Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 32,051 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
(* ========================================================================= *)
(* Canonical models in FOL and their use to derive classic metatheorems. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Domain of a canonical model for given language. *)
(* ------------------------------------------------------------------------- *)
let terms_RULES,terms_INDUCT,terms_CASES = new_inductive_definition
`(!x. terms fns (V x)) /\
(!f l. (f,LENGTH l) IN fns /\ ALL (terms fns) l
==> terms fns (Fn f l))`;;
(* ------------------------------------------------------------------------- *)
(* A few obvious lemmas. *)
(* ------------------------------------------------------------------------- *)
let STUPID_CANONDOM_LEMMA = prove
(`!t. t IN terms(FST L) ==> functions_term t SUBSET (FST L)`,
let lemma0 = prove
(`a SUBSET s /\ b SUBSET s ==> (a UNION b) SUBSET s`,SET_TAC[]) in
let lemma1 = prove
(`a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`,SET_TAC[]) in
let lemma2 = prove
(`!l. ALL (\x. x SUBSET s) l ==> LIST_UNION l SUBSET s`,
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LIST_UNION; EMPTY_SUBSET] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma0 THEN ASM_MESON_TAC[]) in
REWRITE_TAC[IN] THEN MATCH_MP_TAC terms_INDUCT THEN
REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma1 THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC lemma2 THEN
ASM_REWRITE_TAC[ALL_MAP; o_DEF]);;
let FINITE_SUBSET_INSTANCE = prove
(`!t'. FINITE(t')
==> t' SUBSET { formsubst v p | P(v) /\ p IN s}
==> ?t. FINITE(t) /\ t SUBSET s /\
t' SUBSET {formsubst v p | P(v) /\ p IN t}`,
let lemma = prove
(`(a INSERT s) SUBSET t <=> a IN t /\ s SUBSET t`,SET_TAC[]) in
MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[EMPTY_SUBSET] THEN
EXISTS_TAC `EMPTY:form->bool` THEN
REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET];
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
ANTE_RES_THEN MP_TAC (CONJUNCT2 th)) THEN
DISCH_THEN(X_CHOOSE_THEN `t0:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(@p. ?v. (P v /\ p IN s) /\ (x = formsubst v p)) INSERT t0` THEN
ASM_REWRITE_TAC[FINITE_INSERT; lemma] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[IN_ELIM_THM]) THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
DISCH_THEN(MP_TAC o SELECT_RULE) THEN
DISCH_THEN(X_CHOOSE_THEN `v:num->term` MP_TAC) THEN
SPEC_TAC(`@p. ?v. (P v /\ p IN s) /\ (x = formsubst v p)`,`q:form`) THEN
UNDISCH_TAC `s' SUBSET {formsubst v p | P v /\ p IN t0}` THEN
UNDISCH_TAC `x IN {formsubst v p | P v /\ p IN s}` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN MESON_TAC[]]);;
let FINITE_SUBSET_SKOLEM = prove
(`!s u. FINITE(u)
==> u SUBSET { SKOLEM p | p IN s}
==> ?t. FINITE(t) /\ t SUBSET s /\
(u = {SKOLEM p | p IN t})`,
let lemma = prove
(`(a INSERT s) SUBSET t <=> a IN t /\ s SUBSET t`,SET_TAC[]) in
let lemma2 = prove
(`{SKOLEM p | p IN x INSERT s} =
(SKOLEM x) INSERT {SKOLEM p | p IN s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN SET_TAC[]) in
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[EMPTY_SUBSET] THEN
EXISTS_TAC `EMPTY:form->bool` THEN
REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET; NOT_IN_EMPTY] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]; ALL_TAC] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
ANTE_RES_THEN MP_TAC (CONJUNCT2 th)) THEN
DISCH_THEN(X_CHOOSE_THEN `t0:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(@p. p IN s /\ (x = SKOLEM p)) INSERT t0` THEN
ASM_REWRITE_TAC[FINITE_INSERT; lemma] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[IN_ELIM_THM]) THEN
DISCH_THEN(MP_TAC o SELECT_RULE) THEN STRIP_TAC THEN
