Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,057 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
(* ========================================================================= *)
(* Area of a circle.                                                         *)
(* ========================================================================= *)

needs "Multivariate/measure.ml";;
needs "Multivariate/realanalysis.ml";;

(* ------------------------------------------------------------------------- *)
(* Circle area. Should maybe extend WLOG tactics for such scaling.           *)
(* ------------------------------------------------------------------------- *)

let AREA_UNIT_CBALL = prove
 (`measure(cball(vec 0:real^2,&1)) = pi`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(INST_TYPE[`:1`,`:M`; `:2`,`:N`] FUBINI_SIMPLE_COMPACT) THEN
  EXISTS_TAC `1` THEN
  SIMP_TAC[DIMINDEX_1; DIMINDEX_2; ARITH; COMPACT_CBALL; SLICE_CBALL] THEN
  REWRITE_TAC[VEC_COMPONENT; DROPOUT_0; REAL_SUB_RZERO] THEN
  ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MEASURE_EMPTY] THEN
  SUBGOAL_THEN `!t. abs(t) <= &1 <=> t IN real_interval[-- &1,&1]`
   (fun th -> REWRITE_TAC[th])
  THENL [REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV; BALL_1] THEN
  MATCH_MP_TAC HAS_REAL_INTEGRAL_EQ THEN
  EXISTS_TAC `\t. &2 * sqrt(&1 - t pow 2)` THEN CONJ_TAC THENL
   [X_GEN_TAC `t:real` THEN SIMP_TAC[IN_REAL_INTERVAL; MEASURE_INTERVAL] THEN
    REWRITE_TAC[REAL_BOUNDS_LE; VECTOR_ADD_LID; VECTOR_SUB_LZERO] THEN
    DISCH_TAC THEN
    W(MP_TAC o PART_MATCH (lhs o rand) CONTENT_1 o rand o snd) THEN
    REWRITE_TAC[LIFT_DROP; DROP_NEG] THEN
    ANTS_TAC THENL [ALL_TAC; SIMP_TAC[REAL_POW_ONE] THEN REAL_ARITH_TAC] THEN
    MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> --x <= x`) THEN
    ASM_SIMP_TAC[SQRT_POS_LE; REAL_SUB_LE; GSYM REAL_LE_SQUARE_ABS;
                 REAL_ABS_NUM];
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`\x.  asn(x) + x * sqrt(&1 - x pow 2)`;
    `\x. &2 * sqrt(&1 - x pow 2)`;
    `-- &1`; `&1`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR) THEN
  REWRITE_TAC[ASN_1; ASN_NEG_1] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  REWRITE_TAC[SQRT_0; REAL_MUL_RZERO; REAL_ADD_RID] THEN
  REWRITE_TAC[REAL_ARITH `x / &2 - --(x / &2) = x`] THEN
  DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_CONTINUOUS_ON_ADD THEN
    SIMP_TAC[REAL_CONTINUOUS_ON_ASN; IN_REAL_INTERVAL; REAL_BOUNDS_LE] THEN
    MATCH_MP_TAC REAL_CONTINUOUS_ON_MUL THEN
    REWRITE_TAC[REAL_CONTINUOUS_ON_ID] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN
    MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN
    SIMP_TAC[REAL_CONTINUOUS_ON_SUB; REAL_CONTINUOUS_ON_POW;
             REAL_CONTINUOUS_ON_ID; REAL_CONTINUOUS_ON_CONST] THEN
    REWRITE_TAC[REAL_CONTINUOUS_ON_SQRT];
    REWRITE_TAC[IN_REAL_INTERVAL; REAL_BOUNDS_LT] THEN REPEAT STRIP_TAC THEN
    REAL_DIFF_TAC THEN
    CONV_TAC NUM_REDUCE_CONV THEN
    REWRITE_TAC[REAL_MUL_LID; REAL_POW_1; REAL_MUL_RID] THEN
    REWRITE_TAC[REAL_SUB_LZERO; REAL_MUL_RNEG; REAL_INV_MUL] THEN
    ASM_REWRITE_TAC[REAL_SUB_LT; ABS_SQUARE_LT_1] THEN
    MATCH_MP_TAC(REAL_FIELD
     `s pow 2 = &1 - x pow 2 /\ x pow 2 < &1
      ==> (inv s + x * --(&2 * x) * inv (&2) * inv s + s) = &2 * s`) THEN
    ASM_SIMP_TAC[ABS_SQUARE_LT_1; SQRT_POW_2; REAL_SUB_LE; REAL_LT_IMP_LE]]);;

