Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 20,198 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
(* ========================================================================= *)
(* Liouville approximation theorem.                                          *)
(* ========================================================================= *)

needs "Library/floor.ml";;
needs "Library/poly.ml";;

(* ------------------------------------------------------------------------- *)
(* Definition of algebraic and transcendental.                               *)
(* ------------------------------------------------------------------------- *)

let algebraic = new_definition
 `algebraic(x) <=> ?p. ALL integer p /\ ~(poly p = poly []) /\ poly p x = &0`;;

let transcendental = new_definition
 `transcendental(x) <=> ~(algebraic x)`;;

(* ------------------------------------------------------------------------- *)
(* Some trivialities.                                                        *)
(* ------------------------------------------------------------------------- *)

let REAL_INTEGER_EQ_0 = prove
 (`!x. integer x /\ abs(x) < &1 ==> x = &0`,
  MESON_TAC[REAL_ABS_INTEGER_LEMMA; REAL_NOT_LE]);;

let FACT_LE_REFL = prove
 (`!n. n <= FACT n`,
  INDUCT_TAC THEN REWRITE_TAC[FACT; ARITH] THEN
  MATCH_MP_TAC(ARITH_RULE `x * 1 <= a ==> x <= a`) THEN
  REWRITE_TAC[LE_MULT_LCANCEL; NOT_SUC; FACT_LT;
              ARITH_RULE `1 <= n <=> 0 < n`]);;

let EXP_LE_REFL = prove
 (`!a. 1 < a ==> !n. n <= a EXP n`,
  GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; ARITH] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
   `n <= x ==> 1 * x < y ==> SUC n <= y`)) THEN
  REWRITE_TAC[LT_MULT_RCANCEL; EXP_EQ_0] THEN
  POP_ASSUM MP_TAC THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Inequality variant of mean value theorem.                                 *)
(* ------------------------------------------------------------------------- *)

let MVT_INEQ = prove
 (`!f f' a d M.
        &0 < M /\ &0 < d /\
        (!x. abs(x - a) <= d ==> (f diffl f'(x)) x /\ abs(f' x) < M)
        ==> !x. abs(x - a) <= d ==> abs(f x - f a) < M * d`,
  REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN
  REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
   (REAL_ARITH `x = a \/ x < a \/ a < x`)
  THENL
   [ASM_SIMP_TAC[REAL_SUB_REFL; REAL_ABS_NUM; REAL_LT_MUL];
    MP_TAC(SPECL [`f:real->real`; `f':real->real`; `x:real`; `a:real`]
                 MVT_ALT);
    MP_TAC(SPECL [`f:real->real`; `f':real->real`; `a:real`; `x:real`]
                 MVT_ALT)] THEN
  (ANTS_TAC THENL
    [ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
     FIRST_X_ASSUM MATCH_MP_TAC THEN
     POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC;
     ALL_TAC]) THEN
  STRIP_TAC THENL
   [ONCE_REWRITE_TAC[REAL_ABS_SUB]; ALL_TAC] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[REAL_ABS_MUL] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `d * abs(f'(z:real))` THEN
  (CONJ_TAC THENL
    [MATCH_MP_TAC REAL_LE_RMUL;
     MATCH_MP_TAC REAL_LT_LMUL THEN
     ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC]) THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Appropriate multiple of poly on rational is an integer.                   *)
(* ------------------------------------------------------------------------- *)

let POLY_MULTIPLE_INTEGER = prove
 (`!p q l. ALL integer l ==> integer(&q pow (LENGTH l) * poly l (&p / &q))`,
  GEN_TAC THEN GEN_TAC THEN ASM_CASES_TAC `q = 0` THENL
   [LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_MUL_RZERO; INTEGER_CLOSED] THEN
    ASM_REWRITE_TAC[LENGTH; real_pow; REAL_MUL_LZERO; INTEGER_CLOSED];
    ALL_TAC] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_MUL_RZERO; INTEGER_CLOSED] THEN
  REWRITE_TAC[LENGTH; real_pow; ALL] THEN DISCH_TAC THEN
  REWRITE_TAC[REAL_ARITH
   `(q * qp) * (h + pq * pol) = q * h * qp + (q * pq) * (qp * pol)`] THEN
  ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ] THEN
  MATCH_MP_TAC(el 1 (CONJUNCTS INTEGER_CLOSED)) THEN
  ASM_SIMP_TAC[INTEGER_CLOSED]);;