ASM_REWRITE_TAC[lemma2] THEN
REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM)) THEN REFL_TAC);;
let VALUATION_EXISTS = prove
(`!M. ~(Dom(M) = EMPTY) ==> ?v:num->A. valuation(M) v`,
GEN_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN
EXISTS_TAC `\x:num. a:A` THEN
ASM_REWRITE_TAC[valuation]);;
let HOLDS_ITLIST_EXISTS = prove
(`!M xs v. holds M v (ITLIST ?? xs p) <=>
?as. (LENGTH as = LENGTH xs) /\
ALL (Dom M) as /\
holds M
(ITLIST valmod (REVERSE (MAP2 (\x a:A. (x,a)) xs as)) v)
p`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[HOLDS; LENGTH; ITLIST; MAP2_DEF; HD;
TL; REVERSE; APPEND] THENL
[MESON_TAC[ALL; LENGTH]; REWRITE_TAC[ITLIST_EXTRA; IN]] THEN
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(X_CHOOSE_THEN `as:A list` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `CONS (a:A) as` THEN ASM_REWRITE_TAC[ALL; TL; HD; LENGTH];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN
REWRITE_TAC[ALL; SUC_INJ; HD; TL] THEN MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Canonical model based on the language of a set of formulas. *)
(* ------------------------------------------------------------------------- *)
let canonical = new_definition
`canonical (L:(num#num->bool)#(num#num->bool)) M <=>
(Dom M = terms (FST L)) /\
(!f. Fun(M) f = Fn f)`;;
(* ------------------------------------------------------------------------- *)
(* Mappings between models and propositional valuations. *)
(* ------------------------------------------------------------------------- *)
let prop_of_model = new_definition
`prop_of_model M v (Atom p l) <=> holds M v (Atom p l)`;;
let canon_of_prop = new_definition
`canon_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) =
terms(FST L),Fn,\p l. d(Atom p l)`;;
let PHOLDS_PROP_OF_MODEL = prove
(`!p. qfree(p) ==> (pholds (prop_of_model M v) p <=> holds M v p)`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[qfree; holds; pholds] THEN CONJ_TAC THENL
[REWRITE_TAC[prop_of_model; holds];
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC]);;
let PROP_OF_CANON_OF_PROP = prove
(`!p l. prop_of_model (canon_of_prop L d) V (Atom p l) = d (Atom p l)`,
REWRITE_TAC[prop_of_model; canon_of_prop; holds; Pred_DEF] THEN
REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN
SPEC_TAC(`h:term`,`t:term`) THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; Fun_DEF] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;
let HOLDS_CANON_OF_PROP = prove
(`!p. qfree p ==> (holds (canon_of_prop L d) V p <=> pholds d p)`,
GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[pholds; qfree; PROP_OF_CANON_OF_PROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);;
let HOLDS_CANON_OF_PROP_GENERAL = prove
(`qfree p ==> (holds (canon_of_prop L d) v p <=> pholds d (formsubst v p))`,
DISCH_THEN(fun th -> MP_TAC th THEN
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_CANON_OF_PROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THENL
[ALL_TAC;
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN
REFL_TAC] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; canon_of_prop; holds] THEN
REWRITE_TAC[Pred_DEF] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);;
let CANONICAL_CANON_OF_PROP = prove
(`!d. canonical L (canon_of_prop L d)`,
REWRITE_TAC[canonical; canon_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);;
let INTERPRETATION_CANON_OF_PROP = prove
(`!L d. interpretation L (canon_of_prop L d)`,
REWRITE_TAC[FORALL_PAIR_THM; IN; ETA_AX;
interpretation; canon_of_prop; Fun_DEF; Dom_DEF] THEN
MESON_TAC[terms_RULES; IN]);;
(* ------------------------------------------------------------------------- *)
(* Equivalence theorems for tautologies. *)
(* ------------------------------------------------------------------------- *)
