Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,535 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
(* ========================================================================= *)
(* Multiplicative functions into N or R (could add Z, C etc.) *)
(* ========================================================================= *)
needs "Library/products.ml";;
needs "Library/prime.ml";;
needs "Library/pocklington.ml";;
(* ------------------------------------------------------------------------- *)
(* Definition of multiplicativity of functions into N. *)
(* ------------------------------------------------------------------------- *)
let multiplicative = new_definition
`multiplicative f <=>
f(1) = 1 /\ !m n. coprime(m,n) ==> f(m * n) = f(m) * f(n)`;;
let MULTIPLICATIVE_1 = prove
(`!f. multiplicative f ==> f(1) = 1`,
SIMP_TAC[multiplicative]);;
(* ------------------------------------------------------------------------- *)
(* We can really ignore the value at zero. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE = prove
(`multiplicative f <=>
f(1) = 1 /\
!m n. ~(m = 0) /\ ~(n = 0) /\ coprime(m,n) ==> f(m * n) = f(m) * f(n)`,
REWRITE_TAC[multiplicative] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_SIMP_TAC[] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN
ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
ASM_MESON_TAC[COPRIME_SYM; COPRIME_0; DIVIDES_ONE; MULT_CLAUSES]);;
let MULTIPLICATIVE_IGNOREZERO = prove
(`!f g. (!n. ~(n = 0) ==> g(n) = f(n)) /\ multiplicative f
==> multiplicative g`,
REPEAT GEN_TAC THEN SIMP_TAC[MULTIPLICATIVE; ARITH_EQ] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_EQ_0]);;
(* ------------------------------------------------------------------------- *)
(* Expanding a multiplicative function in terms of values on prime powers. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE_EXPAND = prove
(`!f n.
multiplicative f /\ ~(n = 0)
==> f n = nproduct {p | prime p /\ p divides n}
(\p. f(p EXP index p n))`,
REWRITE_TAC[multiplicative] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `n = 1` THENL
[ASM_REWRITE_TAC[MESON[PRIME_1; DIVIDES_ONE]
`~(prime p /\ p divides 1)`] THEN
ASM_REWRITE_TAC[EMPTY_GSPEC; NPRODUCT_CLAUSES];
MAP_EVERY UNDISCH_TAC [`~(n = 1)`; `~(n = 0)`] THEN
REWRITE_TAC[IMP_IMP; ARITH_RULE `~(n = 0) /\ ~(n = 1) <=> 1 < n`]] THEN
SPEC_TAC(`n:num`,`n:num`) THEN
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`a:num`; `b:num`] THEN ASM_SIMP_TAC[] THEN
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(CONJUNCTS_THEN SUBST1_TAC) THEN
REWRITE_TAC[MESON[PRIME_DIVPROD_EQ]
`prime p /\ p divides a * b <=>
prime p /\ p divides a \/ prime p /\ p divides b`] THEN
REWRITE_TAC[SET_RULE `{x | P x \/ Q x} = {x | P x} UNION {x | Q x}`] THEN
W(MP_TAC o PART_MATCH (lhand o rand) NPRODUCT_UNION o rand o snd) THEN
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; ARITH_RULE `1 < p ==> ~(p = 0)`] THEN
ANTS_TAC THENL
[REWRITE_TAC[DISJOINT; EXTENSION; IN_ELIM_THM;
IN_INTER; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[COPRIME_PRIME_EQ];
DISCH_THEN SUBST1_TAC] THEN
BINOP_TAC THEN MATCH_MP_TAC NPRODUCT_EQ THEN
