Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,026 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
(* ========================================================================= *)
(* Complex numbers and quaternions in the geometric algebra theory. *)
(* *)
(* (c) Copyright, Capital Normal University, China, 2018. *)
(* Authors: Liming Li, Zhiping Shi, Yong Guan, Guohui Wang, Sha Ma. *)
(* ========================================================================= *)
needs "Geometric_Algebra/geometricalgebra.ml";;
needs "Quaternions/make.ml";;
(* ------------------------------------------------------------------------- *)
(* Complexes in GA. *)
(* ------------------------------------------------------------------------- *)
let DIMINDEX_GA010 = prove
(`dimindex(:('0,'1,'0)geomalg) = dimindex(:2)`,
REWRITE_TAC[DIMINDEX_2; DIMINDEX_GEOMALG; PDIMINDEX_0; PDIMINDEX_1] THEN ARITH_TAC);;
let COMPLEX_PRODUCT_GA010 = prove
(`!x y:real^('0,'1,'0)geomalg.
x * y =
(x $$ {} * y $$ {} - x $$ {1} * y $$ {1}) % mbasis {} +
(x $$ {} * y $$ {1} + x $$ {1} * y $$ {}) % mbasis {1}`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC(LAND_CONV o LAND_CONV o ONCE_DEPTH_CONV)[GSYM MVBASIS_EXPANSION] THEN
GEN_REWRITE_TAC(LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GSYM MVBASIS_EXPANSION] THEN
REWRITE_TAC[PDIMINDEX_0; PDIMINDEX_1; ADD_0; ADD_SYM; NUMSEG_SING] THEN
REWRITE_TAC[prove(`{s | s SUBSET {1}} = {{}, {1}}`, REWRITE_TAC[POWERSET_CLAUSES] THEN SET_TAC[])] THEN
SIMP_TAC[VSUM_CLAUSES;FINITE_INSERT; FINITE_SING; IN_INSERT; IN_SING; NOT_EMPTY_INSERT; VSUM_SING] THEN
CONV_TAC GEOM_ARITH);;
GEOM_ARITH `mbasis{1}:real^('0,'1,'0)geomalg * mbasis{1} = --mbasis{}`;;
GEOM_ARITH `mbasis{1,2}:real^('2,'0,'0)geomalg * mbasis{1,2} = --mbasis{}`;;
(* ------------------------------------------------------------------------- *)
(* Quaternions in GA. *)
(* ------------------------------------------------------------------------- *)
let DIMINDEX_GA020 = prove
(`dimindex(:('0,'2,'0)geomalg) = dimindex(:4)`,
REWRITE_TAC[DIMINDEX_4; DIMINDEX_GEOMALG; PDIMINDEX_0; PDIMINDEX_2] THEN ARITH_TAC);;
let QUAT_PRODUCT_GA020 = prove
(`!x y:real^('0,'2,'0)geomalg.
x * y =
(x $$ {} * y $$ {} - x $$ {1} * y $$ {1} - x $$ {2} * y $$ {2} - x $$ {1,2} * y $$ {1,2}) % mbasis {} +
(x $$ {} * y $$ {1} + x $$ {1} * y $$ {} + x $$ {2} * y $$ {1,2} - x $$ {1,2} * y $$ {2}) % mbasis {1} +
(x $$ {} * y $$ {2} - x $$ {1} * y $$ {1,2} + x $$ {2} * y $$ {} + x $$ {1,2} * y $$ {1}) % mbasis {2} +
(x $$ {} * y $$ {1,2} + x $$ {1} * y $$ {2} - x $$ {2} * y $$ {1} + x $$ {1,2} * y $$ {}) % mbasis {1,2}`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC(LAND_CONV o LAND_CONV o ONCE_DEPTH_CONV)[GSYM MVBASIS_EXPANSION] THEN
GEN_REWRITE_TAC(LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)[GSYM MVBASIS_EXPANSION] THEN
REWRITE_TAC[PDIMINDEX_0; PDIMINDEX_2; ADD_0; ADD_SYM] THEN