let PROP_VALID_IMP_FOL_VALID = prove
(`!p. qfree(p) /\ (!d. pholds d p) ==> !M v. holds M v p`,
MESON_TAC[PHOLDS_PROP_OF_MODEL]);;
let FOL_VALID_IMP_PROP_VALID = prove
(`!p. qfree(p) /\
(!C (v:num->term). canonical(language {p}) C ==> holds C v p)
==> !d. pholds d p`,
MESON_TAC[CANONICAL_CANON_OF_PROP; HOLDS_CANON_OF_PROP]);;
(* ------------------------------------------------------------------------- *)
(* Same thing for satisfiability. *)
(* ------------------------------------------------------------------------- *)
let SATISFIES_PSATISFIES = prove
(`(!p. p IN s ==> qfree p) /\ M satisfies s /\ valuation(M) v
==> (prop_of_model M v) psatisfies s`,
REWRITE_TAC[satisfies; psatisfies] THEN MESON_TAC[PHOLDS_PROP_OF_MODEL]);;
let PSATISFIES_INSTANCES = prove
(`(!p. p IN s ==> qfree p) /\
d psatisfies {formsubst v p | (!x. v x IN terms(FST L)) /\ p IN s}
==> (canon_of_prop L d) satisfies s`,
REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
STRIP_TAC THEN
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[canon_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
SUBGOAL_THEN `holds (canon_of_prop L d) V (formsubst v p)` MP_TAC THENL
[ASM_MESON_TAC[HOLDS_CANON_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN
SUBGOAL_THEN `holds (canon_of_prop L d) V (formsubst v p) <=>
holds (canon_of_prop L d) (termval (canon_of_prop L d) V o v)
p`
SUBST1_TAC THENL
[REWRITE_TAC[HOLDS_FORMSUBST] THEN
ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY];
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN
MATCH_MP_TAC TERMVAL_TRIV THEN
REWRITE_TAC[canon_of_prop; Fun_DEF]]);;
let SATISFIES_INSTANCES = prove
(`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s t.
interpretation(language t) M
==> (M satisfies
{formsubst i p | p IN s /\
(!x. i x IN terms(FST(language t)))} <=>
M satisfies s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
EQ_TAC THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[FORMSUBST_TRIV; terms_RULES; IN]; ALL_TAC] THEN
ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[valuation; o_THM] THEN GEN_TAC THEN
MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
EXISTS_TAC `predicates t` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `interpretation (language t)
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
SUBGOAL_THEN `functions t = FST(language t)` SUBST1_TAC THENL
[REWRITE_TAC[language]; ALL_TAC] THEN
MATCH_MP_TAC STUPID_CANONDOM_LEMMA THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* So we have compactness in a strong form. *)
(* ------------------------------------------------------------------------- *)
let COMPACT_CANON_QFREE = prove
(`(!p. p IN s ==> qfree p) /\
(!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language ss) M /\
~(Dom(M):A->bool = EMPTY) /\
M satisfies t)
==> ?C. interpretation (language ss) C /\
canonical (language ss) C /\
C satisfies s`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`psatisfiable {formsubst v p | (!x. v x IN terms(FST(language ss))) /\
p IN s}`
MP_TAC THENL
[REWRITE_TAC[psatisfiable] THEN MATCH_MP_TAC COMPACT_PROP THEN
REWRITE_TAC[GSYM psatisfiable] THEN
X_GEN_TAC `u:form->bool` THEN STRIP_TAC THEN
SUBGOAL_THEN
`?t. FINITE(t) /\ t SUBSET s /\
u SUBSET {formsubst v p |
(!x. v x IN terms (FST (language ss))) /\
p IN t}`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC(REWRITE_RULE[TAUT `(a ==> b ==> c) <=> a /\ b ==> c`]
(GEN_ALL FINITE_SUBSET_INSTANCE)) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC SATISFIABLE_MONO THEN
EXISTS_TAC `{formsubst v p |
(!x. v x IN terms (FST (language ss))) /\
p IN t}` THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `t:form->bool`) THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN
FIRST_ASSUM(CHOOSE_TAC o MATCH_MP VALUATION_EXISTS) THEN
