Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,989 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
(******************************************************************************)
(* FILE          : support.ml                                                 *)
(* DESCRIPTION   : Miscellaneous supporting definitions for Boyer-Moore       *)
(*                 style prover in HOL.                                       *)
(*                                                                            *)
(* READS FILES   : <none>                                                     *)
(* WRITES FILES  : <none>                                                     *)
(*                                                                            *)
(* AUTHOR        : R.J.Boulton                                                *)
(* DATE          : 6th June 1991                                              *)
(*                                                                            *)
(* LAST MODIFIED : R.J.Boulton                                                *)
(* DATE          : 21st June 1991                                             *)
(*                                                                            *)
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh)                *)
(* DATE          : 2008                                                       *)
(******************************************************************************)

let SUBST thl pat th =
  let eqs,vs = unzip thl in
  let gvs = map (genvar o type_of) vs in
  let gpat = subst (zip gvs vs) pat in
  let ls,rs = unzip (map (dest_eq o concl) eqs) in
  let ths = map (ASSUME o mk_eq) (zip gvs rs) in
  let th1 = ASSUME gpat in
  let th2 = SUBS ths th1 in
  let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in
  let th4 = INST (zip ls gvs) th3 in
  MP (rev_itlist (C MP) eqs th4) th;;

let SUBST_CONV thvars template tm =
  let thms,vars = unzip thvars in
  let gvs = map (genvar o type_of) vars in
  let gtemplate = subst (zip gvs vars) template in
  SUBST (zip thms gvs) (mk_eq(template,gtemplate)) (REFL tm);;

let CONTRAPOS =
  let a = `a:bool` and b = `b:bool` in
  let pth = ITAUT `(a ==> b) ==> (~b ==> ~a)` in
  fun th ->
    try let P,Q = dest_imp(concl th) in
        MP (INST [P,a; Q,b] pth) th
    with Failure _ -> failwith "CONTRAPOS";;

let NOT_EQ_SYM =
  let pth = GENL [`a:A`; `b:A`]
    (CONTRAPOS(DISCH_ALL(SYM(ASSUME`a:A = b`))))
  and aty = `:A` in
  fun th -> try let l,r = dest_eq(dest_neg(concl th)) in
                MP (SPECL [r; l] (INST_TYPE [type_of l,aty] pth)) th
            with Failure _ -> failwith "NOT_EQ_SYM";;


let hash f g (x,y) = (f x,g y);;
let hashI f (x,y) = hash f I (x,y);;

let fst3 (x,_,_) = x;;
let snd3 (_,x,_) = x;;
let thd3 (_,_,x) = x;;

let lcombinep (x,y) = List.combine x y;;
let lcount x l = length ( filter ((=) x) l );;


let list_mk_imp (tms,tm) =
     if (tms = []) then tm
     else try itlist (fun p q -> mk_imp (p,q)) tms tm with Failure _ -> failwith "list_mk_imp";;

let INDUCT_TAC_ thm = MATCH_MP_TAC thm THEN
  CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN GEN_TAC THEN DISCH_TAC] ;;

(*--------------------------------------------------------------------------*)
(* distinct : ''a list -> bool                                              *)
(*                                                                          *)
(* Checks whether the elements of a list are all distinct.                  *)
(*--------------------------------------------------------------------------*)

let rec distinct x =
     if (x = []) then true
     else not (mem (hd x) (tl x)) && distinct (tl x);;


(*----------------------------------------------------------------------------*)
(* Discriminator functions for T (true) and F (false)                         *)
(*----------------------------------------------------------------------------*)

let is_T = let T = `T` in fun tm -> tm = T
and is_F = let F = `F` in fun tm -> tm = F;;

(*--------------------------------------------------------------------------*)
(* conj_list : term -> term list                                            *)
(*                                                                          *)
(* Splits a conjunction into conjuncts. Only recursively splits the right   *)
(* conjunct.                                                                *)
(*--------------------------------------------------------------------------*)

let rec conj_list tm =
   try(
   let (tm1,tm2) = dest_conj tm
   in  tm1::(conj_list tm2)
   ) with Failure _ -> [tm];;

