Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 37,861 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat.
From mathcomp Require Import seq path fintype.
(******************************************************************************)
(* This file develops the theory of finite graphs represented by an "edge" *)
(* relation over a finType T; this mainly amounts to the theory of the *)
(* transitive closure of such relations. *)
(* For g : T -> seq T, e : rel T and f : T -> T we define: *)
(* grel g == the adjacency relation y \in g x of the graph g. *)
(* rgraph e == the graph (x |-> enum (e x)) of the relation e. *)
(* dfs g n v x == the list of points traversed by a depth-first search of *)
(* the g, at depth n, starting from x, and avoiding v. *)
(* dfs_path g v x y <-> there is a path from x to y in g \ v. *)
(* connect e == the reflexive transitive closure of e (computed by dfs). *)
(* connect_sym e <-> connect e is symmetric, hence an equivalence relation. *)
(* root e x == a representative of connect e x, which is the component *)
(* of x in the transitive closure of e. *)
(* roots e == the codomain predicate of root e. *)
(* n_comp e a == the number of e-connected components of a, when a is *)
(* e-closed and connect e is symmetric. *)
(* equivalence classes of connect e if connect_sym e holds. *)
(* closed e a == the collective predicate a is e-invariant. *)
(* closure e a == the e-closure of a (the image of a under connect e). *)
(* rel_adjunction h e e' a <-> in the e-closed domain a, h is the left part *)
(* of an adjunction from e to another relation e'. *)
(* fconnect f == connect (frel f), i.e., "connected under f iteration". *)
(* froot f x == root (frel f) x, the root of the orbit of x under f. *)
(* froots f == roots (frel f) == orbit representatives for f. *)
(* orbit f x == lists the f-orbit of x. *)
(* findex f x y == index of y in the f-orbit of x. *)
(* order f x == size (cardinal) of the f-orbit of x. *)
(* order_set f n == elements of f-order n. *)
(* finv f == the inverse of f, if f is injective. *)
(* := finv f x := iter (order x).-1 f x. *)
(* fcard f a == number of orbits of f in a, provided a is f-invariant *)
(* f is one-to-one. *)
(* fclosed f a == the collective predicate a is f-invariant. *)
(* fclosure f a == the closure of a under f iteration. *)
(* fun_adjunction == rel_adjunction (frel f). *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Definition grel (T : eqType) (g : T -> seq T) := [rel x y | y \in g x].
(* Decidable connectivity in finite types. *)
Section Connect.
Variable T : finType.
Section Dfs.
Variable g : T -> seq T.
Implicit Type v w a : seq T.
Fixpoint dfs n v x :=
if x \in v then v else
if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v.
Lemma subset_dfs n v a : v \subset foldl (dfs n) v a.
Proof.
elim: n a v => [|n IHn]; first by elim=> //= *; rewrite if_same.
elim=> //= x a IHa v; apply: subset_trans {IHa}(IHa _); case: ifP => // _.
by apply: subset_trans (IHn _ _); apply/subsetP=> y; apply: predU1r.
Qed.
Inductive dfs_path v x y : Prop :=
DfsPath p of path (grel g) x p & y = last x p & [disjoint x :: p & v].
Lemma dfs_pathP n x y v :
#|T| <= #|v| + n -> y \notin v -> reflect (dfs_path v x y) (y \in dfs n v x).
Proof.
have dfs_id w z: z \notin w -> dfs_path w z z.
by exists [::]; rewrite ?disjoint_has //= orbF.
elim: n => [|n IHn] /= in x y v * => le_v'_n not_vy.
rewrite addn0 (geq_leqif (subset_leqif_card (subset_predT _))) in le_v'_n.
by rewrite predT_subset in not_vy.
have [v_x | not_vx] := ifPn.
by rewrite (negPf not_vy); right=> [] [p _ _]; rewrite disjoint_has /= v_x.
set v1 := x :: v; set a := g x; have sub_dfs := subsetP (subset_dfs n _ _).
have [-> | neq_yx] := eqVneq y x.
by rewrite sub_dfs ?mem_head //; left; apply: dfs_id.
apply: (@equivP (exists2 x1, x1 \in a & dfs_path v1 x1 y)); last first.
split=> {IHn} [[x1 a_x1 [p g_p p_y]] | [p /shortenP[]]].
rewrite disjoint_has has_sym /= has_sym /= => /norP[_ not_pv].
by exists (x1 :: p); rewrite /= ?a_x1 // disjoint_has negb_or not_vx.
case=> [_ _ _ eq_yx | x1 p1 /=]; first by case/eqP: neq_yx.
case/andP=> a_x1 g_p1 /andP[not_p1x _] /subsetP p_p1 p1y not_pv.
exists x1 => //; exists p1 => //.
rewrite disjoint_sym disjoint_cons not_p1x disjoint_sym.
by move: not_pv; rewrite disjoint_cons => /andP[_ /disjointWl->].
have{neq_yx not_vy}: y \notin v1 by apply/norP.
have{le_v'_n not_vx}: #|T| <= #|v1| + n by rewrite cardU1 not_vx addSnnS.
elim: {x v}a v1 => [|x a IHa] v /= le_v'_n not_vy.
by rewrite (negPf not_vy); right=> [] [].
set v2 := dfs n v x; have v2v: v \subset v2 := subset_dfs n v [:: x].
have [v2y | not_v2y] := boolP (y \in v2).
by rewrite sub_dfs //; left; exists x; [apply: mem_head | apply: IHn].
apply: {IHa}(equivP (IHa _ _ not_v2y)).
by rewrite (leq_trans le_v'_n) // leq_add2r subset_leq_card.
split=> [] [x1 a_x1 [p g_p p_y not_pv]].
exists x1; [exact: predU1r | exists p => //].
by rewrite disjoint_sym (disjointWl v2v) // disjoint_sym.
suffices not_p1v2: [disjoint x1 :: p & v2].
case/predU1P: a_x1 => [def_x1 | ]; last by exists x1; last exists p.
case/pred0Pn: not_p1v2; exists x; rewrite /= def_x1 mem_head /=.
suffices not_vx: x \notin v by apply/IHn; last apply: dfs_id.
by move: not_pv; rewrite disjoint_cons def_x1 => /andP[].
apply: contraR not_v2y => /pred0Pn[x2 /andP[/= p_x2 v2x2]].
case/splitPl: p_x2 p_y g_p not_pv => p0 p2 p0x2.
rewrite last_cat cat_path -cat_cons lastI cat_rcons {}p0x2 => p2y /andP[_ g_p2].
rewrite disjoint_cat disjoint_cons => /and3P[{p0}_ not_vx2 not_p2v].
have{not_vx2 v2x2} [p1 g_p1 p1_x2 not_p1v] := IHn _ _ v le_v'_n not_vx2 v2x2.
apply/IHn=> //; exists (p1 ++ p2); rewrite ?cat_path ?last_cat -?p1_x2 ?g_p1 //.
by rewrite -cat_cons disjoint_cat not_p1v.
