Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 20,198 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
(* ========================================================================= *)
(* Liouville approximation theorem. *)
(* ========================================================================= *)
needs "Library/floor.ml";;
needs "Library/poly.ml";;
(* ------------------------------------------------------------------------- *)
(* Definition of algebraic and transcendental. *)
(* ------------------------------------------------------------------------- *)
let algebraic = new_definition
`algebraic(x) <=> ?p. ALL integer p /\ ~(poly p = poly []) /\ poly p x = &0`;;
let transcendental = new_definition
`transcendental(x) <=> ~(algebraic x)`;;
(* ------------------------------------------------------------------------- *)
(* Some trivialities. *)
(* ------------------------------------------------------------------------- *)
let REAL_INTEGER_EQ_0 = prove
(`!x. integer x /\ abs(x) < &1 ==> x = &0`,
MESON_TAC[REAL_ABS_INTEGER_LEMMA; REAL_NOT_LE]);;
let FACT_LE_REFL = prove
(`!n. n <= FACT n`,
INDUCT_TAC THEN REWRITE_TAC[FACT; ARITH] THEN
MATCH_MP_TAC(ARITH_RULE `x * 1 <= a ==> x <= a`) THEN
REWRITE_TAC[LE_MULT_LCANCEL; NOT_SUC; FACT_LT;
ARITH_RULE `1 <= n <=> 0 < n`]);;
let EXP_LE_REFL = prove
(`!a. 1 < a ==> !n. n <= a EXP n`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; ARITH] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
`n <= x ==> 1 * x < y ==> SUC n <= y`)) THEN
REWRITE_TAC[LT_MULT_RCANCEL; EXP_EQ_0] THEN
POP_ASSUM MP_TAC THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Inequality variant of mean value theorem. *)
(* ------------------------------------------------------------------------- *)
let MVT_INEQ = prove
(`!f f' a d M.
&0 < M /\ &0 < d /\
(!x. abs(x - a) <= d ==> (f diffl f'(x)) x /\ abs(f' x) < M)
==> !x. abs(x - a) <= d ==> abs(f x - f a) < M * d`,
REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN
REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(REAL_ARITH `x = a \/ x < a \/ a < x`)
THENL
[ASM_SIMP_TAC[REAL_SUB_REFL; REAL_ABS_NUM; REAL_LT_MUL];
MP_TAC(SPECL [`f:real->real`; `f':real->real`; `x:real`; `a:real`]
MVT_ALT);
MP_TAC(SPECL [`f:real->real`; `f':real->real`; `a:real`; `x:real`]
MVT_ALT)] THEN
(ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC;
ALL_TAC]) THEN
STRIP_TAC THENL
[ONCE_REWRITE_TAC[REAL_ABS_SUB]; ALL_TAC] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[REAL_ABS_MUL] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `d * abs(f'(z:real))` THEN
(CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_RMUL;
MATCH_MP_TAC REAL_LT_LMUL THEN
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC]) THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Appropriate multiple of poly on rational is an integer. *)
(* ------------------------------------------------------------------------- *)
let POLY_MULTIPLE_INTEGER = prove
(`!p q l. ALL integer l ==> integer(&q pow (LENGTH l) * poly l (&p / &q))`,
GEN_TAC THEN GEN_TAC THEN ASM_CASES_TAC `q = 0` THENL
[LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_MUL_RZERO; INTEGER_CLOSED] THEN
ASM_REWRITE_TAC[LENGTH; real_pow; REAL_MUL_LZERO; INTEGER_CLOSED];
ALL_TAC] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_MUL_RZERO; INTEGER_CLOSED] THEN
REWRITE_TAC[LENGTH; real_pow; ALL] THEN DISCH_TAC THEN
REWRITE_TAC[REAL_ARITH
`(q * qp) * (h + pq * pol) = q * h * qp + (q * pq) * (qp * pol)`] THEN
ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ] THEN
