Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 32,051 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
(* ========================================================================= *)
(* Canonical models in FOL and their use to derive classic metatheorems.     *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Domain of a canonical model for given language.                           *)
(* ------------------------------------------------------------------------- *)

let terms_RULES,terms_INDUCT,terms_CASES = new_inductive_definition
  `(!x. terms fns (V x)) /\
   (!f l. (f,LENGTH l) IN fns /\ ALL (terms fns) l
          ==> terms fns (Fn f l))`;;

(* ------------------------------------------------------------------------- *)
(* A few obvious lemmas.                                                     *)
(* ------------------------------------------------------------------------- *)

let STUPID_CANONDOM_LEMMA = prove
 (`!t. t IN terms(FST L) ==> functions_term t SUBSET (FST L)`,
  let lemma0 = prove
   (`a SUBSET s /\ b SUBSET s ==> (a UNION b) SUBSET s`,SET_TAC[]) in
  let lemma1 = prove
   (`a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`,SET_TAC[]) in
  let lemma2 = prove
   (`!l. ALL (\x. x SUBSET s) l ==> LIST_UNION l SUBSET s`,
    LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LIST_UNION; EMPTY_SUBSET] THEN
    REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma0 THEN ASM_MESON_TAC[]) in
  REWRITE_TAC[IN] THEN MATCH_MP_TAC terms_INDUCT THEN
  REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma1 THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC lemma2 THEN
  ASM_REWRITE_TAC[ALL_MAP; o_DEF]);;

let FINITE_SUBSET_INSTANCE = prove
 (`!t'. FINITE(t')
        ==> t' SUBSET { formsubst v p | P(v) /\ p IN s}
            ==> ?t. FINITE(t) /\ t SUBSET s /\
                    t' SUBSET {formsubst v p | P(v) /\ p IN t}`,
  let lemma = prove
   (`(a INSERT s) SUBSET t <=> a IN t /\ s SUBSET t`,SET_TAC[]) in
  MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
   [REWRITE_TAC[EMPTY_SUBSET] THEN
    EXISTS_TAC `EMPTY:form->bool` THEN
    REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET];
    REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN
    DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
                         ANTE_RES_THEN MP_TAC (CONJUNCT2 th)) THEN
    DISCH_THEN(X_CHOOSE_THEN `t0:form->bool` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `(@p. ?v. (P v /\ p IN s) /\ (x = formsubst v p)) INSERT t0` THEN
    ASM_REWRITE_TAC[FINITE_INSERT; lemma] THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN
    DISCH_THEN(MP_TAC o REWRITE_RULE[IN_ELIM_THM]) THEN
    ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
    DISCH_THEN(MP_TAC o SELECT_RULE) THEN
    DISCH_THEN(X_CHOOSE_THEN `v:num->term` MP_TAC) THEN
    SPEC_TAC(`@p. ?v. (P v /\ p IN s) /\ (x = formsubst v p)`,`q:form`) THEN
    UNDISCH_TAC `s' SUBSET {formsubst v p | P v /\ p IN t0}` THEN
    UNDISCH_TAC `x IN {formsubst v p | P v /\ p IN s}` THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN MESON_TAC[]]);;

let FINITE_SUBSET_SKOLEM = prove
 (`!s u. FINITE(u)
        ==> u SUBSET { SKOLEM p | p IN s}
            ==> ?t. FINITE(t) /\ t SUBSET s /\
                    (u = {SKOLEM p | p IN t})`,
  let lemma = prove
   (`(a INSERT s) SUBSET t <=> a IN t /\ s SUBSET t`,SET_TAC[]) in
  let lemma2 = prove
   (`{SKOLEM p | p IN x INSERT s} =
     (SKOLEM x) INSERT {SKOLEM p | p IN s}`,
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN SET_TAC[]) in
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
   [REWRITE_TAC[EMPTY_SUBSET] THEN
    EXISTS_TAC `EMPTY:form->bool` THEN
    REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET; NOT_IN_EMPTY] THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]; ALL_TAC] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN
  DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
                       ANTE_RES_THEN MP_TAC (CONJUNCT2 th)) THEN
  DISCH_THEN(X_CHOOSE_THEN `t0:form->bool` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `(@p. p IN s /\ (x = SKOLEM p)) INSERT t0` THEN
  ASM_REWRITE_TAC[FINITE_INSERT; lemma] THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN
  DISCH_THEN(MP_TAC o REWRITE_RULE[IN_ELIM_THM]) THEN
  DISCH_THEN(MP_TAC o SELECT_RULE) THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[lemma2] THEN
  REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM)) THEN REFL_TAC);;