Qed.
Lemma dfsP x y :
reflect (exists2 p, path (grel g) x p & y = last x p) (y \in dfs #|T| [::] x).
Proof.
apply: (iffP (dfs_pathP _ _ _)); rewrite ?card0 // => [] [p]; exists p => //.
by rewrite disjoint_sym disjoint0.
Qed.
End Dfs.
Variable e : rel T.
Definition rgraph x := enum (e x).
Lemma rgraphK : grel rgraph =2 e.
Proof. by move=> x y; rewrite /= mem_enum. Qed.
Definition connect : rel T := [rel x y | y \in dfs rgraph #|T| [::] x].
Canonical connect_app_pred x := ApplicativePred (connect x).
Lemma connectP x y :
reflect (exists2 p, path e x p & y = last x p) (connect x y).
Proof.
apply: (equivP (dfsP _ x y)).
by split=> [] [p e_p ->]; exists p => //; rewrite (eq_path rgraphK) in e_p *.
Qed.
Lemma connect_trans : transitive connect.
Proof.
move=> x y z /connectP[p e_p ->] /connectP[q e_q ->]; apply/connectP.
by exists (p ++ q); rewrite ?cat_path ?e_p ?last_cat.
Qed.
Lemma connect0 x : connect x x.
Proof. by apply/connectP; exists [::]. Qed.
Lemma eq_connect0 x y : x = y -> connect x y.
Proof. by move->; apply: connect0. Qed.
Lemma connect1 x y : e x y -> connect x y.
Proof. by move=> e_xy; apply/connectP; exists [:: y]; rewrite /= ?e_xy. Qed.
Lemma path_connect x p : path e x p -> subpred (mem (x :: p)) (connect x).
Proof.
move=> e_p y p_y; case/splitPl: p / p_y e_p => p q <-.
by rewrite cat_path => /andP[e_p _]; apply/connectP; exists p.
Qed.
Lemma connect_cycle p : cycle e p -> {in p &, forall x y, connect x y}.
Proof.
move=> e_p x y /rot_to[i q rip]; rewrite -(mem_rot i) rip => yqx.
have /= : cycle e (x :: q) by rewrite -rip rot_cycle.
case/splitPl: yqx => r s lxr; rewrite rcons_cat cat_path => /andP[xr _].
by apply/connectP; exists r.
Qed.
Definition root x := odflt x (pick (connect x)).
Definition roots : pred T := fun x => root x == x.
Canonical roots_pred := ApplicativePred roots.
Definition n_comp_mem (m_a : mem_pred T) := #|predI roots m_a|.
Lemma connect_root x : connect x (root x).
Proof. by rewrite /root; case: pickP; rewrite ?connect0. Qed.
Definition connect_sym := symmetric connect.
Hypothesis sym_e : connect_sym.
Lemma same_connect : left_transitive connect.
Proof. exact: sym_left_transitive connect_trans. Qed.
Lemma same_connect_r : right_transitive connect.
Proof. exact: sym_right_transitive connect_trans. Qed.
Lemma same_connect1 x y : e x y -> connect x =1 connect y.
Proof. by move/connect1; apply: same_connect. Qed.
Lemma same_connect1r x y : e x y -> connect^~ x =1 connect^~ y.
Proof. by move/connect1; apply: same_connect_r. Qed.
Lemma rootP x y : reflect (root x = root y) (connect x y).
Proof.
apply: (iffP idP) => e_xy.
by rewrite /root -(eq_pick (same_connect e_xy)); case: pickP e_xy => // ->.
by apply: (connect_trans (connect_root x)); rewrite e_xy sym_e connect_root.
Qed.
Lemma root_root x : root (root x) = root x.
Proof. exact/esym/rootP/connect_root. Qed.
Lemma roots_root x : roots (root x).
Proof. exact/eqP/root_root. Qed.
Lemma root_connect x y : (root x == root y) = connect x y.
Proof. exact: sameP eqP (rootP x y). Qed.
Definition closed_mem m_a := forall x y, e x y -> in_mem x m_a = in_mem y m_a.
Definition closure_mem m_a : pred T :=
fun x => ~~ disjoint (mem (connect x)) m_a.
End Connect.
#[global] Hint Resolve connect0 : core.
Notation n_comp e a := (n_comp_mem e (mem a)).
Notation closed e a := (closed_mem e (mem a)).
Notation closure e a := (closure_mem e (mem a)).
Prenex Implicits connect root roots.
Arguments dfsP {T g x y}.
Arguments connectP {T e x y}.
Arguments rootP [T e] _ {x y}.
Notation fconnect f := (connect (coerced_frel f)).
Notation froot f := (root (coerced_frel f)).
Notation froots f := (roots (coerced_frel f)).
Notation fcard_mem f := (n_comp_mem (coerced_frel f)).
Notation fcard f a := (fcard_mem f (mem a)).
Notation fclosed f a := (closed (coerced_frel f) a).
Notation fclosure f a := (closure (coerced_frel f) a).
Section EqConnect.
Variable T : finType.
Implicit Types (e : rel T) (a : {pred T}).
Lemma connect_sub e e' :
subrel e (connect e') -> subrel (connect e) (connect e').
Proof.
move=> e'e x _ /connectP[p e_p ->]; elim: p x e_p => //= y p IHp x /andP[exy].
by move/IHp; apply: connect_trans; apply: e'e.
