Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,832 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
(* ========================================================================= *)
(* Propositional logic as subsystem of FOL, leading to compactness. *)
(* ========================================================================= *)
let pholds = new_recursive_definition form_RECURSION
`(pholds v False <=> F) /\
(pholds v (Atom p l) <=> v (Atom p l)) /\
(pholds v (q --> r) <=> pholds v q ==> pholds v r) /\
(pholds v (!!x q) <=> v (!!x q))`;;
let PHOLDS = prove
(`(pholds v False <=> F) /\
(pholds v True <=> T) /\
(pholds v (Atom p l) <=> v (Atom p l)) /\
(pholds v (Not q) <=> ~(pholds v q)) /\
(pholds v (q || r) <=> pholds v q \/ pholds v r) /\
(pholds v (q && r) <=> pholds v q /\ pholds v r) /\
(pholds v (q --> r) <=> pholds v q ==> pholds v r) /\
(pholds v (q <-> r) <=> (pholds v q = pholds v r))`,
REWRITE_TAC
[True_DEF; Not_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; pholds] THEN
CONV_TAC TAUT);;
(* ------------------------------------------------------------------------- *)
(* Propositional satisfaction. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("psatisfies",(10,"right"));;
let psatisfies = new_definition
`v psatisfies s <=> !p. p IN s ==> pholds v p`;;
let psatisfiable = new_definition
`psatisfiable s <=> ?v. !p. p IN s ==> pholds v p`;;
let PSATISFIABLE_MONO = prove
(`!A B. psatisfiable A /\ B SUBSET A ==> psatisfiable B`,
REWRITE_TAC[psatisfiable] THEN MESON_TAC[SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* Extensibility of finitely satisfiable set. *)
(* ------------------------------------------------------------------------- *)
let finsat = new_definition
`finsat A <=> !B. B SUBSET A /\ FINITE(B) ==> psatisfiable B`;;
let FINSAT_MONO = prove
(`!A B. finsat A /\ B SUBSET A ==> finsat B`,
REWRITE_TAC[finsat] THEN MESON_TAC[SUBSET_TRANS; FINITE_SUBSET]);;
let SATISFIABLE_MONO = prove
(`!A B. psatisfiable A /\ B SUBSET A ==> psatisfiable B`,
REWRITE_TAC[psatisfiable] THEN MESON_TAC[SUBSET]);;
let FINSAT_SATISFIABLE = prove
(`psatisfiable B ==> finsat B`,
REWRITE_TAC[finsat] THEN
MESON_TAC[SATISFIABLE_MONO; SUBSET_TRANS; FINITE_SUBSET]);;
let FINSAT_MAX = prove
(`!A. finsat(A) ==> ?B. A SUBSET B /\ finsat(B) /\
!C. B SUBSET C /\ finsat(C) ==> (C = B)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `\B C. A SUBSET B /\ B SUBSET C /\ finsat(C)` ZL) THEN
PBETA_TAC THEN REWRITE_TAC[] THEN
SUBGOAL_THEN `poset (\B C. A SUBSET B /\ B SUBSET C /\ finsat(C))`
ASSUME_TAC THENL
[REWRITE_TAC[poset; fld; IN_ELIM_THM] THEN
MESON_TAC[SUBSET_TRANS; SUBSET_REFL; FINSAT_MONO; SUBSET_ANTISYM];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `fld(\B C. A SUBSET B /\ B SUBSET C /\ finsat(C)) =
\B. A SUBSET B /\ finsat(B)`
ASSUME_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; fld; IN_ELIM_THM] THEN
MESON_TAC[SUBSET_TRANS; FINSAT_MONO; SUBSET_REFL]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[ALL_TAC; MESON_TAC[SUBSET_TRANS]] THEN
X_GEN_TAC `C:(form->bool)->bool` THEN
REWRITE_TAC[chain] THEN REWRITE_TAC[IN] THEN DISCH_TAC THEN
ASM_CASES_TAC `C:(form->bool)->bool = EMPTY` THENL
[EXISTS_TAC `A:form->bool` THEN ASM_REWRITE_TAC[EMPTY; SUBSET_REFL];
ALL_TAC] THEN
EXISTS_TAC `UNIONS (C:(form->bool)->bool)` THEN
FIRST_ASSUM(X_CHOOSE_THEN `u:form->bool` MP_TAC o
REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[IN] THEN
DISCH_TAC THEN
SUBGOAL_THEN `A:form->bool SUBSET (UNIONS C)` ASSUME_TAC THENL
[REWRITE_TAC[UNIONS; SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET; IN];
ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN `!B:form->bool. FINITE B ==> B SUBSET (UNIONS C)
==> ?U. U IN C /\ B SUBSET U`
ASSUME_TAC THENL
[MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[EMPTY_SUBSET] THEN ASM_MESON_TAC[IN]; ALL_TAC] THEN
X_GEN_TAC `p:form` THEN X_GEN_TAC `W:form->bool` THEN
ASM_CASES_TAC `(p:form INSERT W) SUBSET (UNIONS C)` THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `W:form->bool SUBSET (UNIONS C)` ASSUME_TAC THENL
[ASM_MESON_TAC[SUBSET; IN_INSERT; IN]; ASM_REWRITE_TAC[]] THEN
REWRITE_TAC[IN; SUBSET; INSERT; IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `v1:form->bool` STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `p:form INSERT W SUBSET UNIONS C` THEN
REWRITE_TAC[IN_INSERT; SUBSET; UNIONS; IN_ELIM_THM] THEN
