Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 7,057 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
(* ========================================================================= *)
(* Area of a circle. *)
(* ========================================================================= *)
needs "Multivariate/measure.ml";;
needs "Multivariate/realanalysis.ml";;
(* ------------------------------------------------------------------------- *)
(* Circle area. Should maybe extend WLOG tactics for such scaling. *)
(* ------------------------------------------------------------------------- *)
let AREA_UNIT_CBALL = prove
(`measure(cball(vec 0:real^2,&1)) = pi`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(INST_TYPE[`:1`,`:M`; `:2`,`:N`] FUBINI_SIMPLE_COMPACT) THEN
EXISTS_TAC `1` THEN
SIMP_TAC[DIMINDEX_1; DIMINDEX_2; ARITH; COMPACT_CBALL; SLICE_CBALL] THEN
REWRITE_TAC[VEC_COMPONENT; DROPOUT_0; REAL_SUB_RZERO] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MEASURE_EMPTY] THEN
SUBGOAL_THEN `!t. abs(t) <= &1 <=> t IN real_interval[-- &1,&1]`
(fun th -> REWRITE_TAC[th])
THENL [REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV; BALL_1] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_EQ THEN
EXISTS_TAC `\t. &2 * sqrt(&1 - t pow 2)` THEN CONJ_TAC THENL
[X_GEN_TAC `t:real` THEN SIMP_TAC[IN_REAL_INTERVAL; MEASURE_INTERVAL] THEN
REWRITE_TAC[REAL_BOUNDS_LE; VECTOR_ADD_LID; VECTOR_SUB_LZERO] THEN
DISCH_TAC THEN
W(MP_TAC o PART_MATCH (lhs o rand) CONTENT_1 o rand o snd) THEN
REWRITE_TAC[LIFT_DROP; DROP_NEG] THEN
ANTS_TAC THENL [ALL_TAC; SIMP_TAC[REAL_POW_ONE] THEN REAL_ARITH_TAC] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> --x <= x`) THEN
ASM_SIMP_TAC[SQRT_POS_LE; REAL_SUB_LE; GSYM REAL_LE_SQUARE_ABS;
REAL_ABS_NUM];
ALL_TAC] THEN
MP_TAC(ISPECL
[`\x. asn(x) + x * sqrt(&1 - x pow 2)`;
`\x. &2 * sqrt(&1 - x pow 2)`;
`-- &1`; `&1`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR) THEN
REWRITE_TAC[ASN_1; ASN_NEG_1] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[SQRT_0; REAL_MUL_RZERO; REAL_ADD_RID] THEN
REWRITE_TAC[REAL_ARITH `x / &2 - --(x / &2) = x`] THEN
DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_CONTINUOUS_ON_ADD THEN
SIMP_TAC[REAL_CONTINUOUS_ON_ASN; IN_REAL_INTERVAL; REAL_BOUNDS_LE] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_MUL THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_ID] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN
SIMP_TAC[REAL_CONTINUOUS_ON_SUB; REAL_CONTINUOUS_ON_POW;
REAL_CONTINUOUS_ON_ID; REAL_CONTINUOUS_ON_CONST] THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_SQRT];
REWRITE_TAC[IN_REAL_INTERVAL; REAL_BOUNDS_LT] THEN REPEAT STRIP_TAC THEN
REAL_DIFF_TAC THEN
CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_LID; REAL_POW_1; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_SUB_LZERO; REAL_MUL_RNEG; REAL_INV_MUL] THEN
ASM_REWRITE_TAC[REAL_SUB_LT; ABS_SQUARE_LT_1] THEN
MATCH_MP_TAC(REAL_FIELD
`s pow 2 = &1 - x pow 2 /\ x pow 2 < &1
==> (inv s + x * --(&2 * x) * inv (&2) * inv s + s) = &2 * s`) THEN
ASM_SIMP_TAC[ABS_SQUARE_LT_1; SQRT_POW_2; REAL_SUB_LE; REAL_LT_IMP_LE]]);;
let AREA_CBALL = prove