X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
ASM_SIMP_TAC[INDEX_MUL; ARITH_RULE `1 < p ==> ~(p = 0)`] THEN
REWRITE_TAC[EQ_ADD_LCANCEL_0; EQ_ADD_RCANCEL_0] THEN
REWRITE_TAC[INDEX_EQ_0] THEN ASM_MESON_TAC[COPRIME_PRIME_EQ];
SIMP_TAC[MESON[PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME]
`prime p ==> (prime q /\ q divides p EXP k <=> q = p /\ ~(k = 0))`] THEN
REWRITE_TAC[SING_GSPEC; NPRODUCT_SING] THEN
SIMP_TAC[INDEX_EXP; INDEX_REFL] THEN
REWRITE_TAC[ARITH_RULE `p <= 1 <=> p = 0 \/ p = 1`] THEN
ASM_MESON_TAC[PRIME_0; PRIME_1; MULT_CLAUSES]]);;
(* ------------------------------------------------------------------------- *)
(* A key "building block" theorem. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE_CONVOLUTION = prove
(`!f g. multiplicative f /\ multiplicative g
==> multiplicative (\n. nsum {d | d divides n}
(\d. f(d) * g(n DIV d)))`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [multiplicative] THEN
REWRITE_TAC[MULTIPLICATIVE; GSYM NSUM_LMUL] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[DIVIDES_ONE; DIV_1; SING_GSPEC; NSUM_SING; MULT_CLAUSES] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
ASM_SIMP_TAC[GSYM NSUM_LMUL; NSUM_NSUM_PRODUCT; FINITE_DIVISORS] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC NSUM_EQ_GENERAL THEN
EXISTS_TAC `\(a:num,b). a * b` THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN
REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[IN_ELIM_THM] THEN
REWRITE_TAC[PAIR_EQ] THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP DIVISION_DECOMP) THEN
CONJ_TAC THENL [ASM_MESON_TAC[MULT_SYM]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN
STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN REPEAT CONJ_TAC THEN
MATCH_MP_TAC COPRIME_DIVPROD THENL
(map EXISTS_TAC [`b2:num`; `b1:num`; `a2:num`; `a1:num`]) THEN
ASM_MESON_TAC[COPRIME_DIVISORS; DIVIDES_REFL;
DIVIDES_RMUL; COPRIME_SYM; MULT_SYM];
MAP_EVERY X_GEN_TAC [`d:num`; `e:num`] THEN STRIP_TAC THEN
CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL2; MULT_SYM]; ALL_TAC] THEN
MP_TAC(REWRITE_RULE[divides] (ASSUME `(d:num) divides n`)) THEN
DISCH_THEN(X_CHOOSE_THEN `d':num` SUBST_ALL_TAC) THEN
MP_TAC(REWRITE_RULE[divides] (ASSUME `(e:num) divides m`)) THEN
DISCH_THEN(X_CHOOSE_THEN `e':num` SUBST_ALL_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
ONCE_REWRITE_TAC[AC MULT_AC
`(e * e') * d * d':num = (d * e) * (d' * e')`] THEN
ASM_SIMP_TAC[DIV_MULT; MULT_EQ_0] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (NUMBER_RULE
`coprime(a * b:num,c * d) ==> coprime(c,a) /\ coprime(d,b)`)) THEN
ASM_SIMP_TAC[] THEN ARITH_TAC]);;
let MULTIPLICATIVE_CONST = prove
(`!c. multiplicative(\n. c) <=> c = 1`,
GEN_TAC THEN REWRITE_TAC[multiplicative] THEN
ASM_CASES_TAC `c = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES]);;
let MULTIPLICATIVE_DELTA = prove
(`multiplicative(\n. if n = 1 then 1 else 0)`,
REWRITE_TAC[MULTIPLICATIVE; MULT_EQ_1] THEN ARITH_TAC);;
let MULTIPLICATIVE_DIVISORSUM = prove
(`!f. multiplicative f ==> multiplicative (\n. nsum {d | d divides n} f)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:num->num`; `\n:num. 1`] MULTIPLICATIVE_CONVOLUTION) THEN