(* ------------------------------------------------------------------------- *)
(* First show any root is surrounded by an other-root-free zone.             *)
(* ------------------------------------------------------------------------- *)

let SEPARATE_FINITE_SET = prove
 (`!a s. FINITE s
         ==> ~(a IN s) ==> ?d. &0 < d /\ !x. x IN s ==> d <= abs(x - a)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN
  CONJ_TAC THENL [MESON_TAC[REAL_LT_01]; ALL_TAC] THEN
  REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  EXISTS_TAC `min d (abs(x - a))` THEN
  ASM_REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN; GSYM REAL_ABS_NZ; REAL_SUB_0] THEN
  ASM_MESON_TAC[REAL_LE_REFL]);;

let POLY_ROOT_SEPARATE_LE = prove
 (`!p x. poly p x = &0 /\ ~(poly p = poly [])
         ==> ?d. &0 < d /\
                 !x'. &0 < abs(x' - x) /\ abs(x' - x) < d
                      ==> ~(poly p x' = &0)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`x:real`; `{x | poly p x = &0} DELETE x`]
    SEPARATE_FINITE_SET) THEN
  ASM_SIMP_TAC[POLY_ROOTS_FINITE_SET; FINITE_DELETE; IN_DELETE] THEN
  MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[IN_ELIM_THM] THEN
  REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_SUB_0] THEN MESON_TAC[REAL_NOT_LT]);;

let POLY_ROOT_SEPARATE_LT = prove
 (`!p x. poly p x = &0 /\ ~(poly p = poly [])
         ==> ?d. &0 < d /\
                 !x'. &0 < abs(x' - x) /\ abs(x' - x) <= d
                      ==> ~(poly p x' = &0)`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP POLY_ROOT_SEPARATE_LE) THEN
  DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `d / &2` THEN ASM_MESON_TAC[REAL_ARITH
   `&0 < d ==> &0 < d / &2 /\ (x <= d / &2 ==> x < d)`]);;

(* ------------------------------------------------------------------------- *)
(* And also there is a positive bound on a polynomial in an interval.        *)
(* ------------------------------------------------------------------------- *)

let POLY_BOUND_INTERVAL = prove
 (`!p d x. ?M. &0 < M /\ !x'. abs(x' - x) <= d ==> abs(poly p x') < M`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`poly p`; `x - d`; `x + d`] CONT_BOUNDED_ABS) THEN
  REWRITE_TAC[REWRITE_RULE[ETA_AX] (SPEC_ALL POLY_CONT)] THEN
  DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN EXISTS_TAC `&1 + abs M` THEN
  CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `M:real` THEN CONJ_TAC THENL
   [FIRST_X_ASSUM MATCH_MP_TAC THEN POP_ASSUM MP_TAC; ALL_TAC] THEN
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Now put these together to get the interval we need.                       *)
(* ------------------------------------------------------------------------- *)

let LIOUVILLE_INTERVAL = prove
 (`!p x. poly p x = &0 /\ ~(poly p = poly [])
         ==> ?c. &0 < c /\
                 (!x'. abs(x' - x) <= c
                       ==> abs(poly(poly_diff p) x') < &1 / c) /\
                 (!x'. &0 < abs(x' - x) /\ abs(x' - x) <= c
                       ==> ~(poly p x' = &0))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`p:real list`; `x:real`] POLY_ROOT_SEPARATE_LT) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`poly_diff p`; `d:real`; `x:real`] POLY_BOUND_INTERVAL) THEN
  DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN EXISTS_TAC `min d (inv M)` THEN
  ASM_SIMP_TAC[REAL_LT_MIN; REAL_LE_MIN; REAL_LT_INV_EQ] THEN
  X_GEN_TAC `y:real` THEN STRIP_TAC THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `M:real` THEN
  ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_INV] THEN
  REWRITE_TAC[real_div; REAL_MUL_LID] THEN
  MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN] THEN
  ASM_REWRITE_TAC[REAL_LT_INV_EQ; REAL_LE_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Liouville's approximation theorem.                                        *)
(* ------------------------------------------------------------------------- *)