MATCH_MP_TAC(el 1 (CONJUNCTS INTEGER_CLOSED)) THEN
ASM_SIMP_TAC[INTEGER_CLOSED]);;
(* ------------------------------------------------------------------------- *)
(* First show any root is surrounded by an other-root-free zone. *)
(* ------------------------------------------------------------------------- *)
let SEPARATE_FINITE_SET = prove
(`!a s. FINITE s
==> ~(a IN s) ==> ?d. &0 < d /\ !x. x IN s ==> d <= abs(x - a)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN
CONJ_TAC THENL [MESON_TAC[REAL_LT_01]; ALL_TAC] THEN
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
EXISTS_TAC `min d (abs(x - a))` THEN
ASM_REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN; GSYM REAL_ABS_NZ; REAL_SUB_0] THEN
ASM_MESON_TAC[REAL_LE_REFL]);;
let POLY_ROOT_SEPARATE_LE = prove
(`!p x. poly p x = &0 /\ ~(poly p = poly [])
==> ?d. &0 < d /\
!x'. &0 < abs(x' - x) /\ abs(x' - x) < d
==> ~(poly p x' = &0)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`x:real`; `{x | poly p x = &0} DELETE x`]
SEPARATE_FINITE_SET) THEN
ASM_SIMP_TAC[POLY_ROOTS_FINITE_SET; FINITE_DELETE; IN_DELETE] THEN
MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[IN_ELIM_THM] THEN
REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_SUB_0] THEN MESON_TAC[REAL_NOT_LT]);;
let POLY_ROOT_SEPARATE_LT = prove
(`!p x. poly p x = &0 /\ ~(poly p = poly [])
==> ?d. &0 < d /\
!x'. &0 < abs(x' - x) /\ abs(x' - x) <= d
==> ~(poly p x' = &0)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP POLY_ROOT_SEPARATE_LE) THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d / &2` THEN ASM_MESON_TAC[REAL_ARITH
`&0 < d ==> &0 < d / &2 /\ (x <= d / &2 ==> x < d)`]);;
(* ------------------------------------------------------------------------- *)
(* And also there is a positive bound on a polynomial in an interval. *)
(* ------------------------------------------------------------------------- *)
let POLY_BOUND_INTERVAL = prove
(`!p d x. ?M. &0 < M /\ !x'. abs(x' - x) <= d ==> abs(poly p x') < M`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`poly p`; `x - d`; `x + d`] CONT_BOUNDED_ABS) THEN
REWRITE_TAC[REWRITE_RULE[ETA_AX] (SPEC_ALL POLY_CONT)] THEN
DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN EXISTS_TAC `&1 + abs M` THEN
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `M:real` THEN CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN POP_ASSUM MP_TAC; ALL_TAC] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Now put these together to get the interval we need. *)
(* ------------------------------------------------------------------------- *)
let LIOUVILLE_INTERVAL = prove
(`!p x. poly p x = &0 /\ ~(poly p = poly [])
==> ?c. &0 < c /\
(!x'. abs(x' - x) <= c
==> abs(poly(poly_diff p) x') < &1 / c) /\
(!x'. &0 < abs(x' - x) /\ abs(x' - x) <= c
==> ~(poly p x' = &0))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`p:real list`; `x:real`] POLY_ROOT_SEPARATE_LT) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`poly_diff p`; `d:real`; `x:real`] POLY_BOUND_INTERVAL) THEN
DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN EXISTS_TAC `min d (inv M)` THEN
ASM_SIMP_TAC[REAL_LT_MIN; REAL_LE_MIN; REAL_LT_INV_EQ] THEN
X_GEN_TAC `y:real` THEN STRIP_TAC THEN
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `M:real` THEN
ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_INV] THEN
REWRITE_TAC[real_div; REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN] THEN
ASM_REWRITE_TAC[REAL_LT_INV_EQ; REAL_LE_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Liouville's approximation theorem. *)