let VALUATION_EXISTS = prove
 (`!M. ~(Dom(M) = EMPTY) ==> ?v:num->A. valuation(M) v`,
  GEN_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
  DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN
  EXISTS_TAC `\x:num. a:A` THEN
  ASM_REWRITE_TAC[valuation]);;

let HOLDS_ITLIST_EXISTS = prove
 (`!M xs v. holds M v (ITLIST ?? xs p) <=>
            ?as. (LENGTH as = LENGTH xs) /\
                 ALL (Dom M) as /\
                 holds M
                   (ITLIST valmod (REVERSE (MAP2 (\x a:A. (x,a)) xs as)) v)
                   p`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN
  ASM_REWRITE_TAC[HOLDS; LENGTH; ITLIST; MAP2_DEF; HD;
                  TL; REVERSE; APPEND] THENL
   [MESON_TAC[ALL; LENGTH]; REWRITE_TAC[ITLIST_EXTRA; IN]] THEN
  GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(X_CHOOSE_THEN `as:A list` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `CONS (a:A) as` THEN ASM_REWRITE_TAC[ALL; TL; HD; LENGTH];
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN
    REWRITE_TAC[ALL; SUC_INJ; HD; TL] THEN MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Canonical model based on the language of a set of formulas.               *)
(* ------------------------------------------------------------------------- *)

let canonical = new_definition
  `canonical (L:(num#num->bool)#(num#num->bool)) M <=>
       (Dom M = terms (FST L)) /\
       (!f. Fun(M) f = Fn f)`;;

(* ------------------------------------------------------------------------- *)
(* Mappings between models and propositional valuations.                     *)
(* ------------------------------------------------------------------------- *)

let prop_of_model = new_definition
  `prop_of_model M v (Atom p l) <=> holds M v (Atom p l)`;;

let canon_of_prop = new_definition
  `canon_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) =
   terms(FST L),Fn,\p l. d(Atom p l)`;;

let PHOLDS_PROP_OF_MODEL = prove
 (`!p. qfree(p) ==> (pholds (prop_of_model M v) p <=> holds M v p)`,
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[qfree; holds; pholds] THEN CONJ_TAC THENL
   [REWRITE_TAC[prop_of_model; holds];
    REPEAT GEN_TAC THEN STRIP_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC]);;

let PROP_OF_CANON_OF_PROP = prove
 (`!p l. prop_of_model (canon_of_prop L d) V (Atom p l) = d (Atom p l)`,
  REWRITE_TAC[prop_of_model; canon_of_prop; holds; Pred_DEF] THEN
  REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN
  MATCH_MP_TAC MAP_EQ_DEGEN THEN
  SPEC_TAC(`l:term list`,`l:term list`) THEN
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN
  SPEC_TAC(`h:term`,`t:term`) THEN
  MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[termval; Fun_DEF] THEN
  REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
  MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;

let HOLDS_CANON_OF_PROP = prove
 (`!p. qfree p ==> (holds (canon_of_prop L d) V p <=> pholds d p)`,
  GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN
   REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
  SPEC_TAC(`p:form`,`p:form`) THEN
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[pholds; qfree; PROP_OF_CANON_OF_PROP] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);;

let HOLDS_CANON_OF_PROP_GENERAL = prove
 (`qfree p ==> (holds (canon_of_prop L d) v p <=> pholds d (formsubst v p))`,
  DISCH_THEN(fun th -> MP_TAC th THEN
   REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
  SPEC_TAC(`p:form`,`p:form`) THEN
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_CANON_OF_PROP] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THENL
   [ALL_TAC;
    REPEAT GEN_TAC THEN STRIP_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN
    REFL_TAC] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; canon_of_prop; holds] THEN
  REWRITE_TAC[Pred_DEF] THEN
  AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);;