Qed.
Lemma relU_sym e e' :
connect_sym e -> connect_sym e' -> connect_sym (relU e e').
Proof.
move=> sym_e sym_e'; apply: symmetric_from_pre => x _ /connectP[p e_p ->].
elim: p x e_p => //= y p IHp x /andP[e_xy /IHp{IHp}/connect_trans]; apply.
case/orP: e_xy => /connect1; rewrite (sym_e, sym_e');
by apply: connect_sub y x => x y e_xy; rewrite connect1 //= e_xy ?orbT.
Qed.
Lemma eq_connect e e' : e =2 e' -> connect e =2 connect e'.
Proof.
move=> eq_e x y; apply/connectP/connectP=> [] [p e_p ->];
by exists p; rewrite // (eq_path eq_e) in e_p *.
Qed.
Lemma eq_n_comp e e' : connect e =2 connect e' -> n_comp_mem e =1 n_comp_mem e'.
Proof.
move=> eq_e [a]; apply: eq_card => x /=.
by rewrite !inE /= /roots /root /= (eq_pick (eq_e x)).
Qed.
Lemma eq_n_comp_r {e} a a' : a =i a' -> n_comp e a = n_comp e a'.
Proof. by move=> eq_a; apply: eq_card => x; rewrite inE /= eq_a. Qed.
Lemma n_compC a e : n_comp e T = n_comp e a + n_comp e [predC a].
Proof.
rewrite /n_comp_mem (eq_card (fun _ => andbT _)) -(cardID a); congr (_ + _).
by apply: eq_card => x; rewrite !inE andbC.
Qed.
Lemma eq_root e e' : e =2 e' -> root e =1 root e'.
Proof. by move=> eq_e x; rewrite /root (eq_pick (eq_connect eq_e x)). Qed.
Lemma eq_roots e e' : e =2 e' -> roots e =1 roots e'.
Proof. by move=> eq_e x; rewrite /roots (eq_root eq_e). Qed.
Lemma connect_rev e : connect [rel x y | e y x] =2 [rel x y | connect e y x].
Proof.
suff crev e': subrel (connect [rel x y | e' y x]) [rel x y | connect e' y x].
by move=> x y; apply/idP/idP; apply: crev.
move=> x y /connectP[p e_p p_y]; apply/connectP.
exists (rev (belast x p)); first by rewrite p_y rev_path.
by rewrite -(last_cons x) -rev_rcons p_y -lastI rev_cons last_rcons.
Qed.
Lemma sym_connect_sym e : symmetric e -> connect_sym e.
Proof. by move=> sym_e x y; rewrite (eq_connect sym_e) connect_rev. Qed.
End EqConnect.
Section Closure.
Variables (T : finType) (e : rel T).
Hypothesis sym_e : connect_sym e.
Implicit Type a : {pred T}.
Lemma same_connect_rev : connect e =2 connect [rel x y | e y x].
Proof. by move=> x y; rewrite sym_e connect_rev. Qed.
Lemma intro_closed a : (forall x y, e x y -> x \in a -> y \in a) -> closed e a.
Proof.
move=> cl_a x y e_xy; apply/idP/idP=> [|a_y]; first exact: cl_a.
have{x e_xy} /connectP[p e_p ->]: connect e y x by rewrite sym_e connect1.
by elim: p y a_y e_p => //= y p IHp x a_x /andP[/cl_a/(_ a_x)]; apply: IHp.
Qed.
Lemma closed_connect a :
closed e a -> forall x y, connect e x y -> (x \in a) = (y \in a).
Proof.
move=> cl_a x _ /connectP[p e_p ->].
by elim: p x e_p => //= y p IHp x /andP[/cl_a->]; apply: IHp.
Qed.
Lemma connect_closed x : closed e (connect e x).
Proof. by move=> y z /connect1/same_connect_r; apply. Qed.
Lemma predC_closed a : closed e a -> closed e [predC a].
Proof. by move=> cl_a x y /cl_a /[!inE] ->. Qed.
Lemma closure_closed a : closed e (closure e a).
Proof.
apply: intro_closed => x y /connect1 e_xy; congr (~~ _).
by apply: eq_disjoint; apply: same_connect.
Qed.
Lemma mem_closure a : {subset a <= closure e a}.
Proof. by move=> x a_x; apply/existsP; exists x; rewrite !inE connect0. Qed.
Lemma subset_closure a : a \subset closure e a.
Proof. by apply/subsetP; apply: mem_closure. Qed.
Lemma n_comp_closure2 x y :
n_comp e (closure e (pred2 x y)) = (~~ connect e x y).+1.
Proof.
rewrite -(root_connect sym_e) -card2; apply: eq_card => z.
apply/idP/idP=> [/andP[/eqP {2}<- /pred0Pn[t /andP[/= ezt exyt]]] |].
by case/pred2P: exyt => <-; rewrite (rootP sym_e ezt) !inE eqxx ?orbT.
by case/pred2P=> ->; rewrite !inE roots_root //; apply/existsP;
[exists x | exists y]; rewrite !inE eqxx ?orbT sym_e connect_root.
Qed.
Lemma n_comp_connect x : n_comp e (connect e x) = 1.
Proof.
rewrite -(card1 (root e x)); apply: eq_card => y.
apply/andP/eqP => [[/eqP r_y /rootP-> //] | ->] /=.
by rewrite inE connect_root roots_root.
Qed.
End Closure.
Section Orbit.
Variables (T : finType) (f : T -> T).
Definition order x := #|fconnect f x|.
Definition orbit x := traject f x (order x).
Definition findex x y := index y (orbit x).
Definition finv x := iter (order x).-1 f x.
Lemma fconnect_iter n x : fconnect f x (iter n f x).
Proof.
apply/connectP.
by exists (traject f (f x) n); [apply: fpath_traject | rewrite last_traject].
Qed.
Lemma fconnect1 x : fconnect f x (f x).
Proof. exact: (fconnect_iter 1). Qed.
Lemma fconnect_finv x : fconnect f x (finv x).
Proof. exact: fconnect_iter. Qed.
Lemma orderSpred x : (order x).-1.+1 = order x.
Proof. by rewrite /order (cardD1 x) [_ x _]connect0. Qed.