let LIOUVILLE = prove
 (`!x. algebraic x
       ==> ?n c. c > &0 /\
                 !p q. ~(q = 0) ==> &p / &q = x \/
                                    abs(x - &p / &q) > c / &q pow n`,
  GEN_TAC THEN REWRITE_TAC[algebraic; real_gt] THEN
  DISCH_THEN(X_CHOOSE_THEN `l:real list` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `LENGTH(l:real list)` THEN
  MP_TAC(SPECL [`l:real list`; `x:real`] LIOUVILLE_INTERVAL) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE] THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN DISCH_TAC THEN
  ASM_CASES_TAC `&p / &q = x` THEN ASM_REWRITE_TAC[] THEN
  REPEAT STRIP_TAC THEN UNDISCH_TAC
   `!x'. &0 < abs(x' - x) /\ abs(x' - x) <= c ==> ~(poly l x' = &0)` THEN
  DISCH_THEN(MP_TAC o SPEC `&p / &q`) THEN REWRITE_TAC[NOT_IMP] THEN
  REPEAT CONJ_TAC THENL
   [ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_SUB_0];
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `abs(x - y) <= d ==> d <= e ==> abs(y - x) <= e`)) THEN
    ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LE_LDIV_EQ; LT_NZ] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
    MATCH_MP_TAC REAL_POW_LE_1 THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN
    UNDISCH_TAC `~(q = 0)` THEN ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `&q pow (LENGTH(l:real list)) * poly l (&p / &q) = &0`
  MP_TAC THENL
   [ALL_TAC; ASM_REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_OF_NUM_EQ]] THEN
  MATCH_MP_TAC REAL_INTEGER_EQ_0 THEN
  ASM_SIMP_TAC[POLY_MULTIPLE_INTEGER] THEN
  MP_TAC(SPECL [`poly l`; `poly(poly_diff l)`; `x:real`;
                `c / &q pow (LENGTH(l:real list))`; `&1 / c`]
               MVT_INEQ) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; LT_NZ; REAL_POW_LT] THEN
  ANTS_TAC THENL
   [REWRITE_TAC[REWRITE_RULE[ETA_AX] (SPEC_ALL POLY_DIFF)] THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `x <= d ==> d <= e ==> x <= e`)) THEN
    ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LE_LDIV_EQ; LT_NZ] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
    MATCH_MP_TAC REAL_POW_LE_1 THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN
    UNDISCH_TAC `~(q = 0)` THEN ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[real_div; REAL_MUL_ASSOC; REAL_MUL_LID] THEN
  ASM_SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ] THEN
  REWRITE_TAC[GSYM real_div] THEN DISCH_THEN(MP_TAC o SPEC `&p / &q`) THEN
  REWRITE_TAC[REAL_SUB_RZERO] THEN ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN
  ASM_REWRITE_TAC[] THEN
  ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LT_RDIV_EQ; LT_NZ] THEN
  REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN
  REWRITE_TAC[REAL_MUL_AC]);;

(* ------------------------------------------------------------------------- *)
(* Corollary for algebraic irrationals.                                      *)
(* ------------------------------------------------------------------------- *)

let LIOUVILLE_IRRATIONAL = prove
 (`!x. algebraic x /\ ~rational x
       ==> ?n c. c > &0 /\ !p q. ~(q = 0) ==> abs(x - &p / &q) > c / &q pow n`,
  REWRITE_TAC[RATIONAL_ALT] THEN REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP LIOUVILLE) THEN
  REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
  MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  ASM_MESON_TAC[LIOUVILLE; REAL_ABS_DIV; REAL_ABS_NUM]);;

(* ------------------------------------------------------------------------- *)
(* Liouville's constant.                                                     *)
(* ------------------------------------------------------------------------- *)

let liouville = new_definition
 `liouville = suminf (\n. &1 / &10 pow (FACT n))`;;

(* ------------------------------------------------------------------------- *)
(* Some bounds on the partial sums and hence convergence.                    *)
(* ------------------------------------------------------------------------- *)

let LIOUVILLE_SUM_BOUND = prove
 (`!d n. ~(n = 0)
         ==> sum(n..n+d) (\k. &1 / &10 pow FACT k) <= &2 / &10 pow (FACT n)`,
  INDUCT_TAC THEN GEN_TAC THEN DISCH_TAC THENL
   [REWRITE_TAC[ADD_CLAUSES; SUM_SING_NUMSEG; real_div] THEN
    MATCH_MP_TAC REAL_LE_RMUL THEN
    SIMP_TAC[REAL_LE_INV_EQ; REAL_POW_LE; REAL_OF_NUM_LE; ARITH];
    ALL_TAC] THEN
  SIMP_TAC[SUM_CLAUSES_LEFT; LE_ADD] THEN REWRITE_TAC[real_div] THEN
  MATCH_MP_TAC(REAL_ARITH `y <= x ==> &1 * x + y <= &2 * x`) THEN
  REWRITE_TAC[ARITH_RULE `n + SUC d = (n + 1) + d`; GSYM real_div] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `n + 1`) THEN REWRITE_TAC[ADD_EQ_0; ARITH] THEN
  MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN
  SIMP_TAC[REAL_LE_LDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN
  SIMP_TAC[GSYM REAL_POW_SUB; REAL_OF_NUM_EQ; ARITH; FACT_MONO; LE_ADD] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&10 pow 1` THEN
  CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC REAL_POW_MONO] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[GSYM ADD1; FACT] THEN
  MATCH_MP_TAC(ARITH_RULE
   `1 * x <= SUC n * x /\ ~(n * x = 0) ==> 1 <= SUC n * x - x`) THEN
  ASM_SIMP_TAC[LE_MULT_RCANCEL; MULT_EQ_0] THEN
  REWRITE_TAC[GSYM LT_NZ; FACT_LT] THEN ARITH_TAC);;