MP_TAC(SPEC `ss:form->bool` (SPEC `t:form->bool`
(snd(SPEC_VAR SATISFIES_INSTANCES)))) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `!p. p IN t ==> qfree p` (fun th -> REWRITE_TAC[th]) THENL
[ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN DISCH_TAC THEN
REWRITE_TAC[psatisfiable] THEN
EXISTS_TAC `prop_of_model M (v:num->A)` THEN
REWRITE_TAC[GSYM psatisfies] THEN
MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[REWRITE_TAC[IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QFREE_FORMSUBST] THEN
ASM_MESON_TAC[SUBSET];
RULE_ASSUM_TAC(REWRITE_RULE[CONJ_ACI]) THEN
ASM_REWRITE_TAC[CONJ_ACI]]; ALL_TAC] THEN
REWRITE_TAC[psatisfiable; GSYM psatisfies] THEN
DISCH_THEN(X_CHOOSE_THEN `d:form->bool` ASSUME_TAC) THEN
EXISTS_TAC `canon_of_prop (language ss) d` THEN
REWRITE_TAC[CANONICAL_CANON_OF_PROP; INTERPRETATION_CANON_OF_PROP] THEN
MATCH_MP_TAC PSATISFIES_INSTANCES THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Tedious lemma about sublanguage. *)
(* ------------------------------------------------------------------------- *)
let INTERPRETATION_RESTRICTLANGUAGE = prove
(`!M s t. t SUBSET s /\ interpretation(language s) M
==> interpretation(language t) M`,
REPEAT GEN_TAC THEN
REWRITE_TAC[IMP_CONJ] THEN
DISCH_TAC THEN
REWRITE_TAC[language] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
REWRITE_TAC[functions] THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNIONS] THEN MESON_TAC[]);;
let INTERPRETATION_EXTENDLANGUAGE = prove
(`!M s t.
interpretation (language t) M /\
~(Dom M :A->bool = EMPTY) /\
M satisfies t
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
interpretation(language s) M' /\
M' satisfies t`,
REPEAT STRIP_TAC THEN
EXISTS_TAC `Dom(M):A->bool,
(\g zs. if (g,LENGTH zs) IN functions t then Fun(M) g zs
else @a. a IN Dom(M)),
Pred(M)` THEN
REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF; interpretation; language] THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE [language; interpretation]) THEN
ASM_REWRITE_TAC[];
CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]];
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN
REWRITE_TAC[satisfies] THEN
REWRITE_TAC[valuation; Dom_DEF] THEN
MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
STRIP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC HOLDS_FUNCTIONS THEN
REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[functions; IN_UNIONS; IN_ELIM_THM]) THEN
ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Generalize to any formulas, via Skolemization. *)
(* ------------------------------------------------------------------------- *)
let COMPACT_LS = prove
(`(!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language s) M /\
~(Dom(M):A->bool = EMPTY) /\
M satisfies t)
==> ?C. interpretation (language s) C /\
~(Dom(C):term->bool = EMPTY) /\
C satisfies s`,
let lemma = prove
(`(!y. p y ==> p' y)
==> (?x. p x) ==> (?x. p' x)`,
MESON_TAC[]) in
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`!u. FINITE u /\ u SUBSET {SKOLEM p | p IN s}
==> ?M. interpretation(language {SKOLEM p | p IN s}) M /\
~(Dom(M):A->bool = EMPTY) /\
M satisfies u`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?t. (u = {SKOLEM p | p IN t}) /\
FINITE t /\ t SUBSET s`
(CHOOSE_THEN (CONJUNCTS_THEN2 SUBST_ALL_TAC STRIP_ASSUME_TAC)) THENL
[MP_TAC(SPECL [`s:form->bool`; `u:form->bool`] FINITE_SUBSET_SKOLEM) THEN
ASM_REWRITE_TAC[CONJ_ACI]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `t:form->bool`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN
`M:(A->bool)#(num->A list->A)#(num->A list->bool)`
STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`(?M. ~(Dom M:A->bool = EMPTY) /\
interpretation(language t) M /\
M satisfies t)`