ASM_REWRITE_TAC[MULT_CLAUSES; MULTIPLICATIVE_CONST; ETA_AX]);;
(* ------------------------------------------------------------------------- *)
(* Some particular multiplicative functions. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE_ID = prove
(`multiplicative(\n. n)`,
REWRITE_TAC[multiplicative]);;
let MULTIPLICATIVE_POWERSUM = prove
(`!k. multiplicative(\n. nsum {d | d divides n} (\d. d EXP k))`,
GEN_TAC THEN MATCH_MP_TAC MULTIPLICATIVE_DIVISORSUM THEN
REWRITE_TAC[MULTIPLICATIVE; EXP_ONE; MULT_EXP]);;
let sigma = new_definition
`sigma(n) = if n = 0 then 0 else nsum {d | d divides n} (\i. i)`;;
let tau = new_definition
`tau(n) = if n = 0 then 0 else CARD {d | d divides n}`;;
let MULTIPLICATIVE_SIGMA = prove
(`multiplicative(sigma)`,
MP_TAC(SPEC `1` MULTIPLICATIVE_POWERSUM) THEN
MATCH_MP_TAC(REWRITE_RULE[GSYM IMP_IMP] MULTIPLICATIVE_IGNOREZERO) THEN
SIMP_TAC[sigma; EXP_1]);;
let MULTIPLICATIVE_TAU = prove
(`multiplicative(tau)`,
MP_TAC(SPEC `0` MULTIPLICATIVE_POWERSUM) THEN
MATCH_MP_TAC(REWRITE_RULE[GSYM IMP_IMP] MULTIPLICATIVE_IGNOREZERO) THEN
SIMP_TAC[tau; EXP; NSUM_CONST; MULT_CLAUSES; FINITE_DIVISORS]);;
let MULTIPLICATIVE_PHI = prove
(`multiplicative(phi)`,
REWRITE_TAC[multiplicative; PHI_MULTIPLICATIVE; PHI_1]);;
let MULTIPLICATIVE_GCD = prove
(`!n. multiplicative(\m. gcd(n,m))`,
REWRITE_TAC[multiplicative; ONCE_REWRITE_RULE[GCD_SYM] GCD_1] THEN
ONCE_REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN NUMBER_TAC);;
let PHI_EXPAND = prove
(`!n. phi n = if n = 0 then 0
else nproduct {p | prime p /\ p divides n}
(\p. p EXP (index p n - 1) * (p - 1))`,
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PHI_0] THEN
MP_TAC(SPECL [`phi`; `n:num`] MULTIPLICATIVE_EXPAND) THEN
ASM_REWRITE_TAC[MULTIPLICATIVE_PHI] THEN DISCH_THEN SUBST1_TAC THEN
MATCH_MP_TAC NPRODUCT_EQ THEN SIMP_TAC[IN_ELIM_THM; PHI_PRIMEPOW_ALT] THEN
ASM_SIMP_TAC[INDEX_EQ_0] THEN MESON_TAC[PRIME_1]);;
(* ------------------------------------------------------------------------- *)
(* Uniqueness of multiplicative functions if equal on prime powers. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE_UNIQUE = prove
(`!f g. multiplicative f /\ multiplicative g /\
(!p k. prime p ==> f(p EXP k) = g(p EXP k))
==> !n. ~(n = 0) ==> f n = g n`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN
X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC o MATCH_MP (ARITH_RULE
`~(n = 0) ==> n = 1 \/ 1 < n`))
THENL [ASM_MESON_TAC[multiplicative]; ALL_TAC] THEN
SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN
ASM_MESON_TAC[multiplicative]);;
(* ------------------------------------------------------------------------- *)
(* Derive the divisor-sum identity for phi from this. *)
(* ------------------------------------------------------------------------- *)
let PHI_DIVISORSUM = prove
(`!n. ~(n = 0) ==> nsum {d | d divides n} (\d. phi(d)) = n`,
MATCH_MP_TAC MULTIPLICATIVE_UNIQUE THEN REWRITE_TAC[MULTIPLICATIVE_ID] THEN
SIMP_TAC[MULTIPLICATIVE_DIVISORSUM; ETA_AX; MULTIPLICATIVE_PHI] THEN
SIMP_TAC[DIVIDES_PRIMEPOW; SET_RULE
`{d | ?i. i <= k /\ d = p EXP i} = IMAGE (\i. p EXP i) {i | i <= k}`] THEN
