Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 12,695 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
(* ========================================================================= *)
(* Specific formulas for evaluating projective coordinate point operations.  *)
(* ========================================================================= *)

needs "EC/projective.ml";;

(* ------------------------------------------------------------------------- *)
(* Point doubling in projective coordinates.                                 *)
(*                                                                           *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..."          *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/doubling/dbl-2007-bl.op3
 ***)

let pr_dbl_2007_bl = new_definition
 `pr_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) =
      let xx = ring_pow f x1 2 in
      let zz = ring_pow f z1 2 in
      let t0 = ring_mul f (ring_of_num f 3) xx in
      let t1 = ring_mul f a zz in
      let w = ring_add f t1 t0 in
      let t2 = ring_mul f y1 z1 in
      let s = ring_mul f (ring_of_num f 2) t2 in
      let ss = ring_pow f s 2 in
      let sss = ring_mul f s ss in
      let r = ring_mul f y1 s in
      let rr = ring_pow f r 2 in
      let t3 = ring_add f x1 r in
      let t4 = ring_pow f t3 2 in
      let t5 = ring_sub f t4 xx in
      let b = ring_sub f t5 rr in
      let t6 = ring_pow f w 2 in
      let t7 = ring_mul f (ring_of_num f 2) b in
      let h = ring_sub f t6 t7 in
      let x3 = ring_mul f h s in
      let t8 = ring_sub f b h in
      let t9 = ring_mul f (ring_of_num f 2) rr in
      let t10 = ring_mul f w t8 in
      let y3 = ring_sub f t10 t9 in
      let z3 = sss in
      (x3,y3,z3)`;;

let PR_DBL_2007_BL = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        projective_point f (x1,y1,z1)
        ==> projective_eq f (pr_dbl_2007_bl (f,a,b) (x1,y1,z1))
                          (projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN
  REWRITE_TAC[pr_dbl_2007_bl; projective_add; projective_eq;
              projective_neg; projective_0] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[projective_add; projective_eq;
                  projective_neg; projective_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

(* ------------------------------------------------------------------------- *)
(* Point doubling in projective coordinates assuming a = -3.                 *)
(*                                                                           *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..."          *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective-3/doubling/dbl-2007-bl-2.op3
 ***)

let p3_dbl_2007_bl_2 = new_definition
 `p3_dbl_2007_bl_2 (f:A ring,a:A,b:A) (x1,y1,z1) =
      let t0 = ring_sub f x1 z1 in
      let t1 = ring_add f x1 z1 in
      let t2 = ring_mul f t0 t1 in
      let w = ring_mul f (ring_of_num f 3) t2 in
      let t3 = ring_mul f y1 z1 in
      let s = ring_mul f (ring_of_num f 2) t3 in
      let ss = ring_pow f s 2 in
      let sss = ring_mul f s ss in
      let r = ring_mul f y1 s in
      let rr = ring_pow f r 2 in
      let t4 = ring_mul f x1 r in
      let b = ring_mul f (ring_of_num f 2) t4 in
      let t5 = ring_pow f w 2 in
      let t6 = ring_mul f (ring_of_num f 2) b in
      let h = ring_sub f t5 t6 in
      let x3 = ring_mul f h s in
      let t7 = ring_sub f b h in
      let t8 = ring_mul f (ring_of_num f 2) rr in
      let t9 = ring_mul f w t7 in
      let y3 = ring_sub f t9 t8 in
      let z3 = sss in
      (x3,y3,z3)`;;

let P3_DBL_2007_BL_2 = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\
        projective_point f (x1,y1,z1)
        ==> projective_eq f (p3_dbl_2007_bl_2 (f,a,b) (x1,y1,z1))
                            (projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN
  REWRITE_TAC[p3_dbl_2007_bl_2; projective_add; projective_eq;
              projective_neg; projective_0] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[projective_add; projective_eq;
                  projective_neg; projective_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

(* ------------------------------------------------------------------------- *)
(* Point doubling in projective coordinates assuming a = 0.                  *)
(*                                                                           *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." with     *)
(* trivial constant propagation from a = 0.                                  *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/doubling/dbl-2007-bl.op3
 *** plus trivial constant propagation
 ***)

let p0_dbl_2007_bl = new_definition
 `p0_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) =
      let xx = ring_pow f x1 2 in
      let zz = ring_pow f z1 2 in
      let w = ring_mul f (ring_of_num f 3) xx in
      let t2 = ring_mul f y1 z1 in
      let s = ring_mul f (ring_of_num f 2) t2 in
      let ss = ring_pow f s 2 in
      let sss = ring_mul f s ss in
      let r = ring_mul f y1 s in
      let rr = ring_pow f r 2 in
      let t3 = ring_add f x1 r in
      let t4 = ring_pow f t3 2 in
      let t5 = ring_sub f t4 xx in
      let b = ring_sub f t5 rr in
      let t6 = ring_pow f w 2 in
      let t7 = ring_mul f (ring_of_num f 2) b in
      let h = ring_sub f t6 t7 in
      let x3 = ring_mul f h s in
      let t8 = ring_sub f b h in
      let t9 = ring_mul f (ring_of_num f 2) rr in
      let t10 = ring_mul f w t8 in
      let y3 = ring_sub f t10 t9 in
      let z3 = sss in
      (x3,y3,z3)`;;

let P0_DBL_2007_BL = prove
 (`!f a b x1 y1 z1:A.
        field f /\
        a = ring_0 f /\ b IN ring_carrier f /\
        projective_point f (x1,y1,z1)
        ==> projective_eq f (p0_dbl_2007_bl (f,a,b) (x1,y1,z1))
                            (projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN
  REWRITE_TAC[p0_dbl_2007_bl; projective_add; projective_eq;
              projective_neg; projective_0] THEN
  ASM_CASES_TAC `z1:A = ring_0 f` THEN
  ASM_REWRITE_TAC[projective_add; projective_eq;
                  projective_neg; projective_0] THEN
  ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN
  FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;

