Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,467 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
From mathcomp Require Import ssreflect ssrfun.
From Coq Require Export ssrbool.
(* 8.11 addition in Coq but renamed *)
#[deprecated(since="mathcomp 1.15", note="Use rel_of_simpl instead.")]
Notation rel_of_simpl_rel := rel_of_simpl.
(******************)
(* v8.14 addtions *)
(******************)
Section LocalGlobal.
Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0).
Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0).
Variables T1 T2 T3 : predArgType.
Variables (D1 : {pred T1}) (D2 : {pred T2}).
Variables (f : T1 -> T2) (h : T3).
Variable Q1 : (T1 -> T2) -> T1 -> Prop.
Variable Q1l : (T1 -> T2) -> T3 -> T1 -> Prop.
Variable Q2 : (T1 -> T2) -> T1 -> T1 -> Prop.
Let allQ1 f'' := {all1 Q1 f''}.
Let allQ1l f'' h' := {all1 Q1l f'' h'}.
Let allQ2 f'' := {all2 Q2 f''}.
Lemma in_on1P : {in D1, {on D2, allQ1 f}} <->
{in [pred x in D1 | f x \in D2], allQ1 f}.
Proof.
split => allf x; have /[!inE] Q1f := allf x; first by case/andP.
by move=> ? ?; apply: Q1f; apply/andP.
Qed.
Lemma in_on1lP : {in D1, {on D2, allQ1l f & h}} <->
{in [pred x in D1 | f x \in D2], allQ1l f h}.
Proof.
split => allf x; have /[!inE] Q1f := allf x; first by case/andP.
by move=> ? ?; apply: Q1f; apply/andP.
Qed.
Lemma in_on2P : {in D1 &, {on D2 &, allQ2 f}} <->
{in [pred x in D1 | f x \in D2] &, allQ2 f}.
Proof.
split => allf x y; have /[!inE] Q2f := allf x y.
by move=> /andP[? ?] /andP[? ?]; apply: Q2f.
by move=> ? ? ? ?; apply: Q2f; apply/andP.
Qed.
Lemma on1W_in : {in D1, allQ1 f} -> {in D1, {on D2, allQ1 f}}.
Proof. by move=> D1f ? /D1f. Qed.
Lemma on1lW_in : {in D1, allQ1l f h} -> {in D1, {on D2, allQ1l f & h}}.
Proof. by move=> D1f ? /D1f. Qed.
Lemma on2W_in : {in D1 &, allQ2 f} -> {in D1 &, {on D2 &, allQ2 f}}.
Proof. by move=> D1f ? ? ? ? ? ?; apply: D1f. Qed.
Lemma in_on1W : allQ1 f -> {in D1, {on D2, allQ1 f}}.
Proof. by move=> allf ? ? ?; apply: allf. Qed.
Lemma in_on1lW : allQ1l f h -> {in D1, {on D2, allQ1l f & h}}.
Proof. by move=> allf ? ? ?; apply: allf. Qed.
Lemma in_on2W : allQ2 f -> {in D1 &, {on D2 &, allQ2 f}}.
Proof. by move=> allf ? ? ? ? ? ?; apply: allf. Qed.
Lemma on1S : (forall x, f x \in D2) -> {on D2, allQ1 f} -> allQ1 f.
Proof. by move=> ? fD1 ?; apply: fD1. Qed.
Lemma on1lS : (forall x, f x \in D2) -> {on D2, allQ1l f & h} -> allQ1l f h.
Proof. by move=> ? fD1 ?; apply: fD1. Qed.
Lemma on2S : (forall x, f x \in D2) -> {on D2 &, allQ2 f} -> allQ2 f.
Proof. by move=> ? fD1 ? ?; apply: fD1. Qed.
Lemma on1S_in : {homo f : x / x \in D1 >-> x \in D2} ->
{in D1, {on D2, allQ1 f}} -> {in D1, allQ1 f}.
Proof. by move=> fD fD1 ? ?; apply/fD1/fD. Qed.
Lemma on1lS_in : {homo f : x / x \in D1 >-> x \in D2} ->
{in D1, {on D2, allQ1l f & h}} -> {in D1, allQ1l f h}.
Proof. by move=> fD fD1 ? ?; apply/fD1/fD. Qed.
Lemma on2S_in : {homo f : x / x \in D1 >-> x \in D2} ->
{in D1 &, {on D2 &, allQ2 f}} -> {in D1 &, allQ2 f}.
Proof. by move=> fD fD1 ? ? ? ?; apply: fD1 => //; apply: fD. Qed.
Lemma in_on1S : (forall x, f x \in D2) -> {in T1, {on D2, allQ1 f}} -> allQ1 f.
