Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,499 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
(* ========================================================================= *)
(* Load in Petros Papapanagiotou's Boyer-Moore code and try examples. *)
(* ========================================================================= *)
loads "Boyer_Moore/boyer-moore.ml";;
(* ------------------------------------------------------------------------- *)
(* Slight variant of Petros's eval.ml file. *)
(* ------------------------------------------------------------------------- *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Shortcuts for the various evaluation versions: *)
(* ------------------------------------------------------------------------- *)
let BM = BOYER_MOORE;; (* Pure re-implementation of R.Boulton's work. *)
let BME = BOYER_MOORE_EXT;; (* Extended with early termination heuristics and HOL Light features. *)
let BMR = BOYER_MOORE_RE [];;
let BMG = BOYER_MOORE_GEN [];; (* Further extended with M.Aderhold's generalization techniques. *)
let BMF = BOYER_MOORE_FINAL [];;
let RBM = new_rewrite_rule o BOYER_MOORE;;
let RBME = new_rewrite_rule o BOYER_MOORE_EXT;;
let RBMG = new_rewrite_rule o BOYER_MOORE_GEN [];;
(* ------------------------------------------------------------------------- *)
(* Add a theorem as a new function definition and rewrite rule. *)
(* Adding it as a rewrite rule should no longer be necessary after the *)
(* latest (July 2009) bugfixes but it doesn't do any harm either. *)
(* ------------------------------------------------------------------------- *)
let new_stuff x = (new_def x ; new_rewrite_rule x);;
(* ------------------------------------------------------------------------- *)
(* Test sets extracted from the proven theorems in HOL Light's arith.ml and *)
(* list.ml. *)
(* ------------------------------------------------------------------------- *)
loads "Boyer_Moore/testset/arith.ml";; (* Arithmetic test set *)
loads "Boyer_Moore/testset/list.ml";; (* List test set *)
(* ------------------------------------------------------------------------- *)
(* Reloads all the necessary definitions and rules for the evaluation of the *)
(* test sets above. *)
(* ------------------------------------------------------------------------- *)
let bm_reset () =
system_defs := [];
system_rewrites := [];
new_stuff ADD;
new_stuff MULT;
new_stuff SUB;
new_stuff LE;
new_stuff LT;
new_stuff GE;
new_stuff GT;
new_rewrite_rule (ARITH_RULE `1=SUC(0)`);
new_stuff EXP;
new_stuff FACT;
new_stuff ODD;
new_stuff EVEN;
new_rewrite_rule NOT_SUC;
new_rewrite_rule SUC_INJ;
new_rewrite_rule PRE;
new_rewrite_rule (prove (`!n. ~(SUC n = n)`, INDUCT_TAC THEN ASM_REWRITE_TAC[SUC_INJ;NOT_SUC]));
new_rewrite_rule (prove (`!a b. a + SUC b = SUC (a + b)`,REPEAT GEN_TAC THEN BMF_TAC[]));
new_stuff HD;
new_stuff TL;
new_stuff APPEND;
new_stuff REVERSE;
new_stuff LENGTH;
new_stuff MAP;
new_stuff LAST;
new_stuff REPLICATE;
new_stuff NULL;
new_stuff ALL;
new_stuff EX;
new_stuff ITLIST;
new_stuff MEM;
new_stuff ALL2_DEF;
new_rewrite_rule ALL2;
new_stuff MAP2_DEF;
new_rewrite_rule MAP2;
new_stuff EL;
new_stuff FILTER;
new_stuff ASSOC;
new_stuff ITLIST2_DEF;
new_rewrite_rule ITLIST2;
new_stuff ZIP_DEF;
new_rewrite_rule ZIP;
new_rewrite_rule NOT_CONS_NIL;
new_rewrite_rule CONS_11 ;;
bm_reset();;
(* ------------------------------------------------------------------------- *)
(* Test functions. They use the Unix library to measure time. *)
(* Unfortunately this means that they do not load properly in Cygwin. *)
(* ------------------------------------------------------------------------- *)
#load "unix.cma";;
open Unix;;
open Printf;;
(* ------------------------------------------------------------------------- *)