(* ------------------------------------------------------------------------- *)
(* Pure point addition in projective coordinates. This sequence never uses   *)
(* the value of "a" so there's no special optimized version for special "a". *)
(*                                                                           *)
(* Source Cohen-Miyaji-Ono [1998] "Efficient elliptic curve exponentiation"  *)
(*                                                                           *)
(* Note the correctness is not proved in cases where the points are equal    *)
(* (or projectively equivalent), or either input is 0 (point at infinity).   *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/addition/add-1998-cmo-2.op3
 ***)

let pr_add_1998_cmo_2 = new_definition
 `pr_add_1998_cmo_2 (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) =
      let y1z2 = ring_mul f y1 z2 in
      let x1z2 = ring_mul f x1 z2 in
      let z1z2 = ring_mul f z1 z2 in
      let t0 = ring_mul f y2 z1 in
      let u = ring_sub f t0 y1z2 in
      let uu = ring_pow f u 2 in
      let t1 = ring_mul f x2 z1 in
      let v = ring_sub f t1 x1z2 in
      let vv = ring_pow f v 2 in
      let vvv = ring_mul f v vv in
      let r = ring_mul f vv x1z2 in
      let t2 = ring_mul f (ring_of_num f 2) r in
      let t3 = ring_mul f uu z1z2 in
      let t4 = ring_sub f t3 vvv in
      let a = ring_sub f t4 t2 in
      let x3 = ring_mul f v a in
      let t5 = ring_sub f r a in
      let t6 = ring_mul f vvv y1z2 in
      let t7 = ring_mul f u t5 in
      let y3 = ring_sub f t7 t6 in
      let z3 = ring_mul f vvv z1z2 in
      (x3,y3,z3)`;;

let PR_ADD_1998_CMO_2 = prove
 (`!f a b x1 y1 z1 x2 y2 z2:A.
        field f /\ ~(ring_char f = 2) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        projective_point f (x1,y1,z1) /\ projective_point f (x2,y2,z2) /\
        ~(z1 = ring_0 f) /\ ~(z2 = ring_0 f) /\
        ~(projective_eq f (x1,y1,z1) (x2,y2,z2))
        ==> projective_eq f (pr_add_1998_cmo_2 (f,a,b) (x1,y1,z1) (x2,y2,z2))
                            (projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
  REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  ASM_REWRITE_TAC[projective_eq; pr_add_1998_cmo_2; projective_add] THEN
  REPEAT(COND_CASES_TAC THEN
   ASM_REWRITE_TAC[projective_add; projective_eq;
                   projective_neg; projective_0; LET_DEF; LET_END_DEF]) THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN
  FIELD_TAC);;

(* ------------------------------------------------------------------------- *)
(* Mixed point addition in projective coordinates. Here "mixed" means        *)
(* assuming z2 = 1, which holds if the second point was directly injected    *)
(* from the Weierstrass coordinates via (x,y) |-> (x,y,1). This never uses   *)
(* the value of "a" so there's no special optimized version for special "a". *)
(*                                                                           *)
(* Source Cohen-Miyaji-Ono [1998] "Efficient elliptic curve exponentiation"  *)
(*                                                                           *)
(* Note the correctness is not proved in the case where the points are equal *)
(* or projectively equivalent, nor where the first is the group identity     *)
(* (i.e. the point at infinity, anything with z1 = 0 in projective coords).  *)
(* ------------------------------------------------------------------------- *)

(***
 *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/addition/madd-1998-cmo.op3
 ***)

let pr_madd_1998_cmo = new_definition
 `pr_madd_1998_cmo (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) =
      let t0 = ring_mul f y2 z1 in
      let u = ring_sub f t0 y1 in
      let uu = ring_pow f u 2 in
      let t1 = ring_mul f x2 z1 in
      let v = ring_sub f t1 x1 in
      let vv = ring_pow f v 2 in
      let vvv = ring_mul f v vv in
      let r = ring_mul f vv x1 in
      let t2 = ring_mul f (ring_of_num f 2) r in
      let t3 = ring_mul f uu z1 in
      let t4 = ring_sub f t3 vvv in
      let a = ring_sub f t4 t2 in
      let x3 = ring_mul f v a in
      let t5 = ring_sub f r a in
      let t6 = ring_mul f vvv y1 in
      let t7 = ring_mul f u t5 in
      let y3 = ring_sub f t7 t6 in
      let z3 = ring_mul f vvv z1 in
      (x3,y3,z3)`;;

let PR_MADD_1998_CMO = prove
 (`!f a b x1 y1 z1 x2 y2 z2:A.
        field f /\ ~(ring_char f = 2) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        projective_point f (x1,y1,z1) /\ projective_point f (x2,y2,z2) /\
        z2 = ring_1 f /\
        ~(z1 = ring_0 f) /\ ~(projective_eq f (x1,y1,z1) (x2,y2,z2))
        ==> projective_eq f (pr_madd_1998_cmo (f,a,b) (x1,y1,z1) (x2,y2,z2))
                            (projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
  REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  ASM_REWRITE_TAC[projective_eq; pr_madd_1998_cmo; projective_add] THEN
  REPEAT(COND_CASES_TAC THEN
   ASM_REWRITE_TAC[projective_add; projective_eq;
                   projective_neg; projective_0; LET_DEF; LET_END_DEF]) THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN
  FIELD_TAC);;