(*--------------------------------------------------------------------------*)
(* disj_list : term -> term list                                            *)
(*                                                                          *)
(* Splits a disjunction into disjuncts. Only recursively splits the right   *)
(* disjunct.                                                                *)
(*--------------------------------------------------------------------------*)

let rec disj_list tm =
   try(
   let (tm1,tm2) = dest_disj tm
   in  tm1::(disj_list tm2)
  ) with Failure _ -> [tm];;

(*----------------------------------------------------------------------------*)
(* number_list : * list -> ( * # int) list                                     *)
(*                                                                            *)
(* Numbers a list of elements,                                                *)
(* e.g. [`a`;`b`;`c`] ---> [(`a`,1);(`b`,2);(`c`,3)].                         *)
(*----------------------------------------------------------------------------*)

let number_list l =
   let rec number_list' n l =
      if ( l = [] ) then []
      else (hd l,n)::(number_list' (n + 1) (tl l))
   in number_list' 1 l;;

(*----------------------------------------------------------------------------*)
(* insert_on_snd : ( * # int) -> ( * # int) list -> ( * # int) list              *)
(*                                                                            *)
(* Insert a numbered element into an ordered list,                            *)
(* e.g. insert_on_snd (`c`,3) [(`a`,1);(`b`,2);(`d`,4)] --->                  *)
(*      [(`a`,1); (`b`,2); (`c`,3); (`d`,4)]                                  *)
(*----------------------------------------------------------------------------*)

let rec insert_on_snd (x,n) l =
   if (l = [])
   then [(x,n)]
   else let h = hd l
        in  if (n < snd h)
            then (x,n)::l
            else h::(insert_on_snd (x,n) (tl l));;

(*----------------------------------------------------------------------------*)
(* sort_on_snd : ( * # int) list -> ( * # int) list                             *)
(*                                                                            *)
(* Sort a list of pairs, of which the second component is an integer,         *)
(* e.g. sort_on_snd [(`c`,3);(`d`,4);(`a`,1);(`b`,2)] --->                    *)
(*      [(`a`,1); (`b`,2); (`c`,3); (`d`,4)]                                  *)
(*----------------------------------------------------------------------------*)

let rec sort_on_snd l =
   if (l = [])
   then []
   else (insert_on_snd (hd l) (sort_on_snd (tl l)));;

(*----------------------------------------------------------------------------*)
(* conj_list : term -> term list                                              *)
(*                                                                            *)
(* Splits a conjunction into conjuncts. Only recursively splits the right     *)
(* conjunct.                                                                  *)
(*----------------------------------------------------------------------------*)

let rec conj_list tm =
   try
      (let (tm1,tm2) = dest_conj tm
       in  tm1::(conj_list tm2))
   with Failure _ -> [tm];;

(*----------------------------------------------------------------------------*)
(* disj_list : term -> term list                                              *)
(*                                                                            *)
(* Splits a disjunction into disjuncts. Only recursively splits the right     *)
(* disjunct.                                                                  *)
(*----------------------------------------------------------------------------*)

let rec disj_list tm =
   try
      (let (tm1,tm2) = dest_disj tm
       in  tm1::(disj_list tm2))
   with Failure _ -> [tm];;

(*----------------------------------------------------------------------------*)
(* find_bm_terms : (term -> bool) -> term -> term list                        *)
(*                                                                            *)
(* Function to find all subterms in a term that satisfy a given predicate p,  *)
(* breaking down terms as if they were Boyer-Moore logic expressions.         *)
(* In particular, the operator of a function application is only processed if *)
(* it is of zero arity, i.e. there are no arguments.                          *)
(*----------------------------------------------------------------------------*)

let find_bm_terms p tm =
 try
   (let rec accum tml p tm =
     let tml' = if (p tm) then (tm::tml) else tml
     in ( let args = snd (strip_comb tm)
            in ( try ( rev_itlist (fun tm tml -> accum tml p tm) args tml' ) with Failure _ -> tml' ) )
      in accum [] p tm
 ) with Failure _ -> failwith "find_bm_terms";;

(*----------------------------------------------------------------------------*)
(* remove_el : int -> * list -> ( * # * list)                                 *)
(*                                                                            *)
(* Removes a specified (by numerical position) element from a list.           *)
(*----------------------------------------------------------------------------*)

let rec remove_el n l =
   if ((l = []) || (n < 1))
   then failwith "remove_el"
   else if (n = 1)
        then (hd l,tl l)
        else let (x,l') = remove_el (n - 1) (tl l)
             in  (x,(hd l)::l');;