let CANONICAL_CANON_OF_PROP = prove
 (`!d. canonical L (canon_of_prop L d)`,
  REWRITE_TAC[canonical; canon_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);;

let INTERPRETATION_CANON_OF_PROP = prove
 (`!L d. interpretation L (canon_of_prop L d)`,
  REWRITE_TAC[FORALL_PAIR_THM; IN; ETA_AX;
              interpretation; canon_of_prop; Fun_DEF; Dom_DEF] THEN
  MESON_TAC[terms_RULES; IN]);;

(* ------------------------------------------------------------------------- *)
(* Equivalence theorems for tautologies.                                     *)
(* ------------------------------------------------------------------------- *)

let PROP_VALID_IMP_FOL_VALID = prove
 (`!p. qfree(p) /\ (!d. pholds d p) ==> !M v. holds M v p`,
  MESON_TAC[PHOLDS_PROP_OF_MODEL]);;

let FOL_VALID_IMP_PROP_VALID = prove
 (`!p. qfree(p) /\
       (!C (v:num->term). canonical(language {p}) C ==> holds C v p)
       ==> !d. pholds d p`,
  MESON_TAC[CANONICAL_CANON_OF_PROP; HOLDS_CANON_OF_PROP]);;

(* ------------------------------------------------------------------------- *)
(* Same thing for satisfiability.                                            *)
(* ------------------------------------------------------------------------- *)

let SATISFIES_PSATISFIES = prove
 (`(!p. p IN s ==> qfree p) /\ M satisfies s /\ valuation(M) v
   ==> (prop_of_model M v) psatisfies s`,
  REWRITE_TAC[satisfies; psatisfies] THEN MESON_TAC[PHOLDS_PROP_OF_MODEL]);;

let PSATISFIES_INSTANCES = prove
 (`(!p. p IN s ==> qfree p) /\
   d psatisfies {formsubst v p | (!x. v x IN terms(FST L)) /\ p IN s}
   ==> (canon_of_prop L d) satisfies s`,
  REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
  STRIP_TAC THEN
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
   [canon_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  SUBGOAL_THEN `holds (canon_of_prop L d) V (formsubst v p)` MP_TAC THENL
   [ASM_MESON_TAC[HOLDS_CANON_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN
  SUBGOAL_THEN `holds (canon_of_prop L d) V (formsubst v p) <=>
                holds (canon_of_prop L d) (termval (canon_of_prop L d) V o v)
                      p`
  SUBST1_TAC THENL
   [REWRITE_TAC[HOLDS_FORMSUBST] THEN
    ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY];
    MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
    AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
    GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN
    MATCH_MP_TAC TERMVAL_TRIV THEN
    REWRITE_TAC[canon_of_prop; Fun_DEF]]);;

let SATISFIES_INSTANCES = prove
 (`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s t.
        interpretation(language t) M
        ==> (M satisfies
             {formsubst i p | p IN s /\
                              (!x. i x IN terms(FST(language t)))} <=>
             M satisfies s)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
  EQ_TAC THEN REPEAT STRIP_TAC THENL
   [ASM_MESON_TAC[FORMSUBST_TRIV; terms_RULES; IN]; ALL_TAC] THEN
  ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN
  FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[valuation; o_THM] THEN GEN_TAC THEN
  MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
  EXISTS_TAC `predicates t` THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `interpretation (language t)
                (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
  REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
  SUBGOAL_THEN `functions t = FST(language t)` SUBST1_TAC THENL
   [REWRITE_TAC[language]; ALL_TAC] THEN
  MATCH_MP_TAC STUPID_CANONDOM_LEMMA THEN
  ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* So we have compactness in a strong form.                                  *)
(* ------------------------------------------------------------------------- *)

