Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,362 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
(* ========================================================================= *)
(* Isomorphic mappings from Montgomery to Weierstrass form and back again.   *)
(* ========================================================================= *)

needs "EC/montgomery.ml";;
needs "EC/weierstrass.ml";;

(* ------------------------------------------------------------------------- *)
(* Map from Montgomery to Weierstrass by (x,y) |-> ((x + A / 3) / B, y / B)  *)
(* and from Weierstrass to Montgomery by (x,y) |-> (B * x - A / 3, B * y)    *)
(* and thus Montgomery(A,B) curve gives Weierstrass(a,b) where               *)
(*                                                                           *)
(*     a = (1 - A^2 / 3) / B^2                                               *)
(*     b = A * (2 * A^2 - 9) / (27 * B^3)                                    *)
(* ------------------------------------------------------------------------- *)

let wcurve_of_mcurve = define
 `wcurve_of_mcurve(f,(a:A),b) =
   (f,
    ring_div f (ring_sub f (ring_of_num f 1)
                           (ring_div f (ring_pow f a 2) (ring_of_num f 3)))
               (ring_pow f b 2),
    ring_div f (ring_mul f a (ring_sub f (ring_mul f (ring_of_num f 2)
                                                     (ring_pow f a 2))
                                         (ring_of_num f 9)))
               (ring_mul f (ring_of_num f 27) (ring_pow f b 3)))`;;

let WCURVE_OF_MCURVE_NONSINGULAR_EQ = prove
 (`!f a b:A.
        field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f)
        ==> (weierstrass_nonsingular(wcurve_of_mcurve(f,a,b)) <=>
             ~(ring_pow f a 2 = ring_of_num f 4))`,
  REWRITE_TAC[FIELD_CHAR_NOT23] THEN
  REWRITE_TAC[montgomery_nonsingular;
              weierstrass_nonsingular; wcurve_of_mcurve] THEN
  FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;

let WCURVE_OF_MCURVE_NONSINGULAR = prove
 (`!f a b:A.
        field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        montgomery_nonsingular(f,a,b)
        ==> weierstrass_nonsingular(wcurve_of_mcurve(f,a,b))`,
  SIMP_TAC[montgomery_nonsingular; DE_MORGAN_THM;
           WCURVE_OF_MCURVE_NONSINGULAR_EQ]);;

let weierstrass_of_montgomery = define
 `weierstrass_of_montgomery(f,a:A,b) NONE = NONE /\
  weierstrass_of_montgomery(f,a:A,b) (SOME(x,y)) =
  SOME(ring_div f (ring_add f x (ring_div f a (ring_of_num f 3))) b,
       ring_div f y b)`;;

let montgomery_of_weierstrass = define
 `montgomery_of_weierstrass(f,a:A,b) NONE = NONE /\
  montgomery_of_weierstrass(f,a:A,b) (SOME(x,y)) =
  SOME(ring_sub f (ring_mul f b x) (ring_div f a (ring_of_num f 3)),
       ring_mul f b y)`;;

let MONTGOMERY_OF_WEIERSTRASS_OF_MONTGOMERY = prove
 (`!f a (b:A) p.
        field f /\ ~(ring_char f = 3) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\
        montgomery_point f p
        ==> montgomery_of_weierstrass(f,a,b)
              (weierstrass_of_montgomery(f,a,b) p) = p`,
  REWRITE_TAC[FIELD_CHAR_NOT3] THEN
  REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
  REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN
  REWRITE_TAC[montgomery_point; option_INJ; PAIR_EQ] THEN
  REPEAT STRIP_TAC THEN FIELD_TAC);;

let WEIERSTRASS_OF_MONTGOMERY_OF_WEIERSTRASS = prove
 (`!f a (b:A) p.
        field f /\ ~(ring_char f = 3) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\
        weierstrass_point f p
        ==> weierstrass_of_montgomery(f,a,b)
              (montgomery_of_weierstrass(f,a,b) p) = p`,
  REWRITE_TAC[FIELD_CHAR_NOT3] THEN
  REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
  REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN
  REWRITE_TAC[weierstrass_point; option_INJ; PAIR_EQ] THEN
  REPEAT STRIP_TAC THEN FIELD_TAC);;

let WEIERSTRASS_OF_MONTGOMERY = prove
 (`!f (a:A) b p.
        field f /\ ~(ring_char f = 3) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        montgomery_curve(f,a,b) p
        ==> weierstrass_curve (wcurve_of_mcurve(f,a,b))
                              (weierstrass_of_montgomery(f,a,b) p)`,
  REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
  REWRITE_TAC[montgomery_curve; weierstrass_curve;
              weierstrass_of_montgomery; wcurve_of_mcurve] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT3] THEN
  REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
  FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;

let MONTGOMERY_OF_WEIERSTRASS = prove
 (`!f (a:A) b p.
        field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\
        weierstrass_curve (wcurve_of_mcurve(f,a,b)) p
        ==> montgomery_curve(f,a,b) (montgomery_of_weierstrass(f,a,b) p)`,
  REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
  REWRITE_TAC[montgomery_curve; weierstrass_curve;
              montgomery_of_weierstrass; wcurve_of_mcurve] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN
  REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
  FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;

