickle_inv => x; rewrite pickleK /= eqxx. Qed.
Lemma pcan_pickleK sT f f' :
@pcancel T sT f f' -> pcancel (pickle \o f) (pcomp f' unpickle).
Proof. by move=> fK x; rewrite /pcomp pickleK /= fK. Qed.
Definition PcanCountMixin sT f f' (fK : pcancel f f') :=
@CountMixin sT _ _ (pcan_pickleK fK).
Definition CanCountMixin sT f f' (fK : cancel f f') :=
@PcanCountMixin sT _ _ (can_pcan fK).
Definition sub_countMixin P sT := PcanCountMixin (@valK T P sT).
Definition pickle_seq s := CodeSeq.code (map (@pickle T) s).
Definition unpickle_seq n := Some (pmap (@unpickle T) (CodeSeq.decode n)).
Lemma pickle_seqK : pcancel pickle_seq unpickle_seq.
Proof. by move=> s; rewrite /unpickle_seq CodeSeq.codeK (map_pK pickleK). Qed.
Definition seq_countMixin := CountMixin pickle_seqK.
Canonical seq_countType := Eval hnf in CountType (seq T) seq_countMixin.
End CountableTheory.
Notation "[ 'countMixin' 'of' T 'by' <: ]" :=
(sub_countMixin _ : Countable.mixin_of T)
(at level 0, format "[ 'countMixin' 'of' T 'by' <: ]") : form_scope.
Arguments pickle_inv {T} n.
Arguments pickleK {T} x.
Arguments pickleK_inv {T} x.
Arguments pickle_invK {T} n : rename.
Section SubCountType.
Variables (T : choiceType) (P : pred T).
Import Countable.
Structure subCountType : Type :=
SubCountType {subCount_sort :> subType P; _ : mixin_of subCount_sort}.
Coercion sub_countType (sT : subCountType) :=
Eval hnf in pack (let: SubCountType _ m := sT return mixin_of sT in m) id.
Canonical sub_countType.
Definition pack_subCountType U :=
fun sT cT & sub_sort sT * sort cT -> U * U =>
fun b m & phant_id (Class b m) (class cT) => @SubCountType sT m.
End SubCountType.
(* This assumes that T has both countType and subType structures. *)
Notation "[ 'subCountType' 'of' T ]" :=
(@pack_subCountType _ _ T _ _ id _ _ id)
(at level 0, format "[ 'subCountType' 'of' T ]") : form_scope.
Section TagCountType.
Variables (I : countType) (T_ : I -> countType).
Definition pickle_tagged (u : {i : I & T_ i}) :=
CodeSeq.code [:: pickle (tag u); pickle (tagged u)].
Definition unpickle_tagged s :=
if CodeSeq.decode s is [:: ni; nx] then
obind (fun i => omap (@Tagged I i T_) (unpickle nx)) (unpickle ni)
else None.
Lemma pickle_taggedK : pcancel pickle_tagged unpickle_tagged.
Proof.
by case=> i x; rewrite /unpickle_tagged CodeSeq.codeK /= pickleK /= pickleK.
Qed.
Definition tag_countMixin := CountMixin pickle_taggedK.
Canonical tag_countType := Eval hnf in CountType {i : I & T_ i} tag_countMixin.
End TagCountType.
(* The remaining Canonicals for standard datatypes. *)
Section CountableDataTypes.
Implicit Type T : countType.
Lemma nat_pickleK : pcancel id (@Some nat). Proof. by []. Qed.
Definition nat_countMixin := CountMixin nat_pickleK.
Canonical nat_countType := Eval hnf in CountType nat nat_countMixin.
Definition bool_countMixin := CanCountMixin oddb.
Canonical bool_countType := Eval hnf in CountType bool bool_countMixin.
Canonical bitseq_countType := Eval hnf in [countType of bitseq].
Definition unit_countMixin := CanCountMixin bool_of_unitK.
Canonical unit_countType := Eval hnf in CountType unit unit_countMixin.
Definition void_countMixin := PcanCountMixin (of_voidK unit).
Canonical void_countType := Eval hnf in CountType void void_countMixin.
Definition option_countMixin T := CanCountMixin (@seq_of_optK T).
Canonical option_countType T :=
Eval hnf in CountType (option T) (option_countMixin T).
Definition sig_countMixin T (P : pred T) := [countMixin of {x | P x} by <:].
Canonical sig_countType T (P : pred T) :=
Eval hnf in CountType {x | P x} (sig_countMixin P).
Canonical sig_subCountType T (P : pred T) :=
Eval hnf in [subCountType of {x | P x}].
Definition prod_countMixin T1 T2 := CanCountMixin (@tag_of_pairK T1 T2).
Canonical prod_countType T1 T2 :=
Eval hnf in CountType (T1 * T2) (prod_countMixin T1 T2).
Definition sum_countMixin T1 T2 := PcanCountMixin (@opair_of_sumK T1 T2).
Canonical sum_countType T1 T2 :=
Eval hnf in CountType (T1 + T2) (sum_countMixin T1 T2).
Definition tree_countMixin T := PcanCountMixin (GenTree.codeK T).
Canonical tree_countType T := CountType (GenTree.tree T) (tree_countMixin T).
End CountableDataTypes.
|