(MP_TAC o GEN_REWRITE_RULE I [SKOLEM_SATISFIABLE]) THENL
[EXISTS_TAC `M:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC INTERPRETATION_RESTRICTLANGUAGE THEN
EXISTS_TAC `s:form->bool` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN
`M0:(A->bool)#(num->A list->A)#(num->A list->bool)`
STRIP_ASSUME_TAC) THEN
MP_TAC(ISPEC `M0:(A->bool)#(num->A list->A)#(num->A list->bool)`
INTERPRETATION_EXTENDLANGUAGE) THEN
DISCH_THEN(MP_TAC o SPECL
[`{SKOLEM p | p IN s}`; `{SKOLEM p | p IN t}`]) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN
`M1:(A->bool)#(num->A list->A)#(num->A list->bool)`
STRIP_ASSUME_TAC) THEN
EXISTS_TAC `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
MP_TAC(INST [`{SKOLEM p | p IN s}`,`s:form->bool`;
`{SKOLEM p | p IN s}`,`ss:form->bool`]
COMPACT_CANON_QFREE) THEN
ASM_REWRITE_TAC[] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[REWRITE_TAC[IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SKOLEM_QFREE]; ALL_TAC] THEN
ONCE_REWRITE_TAC[AC CONJ_ACI `a /\ b /\ c <=> b /\ a /\ c`] THEN
GEN_REWRITE_TAC RAND_CONV [SKOLEM_SATISFIABLE] THEN
MATCH_MP_TAC lemma THEN REWRITE_TAC[canonical] THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN] THEN
MESON_TAC[terms_RULES]);;
(* ------------------------------------------------------------------------- *)
(* Split away the compactness argument. *)
(* ------------------------------------------------------------------------- *)
let CANON = prove
(`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s.
interpretation (language s) M /\
~(Dom(M) = EMPTY) /\
(!p. p IN s ==> qfree p) /\ M satisfies s
==> ?C. interpretation (language s) C /\
~(Dom C :term->bool = EMPTY) /\
C satisfies s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPACT_LS THEN
ASM_MESON_TAC[satisfies; SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* Conventional form of the LS theorem. *)
(* ------------------------------------------------------------------------- *)
let term_of_num = new_definition
`term_of_num n = (@t. num_of_term t = n)`;;
let TERM_OF_NUM = prove
(`term_of_num(num_of_term t) = t`,
REWRITE_TAC[term_of_num; NUM_OF_TERM_INJ]);;
let LOWMOD = new_definition
`LOWMOD M = {num_of_term t | t IN Dom(M)},
(\g zs. num_of_term (Fun(M) g (MAP term_of_num zs))),
(\p zs. Pred(M) p (MAP term_of_num zs))`;;
let LOWMOD_DOM_EMPTY = prove
(`(Dom(LOWMOD M) = EMPTY) <=> (Dom(M) = EMPTY)`,
REWRITE_TAC[Dom_DEF; LOWMOD; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
MESON_TAC[]);;
let LOWMOD_TERMVAL = prove
(`!v. valuation (LOWMOD M) v
==> !t. termval (LOWMOD M) v t =
num_of_term (termval M (term_of_num o v) t)`,
GEN_TAC THEN DISCH_THEN
(ASSUME_TAC o REWRITE_RULE[valuation; LOWMOD; Dom_DEF; IN_ELIM_THM]) THEN
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; o_THM] THEN
CONJ_TAC THENL [ASM_MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN
REWRITE_TAC[LOWMOD; Fun_DEF] THEN REWRITE_TAC[GSYM LOWMOD] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN
MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN
ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[o_THM; TERM_OF_NUM]);;
let LOWMOD_HOLDS = prove
(`!p v. valuation (LOWMOD M) v
==> (holds (LOWMOD M) v p <=> holds M (term_of_num o v) p)`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[holds] THEN REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN REWRITE_TAC[LOWMOD; Pred_DEF] THEN
REWRITE_TAC[GSYM LOWMOD] THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM MAP_o] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
ASM_SIMP_TAC[LOWMOD_TERMVAL; TERM_OF_NUM];
MESON_TAC[];
REPEAT STRIP_TAC THEN
REWRITE_TAC[Dom_DEF; LOWMOD] THEN REWRITE_TAC[GSYM LOWMOD] THEN
SUBGOAL_THEN `!a. a IN {num_of_term t | t IN Dom M}
==> valuation (LOWMOD M) (valmod (a0:num,a) v)`