Lemma size_orbit x : size (orbit x) = order x.
Proof. exact: size_traject. Qed.
Lemma looping_order x : looping f x (order x).
Proof.
apply: contraFT (ltnn (order x)); rewrite -looping_uniq => /card_uniqP.
rewrite size_traject => <-; apply: subset_leq_card.
by apply/subsetP=> _ /trajectP[i _ ->]; apply: fconnect_iter.
Qed.
Lemma fconnect_orbit x y : fconnect f x y = (y \in orbit x).
Proof.
apply/idP/idP=> [/connectP[_ /fpathP[m ->] ->] | /trajectP[i _ ->]].
by rewrite last_traject; apply/loopingP/looping_order.
exact: fconnect_iter.
Qed.
Lemma in_orbit x : x \in orbit x. Proof. by rewrite -fconnect_orbit. Qed.
Hint Resolve in_orbit : core.
Lemma order_gt0 x : order x > 0. Proof. by rewrite -orderSpred. Qed.
Hint Resolve order_gt0 : core.
Lemma orbit_uniq x : uniq (orbit x).
Proof.
rewrite /orbit -orderSpred looping_uniq; set n := (order x).-1.
apply: contraFN (ltnn n) => /trajectP[i lt_i_n eq_fnx_fix].
rewrite orderSpred -(size_traject f x n).
apply: (leq_trans (subset_leq_card _) (card_size _)); apply/subsetP=> z.
rewrite inE fconnect_orbit => /trajectP[j le_jn ->{z}].
rewrite -orderSpred -/n ltnS leq_eqVlt in le_jn.
by apply/trajectP; case/predU1P: le_jn => [->|]; [exists i | exists j].
Qed.
Lemma findex_max x y : fconnect f x y -> findex x y < order x.
Proof. by rewrite [_ y]fconnect_orbit -index_mem size_orbit. Qed.
Lemma findex_iter x i : i < order x -> findex x (iter i f x) = i.
Proof.
move=> lt_ix; rewrite -(nth_traject f lt_ix) /findex index_uniq ?orbit_uniq //.
by rewrite size_orbit.
Qed.
Lemma iter_findex x y : fconnect f x y -> iter (findex x y) f x = y.
Proof.
rewrite [_ y]fconnect_orbit => fxy; pose i := index y (orbit x).
have lt_ix: i < order x by rewrite -size_orbit index_mem.
by rewrite -(nth_traject f lt_ix) nth_index.
Qed.
Lemma findex0 x : findex x x = 0.
Proof. by rewrite /findex /orbit -orderSpred /= eqxx. Qed.
Lemma findex_eq0 x y : (findex x y == 0) = (x == y).
Proof. by rewrite /findex /orbit -orderSpred /=; case: (x == y). Qed.
Lemma fconnect_invariant (T' : eqType) (k : T -> T') :
invariant f k =1 xpredT -> forall x y, fconnect f x y -> k x = k y.
Proof.
move=> eq_k_f x y /iter_findex <-; elim: {y}(findex x y) => //= n ->.
by rewrite (eqP (eq_k_f _)).
Qed.
Lemma mem_orbit x : {homo f : y / y \in orbit x}.
Proof.
by move=> y; rewrite -!fconnect_orbit => /connect_trans->//; apply: fconnect1.
Qed.
Lemma image_orbit x : {subset image f (orbit x) <= orbit x}.
Proof.
by move=> _ /mapP[y yin ->]; apply: mem_orbit; rewrite ?mem_enum in yin.
Qed.
Section orbit_in.
Variable S : {pred T}.
Hypothesis f_in : {homo f : x / x \in S}.
Hypothesis injf : {in S &, injective f}.
Lemma finv_in : {homo finv : x / x \in S}.
Proof. by move=> x xS; rewrite iter_in. Qed.
Lemma f_finv_in : {in S, cancel finv f}.
Proof.
move=> x xS; move: (looping_order x) (orbit_uniq x).
rewrite /looping /orbit -orderSpred looping_uniq /= /looping; set n := _.-1.
case/predU1P=> // /trajectP[i lt_i_n]; rewrite -iterSr.
by move=> /injf ->; rewrite ?(iter_in _ f_in) //; case/trajectP; exists i.
Qed.
Lemma finv_f_in : {in S, cancel f finv}.
Proof. by move=> x xS; apply/injf; rewrite ?iter_in ?f_finv_in ?f_in. Qed.
Lemma finv_inj_in : {in S &, injective finv}.
Proof. by move=> x y xS yS q; rewrite -(f_finv_in xS) q f_finv_in. Qed.
Lemma fconnect_sym_in : {in S &, forall x y, fconnect f x y = fconnect f y x}.
Proof.
suff Sf : {in S &, forall x y, fconnect f x y -> fconnect f y x}.
by move=> *; apply/idP/idP=> /Sf->.
move=> x _ xS _ /connectP [p f_p ->]; elim: p => //= y p IHp in x xS f_p *.
case/andP: f_p => /eqP <- /(IHp _ (f_in xS)) /connect_trans -> //.
by apply: (connect_trans (fconnect_finv _)); rewrite finv_f_in.
Qed.
Lemma iter_order_in : {in S, forall x, iter (order x) f x = x}.
Proof. by move=> x xS; rewrite -orderSpred iterS; apply: f_finv_in. Qed.
Lemma iter_finv_in n :
{in S, forall x, n <= order x -> iter n finv x = iter (order x - n) f x}.
Proof.
move=> x xS; rewrite -[x in LHS]iter_order_in => // /subnKC {1}<-.
move: (_ - n) => m; rewrite iterD; elim: n => // n {2}<-.
by rewrite iterSr /= finv_f_in // -iterD iter_in.
Qed.
Lemma cycle_orbit_in : {in S, forall x, (fcycle f) (orbit x)}.
Proof.
move=> x xS; rewrite /orbit -orderSpred (cycle_path x) /= last_traject.
by rewrite -/(finv x) fpath_traject f_finv_in ?eqxx.
Qed.
Lemma fpath_finv_in p x :
(x \in S) && (fpath finv x p) =
(last x p \in S) && (fpath f (last x p) (rev (belast x p))).