let AREA_CBALL = prove
 (`!z:real^2 r. &0 <= r ==> measure(cball(z,r)) = pi * r pow 2`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `r = &0` THENL
   [ASM_SIMP_TAC[CBALL_SING; REAL_POW_2; REAL_MUL_RZERO] THEN
    MATCH_MP_TAC MEASURE_UNIQUE THEN
    REWRITE_TAC[HAS_MEASURE_0; NEGLIGIBLE_SING];
    ALL_TAC] THEN
  SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  MP_TAC(ISPECL [`cball(vec 0:real^2,&1)`; `r:real`; `z:real^2`; `pi`]
        HAS_MEASURE_AFFINITY) THEN
  REWRITE_TAC[HAS_MEASURE_MEASURABLE_MEASURE; MEASURABLE_CBALL;
              AREA_UNIT_CBALL] THEN
  ASM_REWRITE_TAC[real_abs; DIMINDEX_2] THEN
  DISCH_THEN(MP_TAC o CONJUNCT2) THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
  DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN
  MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
  REWRITE_TAC[IN_CBALL_0; IN_IMAGE] THEN REWRITE_TAC[IN_CBALL] THEN
  REWRITE_TAC[NORM_ARITH `dist(z,a + z) = norm a`; NORM_MUL] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `abs r * x <= r <=> abs r * x <= r * &1`] THEN
  ASM_SIMP_TAC[real_abs; REAL_LE_LMUL; dist] THEN X_GEN_TAC `w:real^2` THEN
  DISCH_TAC THEN EXISTS_TAC `inv(r) % (w - z):real^2` THEN
  ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV] THEN
  CONJ_TAC THENL [NORM_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[NORM_MUL; REAL_ABS_INV] THEN ASM_REWRITE_TAC[real_abs] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_MUL_LID] THEN
  ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_REWRITE_TAC[]);;

let AREA_BALL = prove
 (`!z:real^2 r. &0 <= r ==> measure(ball(z,r)) = pi * r pow 2`,
  SIMP_TAC[GSYM INTERIOR_CBALL; GSYM AREA_CBALL] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURE_INTERIOR THEN
  SIMP_TAC[BOUNDED_CBALL; NEGLIGIBLE_CONVEX_FRONTIER; CONVEX_CBALL]);;

(* ------------------------------------------------------------------------- *)
(* Volume of a ball too, just for fun.                                       *)
(* ------------------------------------------------------------------------- *)

let VOLUME_CBALL = prove
 (`!z:real^3 r. &0 <= r ==> measure(cball(z,r)) = &4 / &3 * pi * r pow 3`,
  GEOM_ORIGIN_TAC `z:real^3` THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(INST_TYPE[`:2`,`:M`; `:3`,`:N`] FUBINI_SIMPLE_COMPACT) THEN
  EXISTS_TAC `1` THEN
  SIMP_TAC[DIMINDEX_2; DIMINDEX_3; ARITH; COMPACT_CBALL; SLICE_CBALL] THEN
  REWRITE_TAC[VEC_COMPONENT; DROPOUT_0; REAL_SUB_RZERO] THEN
  ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MEASURE_EMPTY] THEN
  SUBGOAL_THEN `!t. abs(t) <= r <=> t IN real_interval[--r,r]`
   (fun th -> REWRITE_TAC[th])
  THENL [REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN
  MATCH_MP_TAC HAS_REAL_INTEGRAL_EQ THEN
  EXISTS_TAC `\t. pi * (r pow 2 - t pow 2)` THEN CONJ_TAC THENL
   [X_GEN_TAC `t:real` THEN REWRITE_TAC[IN_REAL_INTERVAL; REAL_BOUNDS_LE] THEN
    SIMP_TAC[AREA_CBALL; SQRT_POS_LE; REAL_SUB_LE; GSYM REAL_LE_SQUARE_ABS;
             SQRT_POW_2; REAL_ARITH `abs x <= r ==> abs x <= abs r`];
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`\t. pi * (r pow 2 * t - &1 / &3 * t pow 3)`;
    `\t. pi * (r pow 2 - t pow 2)`;
    `--r:real`; `r:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
    CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RING;
    MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    CONV_TAC REAL_RING]);;

let VOLUME_BALL = prove
 (`!z:real^3 r. &0 <= r ==> measure(ball(z,r)) =  &4 / &3 * pi * r pow 3`,
  SIMP_TAC[GSYM INTERIOR_CBALL; GSYM VOLUME_CBALL] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURE_INTERIOR THEN
  SIMP_TAC[BOUNDED_CBALL; NEGLIGIBLE_CONVEX_FRONTIER; CONVEX_CBALL]);;