MP_TAC THENL
[GEN_TAC THEN REWRITE_TAC[valuation; valmod; LOWMOD; Dom_DEF] THEN
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
REWRITE_TAC[IN_ELIM_THM] THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation; LOWMOD; Dom_DEF; IN_ELIM_THM]) THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(fun th -> ASM_SIMP_TAC[th]) THEN
SUBGOAL_THEN `!P. (!a. a IN {num_of_term t | t IN Dom(M)} ==> P(a)) <=>
(!a. a IN Dom(M) ==> P(num_of_term a))`
(fun th -> REWRITE_TAC[th])
THENL [REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN
AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
DISCH_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[valmod; FUN_EQ_THM; o_THM] THEN
GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[TERM_OF_NUM]]);;
let LOWMOD_INTERPRETATION = prove
(`!L M. interpretation L (LOWMOD M) = interpretation L M`,
REWRITE_TAC[FORALL_PAIR_THM; interpretation] THEN
REWRITE_TAC[Fun_DEF; Dom_DEF; LOWMOD] THEN
SUBGOAL_THEN `!P x. num_of_term x IN {num_of_term y | P y} <=> x IN P`
(fun th -> REWRITE_TAC[th]) THENL
[REWRITE_TAC[IN_ELIM_THM; IN; NUM_OF_TERM_INJ] THEN MESON_TAC[];
ALL_TAC] THEN
REPEAT GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
EQ_TAC THEN DISCH_TAC THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; LENGTH] THENL
[DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `[] :num list`) THEN
ASM_REWRITE_TAC[ALL; MAP; LENGTH] THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV);
STRIP_TAC THEN FIRST_X_ASSUM
(MP_TAC o SPEC `CONS (num_of_term h) (MAP num_of_term t)`) THEN
ASM_REWRITE_TAC[ALL; MAP; LENGTH; LENGTH_MAP] THEN
REWRITE_TAC[ALL_MAP; IN_ELIM_THM] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[o_THM; NUM_OF_TERM_INJ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[TERM_OF_NUM; GSYM MAP_o; o_DEF] THEN
SIMP_TAC[MAP_EQ_DEGEN; ALL_T];
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `[] :term list`) THEN
ASM_REWRITE_TAC[ALL; MAP; LENGTH] THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV);
STRIP_TAC THEN FIRST_X_ASSUM
(MP_TAC o SPEC `CONS (term_of_num h) (MAP term_of_num t)`) THEN
ASM_REWRITE_TAC[ALL; MAP; LENGTH; LENGTH_MAP] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[CONJ_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN
ASM_MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN
REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[IN_ELIM_THM; o_THM] THEN MESON_TAC[TERM_OF_NUM];
ALL_TAC] THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV)]);;
let LS = prove
(`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s.
interpretation (language s) M /\
~(Dom(M) = EMPTY) /\
(!p. p IN s ==> qfree p) /\ M satisfies s
==> ?N. interpretation (language s) N /\
~(Dom N :num->bool = EMPTY) /\
N satisfies s`,
REPEAT GEN_TAC THEN
DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP CANON) THEN
EXISTS_TAC `LOWMOD C` THEN
ASM_REWRITE_TAC[LOWMOD_DOM_EMPTY; LOWMOD_INTERPRETATION] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN
REWRITE_TAC[satisfies] THEN SIMP_TAC[LOWMOD_HOLDS] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [valuation]) THEN
ASM_REWRITE_TAC[valuation] THEN REWRITE_TAC[LOWMOD; Dom_DEF] THEN
REWRITE_TAC[IN_ELIM_THM; o_THM] THEN
MESON_TAC[TERM_OF_NUM]);;
(* ------------------------------------------------------------------------- *)
(* Now the Uniformity Lemma. *)
(* ------------------------------------------------------------------------- *)
let UNIFORMITY = prove
(`qfree p /\ (!C v. ~(Dom C = EMPTY) /\
valuation(C) v ==> holds C (v:num->term) (ITLIST ?? xs p))
==> ?is. (!i x. MEM i is ==> terms(FST(language {p})) (i x)) /\
!d. pholds(d) (ITLIST (||) (MAP (\i. formsubst i p) is) False)`,
STRIP_TAC THEN
MP_TAC(SPEC `{formsubst i q | q IN {p} /\
(!x. i x IN terms(FST(language {p})))}`