Proof. by move=> fD2 fD1 ?; apply: fD1. Qed.
Lemma in_on1lS : (forall x, f x \in D2) ->
{in T1, {on D2, allQ1l f & h}} -> allQ1l f h.
Proof. by move=> fD2 fD1 ?; apply: fD1. Qed.
Lemma in_on2S : (forall x, f x \in D2) ->
{in T1 &, {on D2 &, allQ2 f}} -> allQ2 f.
Proof. by move=> fD2 fD1 ? ?; apply: fD1. Qed.
End LocalGlobal.
Arguments in_on1P {T1 T2 D1 D2 f Q1}.
Arguments in_on1lP {T1 T2 T3 D1 D2 f h Q1l}.
Arguments in_on2P {T1 T2 D1 D2 f Q2}.
Arguments on1W_in {T1 T2 D1} D2 {f Q1}.
Arguments on1lW_in {T1 T2 T3 D1} D2 {f h Q1l}.
Arguments on2W_in {T1 T2 D1} D2 {f Q2}.
Arguments in_on1W {T1 T2} D1 D2 {f Q1}.
Arguments in_on1lW {T1 T2 T3} D1 D2 {f h Q1l}.
Arguments in_on2W {T1 T2} D1 D2 {f Q2}.
Arguments on1S {T1 T2} D2 {f Q1}.
Arguments on1lS {T1 T2 T3} D2 {f h Q1l}.
Arguments on2S {T1 T2} D2 {f Q2}.
Arguments on1S_in {T1 T2 D1} D2 {f Q1}.
Arguments on1lS_in {T1 T2 T3 D1} D2 {f h Q1l}.
Arguments on2S_in {T1 T2 D1} D2 {f Q2}.
Arguments in_on1S {T1 T2} D2 {f Q1}.
Arguments in_on1lS {T1 T2 T3} D2 {f h Q1l}.
Arguments in_on2S {T1 T2} D2 {f Q2}.
Section in_sig.
Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0).
Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0).
Local Notation "{ 'all3' P }" := (forall x y z, P x y z : Prop) (at level 0).
Variables T1 T2 T3 : Type.
Variables (D1 : {pred T1}) (D2 : {pred T2}) (D3 : {pred T3}).
Variable P1 : T1 -> Prop.
Variable P2 : T1 -> T2 -> Prop.
Variable P3 : T1 -> T2 -> T3 -> Prop.
Lemma in1_sig : {in D1, {all1 P1}} -> forall x : sig D1, P1 (sval x).
Proof. by move=> DP [x Dx]; have := DP _ Dx. Qed.
Lemma in2_sig : {in D1 & D2, {all2 P2}} ->
forall (x : sig D1) (y : sig D2), P2 (sval x) (sval y).
Proof. by move=> DP [x Dx] [y Dy]; have := DP _ _ Dx Dy. Qed.
Lemma in3_sig : {in D1 & D2 & D3, {all3 P3}} ->
forall (x : sig D1) (y : sig D2) (z : sig D3), P3 (sval x) (sval y) (sval z).
Proof. by move=> DP [x Dx] [y Dy] [z Dz]; have := DP _ _ _ Dx Dy Dz. Qed.
End in_sig.
Arguments in1_sig {T1 D1 P1}.
Arguments in2_sig {T1 T2 D1 D2 P2}.
Arguments in3_sig {T1 T2 T3 D1 D2 D3 P3}.
(******************)
(* v8.15 addtions *)
(******************)
Section ReflectCombinators.
Variables (P Q : Prop) (p q : bool).
Hypothesis rP : reflect P p.
Hypothesis rQ : reflect Q q.
Lemma negPP : reflect (~ P) (~~ p).
Proof. by apply:(iffP negP); apply: contra_not => /rP. Qed.
Lemma andPP : reflect (P /\ Q) (p && q).
Proof. by apply: (iffP andP) => -[/rP ? /rQ ?]. Qed.
Lemma orPP : reflect (P \/ Q) (p || q).
Proof. by apply: (iffP orP) => -[/rP ?|/rQ ?]; tauto. Qed.
Lemma implyPP : reflect (P -> Q) (p ==> q).
Proof. by apply: (iffP implyP) => pq /rP /pq /rQ. Qed.
End ReflectCombinators.
Arguments negPP {P p}.
Arguments andPP {P Q p q}.
Arguments orPP {P Q p q}.
Arguments implyPP {P Q p q}.
Prenex Implicits negPP andPP orPP implyPP.