Proof.
elim: p x => //= y p IHp x; rewrite rev_cons rcons_path.
transitivity [&& y \in S, f y == x & fpath finv y p].
apply/and3P/and3P => -[xS /eqP<- fxp]; split;
by rewrite ?f_finv_in ?finv_f_in ?finv_in ?f_in.
rewrite andbCA {}IHp !andbA [RHS]andbC -andbA; congr [&& _, _ & _].
by case: p => //= z p; rewrite rev_cons last_rcons.
Qed.
Lemma fpath_finv_f_in p : {in S, forall x,
fpath finv x p -> fpath f (last x p) (rev (belast x p))}.
Proof. by move=> x xS /(conj xS)/andP; rewrite fpath_finv_in => /andP[]. Qed.
Lemma fpath_f_finv_in p x : last x p \in S ->
fpath f (last x p) (rev (belast x p)) -> fpath finv x p.
Proof. by move=> lS /(conj lS)/andP; rewrite -fpath_finv_in => /andP[]. Qed.
End orbit_in.
Lemma injectivePcycle x :
reflect {in orbit x &, injective f} (fcycle f (orbit x)).
Proof.
apply: (iffP idP) => [/inj_cycle//|/cycle_orbit_in].
by apply; [apply: mem_orbit|apply: in_orbit].
Qed.
Section orbit_inj.
Hypothesis injf : injective f.
Lemma f_finv : cancel finv f. Proof. exact: (in1T (f_finv_in _ (in2W _))). Qed.
Lemma finv_f : cancel f finv. Proof. exact: (in1T (finv_f_in _ (in2W _))). Qed.
Lemma finv_bij : bijective finv.
Proof. by exists f; [apply: f_finv|apply: finv_f]. Qed.
Lemma finv_inj : injective finv. Proof. exact: (can_inj f_finv). Qed.
Lemma fconnect_sym x y : fconnect f x y = fconnect f y x.
Proof. exact: (in2T (fconnect_sym_in _ (in2W _))). Qed.
Let symf := fconnect_sym.
Lemma iter_order x : iter (order x) f x = x.
Proof. exact: (in1T (iter_order_in _ (in2W _))). Qed.
Lemma iter_finv n x : n <= order x -> iter n finv x = iter (order x - n) f x.
Proof. exact: (in1T (@iter_finv_in _ _ (in2W _) _)). Qed.
Lemma cycle_orbit x : fcycle f (orbit x).
Proof. exact: (in1T (cycle_orbit_in _ (in2W _))). Qed.
Lemma fpath_finv x p : fpath finv x p = fpath f (last x p) (rev (belast x p)).
Proof. exact: (@fpath_finv_in T _ (in2W _)). Qed.
Lemma same_fconnect_finv : fconnect finv =2 fconnect f.
Proof.
move=> x y; rewrite (same_connect_rev symf); apply: {x y}eq_connect => x y /=.
by rewrite (canF_eq finv_f) eq_sym.
Qed.
Lemma fcard_finv : fcard_mem finv =1 fcard_mem f.
Proof. exact: eq_n_comp same_fconnect_finv. Qed.
Definition order_set n : pred T := [pred x | order x == n].
Lemma fcard_order_set n (a : {pred T}) :
a \subset order_set n -> fclosed f a -> fcard f a * n = #|a|.
Proof.
move=> a_n cl_a; rewrite /n_comp_mem; set b := [predI froots f & a].
suff <-: #|preim (froot f) b| = #|b| * n.
apply: eq_card => x; rewrite !inE (roots_root fconnect_sym).
exact/esym/(closed_connect cl_a)/connect_root.
have{cl_a a_n} (x): b x -> froot f x = x /\ order x = n.
by case/andP=> /eqP-> /(subsetP a_n)/eqnP->.
elim: {a b}#|b| {1 3 4}b (eqxx #|b|) => [|m IHm] b def_m f_b.
by rewrite eq_card0 // => x; apply: (pred0P def_m).
have [x b_x | b0] := pickP b; last by rewrite (eq_card0 b0) in def_m.
have [r_x ox_n] := f_b x b_x; rewrite (cardD1 x) [x \in b]b_x eqSS in def_m.
rewrite mulSn -{1}ox_n -(IHm _ def_m) => [|_ /andP[_ /f_b //]].
rewrite -(cardID (fconnect f x)); congr (_ + _); apply: eq_card => y.
by apply: andb_idl => /= fxy; rewrite !inE -(rootP symf fxy) r_x.
by congr (~~ _ && _); rewrite /= /in_mem /= symf -(root_connect symf) r_x.
Qed.
Lemma fclosed1 (a : {pred T}) :
fclosed f a -> forall x, (x \in a) = (f x \in a).
Proof. by move=> cl_a x; apply: cl_a (eqxx _). Qed.
Lemma same_fconnect1 x : fconnect f x =1 fconnect f (f x).
Proof. by apply: same_connect1 => /=. Qed.
Lemma same_fconnect1_r x y : fconnect f x y = fconnect f x (f y).
Proof. by apply: same_connect1r x => /=. Qed.
Lemma fcard_gt0P (a : {pred T}) :
fclosed f a -> reflect (exists x, x \in a) (0 < fcard f a).
Proof.
move=> clfA; apply: (iffP card_gt0P) => [[x /andP[]]|[x xA]]; first by exists x.
exists (froot f x); rewrite inE roots_root /=; last exact: fconnect_sym.
by rewrite -(closed_connect clfA (connect_root _ x)).
Qed.
Lemma fcard_gt1P (A : {pred T}) :
fclosed f A ->
reflect (exists2 x, x \in A & exists2 y, y \in A & ~~ fconnect f x y)
(1 < fcard f A).
Proof.
move=> clAf; apply: (iffP card_gt1P) => [|[x xA [y yA not_xfy]]].
move=> [x [y [/andP [/= rfx xA] /andP[/= rfy yA] xDy]]].
by exists x; try exists y; rewrite // -root_connect // (eqP rfx) (eqP rfy).
exists (froot f x), (froot f y); rewrite !inE !roots_root ?root_connect //=.
by split => //; rewrite -(closed_connect clAf (connect_root _ _)).