let WEIERSTRASS_OF_MONTGOMERY_NEG = prove
 (`!f (a:A) b p.
        field f /\ ~(ring_char f = 3) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        ~(b = ring_0 f) /\
        montgomery_curve(f,a,b) p
        ==> weierstrass_of_montgomery(f,a,b) (montgomery_neg(f,a,b) p) =
            weierstrass_neg (wcurve_of_mcurve(f,a,b))
                            (weierstrass_of_montgomery(f,a,b) p)`,
  REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
  REWRITE_TAC[montgomery_curve; weierstrass_of_montgomery;
              montgomery_of_weierstrass;  wcurve_of_mcurve;
              montgomery_neg; weierstrass_neg] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[option_INJ; PAIR_EQ; FIELD_CHAR_NOT3] THEN
  REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
  FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;

let WEIERSTRASS_OF_MONTGOMERY_ADD = prove
 (`!f (a:A) b p q.
        field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
        a IN ring_carrier f /\ b IN ring_carrier f /\
        ~(b = ring_0 f) /\
        montgomery_curve(f,a,b) p /\ montgomery_curve(f,a,b) q
        ==> weierstrass_of_montgomery(f,a,b) (montgomery_add(f,a,b) p q) =
            weierstrass_add (wcurve_of_mcurve(f,a,b))
                            (weierstrass_of_montgomery(f,a,b) p)
                            (weierstrass_of_montgomery(f,a,b) q)`,
  REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
  REWRITE_TAC[montgomery_curve; weierstrass_of_montgomery;
              montgomery_of_weierstrass;  wcurve_of_mcurve;
              montgomery_add; weierstrass_add] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[option_INJ; PAIR_EQ] THEN
  REWRITE_TAC[FIELD_CHAR_NOT23] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[weierstrass_of_montgomery]) THEN
  REPEAT LET_TAC THEN
  ASM_REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN
  REWRITE_TAC[option_INJ; option_DISTINCT; PAIR_EQ] THEN
  REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
  FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;

let GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP = prove
 (`!f a (b:A).
      field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
      a IN ring_carrier f /\ b IN ring_carrier f /\
      montgomery_nonsingular(f,a,b)
      ==> group_isomorphisms
           (montgomery_group(f,a,b),weierstrass_group(wcurve_of_mcurve(f,a,b)))
           (weierstrass_of_montgomery(f,a,b),
            montgomery_of_weierstrass(f,a,b))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL (striplist dest_pair (rand(concl wcurve_of_mcurve)))
                WEIERSTRASS_GROUP) THEN
  REWRITE_TAC[GSYM wcurve_of_mcurve] THEN ANTS_TAC THENL
   [ASM_SIMP_TAC[WCURVE_OF_MCURVE_NONSINGULAR] THEN
    REPEAT CONJ_TAC THEN RING_CARRIER_TAC;
    STRIP_TAC] THEN
  MP_TAC(ISPECL [`f:A ring`; `a:A`; `b:A`] MONTGOMERY_GROUP) THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
   ASM_REWRITE_TAC[GROUP_ISOMORPHISMS; GROUP_HOMOMORPHISM] THEN
  REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IN] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[montgomery_nonsingular]) THEN
  SUBGOAL_THEN
   `(!x. weierstrass_curve (wcurve_of_mcurve (f,(a:A),b)) x
         ==> weierstrass_point f x) /\
    (!y. montgomery_curve (f,a,b) y ==> montgomery_point f y)`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[FORALL_PAIR_THM; FORALL_OPTION_THM] THEN
    SIMP_TAC[weierstrass_curve; weierstrass_point; wcurve_of_mcurve;
                montgomery_curve; montgomery_point];
    ALL_TAC] THEN
  ASM_SIMP_TAC[WEIERSTRASS_OF_MONTGOMERY; WEIERSTRASS_OF_MONTGOMERY_ADD;
               MONTGOMERY_OF_WEIERSTRASS;
               MONTGOMERY_OF_WEIERSTRASS_OF_MONTGOMERY;
               WEIERSTRASS_OF_MONTGOMERY_OF_WEIERSTRASS]);;

let GROUP_ISOMORPHISMS_WEIERSTRASS_MONTGOMERY_GROUP = prove
 (`!f a (b:A).
      field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
      a IN ring_carrier f /\ b IN ring_carrier f /\
      montgomery_nonsingular(f,a,b)
      ==> group_isomorphisms
           (weierstrass_group(wcurve_of_mcurve(f,a,b)),montgomery_group(f,a,b))
           (montgomery_of_weierstrass(f,a,b),
            weierstrass_of_montgomery(f,a,b))`,
  ONCE_REWRITE_TAC[GROUP_ISOMORPHISMS_SYM] THEN
  ACCEPT_TAC GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP);;

let ISOMORPHIC_MONTGOMERY_WEIERSTRASS_GROUP = prove
 (`!f a (b:A).
      field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
      a IN ring_carrier f /\ b IN ring_carrier f /\
      montgomery_nonsingular(f,a,b)
      ==> (montgomery_group(f,a,b)) isomorphic_group
          (weierstrass_group(wcurve_of_mcurve(f,a,b)))`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o
    MATCH_MP GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP) THEN
  MESON_TAC[GROUP_ISOMORPHISMS_IMP_ISOMORPHISM; isomorphic_group]);;

let ISOMORPHIC_WEIERSTRASS_MONTGOMERY_GROUP = prove
 (`!f a (b:A).
      field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
      a IN ring_carrier f /\ b IN ring_carrier f /\
      montgomery_nonsingular(f,a,b)
      ==> (weierstrass_group(wcurve_of_mcurve(f,a,b))) isomorphic_group
          (montgomery_group(f,a,b))`,
  ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN
  ACCEPT_TAC ISOMORPHIC_MONTGOMERY_WEIERSTRASS_GROUP);;