(* ------------------------------------------------------------------------- *)
let LIOUVILLE = prove
(`!x. algebraic x
==> ?n c. c > &0 /\
!p q. ~(q = 0) ==> &p / &q = x \/
abs(x - &p / &q) > c / &q pow n`,
GEN_TAC THEN REWRITE_TAC[algebraic; real_gt] THEN
DISCH_THEN(X_CHOOSE_THEN `l:real list` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `LENGTH(l:real list)` THEN
MP_TAC(SPECL [`l:real list`; `x:real`] LIOUVILLE_INTERVAL) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN DISCH_TAC THEN
ASM_CASES_TAC `&p / &q = x` THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC
`!x'. &0 < abs(x' - x) /\ abs(x' - x) <= c ==> ~(poly l x' = &0)` THEN
DISCH_THEN(MP_TAC o SPEC `&p / &q`) THEN REWRITE_TAC[NOT_IMP] THEN
REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_SUB_0];
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`abs(x - y) <= d ==> d <= e ==> abs(y - x) <= e`)) THEN
ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LE_LDIV_EQ; LT_NZ] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
MATCH_MP_TAC REAL_POW_LE_1 THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN
UNDISCH_TAC `~(q = 0)` THEN ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `&q pow (LENGTH(l:real list)) * poly l (&p / &q) = &0`
MP_TAC THENL
[ALL_TAC; ASM_REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_OF_NUM_EQ]] THEN
MATCH_MP_TAC REAL_INTEGER_EQ_0 THEN
ASM_SIMP_TAC[POLY_MULTIPLE_INTEGER] THEN
MP_TAC(SPECL [`poly l`; `poly(poly_diff l)`; `x:real`;
`c / &q pow (LENGTH(l:real list))`; `&1 / c`]
MVT_INEQ) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; LT_NZ; REAL_POW_LT] THEN
ANTS_TAC THENL
[REWRITE_TAC[REWRITE_RULE[ETA_AX] (SPEC_ALL POLY_DIFF)] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`x <= d ==> d <= e ==> x <= e`)) THEN
ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LE_LDIV_EQ; LT_NZ] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
MATCH_MP_TAC REAL_POW_LE_1 THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN
UNDISCH_TAC `~(q = 0)` THEN ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[real_div; REAL_MUL_ASSOC; REAL_MUL_LID] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ] THEN
REWRITE_TAC[GSYM real_div] THEN DISCH_THEN(MP_TAC o SPEC `&p / &q`) THEN
REWRITE_TAC[REAL_SUB_RZERO] THEN ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN
ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LT_RDIV_EQ; LT_NZ] THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN
REWRITE_TAC[REAL_MUL_AC]);;
(* ------------------------------------------------------------------------- *)
(* Corollary for algebraic irrationals. *)
(* ------------------------------------------------------------------------- *)
let LIOUVILLE_IRRATIONAL = prove
(`!x. algebraic x /\ ~rational x
==> ?n c. c > &0 /\ !p q. ~(q = 0) ==> abs(x - &p / &q) > c / &q pow n`,
REWRITE_TAC[RATIONAL_ALT] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP LIOUVILLE) THEN
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
ASM_MESON_TAC[LIOUVILLE; REAL_ABS_DIV; REAL_ABS_NUM]);;
(* ------------------------------------------------------------------------- *)
(* Liouville's constant. *)
(* ------------------------------------------------------------------------- *)
let liouville = new_definition
`liouville = suminf (\n. &1 / &10 pow (FACT n))`;;
(* ------------------------------------------------------------------------- *)
(* Some bounds on the partial sums and hence convergence. *)
(* ------------------------------------------------------------------------- *)