Qed.
End orbit_inj.
Hint Resolve orbit_uniq : core.
Section fcycle_p.
Variables (p : seq T) (f_p : fcycle f p).
Section mem_cycle.
Variable (Up : uniq p) (x : T) (p_x : x \in p).
(* fconnect_cycle does not dependent on Up *)
Lemma fconnect_cycle y : fconnect f x y = (y \in p).
Proof.
have [i q def_p] := rot_to p_x; rewrite -(mem_rot i p) def_p.
have{i def_p} /andP[/eqP q_x f_q]: (f (last x q) == x) && fpath f x q.
by have:= f_p; rewrite -(rot_cycle i) def_p (cycle_path x).
apply/idP/idP=> [/connectP[_ /fpathP[j ->] ->] | ]; last exact: path_connect.
case/fpathP: f_q q_x => n ->; rewrite !last_traject -iterS => def_x.
by apply: (@loopingP _ f x n.+1); rewrite /looping def_x /= mem_head.
Qed.
(* order_le_cycle does not dependent on Up *)
Lemma order_le_cycle : order x <= size p.
Proof.
apply: leq_trans (card_size _); apply/subset_leq_card/subsetP=> y.
by rewrite !(fconnect_cycle, inE) ?eqxx.
Qed.
Lemma order_cycle : order x = size p.
Proof. by rewrite -(card_uniqP Up); apply: (eq_card fconnect_cycle). Qed.
Lemma orbitE : orbit x = rot (index x p) p.
Proof.
set i := index _ _; rewrite /orbit order_cycle -(size_rot i) rot_index// -/i.
set q := _ ++ _; suffices /fpathP[j ->]: fpath f x q by rewrite /= size_traject.
by move: f_p; rewrite -(rot_cycle i) rot_index// (cycle_path x); case/andP.
Qed.
Lemma orbit_rot_cycle : {i : nat | orbit x = rot i p}.
Proof. by rewrite orbitE; exists (index x p). Qed.
End mem_cycle.
Let f_inj := inj_cycle f_p.
Let homo_f := mem_fcycle f_p.
Lemma finv_cycle : {homo finv : x / x \in p}. Proof. exact: finv_in. Qed.
Lemma f_finv_cycle : {in p, cancel finv f}. Proof. exact: f_finv_in. Qed.
Lemma finv_f_cycle : {in p, cancel f finv}. Proof. exact: finv_f_in. Qed.
Lemma finv_inj_cycle : {in p &, injective finv}. Proof. exact: finv_inj_in. Qed.
Lemma iter_finv_cycle n :
{in p, forall x, n <= order x -> iter n finv x = iter (order x - n) f x}.
Proof. exact: iter_finv_in. Qed.
Lemma cycle_orbit_cycle : {in p, forall x, fcycle f (orbit x)}.
Proof. exact: cycle_orbit_in. Qed.
Lemma fpath_finv_cycle q x : (x \in p) && (fpath finv x q) =
(last x q \in p) && fpath f (last x q) (rev (belast x q)).
Proof. exact: fpath_finv_in. Qed.
Lemma fpath_finv_f_cycle q : {in p, forall x,
fpath finv x q -> fpath f (last x q) (rev (belast x q))}.
Proof. exact: fpath_finv_f_in. Qed.
Lemma fpath_f_finv_cycle q x : last x q \in p ->
fpath f (last x q) (rev (belast x q)) -> fpath finv x q.
Proof. exact: fpath_f_finv_in. Qed.
Lemma prevE x : x \in p -> prev p x = finv x.
Proof.
move=> x_p; have /eqP/(congr1 finv) := prev_cycle f_p x_p.
by rewrite finv_f_cycle// mem_prev.
Qed.
End fcycle_p.
Section fcycle_cons.
Variables (x : T) (p : seq T) (f_p : fcycle f (x :: p)).
Lemma fcycle_rconsE : rcons (x :: p) x = traject f x (size p).+2.
Proof. by rewrite rcons_cons; have /fpathE-> := f_p; rewrite size_rcons. Qed.
Lemma fcycle_consE : x :: p = traject f x (size p).+1.
Proof. by have := fcycle_rconsE; rewrite trajectSr => /rcons_inj[/= <-]. Qed.
Lemma fcycle_consEflatten : exists k, x :: p = flatten (nseq k.+1 (orbit x)).
Proof.
move: f_p; rewrite fcycle_consE; elim/ltn_ind: (size p) => n IHn t_cycle.
have := order_le_cycle t_cycle (mem_head _ _); rewrite size_traject.
case: ltngtP => [||<-] //; last by exists 0; rewrite /= cats0.
rewrite ltnS => n_ge _; have := t_cycle.
rewrite -(subnKC n_ge) -addnS trajectD.
rewrite (iter_order_in (mem_fcycle f_p) (inj_cycle f_p)) ?mem_head//.
set m := (_ - _) => cycle_cat.
have [||k->] := IHn m; last by exists k.+1.
by rewrite ltn_subrL (leq_trans _ n_ge) ?order_gt0.
move: cycle_cat; rewrite -orderSpred/= rcons_cat rcons_cons -cat_rcons.
by rewrite cat_path last_rcons => /andP[].
Qed.
Lemma undup_cycle_cons : undup (x :: p) = orbit x.
Proof.
by have [n {1}->] := fcycle_consEflatten; rewrite undup_flatten_nseq ?undup_id.
Qed.
End fcycle_cons.
Section fcycle_undup.
Variable (p : seq T) (f_p : fcycle f p).
Lemma fcycleEflatten : exists k, p = flatten (nseq k (undup p)).
Proof.
case: p f_p => [//|x q] f_q; first by exists 0.
have [k {1}->] := @fcycle_consEflatten x q f_q.
by exists k.+1; rewrite undup_cycle_cons.
Qed.
Lemma fcycle_undup : fcycle f (undup p).
Proof.
case: p f_p => [//|x q] f_q; rewrite undup_cycle_cons//.
by rewrite (cycle_orbit_in (mem_fcycle f_q) (inj_cycle f_q)) ?mem_head.
Qed.
Let p_undup_uniq := undup_uniq p.
Let f_inj := inj_cycle f_p.