GEN_REWRITE_TAC(LAND_CONV o ONCE_DEPTH_CONV)[TWO] THEN REWRITE_TAC[NUMSEG_CLAUSES] THEN REWRITE_TAC[ARITH; NUMSEG_SING] THEN
REWRITE_TAC[prove(`{s | s SUBSET {2,1}} = {{}, {1}, {2}, {1,2}}`,
REWRITE_TAC[POWERSET_CLAUSES] THEN REWRITE_TAC[EXTENSION] THEN
GEN_TAC THEN REWRITE_TAC[IN_UNION; IN_IMAGE; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[GSYM DISJ_ASSOC] THEN
MATCH_MP_TAC (TAUT `p1 = q1 /\ p2 = q2 ==> (p1 \/ p2) = (q1 \/q2)`) THEN CONJ_TAC THENL[SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC (TAUT `p1 = q1 /\ p2 = q2 ==> (p1 \/ p2) = (q1 \/q2)`) THEN CONJ_TAC THEN
EQ_TAC THENL[SET_TAC[]; ALL_TAC; SET_TAC[]; ALL_TAC] THEN STRIP_TAC THENL
[EXISTS_TAC `{}:num->bool`; EXISTS_TAC `{}:num->bool`; EXISTS_TAC `{1}:num->bool`] THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL[SET_TAC[]; ALL_TAC] THEN DISJ2_TAC THEN EXISTS_TAC `{}:num->bool` THEN ASM_REWRITE_TAC[])] THEN
SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; FINITE_SING; IN_INSERT; IN_SING; NOT_EMPTY_INSERT; VSUM_SING] THEN
SIMP_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[prove(`!a b:num. (!x. (x=a) <=> (x=b)) <=> (a=b)`, MESON_TAC[]);
prove(`!a b:num. (!x. (x=a) <=> (x=a) \/ (x=b)) <=> (a=b)`, MESON_TAC[]);
DISJ_SYM; ARITH_EQ] THEN
CONV_TAC GEOM_ARITH);;
GEOM_ARITH `(mbasis{1}:real^('0,'2,'0)geomalg)* mbasis{1} = --mbasis{}`;;
GEOM_ARITH `(mbasis{2}:real^('0,'2,'0)geomalg)* mbasis{2} = --mbasis {}`;;
GEOM_ARITH `(mbasis{1,2}:real^('0,'2,'0)geomalg)* mbasis{1,2} = --mbasis {}`;;
GEOM_ARITH `(mbasis{1}:real^('0,'2,'0)geomalg)* mbasis{2} = mbasis {1,2}`;;
GEOM_ARITH `(mbasis{2}:real^('0,'2,'0)geomalg)* mbasis{1,2} = mbasis {1}`;;
GEOM_ARITH `(mbasis{1,2}:real^('0,'2,'0)geomalg)* mbasis{1} = mbasis {2}`;;
GEOM_ARITH `(mbasis{1}:real^('0,'2,'0)geomalg)* mbasis{2} = --(mbasis{2} * mbasis{1})`;;
GEOM_ARITH `(mbasis{2}:real^('0,'2,'0)geomalg)* mbasis{1,2} = --(mbasis{1,2} * mbasis {2})`;;
GEOM_ARITH `(mbasis{1,2}:real^('0,'2,'0)geomalg)* mbasis{1} = --(mbasis{1} * mbasis{1,2})`;;
GEOM_ARITH `(mbasis{1}:real^('0,'2,'0)geomalg)* mbasis{2} * mbasis{1,2} = --mbasis{}`;;
let geomalg_300_quat = new_definition
`geomalg_300_quat (q:quat) =
(Re q) % mbasis{} +
(Im1 q) % mbasis{2,3} +
(Im2 q) % mbasis{1,2} +
(Im3 q) % (--(mbasis{1,3}:real^('3,'0,'0)geomalg))`;;
let CNJ_QUAT = prove
(`!q:quat. conjugation (geomalg_300_quat q) = geomalg_300_quat (cnj q)`,
GEN_TAC THEN REWRITE_TAC[conjugation; geomalg_300_quat; quat_cnj; QUAT_COMPONENTS] THEN
SIMP_TAC[GEOMALG_BETA; GEOMALG_EQ] THEN
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[VECTOR_NEG_MINUS1; GEOMALG_ADD_COMPONENT; GEOMALG_MUL_COMPONENT; MVBASIS_COMPONENT] THEN
REWRITE_TAC[REAL_ADD_LDISTRIB] THEN
ASM_SIMP_TAC[MVBASIS_COMPONENT] THEN
BINOP_TAC THENL
[COND_CASES_TAC THEN ASM_REWRITE_TAC[PDIMINDEX_3; PDIMINDEX_0] THEN
REWRITE_TAC[ARITH; (NUMSEG_CONV `4..3`); INTER_EMPTY] THEN
CONV_TAC REVERSION_CONV THEN REAL_ARITH_TAC; ALL_TAC] THEN
BINOP_TAC THENL