(*******************)
(* v8.16 additions *)
(*******************)
(******************************************************************************)
(* pred_oapp T D := [pred x | oapp (mem D) false x] *)
(******************************************************************************)
Lemma mono1W_in (aT rT : predArgType) (f : aT -> rT) (aD : {pred aT})
(aP : pred aT) (rP : pred rT) :
{in aD, {mono f : x / aP x >-> rP x}} ->
{in aD, {homo f : x / aP x >-> rP x}}.
Proof. by move=> fP x xD xP; rewrite fP. Qed.
Arguments mono1W_in [aT rT f aD aP rP].
#[deprecated(since="mathcomp 1.14.0", note="Use mono1W_in instead.")]
Notation mono2W_in := mono1W_in.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(*******************)
(* v8.17 additions *)
(*******************)
Lemma all_sig2_cond {I T} (C : pred I) P Q :
T -> (forall x, C x -> {y : T | P x y & Q x y}) ->
{f : I -> T | forall x, C x -> P x (f x) & forall x, C x -> Q x (f x)}.
Proof.
by move=> /all_sig_cond/[apply]-[f Pf]; exists f => i Di; have [] := Pf i Di.
Qed.
Lemma can_in_pcan [rT aT : Type] (A : {pred aT}) [f : aT -> rT] [g : rT -> aT] :
{in A, cancel f g} -> {in A, pcancel f (fun y : rT => Some (g y))}.
Proof. by move=> fK x Ax; rewrite fK. Qed.
Lemma pcan_in_inj [rT aT : Type] [A : {pred aT}]
[f : aT -> rT] [g : rT -> option aT] :
{in A, pcancel f g} -> {in A &, injective f}.
Proof. by move=> fK x y Ax Ay /(congr1 g); rewrite !fK// => -[]. Qed.
Lemma in_inj_comp A B C (f : B -> A) (h : C -> B) (P : pred B) (Q : pred C) :
{in P &, injective f} -> {in Q &, injective h} -> {homo h : x / Q x >-> P x} ->
{in Q &, injective (f \o h)}.
Proof.
by move=> Pf Qh QP x y xQ yQ xy; apply Qh => //; apply Pf => //; apply QP.
Qed.
Lemma can_in_comp [A B C : Type] (D : {pred B}) (D' : {pred C})
[f : B -> A] [h : C -> B] [f' : A -> B] [h' : B -> C] :
{homo h : x / x \in D' >-> x \in D} ->
{in D, cancel f f'} -> {in D', cancel h h'} ->
{in D', cancel (f \o h) (h' \o f')}.
Proof. by move=> hD fK hK c cD /=; rewrite fK ?hK ?hD. Qed.
Lemma pcan_in_comp [A B C : Type] (D : {pred B}) (D' : {pred C})
[f : B -> A] [h : C -> B] [f' : A -> option B] [h' : B -> option C] :
{homo h : x / x \in D' >-> x \in D} ->
{in D, pcancel f f'} -> {in D', pcancel h h'} ->
{in D', pcancel (f \o h) (obind h' \o f')}.
Proof. by move=> hD fK hK c cD /=; rewrite fK/= ?hK ?hD. Qed.
Definition pred_oapp T (D : {pred T}) : pred (option T) :=
[pred x | oapp (mem D) false x].
Lemma ocan_in_comp [A B C : Type] (D : {pred B}) (D' : {pred C})
[f : B -> option A] [h : C -> option B] [f' : A -> B] [h' : B -> C] :
{homo h : x / x \in D' >-> x \in pred_oapp D} ->
{in D, ocancel f f'} -> {in D', ocancel h h'} ->
{in D', ocancel (obind f \o h) (h' \o f')}.
Proof.
move=> hD fK hK c cD /=; rewrite -[RHS]hK/=; case hcE : (h c) => [b|]//=.
have bD : b \in D by have := hD _ cD; rewrite hcE inE.
by rewrite -[b in RHS]fK; case: (f b) => //=; have /hK := cD; rewrite hcE.
Qed.
Lemma eqbLR (b1 b2 : bool) : b1 = b2 -> b1 -> b2.
Proof. by move->. Qed.
Lemma eqbRL (b1 b2 : bool) : b1 = b2 -> b2 -> b1.
Proof. by move->. Qed.
Lemma homo_mono1 [aT rT : Type] [f : aT -> rT] [g : rT -> aT]
[aP : pred aT] [rP : pred rT] :
cancel g f ->
{homo f : x / aP x >-> rP x} ->
{homo g : x / rP x >-> aP x} -> {mono g : x / rP x >-> aP x}.
Proof. by move=> gK fP gP x; apply/idP/idP => [/fP|/gP//]; rewrite gK. Qed.
|