Let homo_f := mem_fcycle f_p.
Lemma in_orbit_cycle : {in p &, forall x, orbit x =i p}.
Proof.
by move=> x y xp yp; rewrite (orbitE fcycle_undup)// ?mem_rot ?mem_undup.
Qed.
Lemma eq_order_cycle : {in p &, forall x y, order y = order x}.
Proof. by move=> x y xp yp; rewrite !(order_cycle fcycle_undup) ?mem_undup. Qed.
Lemma iter_order_cycle : {in p &, forall x y, iter (order x) f y = y}.
Proof.
by move=> x y xp yp; rewrite (eq_order_cycle yp) ?(iter_order_in homo_f f_inj).
Qed.
End fcycle_undup.
Section fconnect.
Lemma fconnect_eqVf x y : fconnect f x y = (x == y) || fconnect f (f x) y.
Proof.
apply/idP/idP => [/iter_findex <-|/predU1P [<-|] //]; last first.
exact/connect_trans/fconnect1.
by case: findex => [|i]; rewrite ?eqxx// iterSr fconnect_iter orbT.
Qed.
(*****************************************************************************)
(* Lemma orbitPcycle is of type "The Following Are Equivalent", which means *)
(* all four statements are equivalent to each other. In order to use it, one *)
(* has to apply it to the natural numbers corresponding to the line, e.g. *)
(* `orbitPcycle 0 2 : fcycle f (orbit x) <-> exists k, iter k.+1 f x = x`. *)
(* examples of this are in order_id_cycle and fconnnect_f. *)
(* One may also use lemma all_iffLR to get a one sided implication, as in *)
(* orderPcycle. *)
(*****************************************************************************)
Lemma orbitPcycle {x} : [<->
(* 0 *) fcycle f (orbit x);
(* 1 *) order (f x) = order x;
(* 2 *) x \in fconnect f (f x);
(* 3 *) exists k, iter k.+1 f x = x;
(* 4 *) iter (order x) f x = x;
(* 5 *) {in orbit x &, injective f}].
Proof.
tfae=> [xorbit_cycle|||[k fkx]|fx y z|/injectivePcycle//].
- by apply: eq_order_cycle xorbit_cycle _ _ _ _; rewrite ?mem_orbit.
- move=> /subset_cardP/(_ _)->; rewrite ?inE//; apply/subsetP=> y.
by apply: connect_trans; apply: fconnect1.
- by exists (findex (f x) x); rewrite // iterSr iter_findex.
- apply: (@iter_order_cycle (traject f x k.+1)); rewrite /= ?mem_head//.
by apply/fpathP; exists k.+1; rewrite trajectSr -iterSr fkx.
- rewrite -!fconnect_orbit => /iter_findex <- /iter_findex <-.
move/(congr1 (iter (order x).-1 f)).
by rewrite -!iterSr !orderSpred -!iterD ![order _ + _]addnC !iterD fx.
Qed.
Lemma order_id_cycle x : fcycle f (orbit x) -> order (f x) = order x.
Proof. by move/(orbitPcycle 0 1). Qed.
Inductive order_spec_cycle x : bool -> Type :=
| OrderStepCycle of fcycle f (orbit x) & order x = order (f x) :
order_spec_cycle x true
| OrderStepNoCycle of ~~ fcycle f (orbit x) & order x = (order (f x)).+1 :
order_spec_cycle x false.
Lemma orderPcycle x : order_spec_cycle x (fcycle f (orbit x)).
Proof.
have [xcycle|Ncycle] := boolP (fcycle f (orbit x)); constructor => //.
by rewrite order_id_cycle.
rewrite /order (eq_card (_ : _ =1 [predU1 x & fconnect f (f x)])).
by rewrite cardU1 inE (contraNN (all_iffLR orbitPcycle 2 0)).
by move=> y; rewrite !inE fconnect_eqVf eq_sym.
Qed.
Lemma fconnect_f x : fconnect f (f x) x = fcycle f (orbit x).
Proof. by apply/idP/idP => /(orbitPcycle 0 2). Qed.
Lemma fconnect_findex x y :
fconnect f x y -> y != x -> findex x y = (findex (f x) y).+1.
Proof.
rewrite /findex fconnect_orbit /orbit -orderSpred /= inE => /orP [-> //|].
rewrite eq_sym; move=> yin /negPf->; have [_ eq_o|_ ->//] := orderPcycle x.
by rewrite -(orderSpred (f x)) trajectSr -cats1 index_cat -eq_o yin.
Qed.
End fconnect.
End Orbit.
#[global] Hint Resolve in_orbit mem_orbit order_gt0 orbit_uniq : core.
Prenex Implicits order orbit findex finv order_set.
Arguments orbitPcycle {T f x}.
Section FconnectId.
Variable T : finType.
Lemma fconnect_id (x : T) : fconnect id x =1 xpred1 x.
Proof. by move=> y; rewrite (@fconnect_cycle _ _ [:: x]) //= ?inE ?eqxx. Qed.
Lemma order_id (x : T) : order id x = 1.
Proof. by rewrite /order (eq_card (fconnect_id x)) card1. Qed.
Lemma orbit_id (x : T) : orbit id x = [:: x].
Proof. by rewrite /orbit order_id. Qed.
Lemma froots_id (x : T) : froots id x.
Proof. by rewrite /roots -fconnect_id connect_root. Qed.
Lemma froot_id (x : T) : froot id x = x.
Proof. by apply/eqP; apply: froots_id. Qed.
Lemma fcard_id (a : {pred T}) : fcard id a = #|a|.
Proof. by apply: eq_card => x; rewrite inE froots_id. Qed.
End FconnectId.
Section FconnectEq.
Variables (T : finType) (f f' : T -> T).
Lemma finv_eq_can : cancel f f' -> finv f =1 f'.
Proof.
move=> fK; have inj_f := can_inj fK.
by apply: bij_can_eq fK; [apply: injF_bij | apply: finv_f].
Qed.
Hypothesis eq_f : f =1 f'.
Let eq_rf := eq_frel eq_f.
Lemma eq_fconnect : fconnect f =2 fconnect f'.
Proof. exact: eq_connect eq_rf. Qed.