COMPACT_DISJ) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[ALL_TAC;
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[UNWIND_THM2] THEN
DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `MAP (\q. @i. (!x. i x IN terms (FST (language {p}))) /\
(q = formsubst i p)) ps` THEN
REWRITE_TAC[GSYM MAP_o; o_DEF] THEN CONJ_TAC THENL
[REPEAT GEN_TAC THEN
FIRST_ASSUM
(UNDISCH_TAC o check ((=) `ps:form list` o rand) o concl) THEN
SPEC_TAC(`ps:form list`,`ps:form list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; MEM] THEN
DISCH_TAC THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC; FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]] THEN
FIRST_ASSUM(ASSUME_TAC o SELECT_RULE o CONJUNCT1) THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
FIRST_ASSUM(MATCH_ACCEPT_TAC o CONJUNCT1 o SPEC_ALL);
X_GEN_TAC `d:form->bool` THEN
FIRST_ASSUM(MP_TAC o SPEC `d:form->bool`) THEN
MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC(GSYM MAP_EQ_DEGEN) THEN
FIRST_ASSUM
(UNDISCH_TAC o check ((=) `ps:form list` o rand) o concl) THEN
SPEC_TAC(`ps:form list`,`ps:form list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; MEM] THEN
DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SELECT_RULE) ASSUME_TAC) THEN
CONJ_TAC THENL [FIRST_ASSUM(MATCH_ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN
MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(fun th -> EXISTS_TAC(lhand(concl th)) THEN
CONJ_TAC THENL [ALL_TAC; FIRST_ASSUM ACCEPT_TAC]) THEN
X_GEN_TAC `r:form` THEN REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SELECT_RULE o CONJUNCT2) THEN
DISCH_THEN(ACCEPT_TAC o CONJUNCT2)]] THEN
X_GEN_TAC `d:form->bool` THEN
SUBGOAL_THEN `~((canon_of_prop (language {p}) d) satisfies {(Not p)})`
ASSUME_TAC THENL
[REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `canon_of_prop (language {p}) d`) THEN
REWRITE_TAC[HOLDS_ITLIST_EXISTS; NOT_FORALL_THM; NOT_IMP] THEN
SUBGOAL_THEN `?v:num->term. valuation (canon_of_prop (language {p}) d) v`
CHOOSE_TAC THENL
[MATCH_MP_TAC VALUATION_EXISTS THEN
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
REWRITE_TAC[Dom_DEF; canon_of_prop; IN] THEN
MESON_TAC[terms_RULES]; ALL_TAC] THEN
EXISTS_TAC `v:num->term` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[REWRITE_TAC[canon_of_prop; Dom_DEF] THEN
REWRITE_TAC[language; EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN
EXISTS_TAC `V 0` THEN REWRITE_TAC[IN] THEN MESON_TAC[terms_CASES];
ALL_TAC] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN
REWRITE_TAC[GSYM HOLDS] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[valuation; IN] THEN GEN_TAC THEN
UNDISCH_TAC `valuation (canon_of_prop (language {p}) d) (v:num->term)` THEN
SPEC_TAC(`v:num->term`,`v:num->term`) THEN
UNDISCH_TAC `ALL (Dom (canon_of_prop (language {p}) d)) as` THEN
UNDISCH_TAC `LENGTH (as:term list) = LENGTH (xs:num list)` THEN
SPEC_TAC(`as:term list`,`as:term list`) THEN
SPEC_TAC(`xs:num list`,`xs:num list`) THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[LENGTH; NOT_SUC; MAP2; REVERSE; ITLIST; ALL] THENL
[REWRITE_TAC[valuation; IN] THEN MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[SUC_INJ; ITLIST_EXTRA] THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[valuation; valmod] THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[IN]; ALL_TAC] THEN
SUBGOAL_THEN `!q. q IN {(Not p)} ==> qfree q` ASSUME_TAC THENL
[REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
(GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] PSATISFIES_INSTANCES)) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[psatisfies; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[Not_DEF; formsubst] THEN REWRITE_TAC[GSYM Not_DEF] THEN
MESON_TAC[el 3 (CONJUNCTS PHOLDS)]);;
|