let COMPACT_CANON_QFREE = prove
 (`(!p. p IN s ==> qfree p) /\
   (!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language ss) M /\
                                       ~(Dom(M):A->bool = EMPTY) /\
                                       M satisfies t)
   ==> ?C. interpretation (language ss) C /\
           canonical (language ss) C /\
           C satisfies s`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN
   `psatisfiable {formsubst v p | (!x. v x IN terms(FST(language ss))) /\
                                  p IN s}`
  MP_TAC THENL
   [REWRITE_TAC[psatisfiable] THEN MATCH_MP_TAC COMPACT_PROP THEN
    REWRITE_TAC[GSYM psatisfiable] THEN
    X_GEN_TAC `u:form->bool` THEN STRIP_TAC THEN
    SUBGOAL_THEN
     `?t. FINITE(t) /\ t SUBSET s /\
          u SUBSET {formsubst v p |
                              (!x. v x IN terms (FST (language ss))) /\
                                    p IN t}`
    STRIP_ASSUME_TAC THENL
     [MATCH_MP_TAC(REWRITE_RULE[TAUT `(a ==> b ==> c) <=> a /\ b ==> c`]
        (GEN_ALL FINITE_SUBSET_INSTANCE)) THEN
      ASM_REWRITE_TAC[]; ALL_TAC] THEN
    MATCH_MP_TAC SATISFIABLE_MONO THEN
    EXISTS_TAC `{formsubst v p |
                          (!x. v x IN terms (FST (language ss))) /\
                          p IN t}` THEN
    ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `t:form->bool`) THEN ASM_REWRITE_TAC[] THEN
    STRIP_TAC THEN
    FIRST_ASSUM(CHOOSE_TAC o MATCH_MP VALUATION_EXISTS) THEN
    MP_TAC(SPEC `ss:form->bool` (SPEC `t:form->bool`
     (snd(SPEC_VAR SATISFIES_INSTANCES)))) THEN
    ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `!p. p IN t ==> qfree p` (fun th -> REWRITE_TAC[th]) THENL
     [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN DISCH_TAC THEN
    REWRITE_TAC[psatisfiable] THEN
    EXISTS_TAC `prop_of_model M (v:num->A)` THEN
    REWRITE_TAC[GSYM psatisfies] THEN
    MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[IN_ELIM_THM] THEN
      REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QFREE_FORMSUBST] THEN
      ASM_MESON_TAC[SUBSET];
      RULE_ASSUM_TAC(REWRITE_RULE[CONJ_ACI]) THEN
      ASM_REWRITE_TAC[CONJ_ACI]]; ALL_TAC] THEN
  REWRITE_TAC[psatisfiable; GSYM psatisfies] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:form->bool` ASSUME_TAC) THEN
  EXISTS_TAC `canon_of_prop (language ss) d` THEN
  REWRITE_TAC[CANONICAL_CANON_OF_PROP; INTERPRETATION_CANON_OF_PROP] THEN
  MATCH_MP_TAC PSATISFIES_INSTANCES THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Tedious lemma about sublanguage.                                          *)
(* ------------------------------------------------------------------------- *)

let INTERPRETATION_RESTRICTLANGUAGE = prove
 (`!M s t. t SUBSET s /\ interpretation(language s) M
         ==> interpretation(language t) M`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[IMP_CONJ] THEN
  DISCH_TAC THEN
  REWRITE_TAC[language] THEN
  MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
  REWRITE_TAC[functions] THEN POP_ASSUM MP_TAC THEN
  REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNIONS] THEN MESON_TAC[]);;

let INTERPRETATION_EXTENDLANGUAGE = prove
 (`!M s t.
        interpretation (language t) M /\
        ~(Dom M :A->bool = EMPTY) /\
        M satisfies t
        ==> ?M'. (Dom M' = Dom M) /\
                 (Pred M' = Pred M) /\
                 interpretation(language s) M' /\
                 M' satisfies t`,
  REPEAT STRIP_TAC THEN
  EXISTS_TAC `Dom(M):A->bool,
              (\g zs. if (g,LENGTH zs) IN functions t then Fun(M) g zs
                      else @a. a IN Dom(M)),
              Pred(M)` THEN
  REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF; interpretation; language] THEN CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
     [FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE [language; interpretation]) THEN
      ASM_REWRITE_TAC[];
      CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]];
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN
    REWRITE_TAC[satisfies] THEN
    REWRITE_TAC[valuation; Dom_DEF] THEN
    MATCH_MP_TAC EQ_IMP THEN
    AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
    MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
    STRIP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN
    MATCH_MP_TAC HOLDS_FUNCTIONS THEN
    REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF] THEN
    REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[functions; IN_UNIONS; IN_ELIM_THM]) THEN
    ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Generalize to any formulas, via Skolemization.                            *)
(* ------------------------------------------------------------------------- *)

