Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,979 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
(******************************************************************************)
(* FILE          : definitions.ml                                             *)
(* DESCRIPTION   : Using definitions.                                         *)
(*                                                                            *)
(* READS FILES   : <none>                                                     *)
(* WRITES FILES  : <none>                                                     *)
(*                                                                            *)
(* AUTHOR        : R.J.Boulton                                                *)
(* DATE          : 6th June 1991                                              *)
(*                                                                            *)
(* LAST MODIFIED : R.J.Boulton                                                *)
(* DATE          : 3rd August 1992                                            *)
(*                                                                            *)
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh)                *)
(* DATE          : 2008                                                       *)
(******************************************************************************)

(*----------------------------------------------------------------------------*)
(* recursive_calls : string -> term -> term list                              *)
(*                                                                            *)
(* Function to compute the occurrences of applications of a constant in a     *)
(* term. The first argument is the name of the constant. The second argument  *)
(* is the term to be examined. If there are no occurrences, an empty list is  *)
(* returned. The function assumes that the term does not contain              *)
(* abstractions.                                                              *)
(*----------------------------------------------------------------------------*)

let rec recursive_calls name tm =
 try (let (f,args) = strip_comb tm
  in  if (try(fst (dest_const f) = name) with Failure _ -> false)
      then [tm]
      else itlist List.append (map (recursive_calls name) args) [])
 with Failure _ -> [];;

(*----------------------------------------------------------------------------*)
(* is_subterm : term -> term -> bool                                          *)
(*                                                                            *)
(* Function to compute whether one term is a subterm of another.              *)
(*----------------------------------------------------------------------------*)

let rec is_subterm subterm tm =
try(   if (tm = subterm)
   then true
   else ((is_subterm subterm (rator tm)) || (is_subterm subterm (rand tm)))
  )with Failure _ -> false;;

(*----------------------------------------------------------------------------*)
(* no_new_terms : term -> term -> bool                                        *)
(*                                                                            *)
(* Function to determine whether all of the arguments of an application       *)
(* "f x1 ... xn" are subterms of a term.                                      *)
(*----------------------------------------------------------------------------*)

let no_new_terms app tm =
try
 (let args = snd (strip_comb app)
  in  itlist (fun x y -> x && y) (map (fun arg -> is_subterm arg tm) args) true
 ) with Failure _ -> failwith "no_new_terms";;

(*----------------------------------------------------------------------------*)
(* hide_fun_call : term -> term -> term                                       *)
(*                                                                            *)
(* Function to replace occurrences of a particular function call in a term    *)
(* with a genvar, so that `no_new_terms' can be used to look for arguments in *)
(* a term less the original call.                                             *)
(*----------------------------------------------------------------------------*)

let hide_fun_call app tm =
   let var = genvar (type_of app)
   in  subst [(var,app)] tm;;

(*----------------------------------------------------------------------------*)
(* is_explicit_value : term -> bool                                           *)
(*                                                                            *)
(* Function to compute whether a term is an explicit value. An explicit value *)
(* is either T or F or an application of a shell constructor to explicit      *)
(* values. A `bottom object' corresponds to an application to no arguments.   *)
(* I have also made numeric constants explicit values, since they are         *)
(* equivalent to some number of applications of SUC to 0.                     *)
(*----------------------------------------------------------------------------*)

let is_explicit_value tm =
   let rec is_explicit_value' constructors tm =
      (is_T tm) || (is_F tm) || ((is_const tm) && (type_of tm = `:num`)) ||
      (let (f,args) = strip_comb tm
       in  (try(mem (fst (dest_const f)) constructors) with Failure _ -> false) &&
           (forall (is_explicit_value' constructors) args))
   in  is_explicit_value' (all_constructors ()) tm;;

(*----------------------------------------------------------------------------*)
(* more_explicit_values : term -> term -> bool                                *)
(*                                                                            *)
(* Returns true if and only if a new function call (second argument) has more *)
(* arguments that are explicit values than the old function call (first       *)
(* argument).                                                                 *)
(*----------------------------------------------------------------------------*)

let more_explicit_values old_call new_call =
try
 (let (f1,args1) = strip_comb old_call
  and (f2,args2) = strip_comb new_call
  in  if (f1 = f2)
      then let n1 = length (filter is_explicit_value args1)
           and n2 = length (filter is_explicit_value args2)
           in  n2 > n1
      else failwith "" ) with Failure _ -> failwith "more_explicit_values";;

(*----------------------------------------------------------------------------*)
(* good_properties : term list -> term -> term -> term -> bool                *)
(*                                                                            *)
(* Function to determine whether the recursive calls in the expansion of a    *)
(* function call have good properties. The first argument is a list of        *)
(* assumptions currently being made. The second argument is the original      *)
(* call. The third argument is the (simplified) expansion of the call, and    *)
(* the fourth argument is the term currently being processed and which        *)
(* contains the function call.                                                *)
(*----------------------------------------------------------------------------*)

(*< Boyer and Moore's heuristic
let good_properties assumps call body_of_call tm =
 let rec in_assumps tm assumps =
    if (assumps = [])
    then false
    else if (is_subterm tm (hd assumps))
         then true
         else in_assumps tm (tl assumps)
 in
 (let name = fst (dest_const (fst (strip_comb call)))
  and body_less_call = hide_fun_call call tm
  in  let rec_calls = recursive_calls name body_of_call
  in  let bools = map (fun rc -> (no_new_terms rc body_less_call) ||
                            (in_assumps rc assumps) ||
                            (more_explicit_values call rc)) rec_calls
  in  itlist (fun x y -> x && y) bools true
 ) with Failure _ -> failwith "good_properties";;
>*)

(* For HOL implementation, the restricted form of definitions allows all      *)
(* recursive calls to be considered to have good properties.                  *)

let good_properties assumps call body_of_call tm = true;;