let LIOUVILLE_SUM_BOUND = prove
(`!d n. ~(n = 0)
==> sum(n..n+d) (\k. &1 / &10 pow FACT k) <= &2 / &10 pow (FACT n)`,
INDUCT_TAC THEN GEN_TAC THEN DISCH_TAC THENL
[REWRITE_TAC[ADD_CLAUSES; SUM_SING_NUMSEG; real_div] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN
SIMP_TAC[REAL_LE_INV_EQ; REAL_POW_LE; REAL_OF_NUM_LE; ARITH];
ALL_TAC] THEN
SIMP_TAC[SUM_CLAUSES_LEFT; LE_ADD] THEN REWRITE_TAC[real_div] THEN
MATCH_MP_TAC(REAL_ARITH `y <= x ==> &1 * x + y <= &2 * x`) THEN
REWRITE_TAC[ARITH_RULE `n + SUC d = (n + 1) + d`; GSYM real_div] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `n + 1`) THEN REWRITE_TAC[ADD_EQ_0; ARITH] THEN
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN
SIMP_TAC[REAL_LE_LDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN
SIMP_TAC[GSYM REAL_POW_SUB; REAL_OF_NUM_EQ; ARITH; FACT_MONO; LE_ADD] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&10 pow 1` THEN
CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC REAL_POW_MONO] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[GSYM ADD1; FACT] THEN
MATCH_MP_TAC(ARITH_RULE
`1 * x <= SUC n * x /\ ~(n * x = 0) ==> 1 <= SUC n * x - x`) THEN
ASM_SIMP_TAC[LE_MULT_RCANCEL; MULT_EQ_0] THEN
REWRITE_TAC[GSYM LT_NZ; FACT_LT] THEN ARITH_TAC);;
let LIOUVILLE_PSUM_BOUND = prove
(`!n d. ~(n = 0)
==> sum(n,d) (\k. &1 / &10 pow FACT k) <= &2 / &10 pow (FACT n)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `d = 0` THEN
ASM_SIMP_TAC[sum; REAL_LE_DIV; REAL_POW_LE; REAL_POS] THEN
ASM_SIMP_TAC[PSUM_SUM_NUMSEG] THEN
ASM_SIMP_TAC[ARITH_RULE `~(d = 0) ==> (n + d) - 1 = n + (d - 1)`] THEN
ASM_SIMP_TAC[LIOUVILLE_SUM_BOUND]);;
let LIOUVILLE_SUMS = prove
(`(\k. &1 / &10 pow FACT k) sums liouville`,
REWRITE_TAC[liouville] THEN MATCH_MP_TAC SUMMABLE_SUM THEN
REWRITE_TAC[SER_CAUCHY] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
MP_TAC(SPEC `inv(e)` REAL_ARCH_SIMPLE) THEN
DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `2 * N + 1` THEN
REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `&2 / &10 pow (FACT m)` THEN CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= a ==> abs x <= a`) THEN
ASM_SIMP_TAC[SUM_POS; REAL_LE_DIV; REAL_POW_LE; REAL_POS] THEN
MATCH_MP_TAC LIOUVILLE_PSUM_BOUND THEN
UNDISCH_TAC `2 * N + 1 <= m` THEN ARITH_TAC;
ALL_TAC] THEN
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `e * &(2 * N + 1)` THEN
CONJ_TAC THENL
[REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
MATCH_MP_TAC(REAL_ARITH
`&1 < (n + &1 / &2) * e ==> &2 < e * (&2 * n + &1)`) THEN
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; real_div; REAL_MUL_LID] THEN
UNDISCH_TAC `inv(e) <= &N` THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LE] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `10 EXP m` THEN
REWRITE_TAC[FACT_LE_REFL; LE_EXP; ARITH] THEN SIMP_TAC[EXP_LE_REFL; ARITH]);;
let LIOUVILLE_PSUM_LE = prove
(`!n. sum(0,n) (\k. &1 / &10 pow FACT k) <= liouville`,
GEN_TAC THEN REWRITE_TAC[suminf] THEN MATCH_MP_TAC SEQ_LE THEN
EXISTS_TAC `\j:num. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN
EXISTS_TAC `\n:num. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN
REWRITE_TAC[SEQ_CONST; GSYM sums; LIOUVILLE_SUMS] THEN
EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN SIMP_TAC[GE; LE_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[GSYM SUM_SPLIT; ADD_CLAUSES; REAL_LE_ADDR] THEN
SIMP_TAC[SUM_POS; REAL_LE_DIV; REAL_POW_LE; REAL_POS]);;
let LIOUVILLE_PSUM_LT = prove
(`!n. sum(0,n) (\k. &1 / &10 pow FACT k) < liouville`,