let COMPACT_LS = prove
 (`(!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language s) M /\
                                       ~(Dom(M):A->bool = EMPTY) /\
                                       M satisfies t)
   ==> ?C. interpretation (language s) C /\
           ~(Dom(C):term->bool = EMPTY) /\
           C satisfies s`,
  let lemma = prove
   (`(!y. p y ==> p' y)
     ==> (?x. p x) ==> (?x. p' x)`,
    MESON_TAC[]) in
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `!u. FINITE u /\ u SUBSET {SKOLEM p | p IN s}
        ==> ?M. interpretation(language {SKOLEM p | p IN s}) M /\
                ~(Dom(M):A->bool = EMPTY) /\
                M satisfies u`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    SUBGOAL_THEN `?t. (u = {SKOLEM p | p IN t}) /\
                      FINITE t /\ t SUBSET s`
    (CHOOSE_THEN (CONJUNCTS_THEN2 SUBST_ALL_TAC STRIP_ASSUME_TAC)) THENL
     [MP_TAC(SPECL [`s:form->bool`; `u:form->bool`] FINITE_SUBSET_SKOLEM) THEN
      ASM_REWRITE_TAC[CONJ_ACI]; ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `t:form->bool`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN
     `M:(A->bool)#(num->A list->A)#(num->A list->bool)`
     STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN
     `(?M. ~(Dom M:A->bool = EMPTY) /\
           interpretation(language t) M /\
           M satisfies t)`
    (MP_TAC o GEN_REWRITE_RULE I [SKOLEM_SATISFIABLE]) THENL
     [EXISTS_TAC `M:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN
      ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC INTERPRETATION_RESTRICTLANGUAGE THEN
      EXISTS_TAC `s:form->bool` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN
     `M0:(A->bool)#(num->A list->A)#(num->A list->bool)`
     STRIP_ASSUME_TAC) THEN
    MP_TAC(ISPEC `M0:(A->bool)#(num->A list->A)#(num->A list->bool)`
      INTERPRETATION_EXTENDLANGUAGE) THEN
    DISCH_THEN(MP_TAC o SPECL
     [`{SKOLEM p | p IN s}`; `{SKOLEM p | p IN t}`]) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN
     `M1:(A->bool)#(num->A list->A)#(num->A list->bool)`
     STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  MP_TAC(INST [`{SKOLEM p | p IN s}`,`s:form->bool`;
               `{SKOLEM p | p IN s}`,`ss:form->bool`]
              COMPACT_CANON_QFREE) THEN
  ASM_REWRITE_TAC[] THEN
  W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
   [REWRITE_TAC[IN_ELIM_THM] THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SKOLEM_QFREE]; ALL_TAC] THEN
  ONCE_REWRITE_TAC[AC CONJ_ACI `a /\ b /\ c <=> b /\ a /\ c`] THEN
  GEN_REWRITE_TAC RAND_CONV [SKOLEM_SATISFIABLE] THEN
  MATCH_MP_TAC lemma THEN REWRITE_TAC[canonical] THEN
  GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN] THEN
  MESON_TAC[terms_RULES]);;

(* ------------------------------------------------------------------------- *)
(* Split away the compactness argument.                                      *)
(* ------------------------------------------------------------------------- *)

let CANON = prove
 (`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s.
        interpretation (language s) M /\
        ~(Dom(M) = EMPTY) /\
        (!p. p IN s ==> qfree p) /\ M satisfies s
        ==> ?C. interpretation (language s) C /\
                ~(Dom C :term->bool = EMPTY) /\
                C satisfies s`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPACT_LS THEN
  ASM_MESON_TAC[satisfies; SUBSET]);;