SIMP_TAC[NSUM_IMAGE; EQ_PRIMEPOW; o_DEF; PHI_PRIMEPOW] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THEN REWRITE_TAC[LE; NOT_SUC] THEN
REWRITE_TAC[CONJUNCT1 EXP; SET_RULE `{x | x = 0} = {0}`; NSUM_SING] THEN
REWRITE_TAC[SET_RULE
`{i:num | i = a \/ i <= b} = a INSERT {i | i <= b}`] THEN
ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_NUMSEG_LE; NOT_SUC] THEN
REWRITE_TAC[IN_ELIM_THM; SUC_SUB1; ARITH_RULE `~(SUC k <= k)`] THEN
MATCH_MP_TAC(ARITH_RULE `a:num <= b ==> b - a + a = b`) THEN
ASM_SIMP_TAC[LE_EXP; PRIME_IMP_NZ] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Now the real analog. *)
(* ------------------------------------------------------------------------- *)
let real_multiplicative = new_definition
`real_multiplicative (f:num->real) <=>
f(1) = &1 /\ !m n. coprime(m,n) ==> f(m * n) = f(m) * f(n)`;;
let REAL_MULTIPLICATIVE = prove
(`real_multiplicative f <=>
f(1) = &1 /\
!m n. ~(m = 0) /\ ~(n = 0) /\ coprime(m,n) ==> f(m * n) = f(m) * f(n)`,
REWRITE_TAC[real_multiplicative] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_SIMP_TAC[] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
ASM_CASES_TAC `n = 0` THEN
ASM_SIMP_TAC[COPRIME_0; MULT_CLAUSES; REAL_MUL_LID] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN
ASM_CASES_TAC `m = 0` THEN
ASM_SIMP_TAC[COPRIME_0; MULT_CLAUSES; REAL_MUL_RID] THEN
ASM_MESON_TAC[COPRIME_SYM; COPRIME_0; DIVIDES_ONE; MULT_CLAUSES]);;
let REAL_MULTIPLICATIVE_CONST = prove
(`!c. real_multiplicative(\n. c) <=> c = &1`,
GEN_TAC THEN REWRITE_TAC[real_multiplicative] THEN
ASM_CASES_TAC `c:real = &1` THEN ASM_REWRITE_TAC[REAL_MUL_LID]);;
let REAL_MULTIPLICATIVE_DELTA = prove
(`real_multiplicative(\n. if n = 1 then &1 else &0)`,
REWRITE_TAC[REAL_MULTIPLICATIVE; MULT_EQ_1] THEN REAL_ARITH_TAC);;
let REAL_MULTIPLICATIVE_IGNOREZERO = prove
(`!f g. (!n. ~(n = 0) ==> g(n) = f(n)) /\ real_multiplicative f
==> real_multiplicative g`,
REPEAT GEN_TAC THEN SIMP_TAC[REAL_MULTIPLICATIVE; ARITH_EQ] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_EQ_0]);;
let REAL_MULTIPLICATIVE_CONVOLUTION = prove
(`!f g. real_multiplicative f /\ real_multiplicative g
==> real_multiplicative (\n. sum {d | d divides n}
(\d. f(d) * g(n DIV d)))`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [real_multiplicative] THEN
REWRITE_TAC[REAL_MULTIPLICATIVE; GSYM SUM_LMUL] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[DIVIDES_ONE; DIV_1; SING_GSPEC; SUM_SING; REAL_MUL_LID] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM SUM_LMUL; SUM_SUM_PRODUCT; FINITE_DIVISORS] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN
EXISTS_TAC `\(a:num,b). a * b` THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN
REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP DIVISION_DECOMP) THEN
CONJ_TAC THENL [ASM_MESON_TAC[MULT_SYM]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN
STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN REPEAT CONJ_TAC THEN
MATCH_MP_TAC COPRIME_DIVPROD THENL
(map EXISTS_TAC [`b2:num`; `b1:num`; `a2:num`; `a1:num`]) THEN
ASM_MESON_TAC[COPRIME_DIVISORS; DIVIDES_REFL;
