Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 21,535 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
(* ========================================================================= *)
(* Multiplicative functions into N or R (could add Z, C etc.)                *)
(* ========================================================================= *)

needs "Library/products.ml";;
needs "Library/prime.ml";;
needs "Library/pocklington.ml";;

(* ------------------------------------------------------------------------- *)
(* Definition of multiplicativity of functions into N.                       *)
(* ------------------------------------------------------------------------- *)

let multiplicative = new_definition
 `multiplicative f <=>
     f(1) = 1 /\ !m n. coprime(m,n) ==> f(m * n) = f(m) * f(n)`;;

let MULTIPLICATIVE_1 = prove
 (`!f. multiplicative f ==> f(1) = 1`,
  SIMP_TAC[multiplicative]);;

(* ------------------------------------------------------------------------- *)
(* We can really ignore the value at zero.                                   *)
(* ------------------------------------------------------------------------- *)

let MULTIPLICATIVE = prove
 (`multiplicative f <=>
        f(1) = 1 /\
        !m n. ~(m = 0) /\ ~(n = 0) /\ coprime(m,n) ==> f(m * n) = f(m) * f(n)`,
  REWRITE_TAC[multiplicative] THEN EQ_TAC THEN
  STRIP_TAC THEN ASM_SIMP_TAC[] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
  ONCE_REWRITE_TAC[COPRIME_SYM] THEN
  ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
  ASM_MESON_TAC[COPRIME_SYM; COPRIME_0; DIVIDES_ONE; MULT_CLAUSES]);;

let MULTIPLICATIVE_IGNOREZERO = prove
 (`!f g. (!n. ~(n = 0) ==> g(n) = f(n)) /\ multiplicative f
         ==> multiplicative g`,
  REPEAT GEN_TAC THEN SIMP_TAC[MULTIPLICATIVE; ARITH_EQ] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_EQ_0]);;

(* ------------------------------------------------------------------------- *)
(* Expanding a multiplicative function in terms of values on prime powers.   *)
(* ------------------------------------------------------------------------- *)

let MULTIPLICATIVE_EXPAND = prove
 (`!f n.
       multiplicative f /\ ~(n = 0)
       ==> f n = nproduct {p | prime p /\ p divides n}
                          (\p. f(p EXP index p n))`,
  REWRITE_TAC[multiplicative] THEN REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `n = 1` THENL
   [ASM_REWRITE_TAC[MESON[PRIME_1; DIVIDES_ONE]
      `~(prime p /\ p divides 1)`] THEN
    ASM_REWRITE_TAC[EMPTY_GSPEC; NPRODUCT_CLAUSES];
    MAP_EVERY UNDISCH_TAC [`~(n = 1)`; `~(n = 0)`] THEN
    REWRITE_TAC[IMP_IMP; ARITH_RULE `~(n = 0) /\ ~(n = 1) <=> 1 < n`]] THEN
  SPEC_TAC(`n:num`,`n:num`) THEN
  MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`a:num`; `b:num`] THEN ASM_SIMP_TAC[] THEN
    REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(CONJUNCTS_THEN SUBST1_TAC) THEN
    REWRITE_TAC[MESON[PRIME_DIVPROD_EQ]
     `prime p /\ p divides a * b <=>
      prime p /\ p divides a \/ prime p /\ p divides b`] THEN
    REWRITE_TAC[SET_RULE `{x | P x \/ Q x} = {x | P x} UNION {x | Q x}`] THEN
    W(MP_TAC o PART_MATCH (lhand o rand) NPRODUCT_UNION o rand o snd) THEN
    ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; ARITH_RULE `1 < p ==> ~(p = 0)`] THEN
    ANTS_TAC THENL
     [REWRITE_TAC[DISJOINT; EXTENSION; IN_ELIM_THM;
                  IN_INTER; NOT_IN_EMPTY] THEN
      ASM_MESON_TAC[COPRIME_PRIME_EQ];
      DISCH_THEN SUBST1_TAC] THEN
    BINOP_TAC THEN MATCH_MP_TAC NPRODUCT_EQ THEN
    X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
    AP_TERM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
    ASM_SIMP_TAC[INDEX_MUL; ARITH_RULE `1 < p ==> ~(p = 0)`] THEN
    REWRITE_TAC[EQ_ADD_LCANCEL_0; EQ_ADD_RCANCEL_0] THEN
    REWRITE_TAC[INDEX_EQ_0] THEN ASM_MESON_TAC[COPRIME_PRIME_EQ];
    SIMP_TAC[MESON[PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME]
     `prime p ==> (prime q /\ q divides p EXP k <=> q = p /\ ~(k = 0))`] THEN
    REWRITE_TAC[SING_GSPEC; NPRODUCT_SING] THEN
    SIMP_TAC[INDEX_EXP; INDEX_REFL] THEN
    REWRITE_TAC[ARITH_RULE `p <= 1 <=> p = 0 \/ p = 1`] THEN
    ASM_MESON_TAC[PRIME_0; PRIME_1; MULT_CLAUSES]]);;