(* ------------------------------------------------------------------------- *)
(* Conventional form of the LS theorem.                                      *)
(* ------------------------------------------------------------------------- *)

let term_of_num = new_definition
  `term_of_num n = (@t. num_of_term t = n)`;;

let TERM_OF_NUM = prove
 (`term_of_num(num_of_term t) = t`,
  REWRITE_TAC[term_of_num; NUM_OF_TERM_INJ]);;

let LOWMOD = new_definition
  `LOWMOD M = {num_of_term t | t IN Dom(M)},
              (\g zs. num_of_term (Fun(M) g (MAP term_of_num zs))),
              (\p zs. Pred(M) p (MAP term_of_num zs))`;;

let LOWMOD_DOM_EMPTY = prove
 (`(Dom(LOWMOD M) = EMPTY) <=> (Dom(M) = EMPTY)`,
  REWRITE_TAC[Dom_DEF; LOWMOD; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
  MESON_TAC[]);;

let LOWMOD_TERMVAL = prove
 (`!v. valuation (LOWMOD M) v
       ==> !t. termval (LOWMOD M) v t =
               num_of_term (termval M (term_of_num o v) t)`,
  GEN_TAC THEN DISCH_THEN
   (ASSUME_TAC o REWRITE_RULE[valuation; LOWMOD; Dom_DEF; IN_ELIM_THM]) THEN
  MATCH_MP_TAC term_INDUCT THEN  REWRITE_TAC[termval; o_THM] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN
  REWRITE_TAC[LOWMOD; Fun_DEF] THEN REWRITE_TAC[GSYM LOWMOD] THEN
  REPEAT STRIP_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN
  MATCH_MP_TAC ALL_IMP THEN
  FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN
  ASM_REWRITE_TAC[] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[o_THM; TERM_OF_NUM]);;

let LOWMOD_HOLDS = prove
 (`!p v. valuation (LOWMOD M) v
         ==> (holds (LOWMOD M) v p <=> holds M (term_of_num o v) p)`,
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[holds] THEN REPEAT CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN REWRITE_TAC[LOWMOD; Pred_DEF] THEN
    REWRITE_TAC[GSYM LOWMOD] THEN AP_TERM_TAC THEN
    REWRITE_TAC[GSYM MAP_o] THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
    ASM_SIMP_TAC[LOWMOD_TERMVAL; TERM_OF_NUM];
    MESON_TAC[];
    REPEAT STRIP_TAC THEN
    REWRITE_TAC[Dom_DEF; LOWMOD] THEN REWRITE_TAC[GSYM LOWMOD] THEN
    SUBGOAL_THEN `!a. a IN {num_of_term t | t IN Dom M}
                      ==> valuation (LOWMOD M) (valmod (a0:num,a) v)`
    MP_TAC THENL
     [GEN_TAC THEN REWRITE_TAC[valuation; valmod; LOWMOD; Dom_DEF] THEN
      CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
      REWRITE_TAC[IN_ELIM_THM] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[valuation; LOWMOD; Dom_DEF; IN_ELIM_THM]) THEN
      ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_THEN(fun th -> ASM_SIMP_TAC[th]) THEN
    SUBGOAL_THEN `!P. (!a. a IN {num_of_term t | t IN Dom(M)} ==> P(a)) <=>
                      (!a. a IN Dom(M) ==> P(num_of_term a))`
     (fun th -> REWRITE_TAC[th])
    THENL [REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN
    AP_TERM_TAC THEN ABS_TAC THEN
    MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
    DISCH_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[valmod; FUN_EQ_THM; o_THM] THEN
    GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[TERM_OF_NUM]]);;