(* Reference of the remaining theory to be proven. Load a list of theorems *)
(* that you want the evaluation to run through. *)
(* eg. remaining_theory := !mytheory;; *)
(* Then use nexttm (see below) to evaluate one of the BOYER_MOORE_* *)
(* procedures over the list. *)
(* ------------------------------------------------------------------------- *)
let remaining_theory = ref ([]:term list);;
let currenttm = ref `p`;;
(* ------------------------------------------------------------------------- *)
(* Tries a theorem-proving procedure f on arg. *)
(* Returns a truth value of whether the procedure succeeded in finding a *)
(* proof and a pair of timestamps taken from the start and the end of the *)
(* procedure. *)
(* ------------------------------------------------------------------------- *)
let bm_time f arg =
let t1=Unix.times () in
let resu = try (if (can dest_thm (f arg)) then true else false) with Failure _ -> false in
let t2=Unix.times () in (resu,(t1,t2));;
(* printf "User time: %f - system time: %f\n%!" (t2.tms_utime -. t1.tms_utime) (t2.tms_stime -. t1.tms_stime);; *)
(* ------------------------------------------------------------------------- *)
(* Uses bm_time to try a Boyer-Moore theorem-proving procedure f on tm. *)
(* Prints out all the evaluation information that is collected and returns *)
(* the list of generalizations made during the proof. *)
(* ------------------------------------------------------------------------- *)
let bm_test f tm =
let pfpt = (print_term tm ; print_newline() ; proof_printer false) in
let (resu,(t1,t2)) = bm_time f tm in
let pfpt = proof_printer pfpt in
printf "Proven: %b - Time: %f - Steps: %d - Inductions: %d - Gen terms: %d - Over gens: %d \\\\\n" resu
(t2.tms_utime -. t1.tms_utime) (fst !bm_steps) (snd !bm_steps) (length !my_gen_terms) (!counterexamples) ;
!my_gen_terms;;
(* ------------------------------------------------------------------------- *)
(* Another version of bm_test but with a more compact printout. *)
(* Returns unit (). *)
(* ------------------------------------------------------------------------- *)
let bm_test2 f tm =
let pfpt = (print_term tm ; print_newline() ; proof_printer false) in
let (resu,(t1,t2)) = bm_time f tm in
let pfpt = proof_printer pfpt in
printf "& %b & %f & %d & %d & %d & %d \\\\\n" resu (t2.tms_utime -. t1.tms_utime) (fst !bm_steps) (snd !bm_steps) (length !my_gen_terms) (!counterexamples) ;
();;
(* ------------------------------------------------------------------------- *)
(* Convenient function for evaluation. *)
(* Uses f to try and prove the next term in !remaining_theory by bm_test2 *)
(* ------------------------------------------------------------------------- *)
let nexttm f =
if (!remaining_theory = []) then failwith "No more"
else currenttm := hd !remaining_theory ; remaining_theory := tl !remaining_theory ;
bm_test2 f !currenttm;;
(* ------------------------------------------------------------------------- *)
(* Reruns evaluation on the same term that was last loaded with nexttm. *)
(* ------------------------------------------------------------------------- *)
let sametm f = bm_test2 f !currenttm;;
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Just one example. *)
(* ------------------------------------------------------------------------- *)
bm_test BME `m + n:num = n + m`;;
(* ------------------------------------------------------------------------- *)
(* Note that these don't all terminate, so need more delicacy really. *)
(* Should carefully reconstruct the cases in Petros's thesis, also maybe *)
(* using a timeout. *)
(* ------------------------------------------------------------------------- *)
(****
do_list (bm_test BME) (!mytheory);;
do_list (bm_test BME) (!mytheory2);;
****)
|