let LIOUVILLE_PSUM_BOUND = prove
 (`!n d. ~(n = 0)
         ==> sum(n,d) (\k. &1 / &10 pow FACT k) <= &2 / &10 pow (FACT n)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `d = 0` THEN
  ASM_SIMP_TAC[sum; REAL_LE_DIV; REAL_POW_LE; REAL_POS] THEN
  ASM_SIMP_TAC[PSUM_SUM_NUMSEG] THEN
  ASM_SIMP_TAC[ARITH_RULE `~(d = 0) ==> (n + d) - 1 = n + (d - 1)`] THEN
  ASM_SIMP_TAC[LIOUVILLE_SUM_BOUND]);;

let LIOUVILLE_SUMS = prove
 (`(\k. &1 / &10 pow FACT k) sums liouville`,
  REWRITE_TAC[liouville] THEN MATCH_MP_TAC SUMMABLE_SUM THEN
  REWRITE_TAC[SER_CAUCHY] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  MP_TAC(SPEC `inv(e)` REAL_ARCH_SIMPLE) THEN
  DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `2 * N + 1` THEN
  REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `&2 / &10 pow (FACT m)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= a ==> abs x <= a`) THEN
    ASM_SIMP_TAC[SUM_POS; REAL_LE_DIV; REAL_POW_LE; REAL_POS] THEN
    MATCH_MP_TAC LIOUVILLE_PSUM_BOUND THEN
    UNDISCH_TAC `2 * N + 1 <= m` THEN ARITH_TAC;
    ALL_TAC] THEN
  SIMP_TAC[REAL_LT_LDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `e * &(2 * N + 1)` THEN
  CONJ_TAC THENL
   [REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
    MATCH_MP_TAC(REAL_ARITH
     `&1 < (n + &1 / &2) * e ==> &2 < e * (&2 * n + &1)`) THEN
    ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; real_div; REAL_MUL_LID] THEN
    UNDISCH_TAC `inv(e) <= &N` THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN
  REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LE] THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `10 EXP m` THEN
  REWRITE_TAC[FACT_LE_REFL; LE_EXP; ARITH] THEN SIMP_TAC[EXP_LE_REFL; ARITH]);;

let LIOUVILLE_PSUM_LE = prove
 (`!n. sum(0,n) (\k. &1 / &10 pow FACT k) <= liouville`,
  GEN_TAC THEN REWRITE_TAC[suminf] THEN MATCH_MP_TAC SEQ_LE THEN
  EXISTS_TAC `\j:num. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN
  EXISTS_TAC `\n:num. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN
  REWRITE_TAC[SEQ_CONST; GSYM sums; LIOUVILLE_SUMS] THEN
  EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN SIMP_TAC[GE; LE_EXISTS] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
  REWRITE_TAC[GSYM SUM_SPLIT; ADD_CLAUSES; REAL_LE_ADDR] THEN
  SIMP_TAC[SUM_POS; REAL_LE_DIV; REAL_POW_LE; REAL_POS]);;

let LIOUVILLE_PSUM_LT = prove
 (`!n. sum(0,n) (\k. &1 / &10 pow FACT k) < liouville`,
  GEN_TAC THEN MP_TAC(SPEC `SUC n` LIOUVILLE_PSUM_LE) THEN SIMP_TAC[sum] THEN
  MATCH_MP_TAC(REAL_ARITH `&0 < e ==> x + e <= y ==> x < y`) THEN
  SIMP_TAC[REAL_LT_DIV; REAL_POW_LT; REAL_OF_NUM_LT; ARITH]);;

let LIOVILLE_PSUM_DIFF = prove
 (`!n. ~(n = 0)
       ==> liouville
             <= sum(0,n) (\k. &1 / &10 pow FACT k) + &2 / &10 pow (FACT n)`,
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SEQ_LE THEN
  EXISTS_TAC `\n. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN
  EXISTS_TAC
    `\j:num. sum (0,n) (\k. &1 / &10 pow FACT k) + &2 / &10 pow FACT n` THEN
  REWRITE_TAC[SEQ_CONST; GSYM sums; LIOUVILLE_SUMS] THEN
  EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN SIMP_TAC[GE; LE_EXISTS] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
  REWRITE_TAC[GSYM SUM_SPLIT; REAL_LE_LADD] THEN
  ASM_SIMP_TAC[ADD_CLAUSES; LIOUVILLE_PSUM_BOUND]);;