(* ------------------------------------------------------------------------- *)
(* A key "building block" theorem.                                           *)
(* ------------------------------------------------------------------------- *)

let MULTIPLICATIVE_CONVOLUTION = prove
 (`!f g. multiplicative f /\ multiplicative g
         ==> multiplicative (\n. nsum {d | d divides n}
                                      (\d. f(d) * g(n DIV d)))`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [multiplicative] THEN
  REWRITE_TAC[MULTIPLICATIVE; GSYM NSUM_LMUL] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[DIVIDES_ONE; DIV_1; SING_GSPEC; NSUM_SING; MULT_CLAUSES] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
  GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
  ASM_SIMP_TAC[GSYM NSUM_LMUL; NSUM_NSUM_PRODUCT; FINITE_DIVISORS] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC NSUM_EQ_GENERAL THEN
  EXISTS_TAC `\(a:num,b). a * b` THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN
  REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[IN_ELIM_THM] THEN
  REWRITE_TAC[PAIR_EQ] THEN CONJ_TAC THENL
   [GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP DIVISION_DECOMP) THEN
    CONJ_TAC THENL [ASM_MESON_TAC[MULT_SYM]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN
    STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
    REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN REPEAT CONJ_TAC THEN
    MATCH_MP_TAC COPRIME_DIVPROD THENL
     (map EXISTS_TAC [`b2:num`; `b1:num`; `a2:num`; `a1:num`]) THEN
    ASM_MESON_TAC[COPRIME_DIVISORS; DIVIDES_REFL;
                  DIVIDES_RMUL; COPRIME_SYM; MULT_SYM];
    MAP_EVERY X_GEN_TAC [`d:num`; `e:num`] THEN STRIP_TAC THEN
    CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL2; MULT_SYM]; ALL_TAC] THEN
    MP_TAC(REWRITE_RULE[divides] (ASSUME `(d:num) divides n`)) THEN
    DISCH_THEN(X_CHOOSE_THEN `d':num` SUBST_ALL_TAC) THEN
    MP_TAC(REWRITE_RULE[divides] (ASSUME `(e:num) divides m`)) THEN
    DISCH_THEN(X_CHOOSE_THEN `e':num` SUBST_ALL_TAC) THEN
    RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
    ONCE_REWRITE_TAC[AC MULT_AC
     `(e * e') * d * d':num = (d * e) * (d' * e')`] THEN
    ASM_SIMP_TAC[DIV_MULT; MULT_EQ_0] THEN
    FIRST_ASSUM(ASSUME_TAC o MATCH_MP (NUMBER_RULE
     `coprime(a * b:num,c * d) ==> coprime(c,a) /\ coprime(d,b)`)) THEN
    ASM_SIMP_TAC[] THEN ARITH_TAC]);;

let MULTIPLICATIVE_CONST = prove
 (`!c. multiplicative(\n. c) <=> c = 1`,
  GEN_TAC THEN REWRITE_TAC[multiplicative] THEN
  ASM_CASES_TAC `c = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES]);;

let MULTIPLICATIVE_DELTA = prove
 (`multiplicative(\n. if n = 1 then 1 else 0)`,
  REWRITE_TAC[MULTIPLICATIVE; MULT_EQ_1] THEN ARITH_TAC);;

let MULTIPLICATIVE_DIVISORSUM = prove
 (`!f. multiplicative f ==> multiplicative (\n. nsum {d | d divides n} f)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`f:num->num`; `\n:num. 1`] MULTIPLICATIVE_CONVOLUTION) THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; MULTIPLICATIVE_CONST; ETA_AX]);;