DIVIDES_RMUL; COPRIME_SYM; MULT_SYM];
MAP_EVERY X_GEN_TAC [`d:num`; `e:num`] THEN STRIP_TAC THEN
CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL2; MULT_SYM]; ALL_TAC] THEN
MP_TAC(REWRITE_RULE[divides] (ASSUME `(d:num) divides n`)) THEN
DISCH_THEN(X_CHOOSE_THEN `d':num` SUBST_ALL_TAC) THEN
MP_TAC(REWRITE_RULE[divides] (ASSUME `(e:num) divides m`)) THEN
DISCH_THEN(X_CHOOSE_THEN `e':num` SUBST_ALL_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
ONCE_REWRITE_TAC[AC MULT_AC
`(e * e') * d * d':num = (d * e) * (d' * e')`] THEN
ASM_SIMP_TAC[DIV_MULT; MULT_EQ_0] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (NUMBER_RULE
`coprime(a * b:num,c * d) ==> coprime(c,a) /\ coprime(d,b)`)) THEN
ASM_SIMP_TAC[] THEN REAL_ARITH_TAC]);;
let REAL_MULTIPLICATIVE_DIVISORSUM = prove
(`!f. real_multiplicative f
==> real_multiplicative (\n. sum {d | d divides n} f)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:num->real`; `(\n. &1):num->real`]
REAL_MULTIPLICATIVE_CONVOLUTION) THEN
ASM_REWRITE_TAC[REAL_MUL_RID; REAL_MULTIPLICATIVE_CONST; ETA_AX]);;
(* ------------------------------------------------------------------------- *)
(* The Mobius function (into the reals). *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
let mobius = new_definition
`mobius(n) = if squarefree n then --(&1) pow CARD {p | prime p /\ p divides n}
else &0:real`;;
let MOBIUS_ALT = prove
(`!n. mobius(n) = if ?p. prime p /\ (p EXP 2) divides n then &0
else --(&1) pow CARD {p | prime p /\ p divides n}`,
ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN
REWRITE_TAC[MESON[] `~(?x. P x /\ Q x) <=> !x. P x ==> ~Q x`] THEN
REWRITE_TAC[GSYM SQUAREFREE_PRIME; GSYM mobius]);;
let MOBIUS_0 = prove
(`mobius 0 = &0`,
REWRITE_TAC[mobius; SQUAREFREE_0]);;
let MOBIUS_1 = prove
(`mobius 1 = &1`,
REWRITE_TAC[mobius; SQUAREFREE_1; DIVIDES_ONE] THEN
SUBGOAL_THEN `{p | prime p /\ p = 1} = {}`
(fun th -> SIMP_TAC[th; CARD_CLAUSES; real_pow]) THEN SET_TAC[PRIME_1]);;
let REAL_ABS_MOBIUS = prove
(`!n. abs(mobius n) <= &1`,
GEN_TAC THEN REWRITE_TAC[mobius] THEN COND_CASES_TAC THEN
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NEG; REAL_POW_ONE; REAL_ABS_NUM] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let MOBIUS_MULT = prove
(`!a b. coprime(a,b) ==> mobius(a * b) = mobius a * mobius b`,
REPEAT STRIP_TAC THEN REWRITE_TAC[mobius; SQUAREFREE_MUL] THEN
MAP_EVERY ASM_CASES_TAC [`squarefree a`; `squarefree b`] THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
REWRITE_TAC[GSYM REAL_POW_ADD] THEN AP_TERM_TAC THEN
ASM_CASES_TAC `a = 0` THENL [ASM_MESON_TAC[SQUAREFREE_0]; ALL_TAC] THEN
ASM_CASES_TAC `b = 0` THENL [ASM_MESON_TAC[SQUAREFREE_0]; ALL_TAC] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; MULT_EQ_0] THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o MATCH_MP COPRIME_PRIME) THEN SET_TAC[];
MP_TAC PRIME_DIVPROD_EQ THEN ASM SET_TAC[]]);;
let REAL_MULTIPLICATIVE_MOBIUS = prove
(`real_multiplicative mobius`,
SIMP_TAC[real_multiplicative; MOBIUS_1; MOBIUS_MULT]);;
let MOBIUS_PRIME = prove
(`!p. prime p ==> mobius(p) = -- &1`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[mobius; PRIME_IMP_SQUAREFREE] THEN