(* ------------------------------------------------------------------------- *)
(* Main proof.                                                               *)
(* ------------------------------------------------------------------------- *)

let TRANSCENDENTAL_LIOUVILLE = prove
 (`transcendental(liouville)`,
  REWRITE_TAC[transcendental] THEN DISCH_THEN(MP_TAC o MATCH_MP LIOUVILLE) THEN
  REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b) <=> a ==> ~b`] THEN
  REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `c:real`] THEN
  REWRITE_TAC[DE_MORGAN_THM; real_gt; REAL_NOT_LT] THEN DISCH_TAC THEN
  MP_TAC(SPECL [`&10`; `&2 / c`] REAL_ARCH_POW) THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_THEN(X_CHOOSE_TAC `k:num`) THEN
  ABBREV_TAC `n = m + k + 1` THEN
  EXISTS_TAC `nsum(0..n-1) (\i. 10 EXP (FACT(n-1) - FACT i))` THEN
  EXISTS_TAC `10 EXP (FACT(n-1))` THEN REWRITE_TAC[EXP_EQ_0; ARITH] THEN
  SUBGOAL_THEN
   `&(nsum(0..n-1) (\i. 10 EXP (FACT(n-1) - FACT i))) / &(10 EXP (FACT(n-1))) =
    sum(0..n-1) (\k. &1 / &10 pow (FACT k))`
  SUBST1_TAC THENL
   [REWRITE_TAC[real_div] THEN GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
    REWRITE_TAC[REAL_OF_NUM_SUM_NUMSEG; GSYM SUM_LMUL] THEN
    SIMP_TAC[GSYM REAL_OF_NUM_POW; REAL_POW_SUB; REAL_OF_NUM_EQ; ARITH;
             FACT_MONO; real_div; REAL_MUL_ASSOC] THEN
    SIMP_TAC[REAL_MUL_LINV; REAL_OF_NUM_EQ; REAL_POW_EQ_0; ARITH] THEN
    REWRITE_TAC[REAL_MUL_LID];
    ALL_TAC] THEN
  MP_TAC(GEN `f:num->real`
   (SPECL [`f:num->real`; `0`; `m + k + 1`] PSUM_SUM_NUMSEG)) THEN
  REWRITE_TAC[ADD_EQ_0; ARITH; ADD_CLAUSES] THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN
  SIMP_TAC[LIOUVILLE_PSUM_LT; REAL_LT_IMP_NE] THEN
  MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= y`) THEN
  REWRITE_TAC[REAL_SUB_LE; LIOUVILLE_PSUM_LE] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 / &10 pow (FACT n)` THEN
  REWRITE_TAC[REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC LIOVILLE_PSUM_DIFF THEN EXPAND_TAC "n" THEN ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[LIOVILLE_PSUM_DIFF] THEN
  REWRITE_TAC[REAL_OF_NUM_POW; GSYM EXP_MULT] THEN
  SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LT_NZ; EXP_EQ_0; ARITH] THEN
  REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&10 pow k` THEN
  ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN
  SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LT_NZ; EXP_EQ_0; ARITH] THEN
  REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
  REWRITE_TAC[GSYM EXP_ADD; LE_EXP; ARITH_EQ] THEN EXPAND_TAC "n" THEN
  REWRITE_TAC[ARITH_RULE `(m + k + 1) - 1 = m + k`] THEN
  REWRITE_TAC[num_CONV `1`; ADD_CLAUSES; FACT] THEN
  REWRITE_TAC[ARITH_RULE
   `k + f * m <= SUC(m + k) * f <=> k <= (k + 1) * f`] THEN
  GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `k = k * 1`] THEN
  MATCH_MP_TAC LE_MULT2 THEN REWRITE_TAC[LE_ADD] THEN
  REWRITE_TAC[FACT_LT; ARITH_RULE `1 <= x <=> 0 < x`]);;