(* ------------------------------------------------------------------------- *)
(* Some particular multiplicative functions.                                 *)
(* ------------------------------------------------------------------------- *)

let MULTIPLICATIVE_ID = prove
 (`multiplicative(\n. n)`,
  REWRITE_TAC[multiplicative]);;

let MULTIPLICATIVE_POWERSUM = prove
 (`!k. multiplicative(\n. nsum {d | d divides n} (\d. d EXP k))`,
  GEN_TAC THEN MATCH_MP_TAC MULTIPLICATIVE_DIVISORSUM THEN
  REWRITE_TAC[MULTIPLICATIVE; EXP_ONE; MULT_EXP]);;

let sigma = new_definition
 `sigma(n) = if n = 0 then 0 else nsum {d | d divides n} (\i. i)`;;

let tau = new_definition
 `tau(n) = if n = 0 then 0 else CARD {d | d divides n}`;;

let MULTIPLICATIVE_SIGMA = prove
 (`multiplicative(sigma)`,
  MP_TAC(SPEC `1` MULTIPLICATIVE_POWERSUM) THEN
  MATCH_MP_TAC(REWRITE_RULE[GSYM IMP_IMP] MULTIPLICATIVE_IGNOREZERO) THEN
  SIMP_TAC[sigma; EXP_1]);;

let MULTIPLICATIVE_TAU = prove
 (`multiplicative(tau)`,
  MP_TAC(SPEC `0` MULTIPLICATIVE_POWERSUM) THEN
  MATCH_MP_TAC(REWRITE_RULE[GSYM IMP_IMP] MULTIPLICATIVE_IGNOREZERO) THEN
  SIMP_TAC[tau; EXP; NSUM_CONST; MULT_CLAUSES; FINITE_DIVISORS]);;

let MULTIPLICATIVE_PHI = prove
 (`multiplicative(phi)`,
  REWRITE_TAC[multiplicative; PHI_MULTIPLICATIVE; PHI_1]);;

let MULTIPLICATIVE_GCD = prove
 (`!n. multiplicative(\m. gcd(n,m))`,
  REWRITE_TAC[multiplicative; ONCE_REWRITE_RULE[GCD_SYM] GCD_1] THEN
  ONCE_REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN NUMBER_TAC);;

let PHI_EXPAND = prove
 (`!n. phi n = if n = 0 then 0
               else nproduct {p | prime p /\ p divides n}
                             (\p. p EXP (index p n - 1) * (p - 1))`,
  GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PHI_0] THEN
  MP_TAC(SPECL [`phi`; `n:num`] MULTIPLICATIVE_EXPAND) THEN
  ASM_REWRITE_TAC[MULTIPLICATIVE_PHI] THEN DISCH_THEN SUBST1_TAC THEN
  MATCH_MP_TAC NPRODUCT_EQ THEN SIMP_TAC[IN_ELIM_THM; PHI_PRIMEPOW_ALT] THEN
  ASM_SIMP_TAC[INDEX_EQ_0] THEN MESON_TAC[PRIME_1]);;

(* ------------------------------------------------------------------------- *)
(* Uniqueness of multiplicative functions if equal on prime powers.          *)
(* ------------------------------------------------------------------------- *)

let MULTIPLICATIVE_UNIQUE = prove
 (`!f g. multiplicative f /\ multiplicative g /\
         (!p k. prime p ==> f(p EXP k) = g(p EXP k))
         ==> !n. ~(n = 0) ==> f n = g n`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN
  X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC o MATCH_MP (ARITH_RULE
   `~(n = 0) ==> n = 1 \/ 1 < n`))
  THENL [ASM_MESON_TAC[multiplicative]; ALL_TAC] THEN
  SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN
  ASM_MESON_TAC[multiplicative]);;

(* ------------------------------------------------------------------------- *)
(* Derive the divisor-sum identity for phi from this.                        *)
(* ------------------------------------------------------------------------- *)

let PHI_DIVISORSUM = prove
 (`!n. ~(n = 0) ==> nsum {d | d divides n} (\d. phi(d)) = n`,
  MATCH_MP_TAC MULTIPLICATIVE_UNIQUE THEN REWRITE_TAC[MULTIPLICATIVE_ID] THEN
  SIMP_TAC[MULTIPLICATIVE_DIVISORSUM; ETA_AX; MULTIPLICATIVE_PHI] THEN
  SIMP_TAC[DIVIDES_PRIMEPOW; SET_RULE
    `{d | ?i. i <= k /\ d = p EXP i} = IMAGE (\i. p EXP i) {i | i <= k}`] THEN
  SIMP_TAC[NSUM_IMAGE; EQ_PRIMEPOW; o_DEF; PHI_PRIMEPOW] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
  INDUCT_TAC THEN REWRITE_TAC[LE; NOT_SUC] THEN
  REWRITE_TAC[CONJUNCT1 EXP; SET_RULE `{x | x = 0} = {0}`; NSUM_SING] THEN
  REWRITE_TAC[SET_RULE
   `{i:num | i = a \/ i <= b} = a INSERT {i | i <= b}`] THEN
  ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_NUMSEG_LE; NOT_SUC] THEN
  REWRITE_TAC[IN_ELIM_THM; SUC_SUB1; ARITH_RULE `~(SUC k <= k)`] THEN
  MATCH_MP_TAC(ARITH_RULE `a:num <= b ==> b - a + a = b`) THEN
  ASM_SIMP_TAC[LE_EXP; PRIME_IMP_NZ] THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Now the real analog.                                                      *)
(* ------------------------------------------------------------------------- *)