(`!z:real^2 r. &0 <= r ==> measure(cball(z,r)) = pi * r pow 2`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `r = &0` THENL
[ASM_SIMP_TAC[CBALL_SING; REAL_POW_2; REAL_MUL_RZERO] THEN
MATCH_MP_TAC MEASURE_UNIQUE THEN
REWRITE_TAC[HAS_MEASURE_0; NEGLIGIBLE_SING];
ALL_TAC] THEN
SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
MP_TAC(ISPECL [`cball(vec 0:real^2,&1)`; `r:real`; `z:real^2`; `pi`]
HAS_MEASURE_AFFINITY) THEN
REWRITE_TAC[HAS_MEASURE_MEASURABLE_MEASURE; MEASURABLE_CBALL;
AREA_UNIT_CBALL] THEN
ASM_REWRITE_TAC[real_abs; DIMINDEX_2] THEN
DISCH_THEN(MP_TAC o CONJUNCT2) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN
MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN_CBALL_0; IN_IMAGE] THEN REWRITE_TAC[IN_CBALL] THEN
REWRITE_TAC[NORM_ARITH `dist(z,a + z) = norm a`; NORM_MUL] THEN
ONCE_REWRITE_TAC[REAL_ARITH `abs r * x <= r <=> abs r * x <= r * &1`] THEN
ASM_SIMP_TAC[real_abs; REAL_LE_LMUL; dist] THEN X_GEN_TAC `w:real^2` THEN
DISCH_TAC THEN EXISTS_TAC `inv(r) % (w - z):real^2` THEN
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV] THEN
CONJ_TAC THENL [NORM_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[NORM_MUL; REAL_ABS_INV] THEN ASM_REWRITE_TAC[real_abs] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_MUL_LID] THEN
ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_REWRITE_TAC[]);;
let AREA_BALL = prove
(`!z:real^2 r. &0 <= r ==> measure(ball(z,r)) = pi * r pow 2`,
SIMP_TAC[GSYM INTERIOR_CBALL; GSYM AREA_CBALL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURE_INTERIOR THEN
SIMP_TAC[BOUNDED_CBALL; NEGLIGIBLE_CONVEX_FRONTIER; CONVEX_CBALL]);;
(* ------------------------------------------------------------------------- *)
(* Volume of a ball too, just for fun. *)
(* ------------------------------------------------------------------------- *)
let VOLUME_CBALL = prove
(`!z:real^3 r. &0 <= r ==> measure(cball(z,r)) = &4 / &3 * pi * r pow 3`,
GEOM_ORIGIN_TAC `z:real^3` THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(INST_TYPE[`:2`,`:M`; `:3`,`:N`] FUBINI_SIMPLE_COMPACT) THEN
EXISTS_TAC `1` THEN
SIMP_TAC[DIMINDEX_2; DIMINDEX_3; ARITH; COMPACT_CBALL; SLICE_CBALL] THEN
REWRITE_TAC[VEC_COMPONENT; DROPOUT_0; REAL_SUB_RZERO] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MEASURE_EMPTY] THEN
SUBGOAL_THEN `!t. abs(t) <= r <=> t IN real_interval[--r,r]`
(fun th -> REWRITE_TAC[th])
THENL [REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_EQ THEN
EXISTS_TAC `\t. pi * (r pow 2 - t pow 2)` THEN CONJ_TAC THENL
[X_GEN_TAC `t:real` THEN REWRITE_TAC[IN_REAL_INTERVAL; REAL_BOUNDS_LE] THEN
SIMP_TAC[AREA_CBALL; SQRT_POS_LE; REAL_SUB_LE; GSYM REAL_LE_SQUARE_ABS;
SQRT_POW_2; REAL_ARITH `abs x <= r ==> abs x <= abs r`];
ALL_TAC] THEN
MP_TAC(ISPECL
[`\t. pi * (r pow 2 * t - &1 / &3 * t pow 3)`;
`\t. pi * (r pow 2 - t pow 2)`;
`--r:real`; `r:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RING;
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
CONV_TAC REAL_RING]);;
let VOLUME_BALL = prove
(`!z:real^3 r. &0 <= r ==> measure(ball(z,r)) = &4 / &3 * pi * r pow 3`,
SIMP_TAC[GSYM INTERIOR_CBALL; GSYM VOLUME_CBALL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURE_INTERIOR THEN
SIMP_TAC[BOUNDED_CBALL; NEGLIGIBLE_CONVEX_FRONTIER; CONVEX_CBALL]);;
|