let LOWMOD_INTERPRETATION = prove
 (`!L M. interpretation L (LOWMOD M) = interpretation L M`,
  REWRITE_TAC[FORALL_PAIR_THM; interpretation] THEN
  REWRITE_TAC[Fun_DEF; Dom_DEF; LOWMOD] THEN
  SUBGOAL_THEN `!P x. num_of_term x IN {num_of_term y | P y} <=> x IN P`
   (fun th -> REWRITE_TAC[th]) THENL
   [REWRITE_TAC[IN_ELIM_THM; IN; NUM_OF_TERM_INJ] THEN MESON_TAC[];
    ALL_TAC] THEN
  REPEAT GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
  EQ_TAC THEN DISCH_TAC THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; LENGTH] THENL
   [DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `[] :num list`) THEN
    ASM_REWRITE_TAC[ALL; MAP; LENGTH] THEN
    REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV);
    STRIP_TAC THEN FIRST_X_ASSUM
     (MP_TAC o SPEC `CONS (num_of_term h) (MAP num_of_term t)`) THEN
    ASM_REWRITE_TAC[ALL; MAP; LENGTH; LENGTH_MAP] THEN
    REWRITE_TAC[ALL_MAP; IN_ELIM_THM] THEN
    W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
     [CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
      MATCH_MP_TAC ALL_IMP THEN
      FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[o_THM; NUM_OF_TERM_INJ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[TERM_OF_NUM; GSYM MAP_o; o_DEF] THEN
    SIMP_TAC[MAP_EQ_DEGEN; ALL_T];
    DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `[] :term list`) THEN
    ASM_REWRITE_TAC[ALL; MAP; LENGTH] THEN
    REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV);
    STRIP_TAC THEN FIRST_X_ASSUM
     (MP_TAC o SPEC `CONS (term_of_num h) (MAP term_of_num t)`) THEN
    ASM_REWRITE_TAC[ALL; MAP; LENGTH; LENGTH_MAP] THEN
    W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
     [CONJ_TAC THENL
       [RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN
        ASM_MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN
      REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC ALL_IMP THEN
      FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[IN_ELIM_THM; o_THM] THEN MESON_TAC[TERM_OF_NUM];
      ALL_TAC] THEN
    REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV)]);;

let LS = prove
 (`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s.
        interpretation (language s) M /\
        ~(Dom(M) = EMPTY) /\
        (!p. p IN s ==> qfree p) /\ M satisfies s
        ==> ?N. interpretation (language s) N /\
                ~(Dom N :num->bool = EMPTY) /\
                N satisfies s`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP CANON) THEN
  EXISTS_TAC `LOWMOD C` THEN
  ASM_REWRITE_TAC[LOWMOD_DOM_EMPTY; LOWMOD_INTERPRETATION] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN
  REWRITE_TAC[satisfies] THEN SIMP_TAC[LOWMOD_HOLDS] THEN
  REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [valuation]) THEN
  ASM_REWRITE_TAC[valuation] THEN REWRITE_TAC[LOWMOD; Dom_DEF] THEN
  REWRITE_TAC[IN_ELIM_THM; o_THM] THEN
  MESON_TAC[TERM_OF_NUM]);;

(* ------------------------------------------------------------------------- *)
(* Now the Uniformity Lemma.                                                 *)
(* ------------------------------------------------------------------------- *)