let real_multiplicative = new_definition
 `real_multiplicative (f:num->real) <=>
     f(1) = &1 /\ !m n. coprime(m,n) ==> f(m * n) = f(m) * f(n)`;;

let REAL_MULTIPLICATIVE = prove
 (`real_multiplicative f <=>
        f(1) = &1 /\
        !m n. ~(m = 0) /\ ~(n = 0) /\ coprime(m,n) ==> f(m * n) = f(m) * f(n)`,
  REWRITE_TAC[real_multiplicative] THEN EQ_TAC THEN
  STRIP_TAC THEN ASM_SIMP_TAC[] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
  ASM_CASES_TAC `n = 0` THEN
  ASM_SIMP_TAC[COPRIME_0; MULT_CLAUSES; REAL_MUL_LID] THEN
  ONCE_REWRITE_TAC[COPRIME_SYM] THEN
  ASM_CASES_TAC `m = 0` THEN
  ASM_SIMP_TAC[COPRIME_0; MULT_CLAUSES; REAL_MUL_RID] THEN
  ASM_MESON_TAC[COPRIME_SYM; COPRIME_0; DIVIDES_ONE; MULT_CLAUSES]);;

let REAL_MULTIPLICATIVE_CONST = prove
 (`!c. real_multiplicative(\n. c) <=> c = &1`,
  GEN_TAC THEN REWRITE_TAC[real_multiplicative] THEN
  ASM_CASES_TAC `c:real = &1` THEN ASM_REWRITE_TAC[REAL_MUL_LID]);;

let REAL_MULTIPLICATIVE_DELTA = prove
 (`real_multiplicative(\n. if n = 1 then &1 else &0)`,
  REWRITE_TAC[REAL_MULTIPLICATIVE; MULT_EQ_1] THEN REAL_ARITH_TAC);;

let REAL_MULTIPLICATIVE_IGNOREZERO = prove
 (`!f g. (!n. ~(n = 0) ==> g(n) = f(n)) /\ real_multiplicative f
         ==> real_multiplicative g`,
  REPEAT GEN_TAC THEN SIMP_TAC[REAL_MULTIPLICATIVE; ARITH_EQ] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_EQ_0]);;

let REAL_MULTIPLICATIVE_CONVOLUTION = prove
 (`!f g. real_multiplicative f /\ real_multiplicative g
         ==> real_multiplicative (\n. sum {d | d divides n}
                                          (\d. f(d) * g(n DIV d)))`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [real_multiplicative] THEN
  REWRITE_TAC[REAL_MULTIPLICATIVE; GSYM SUM_LMUL] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[DIVIDES_ONE; DIV_1; SING_GSPEC; SUM_SING; REAL_MUL_LID] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
  GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
  ASM_SIMP_TAC[GSYM SUM_LMUL; SUM_SUM_PRODUCT; FINITE_DIVISORS] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN
  EXISTS_TAC `\(a:num,b). a * b` THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN
  REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
  REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN CONJ_TAC THENL
   [GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP DIVISION_DECOMP) THEN
    CONJ_TAC THENL [ASM_MESON_TAC[MULT_SYM]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN
    STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
    REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN REPEAT CONJ_TAC THEN
    MATCH_MP_TAC COPRIME_DIVPROD THENL
     (map EXISTS_TAC [`b2:num`; `b1:num`; `a2:num`; `a1:num`]) THEN
    ASM_MESON_TAC[COPRIME_DIVISORS; DIVIDES_REFL;
                  DIVIDES_RMUL; COPRIME_SYM; MULT_SYM];
    MAP_EVERY X_GEN_TAC [`d:num`; `e:num`] THEN STRIP_TAC THEN
    CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL2; MULT_SYM]; ALL_TAC] THEN
    MP_TAC(REWRITE_RULE[divides] (ASSUME `(d:num) divides n`)) THEN
    DISCH_THEN(X_CHOOSE_THEN `d':num` SUBST_ALL_TAC) THEN
    MP_TAC(REWRITE_RULE[divides] (ASSUME `(e:num) divides m`)) THEN
    DISCH_THEN(X_CHOOSE_THEN `e':num` SUBST_ALL_TAC) THEN
    RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
    ONCE_REWRITE_TAC[AC MULT_AC
     `(e * e') * d * d':num = (d * e) * (d' * e')`] THEN
    ASM_SIMP_TAC[DIV_MULT; MULT_EQ_0] THEN
    FIRST_ASSUM(ASSUME_TAC o MATCH_MP (NUMBER_RULE
     `coprime(a * b:num,c * d) ==> coprime(c,a) /\ coprime(d,b)`)) THEN
    ASM_SIMP_TAC[] THEN REAL_ARITH_TAC]);;