GEN_TAC THEN MP_TAC(SPEC `SUC n` LIOUVILLE_PSUM_LE) THEN SIMP_TAC[sum] THEN
MATCH_MP_TAC(REAL_ARITH `&0 < e ==> x + e <= y ==> x < y`) THEN
SIMP_TAC[REAL_LT_DIV; REAL_POW_LT; REAL_OF_NUM_LT; ARITH]);;
let LIOVILLE_PSUM_DIFF = prove
(`!n. ~(n = 0)
==> liouville
<= sum(0,n) (\k. &1 / &10 pow FACT k) + &2 / &10 pow (FACT n)`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SEQ_LE THEN
EXISTS_TAC `\n. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN
EXISTS_TAC
`\j:num. sum (0,n) (\k. &1 / &10 pow FACT k) + &2 / &10 pow FACT n` THEN
REWRITE_TAC[SEQ_CONST; GSYM sums; LIOUVILLE_SUMS] THEN
EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN SIMP_TAC[GE; LE_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[GSYM SUM_SPLIT; REAL_LE_LADD] THEN
ASM_SIMP_TAC[ADD_CLAUSES; LIOUVILLE_PSUM_BOUND]);;
(* ------------------------------------------------------------------------- *)
(* Main proof. *)
(* ------------------------------------------------------------------------- *)
let TRANSCENDENTAL_LIOUVILLE = prove
(`transcendental(liouville)`,
REWRITE_TAC[transcendental] THEN DISCH_THEN(MP_TAC o MATCH_MP LIOUVILLE) THEN
REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b) <=> a ==> ~b`] THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `c:real`] THEN
REWRITE_TAC[DE_MORGAN_THM; real_gt; REAL_NOT_LT] THEN DISCH_TAC THEN
MP_TAC(SPECL [`&10`; `&2 / c`] REAL_ARCH_POW) THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_THEN(X_CHOOSE_TAC `k:num`) THEN
ABBREV_TAC `n = m + k + 1` THEN
EXISTS_TAC `nsum(0..n-1) (\i. 10 EXP (FACT(n-1) - FACT i))` THEN
EXISTS_TAC `10 EXP (FACT(n-1))` THEN REWRITE_TAC[EXP_EQ_0; ARITH] THEN
SUBGOAL_THEN
`&(nsum(0..n-1) (\i. 10 EXP (FACT(n-1) - FACT i))) / &(10 EXP (FACT(n-1))) =
sum(0..n-1) (\k. &1 / &10 pow (FACT k))`
SUBST1_TAC THENL
[REWRITE_TAC[real_div] THEN GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
REWRITE_TAC[REAL_OF_NUM_SUM_NUMSEG; GSYM SUM_LMUL] THEN
SIMP_TAC[GSYM REAL_OF_NUM_POW; REAL_POW_SUB; REAL_OF_NUM_EQ; ARITH;
FACT_MONO; real_div; REAL_MUL_ASSOC] THEN
SIMP_TAC[REAL_MUL_LINV; REAL_OF_NUM_EQ; REAL_POW_EQ_0; ARITH] THEN
REWRITE_TAC[REAL_MUL_LID];
ALL_TAC] THEN
MP_TAC(GEN `f:num->real`
(SPECL [`f:num->real`; `0`; `m + k + 1`] PSUM_SUM_NUMSEG)) THEN
REWRITE_TAC[ADD_EQ_0; ARITH; ADD_CLAUSES] THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN
SIMP_TAC[LIOUVILLE_PSUM_LT; REAL_LT_IMP_NE] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= y`) THEN
REWRITE_TAC[REAL_SUB_LE; LIOUVILLE_PSUM_LE] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 / &10 pow (FACT n)` THEN
REWRITE_TAC[REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
CONJ_TAC THENL
[MATCH_MP_TAC LIOVILLE_PSUM_DIFF THEN EXPAND_TAC "n" THEN ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[LIOVILLE_PSUM_DIFF] THEN
REWRITE_TAC[REAL_OF_NUM_POW; GSYM EXP_MULT] THEN
SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LT_NZ; EXP_EQ_0; ARITH] THEN
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&10 pow k` THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LT_NZ; EXP_EQ_0; ARITH] THEN
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
REWRITE_TAC[GSYM EXP_ADD; LE_EXP; ARITH_EQ] THEN EXPAND_TAC "n" THEN
REWRITE_TAC[ARITH_RULE `(m + k + 1) - 1 = m + k`] THEN
REWRITE_TAC[num_CONV `1`; ADD_CLAUSES; FACT] THEN
REWRITE_TAC[ARITH_RULE
`k + f * m <= SUC(m + k) * f <=> k <= (k + 1) * f`] THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `k = k * 1`] THEN
MATCH_MP_TAC LE_MULT2 THEN REWRITE_TAC[LE_ADD] THEN
REWRITE_TAC[FACT_LT; ARITH_RULE `1 <= x <=> 0 < x`]);;
|