let UNIFORMITY = prove
 (`qfree p /\ (!C v. ~(Dom C = EMPTY) /\
                     valuation(C) v ==> holds C (v:num->term) (ITLIST ?? xs p))
   ==> ?is. (!i x. MEM i is ==> terms(FST(language {p})) (i x)) /\
            !d. pholds(d) (ITLIST (||) (MAP (\i. formsubst i p) is) False)`,
  STRIP_TAC THEN
  MP_TAC(SPEC `{formsubst i q | q IN {p} /\
                                (!x. i x IN terms(FST(language {p})))}`
              COMPACT_DISJ) THEN
  W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
   [ALL_TAC;
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM; GSYM CONJ_ASSOC] THEN
    REWRITE_TAC[UNWIND_THM2] THEN
    DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `MAP (\q. @i. (!x. i x IN terms (FST (language {p}))) /\
                             (q = formsubst i p)) ps` THEN
    REWRITE_TAC[GSYM MAP_o; o_DEF] THEN CONJ_TAC THENL
     [REPEAT GEN_TAC THEN
      FIRST_ASSUM
       (UNDISCH_TAC o check ((=) `ps:form list` o rand) o concl) THEN
      SPEC_TAC(`ps:form list`,`ps:form list`) THEN
      LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; MEM] THEN
      DISCH_TAC THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
       [ALL_TAC; FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]] THEN
      FIRST_ASSUM(ASSUME_TAC o SELECT_RULE o CONJUNCT1) THEN
      DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
      FIRST_ASSUM(MATCH_ACCEPT_TAC o CONJUNCT1 o SPEC_ALL);
      X_GEN_TAC `d:form->bool` THEN
      FIRST_ASSUM(MP_TAC o SPEC `d:form->bool`) THEN
      MATCH_MP_TAC EQ_IMP THEN
      AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
      MATCH_MP_TAC(GSYM MAP_EQ_DEGEN) THEN
      FIRST_ASSUM
       (UNDISCH_TAC o check ((=) `ps:form list` o rand) o concl) THEN
      SPEC_TAC(`ps:form list`,`ps:form list`) THEN
      LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; MEM] THEN
      DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SELECT_RULE) ASSUME_TAC) THEN
      CONJ_TAC THENL [FIRST_ASSUM(MATCH_ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN
      MATCH_MP_TAC ALL_IMP THEN
      FIRST_ASSUM(fun th -> EXISTS_TAC(lhand(concl th)) THEN
                       CONJ_TAC THENL [ALL_TAC; FIRST_ASSUM ACCEPT_TAC]) THEN
      X_GEN_TAC `r:form` THEN REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o SELECT_RULE o CONJUNCT2) THEN
      DISCH_THEN(ACCEPT_TAC o CONJUNCT2)]] THEN
  X_GEN_TAC `d:form->bool` THEN
  SUBGOAL_THEN `~((canon_of_prop (language {p}) d) satisfies {(Not p)})`
  ASSUME_TAC THENL
   [REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `canon_of_prop (language {p}) d`) THEN
    REWRITE_TAC[HOLDS_ITLIST_EXISTS; NOT_FORALL_THM; NOT_IMP] THEN
    SUBGOAL_THEN `?v:num->term. valuation (canon_of_prop (language {p}) d) v`
    CHOOSE_TAC THENL
     [MATCH_MP_TAC VALUATION_EXISTS THEN
      REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
      REWRITE_TAC[Dom_DEF; canon_of_prop; IN] THEN
      MESON_TAC[terms_RULES]; ALL_TAC] THEN
    EXISTS_TAC `v:num->term` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [REWRITE_TAC[canon_of_prop; Dom_DEF] THEN
      REWRITE_TAC[language; EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN
      EXISTS_TAC `V 0` THEN REWRITE_TAC[IN] THEN MESON_TAC[terms_CASES];
      ALL_TAC] THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN
    REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN
    REWRITE_TAC[GSYM HOLDS] THEN REPEAT STRIP_TAC THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[valuation; IN] THEN GEN_TAC THEN
    UNDISCH_TAC `valuation (canon_of_prop (language {p}) d) (v:num->term)` THEN
    SPEC_TAC(`v:num->term`,`v:num->term`) THEN
    UNDISCH_TAC `ALL (Dom (canon_of_prop (language {p}) d)) as` THEN
    UNDISCH_TAC `LENGTH (as:term list) = LENGTH (xs:num list)` THEN
    SPEC_TAC(`as:term list`,`as:term list`) THEN
    SPEC_TAC(`xs:num list`,`xs:num list`) THEN
    LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
    REWRITE_TAC[LENGTH; NOT_SUC; MAP2; REVERSE; ITLIST; ALL] THENL
     [REWRITE_TAC[valuation; IN] THEN MESON_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[SUC_INJ; ITLIST_EXTRA] THEN
    DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
    REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[valuation; valmod] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN
    GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_REWRITE_TAC[IN]; ALL_TAC] THEN
  SUBGOAL_THEN `!q. q IN {(Not p)} ==> qfree q` ASSUME_TAC THENL
   [REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP
   (GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] PSATISFIES_INSTANCES)) THEN
  ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[psatisfies; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; GSYM CONJ_ASSOC] THEN
  REWRITE_TAC[UNWIND_THM2] THEN
  REWRITE_TAC[Not_DEF; formsubst] THEN REWRITE_TAC[GSYM Not_DEF] THEN
  MESON_TAC[el 3 (CONJUNCTS PHOLDS)]);;