let REAL_MULTIPLICATIVE_DIVISORSUM = prove
 (`!f. real_multiplicative f
       ==> real_multiplicative (\n. sum {d | d divides n} f)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`f:num->real`; `(\n. &1):num->real`]
     REAL_MULTIPLICATIVE_CONVOLUTION) THEN
  ASM_REWRITE_TAC[REAL_MUL_RID; REAL_MULTIPLICATIVE_CONST; ETA_AX]);;

(* ------------------------------------------------------------------------- *)
(* The Mobius function (into the reals).                                     *)
(* ------------------------------------------------------------------------- *)

prioritize_real();;

let mobius = new_definition
 `mobius(n) = if squarefree n then --(&1) pow CARD {p | prime p /\ p divides n}
              else &0:real`;;

let MOBIUS_ALT = prove
 (`!n. mobius(n) = if ?p. prime p /\ (p EXP 2) divides n then &0
                   else --(&1) pow CARD {p | prime p /\ p divides n}`,
  ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN
  REWRITE_TAC[MESON[] `~(?x. P x /\ Q x) <=> !x. P x ==> ~Q x`] THEN
  REWRITE_TAC[GSYM SQUAREFREE_PRIME; GSYM mobius]);;

let MOBIUS_0 = prove
 (`mobius 0 = &0`,
  REWRITE_TAC[mobius; SQUAREFREE_0]);;

let MOBIUS_1 = prove
 (`mobius 1 = &1`,
  REWRITE_TAC[mobius; SQUAREFREE_1; DIVIDES_ONE] THEN
  SUBGOAL_THEN `{p | prime p /\ p = 1} = {}`
   (fun th -> SIMP_TAC[th; CARD_CLAUSES; real_pow]) THEN SET_TAC[PRIME_1]);;

let REAL_ABS_MOBIUS = prove
 (`!n. abs(mobius n) <= &1`,
  GEN_TAC THEN REWRITE_TAC[mobius] THEN COND_CASES_TAC THEN
  REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NEG; REAL_POW_ONE; REAL_ABS_NUM] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV);;

let MOBIUS_MULT = prove
 (`!a b. coprime(a,b) ==> mobius(a * b) = mobius a * mobius b`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[mobius; SQUAREFREE_MUL] THEN
  MAP_EVERY ASM_CASES_TAC [`squarefree a`; `squarefree b`] THEN
  ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
  REWRITE_TAC[GSYM REAL_POW_ADD] THEN AP_TERM_TAC THEN
  ASM_CASES_TAC `a = 0` THENL [ASM_MESON_TAC[SQUAREFREE_0]; ALL_TAC] THEN
  ASM_CASES_TAC `b = 0` THENL [ASM_MESON_TAC[SQUAREFREE_0]; ALL_TAC] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN
  ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; MULT_EQ_0] THEN CONJ_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o MATCH_MP COPRIME_PRIME) THEN SET_TAC[];
    MP_TAC PRIME_DIVPROD_EQ THEN ASM SET_TAC[]]);;

let REAL_MULTIPLICATIVE_MOBIUS = prove
 (`real_multiplicative mobius`,
  SIMP_TAC[real_multiplicative; MOBIUS_1; MOBIUS_MULT]);;