Lemma eq_fcard : fcard_mem f =1 fcard_mem f'.
Proof. exact: eq_n_comp eq_fconnect. Qed.
Lemma eq_finv : finv f =1 finv f'.
Proof.
by move=> x; rewrite /finv /order (eq_card (eq_fconnect x)) (eq_iter eq_f).
Qed.
Lemma eq_froot : froot f =1 froot f'.
Proof. exact: eq_root eq_rf. Qed.
Lemma eq_froots : froots f =1 froots f'.
Proof. exact: eq_roots eq_rf. Qed.
End FconnectEq.
Section FinvEq.
Variables (T : finType) (f : T -> T).
Hypothesis injf : injective f.
Lemma finv_inv : finv (finv f) =1 f.
Proof. exact: (finv_eq_can (f_finv injf)). Qed.
Lemma order_finv : order (finv f) =1 order f.
Proof. by move=> x; apply: eq_card (same_fconnect_finv injf x). Qed.
Lemma order_set_finv n : order_set (finv f) n =i order_set f n.
Proof. by move=> x; rewrite !inE order_finv. Qed.
End FinvEq.
Section RelAdjunction.
Variables (T T' : finType) (h : T' -> T) (e : rel T) (e' : rel T').
Hypotheses (sym_e : connect_sym e) (sym_e' : connect_sym e').
Record rel_adjunction_mem m_a := RelAdjunction {
rel_unit x : in_mem x m_a -> {x' : T' | connect e x (h x')};
rel_functor x' y' :
in_mem (h x') m_a -> connect e' x' y' = connect e (h x') (h y')
}.
Variable a : {pred T}.
Hypothesis cl_a : closed e a.
Local Notation rel_adjunction := (rel_adjunction_mem (mem a)).
Lemma intro_adjunction (h' : forall x, x \in a -> T') :
(forall x a_x,
[/\ connect e x (h (h' x a_x))
& forall y a_y, e x y -> connect e' (h' x a_x) (h' y a_y)]) ->
(forall x' a_x,
[/\ connect e' x' (h' (h x') a_x)
& forall y', e' x' y' -> connect e (h x') (h y')]) ->
rel_adjunction.
Proof.
move=> Aee' Ae'e; split=> [y a_y | x' z' a_x].
by exists (h' y a_y); case/Aee': (a_y).
apply/idP/idP=> [/connectP[p e'p ->{z'}] | /connectP[p e_p p_z']].
elim: p x' a_x e'p => //= y' p IHp x' a_x.
case: (Ae'e x' a_x) => _ Ae'x /andP[/Ae'x e_xy /IHp e_yz] {Ae'x}.
by apply: connect_trans (e_yz _); rewrite // -(closed_connect cl_a e_xy).
case: (Ae'e x' a_x) => /connect_trans-> //.
elim: p {x'}(h x') p_z' a_x e_p => /= [|y p IHp] x p_z' a_x.
by rewrite -p_z' in a_x *; case: (Ae'e _ a_x); rewrite sym_e'.
case/andP=> e_xy /(IHp _ p_z') e'yz; have a_y: y \in a by rewrite -(cl_a e_xy).
by apply: connect_trans (e'yz a_y); case: (Aee' _ a_x) => _ ->.
Qed.
Lemma strict_adjunction :
injective h -> a \subset codom h -> rel_base h e e' [predC a] ->
rel_adjunction.
Proof.
move=> /= injh h_a a_ee'; pose h' x Hx := iinv (subsetP h_a x Hx).
apply: (@intro_adjunction h') => [x a_x | x' a_x].
rewrite f_iinv connect0; split=> // y a_y e_xy.
by rewrite connect1 // -a_ee' !f_iinv ?negbK.
rewrite [h' _ _]iinv_f //; split=> // y' e'xy.
by rewrite connect1 // a_ee' ?negbK.
Qed.
Let ccl_a := closed_connect cl_a.
Lemma adjunction_closed : rel_adjunction -> closed e' [preim h of a].
Proof.
case=> _ Ae'e; apply: intro_closed => // x' y' /connect1 e'xy a_x.
by rewrite Ae'e // in e'xy; rewrite !inE -(ccl_a e'xy).
Qed.
Lemma adjunction_n_comp :
rel_adjunction -> n_comp e a = n_comp e' [preim h of a].
Proof.
case=> Aee' Ae'e.
have inj_h: {in predI (roots e') [preim h of a] &, injective (root e \o h)}.
move=> x' y' /andP[/eqP r_x' /= a_x'] /andP[/eqP r_y' _] /(rootP sym_e).
by rewrite -Ae'e // => /(rootP sym_e'); rewrite r_x' r_y'.
rewrite /n_comp_mem -(card_in_image inj_h); apply: eq_card => x.
apply/andP/imageP=> [[/eqP rx a_x] | [x' /andP[/eqP r_x' a_x'] ->]]; last first.
by rewrite /= -(ccl_a (connect_root _ _)) roots_root.
have [y' e_xy]:= Aee' x a_x; pose x' := root e' y'.
have ay': h y' \in a by rewrite -(ccl_a e_xy).
have e_yx: connect e (h y') (h x') by rewrite -Ae'e ?connect_root.
exists x'; first by rewrite inE /= -(ccl_a e_yx) ?roots_root.
by rewrite /= -(rootP sym_e e_yx) -(rootP sym_e e_xy).
Qed.
End RelAdjunction.
Notation rel_adjunction h e e' a := (rel_adjunction_mem h e e' (mem a)).
Notation "@ 'rel_adjunction' T T' h e e' a" :=
(@rel_adjunction_mem T T' h e e' (mem a))
(at level 10, T, T', h, e, e', a at level 8, only parsing) : type_scope.
Notation fun_adjunction h f f' a := (rel_adjunction h (frel f) (frel f') a).
Notation "@ 'fun_adjunction' T T' h f f' a" :=
(@rel_adjunction T T' h (frel f) (frel f') a)
(at level 10, T, T', h, f, f', a at level 8, only parsing) : type_scope.
Arguments intro_adjunction [T T' h e e'] _ [a].
Arguments adjunction_n_comp [T T'] h [e e'] _ _ [a].
Unset Implicit Arguments.
|