SUBGOAL_THEN `{q | prime q /\ q divides p} = {p}` SUBST1_TAC THENL
[ASM SET_TAC[DIVIDES_PRIME_PRIME]; ALL_TAC] THEN
REWRITE_TAC[CARD_SING] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let MOBIUS_PRIMEPOW = prove
(`!p k. prime p ==> mobius(p EXP k) = if k = 0 then &1
else if k = 1 then -- &1
else &0`,
REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MOBIUS_1; EXP] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[MOBIUS_PRIME; EXP_1] THEN
ASM_REWRITE_TAC[mobius; SQUAREFREE_EXP] THEN ASM_MESON_TAC[PRIME_1]);;
let DIVISORSUM_MOBIUS = prove
(`!n. 1 <= n
==> sum {d | d divides n} (\d. mobius d) = if n = 1 then &1 else &0`,
REWRITE_TAC[ARITH_RULE `1 <= n <=> n = 1 \/ 1 < n`] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[DIVIDES_ONE; SET_RULE `{x | x = a} = {a}`; SUM_SING; MOBIUS_1] THEN
SIMP_TAC[ARITH_RULE `1 < n ==> ~(n = 1)`] THEN
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL
[MP_TAC(MATCH_MP REAL_MULTIPLICATIVE_DIVISORSUM
REAL_MULTIPLICATIVE_MOBIUS) THEN
SIMP_TAC[real_multiplicative; ETA_AX; REAL_MUL_LZERO];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN STRIP_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum {1,p} (\d. mobius d)` THEN
CONJ_TAC THENL
[ALL_TAC;
ASM_SIMP_TAC[SUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; IN_SING;
MOBIUS_PRIME; MOBIUS_1; REAL_ADD_RID; REAL_ADD_RINV] THEN
ASM_MESON_TAC[PRIME_1]] THEN
MATCH_MP_TAC SUM_SUPERSET THEN ASM_SIMP_TAC[DIVIDES_PRIMEPOW] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[EXP; LE_0];
ASM_MESON_TAC[EXP_1; LE_1];
ASM_SIMP_TAC[MOBIUS_PRIMEPOW] THEN ASM_MESON_TAC[EXP; EXP_1]]);;
let MOBIUS_INVERSION = prove
(`!f g. (!n. 1 <= n ==> g(n) = sum {d | d divides n} f)
==> !n. 1 <= n
==> f(n) = sum {d | d divides n} (\d. mobius(d) * g(n DIV d))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `!d. d divides n ==> ~(n DIV d = 0)` ASSUME_TAC THENL
[GEN_TAC THEN ASM_CASES_TAC `d = 0` THEN
ASM_SIMP_TAC[DIVIDES_ZERO; LE_1] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_SIMP_TAC[LE_1; NOT_LT; DIV_EQ_0];
ALL_TAC] THEN
ASM_SIMP_TAC[LE_1] THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`sum {d | d divides n} (\d. f(d) * (if n DIV d = 1 then &1 else &0))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `sum {n} (\d. f(d) * (if n DIV d = 1 then &1 else &0))` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[SUM_SING; DIV_REFL; LE_1; REAL_MUL_RID]; ALL_TAC] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_SUPERSET THEN
SIMP_TAC[SUBSET; IN_SING; IN_ELIM_THM; DIVIDES_REFL] THEN
X_GEN_TAC `d:num` THEN REWRITE_TAC[DIVIDES_DIV_MULT] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES; REAL_MUL_RZERO];
ASM_SIMP_TAC[GSYM DIVISORSUM_MOBIUS; LE_1] THEN
REWRITE_TAC[GSYM SUM_LMUL] THEN
ASM_SIMP_TAC[SUM_SUM_PRODUCT; FINITE_DIVISORS; LE_1; IN_ELIM_THM] THEN
MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
REPEAT(EXISTS_TAC `\(m:num,n:num). (n,m)`) THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
CONJ_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_MESON_TAC[DIVIDES_DIVIDES_DIV; MULT_SYM;
NUMBER_RULE `(a * b:num) divides c ==> b divides c`]]);;
|