let MOBIUS_PRIME = prove
 (`!p. prime p ==> mobius(p) = -- &1`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[mobius; PRIME_IMP_SQUAREFREE] THEN
  SUBGOAL_THEN `{q | prime q /\ q divides p} = {p}` SUBST1_TAC THENL
   [ASM SET_TAC[DIVIDES_PRIME_PRIME]; ALL_TAC] THEN
  REWRITE_TAC[CARD_SING] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;

let MOBIUS_PRIMEPOW = prove
 (`!p k. prime p ==> mobius(p EXP k) = if k = 0 then &1
                                       else if k = 1 then -- &1
                                       else &0`,
  REPEAT STRIP_TAC THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[MOBIUS_1; EXP] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[MOBIUS_PRIME; EXP_1] THEN
  ASM_REWRITE_TAC[mobius; SQUAREFREE_EXP] THEN ASM_MESON_TAC[PRIME_1]);;

let DIVISORSUM_MOBIUS = prove
 (`!n. 1 <= n
       ==> sum {d | d divides n} (\d. mobius d) = if n = 1 then &1 else &0`,
  REWRITE_TAC[ARITH_RULE `1 <= n <=> n = 1 \/ 1 < n`] THEN
  REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[DIVIDES_ONE; SET_RULE `{x | x = a} = {a}`; SUM_SING; MOBIUS_1] THEN
  SIMP_TAC[ARITH_RULE `1 < n ==> ~(n = 1)`] THEN
  MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL
   [MP_TAC(MATCH_MP REAL_MULTIPLICATIVE_DIVISORSUM
                    REAL_MULTIPLICATIVE_MOBIUS) THEN
    SIMP_TAC[real_multiplicative; ETA_AX; REAL_MUL_LZERO];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN STRIP_TAC THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum {1,p} (\d. mobius d)` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    ASM_SIMP_TAC[SUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; IN_SING;
                 MOBIUS_PRIME; MOBIUS_1; REAL_ADD_RID; REAL_ADD_RINV] THEN
    ASM_MESON_TAC[PRIME_1]] THEN
  MATCH_MP_TAC SUM_SUPERSET THEN ASM_SIMP_TAC[DIVIDES_PRIMEPOW] THEN
  REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [ASM_MESON_TAC[EXP; LE_0];
    ASM_MESON_TAC[EXP_1; LE_1];
    ASM_SIMP_TAC[MOBIUS_PRIMEPOW] THEN ASM_MESON_TAC[EXP; EXP_1]]);;

let MOBIUS_INVERSION = prove
 (`!f g. (!n. 1 <= n ==> g(n) = sum {d | d divides n} f)
         ==> !n. 1 <= n
                 ==> f(n) = sum {d | d divides n} (\d. mobius(d) * g(n DIV d))`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `!d. d divides n ==> ~(n DIV d = 0)` ASSUME_TAC THENL
   [GEN_TAC THEN ASM_CASES_TAC `d = 0` THEN
    ASM_SIMP_TAC[DIVIDES_ZERO; LE_1] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
    ASM_SIMP_TAC[LE_1; NOT_LT; DIV_EQ_0];
    ALL_TAC] THEN
  ASM_SIMP_TAC[LE_1] THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `sum {d | d divides n} (\d. f(d) * (if n DIV d = 1 then &1 else &0))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `sum {n} (\d. f(d) * (if n DIV d = 1 then &1 else &0))` THEN
    CONJ_TAC THENL
     [ASM_SIMP_TAC[SUM_SING; DIV_REFL; LE_1; REAL_MUL_RID]; ALL_TAC] THEN
    CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_SUPERSET THEN
    SIMP_TAC[SUBSET; IN_SING; IN_ELIM_THM; DIVIDES_REFL] THEN
    X_GEN_TAC `d:num` THEN REWRITE_TAC[DIVIDES_DIV_MULT] THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES; REAL_MUL_RZERO];
    ASM_SIMP_TAC[GSYM DIVISORSUM_MOBIUS; LE_1] THEN
    REWRITE_TAC[GSYM SUM_LMUL] THEN
    ASM_SIMP_TAC[SUM_SUM_PRODUCT; FINITE_DIVISORS; LE_1; IN_ELIM_THM] THEN
    MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
    REPEAT(EXISTS_TAC `\(m:num,n:num). (n,m)`) THEN
    REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
    CONJ_TAC THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    REWRITE_TAC[REAL_MUL_SYM] THEN
    ASM_MESON_TAC[DIVIDES_DIVIDES_DIV; MULT_SYM;
                  NUMBER_RULE `(a * b:num) divides c ==> b divides c`]]);;