[COND_CASES_TAC THEN ASM_REWRITE_TAC[PDIMINDEX_3; PDIMINDEX_0] THEN
REWRITE_TAC[ARITH; (NUMSEG_CONV `4..3`); INTER_EMPTY] THEN
CONV_TAC REVERSION_CONV THEN REAL_ARITH_TAC THEN REAL_ARITH_TAC; ALL_TAC] THEN
BINOP_TAC THENL
[COND_CASES_TAC THEN ASM_REWRITE_TAC[PDIMINDEX_3; PDIMINDEX_0] THEN
REWRITE_TAC[ARITH; (NUMSEG_CONV `4..3`); INTER_EMPTY] THEN
CONV_TAC REVERSION_CONV THEN REAL_ARITH_TAC THEN REAL_ARITH_TAC; ALL_TAC] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[PDIMINDEX_3; PDIMINDEX_0] THEN
REWRITE_TAC[ARITH; (NUMSEG_CONV `4..3`); INTER_EMPTY] THEN
CONV_TAC REVERSION_CONV THEN REAL_ARITH_TAC THEN REAL_ARITH_TAC);;
GEOM_ARITH `(mbasis{2,3}:real^('3,'0,'0)geomalg)* mbasis{2,3} = --mbasis{}`;;
GEOM_ARITH `(mbasis{1,2}:real^('3,'0,'0)geomalg)* mbasis{1,2} = --mbasis{}`;;
GEOM_ARITH `(--mbasis{1,3}:real^('3,'0,'0)geomalg)*(--mbasis{1,3}) = --mbasis{}`;;
GEOM_ARITH `(mbasis{2,3}:real^('3,'0,'0)geomalg)* mbasis {1,2} = --mbasis{1,3}`;;
GEOM_ARITH `(mbasis{1,2}:real^('3,'0,'0)geomalg)*(--mbasis{1,3}) = mbasis{2,3}`;;
GEOM_ARITH `(--mbasis{1,3}:real^('3,'0,'0)geomalg)* mbasis{2,3} = mbasis{1,2}`;;
GEOM_ARITH `(mbasis{2,3}:real^('3,'0,'0)geomalg)* mbasis{1,2} = --(mbasis{1,2} * mbasis{2,3})`;;
GEOM_ARITH `(mbasis{1,2}:real^('3,'0,'0)geomalg)*(--mbasis{1,3})= --(--mbasis{1,3} * mbasis{1,2})`;;
GEOM_ARITH `(--mbasis{1,3}:real^('3,'0,'0)geomalg)* mbasis{2,3} = --(mbasis{2,3} * --mbasis{1,3})`;;
GEOM_ARITH `(mbasis{2,3}:real^('3,'0,'0)geomalg)* mbasis{1,2} * --mbasis{1,3} = --mbasis{}`;;
(* ------------------------------------------------------------------------- *)
(* Dual quaternions in GA. *)
(* ------------------------------------------------------------------------- *)
GEOM_ARITH `(mbasis{2,3}:real^('3,'0,'1)geomalg)* mbasis{2,3} = --mbasis{}`;;
GEOM_ARITH `(mbasis{1,2}:real^('3,'0,'1)geomalg)* mbasis{1,2} = --mbasis{}`;;
GEOM_ARITH `(--mbasis{1,3}:real^('3,'0,'1)geomalg)*(--mbasis{1,3}) = --mbasis{}`;;
GEOM_ARITH `(mbasis{2,3}:real^('3,'0,'1)geomalg)* mbasis {1,2} = --mbasis{1,3}`;;
GEOM_ARITH `(mbasis{1,2}:real^('3,'0,'1)geomalg)*(--mbasis{1,3}) = mbasis{2,3}`;;
GEOM_ARITH `(--mbasis{1,3}:real^('3,'0,'1)geomalg)* mbasis{2,3} = mbasis{1,2}`;;
GEOM_ARITH `(mbasis{2,3}:real^('3,'0,'1)geomalg)* mbasis{1,2} = --(mbasis{1,2} * mbasis{2,3})`;;
GEOM_ARITH `(mbasis{1,2}:real^('3,'0,'1)geomalg)*(--mbasis{1,3})= --(--mbasis{1,3} * mbasis{1,2})`;;
GEOM_ARITH `(--mbasis{1,3}:real^('3,'0,'1)geomalg)* mbasis{2,3} = --(mbasis{2,3} * --mbasis{1,3})`;;
GEOM_ARITH `(mbasis{2,3}:real^('3,'0,'1)geomalg)* mbasis{1,2} * --mbasis{1,3} = --mbasis{}`;;
GEOM_ARITH `mbasis{2,3}:real^('3,'0,'1)geomalg * mbasis{1,2,3,4} = mbasis{1,2,3,4} * mbasis{2,3}`;;
GEOM_ARITH `mbasis{1,2}:real^('3,'0,'1)geomalg * mbasis{1,2,3,4} = mbasis{1,2,3,4} * mbasis{1,2}`;;
GEOM_ARITH `--mbasis{1,3}:real^('3,'0,'1)geomalg * mbasis{1,2,3,4}= mbasis{1,2,3,4}* --mbasis{1,3}`;;
GEOM_ARITH `mbasis{1,2,3,4}:real^('3,'0,'1)geomalg * mbasis{1,2,3,4} = vec 0`;;
|