DISCH_THEN(MP_TAC o SPEC `p:form`) THEN REWRITE_TAC[] THEN
REWRITE_TAC[IN] THEN
DISCH_THEN(X_CHOOSE_THEN `v2:form->bool` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`v1:form->bool`; `v2:form->bool`]) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THENL
[EXISTS_TAC `v2:form->bool` THEN ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN]) THEN ASM_MESON_TAC[];
EXISTS_TAC `v1:form->bool` THEN ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN]) THEN ASM_MESON_TAC[]];
ALL_TAC] THEN
SUBGOAL_THEN `finsat (UNIONS C :form->bool)` ASSUME_TAC THENL
[REWRITE_TAC[finsat] THEN X_GEN_TAC `B:form->bool` THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `B:form->bool`) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `v:form->bool` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`v:form->bool`; `v:form->bool`]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[finsat];
ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:form->bool` THEN DISCH_TAC THEN
CONJ_TAC THENL
[ASM_MESON_TAC[];
REWRITE_TAC[SUBSET; UNIONS; IN_ELIM_THM; IN] THEN
ASM_MESON_TAC[]]]);;
(* ------------------------------------------------------------------------- *)
(* Compactness. *)
(* ------------------------------------------------------------------------- *)
let FINSAT_EXTEND = prove
(`finsat(B) ==> finsat(p INSERT B) \/ finsat(Not p INSERT B)`,
REWRITE_TAC[finsat] THEN DISCH_TAC THEN
GEN_REWRITE_TAC I [TAUT `p <=> ~ ~ p`] THEN DISCH_THEN
(MP_TAC o REWRITE_RULE[DE_MORGAN_THM; NOT_FORALL_THM; NOT_IMP]) THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `C:form->bool` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `D:form->bool` STRIP_ASSUME_TAC)) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(C DELETE p) UNION (D DELETE Not p)`) THEN
ASM_REWRITE_TAC[NOT_IMP; FINITE_UNION; FINITE_DELETE] THEN CONJ_TAC THENL
[ASSUM_LIST SET_TAC;
UNDISCH_TAC `~(psatisfiable C)` THEN UNDISCH_TAC `~(psatisfiable D)` THEN
REWRITE_TAC[psatisfiable; IN_DELETE; IN_UNION] THEN
REWRITE_TAC[NOT_EXISTS_THM; NOT_FORALL_THM; NOT_IMP] THEN
REPEAT DISCH_TAC THEN X_GEN_TAC `v:form->bool` THEN
UNDISCH_TAC `!v. ?p. p IN C /\ ~pholds v p` THEN
DISCH_THEN(MP_TAC o SPEC `v:form->bool`) THEN
DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `p:form = q` THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `v:form->bool`) THEN
DISCH_THEN(X_CHOOSE_THEN `r:form` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `r:form` THEN ASM_REWRITE_TAC[] THEN DISJ2_TAC THEN
DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `~pholds v (Not q)` THEN ASM_REWRITE_TAC[PHOLDS]]);;
let FINSAT_MAX_COMPLETE = prove
(`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
==> !p. p IN B \/ Not(p) IN B`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP FINSAT_EXTEND) THENL
[DISJ1_TAC; DISJ2_TAC] THEN
REWRITE_TAC[ABSORPTION] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN SET_TAC[]);;
let FINSAT_MAX_COMPLETE_STRONG = prove
(`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
==> !p. Not(p) IN B <=> ~(p IN B)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(TAUT `(a \/ b) /\ ~(a /\ b) ==> (b <=> ~a)`) THEN
CONJ_TAC THENL [ASM_MESON_TAC[FINSAT_MAX_COMPLETE]; ALL_TAC] THEN
DISCH_TAC THEN UNDISCH_TAC `finsat B` THEN
REWRITE_TAC[finsat] THEN
DISCH_THEN(MP_TAC o SPEC `{ p, (Not p) }`) THEN
REWRITE_TAC[FINITE_INSERT; FINITE_RULES] THEN
REWRITE_TAC[psatisfiable; IN_INSERT; SUBSET; NOT_IN_EMPTY] THEN
REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; DE_MORGAN_THM] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; PHOLDS] THEN
CONV_TAC TAUT);;
let FINSAT_DEDUCTION = prove
(`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
==> !p. p IN B <=> ?A. FINITE(A) /\ A SUBSET B /\
!v. (!q. q IN A ==> pholds v q) ==> pholds v p`,
REPEAT STRIP_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN EXISTS_TAC `{p:form}` THEN
REWRITE_TAC[FINITE_INSERT; FINITE_RULES] THEN
REWRITE_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[];
STRIP_TAC THEN REWRITE_TAC[ABSORPTION] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
UNDISCH_TAC `finsat B` THEN CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC[finsat; NOT_FORALL_THM; NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(A:form->bool) UNION (A1 DELETE p)` THEN
ASM_REWRITE_TAC[FINITE_UNION; FINITE_DELETE] THEN
CONJ_TAC THENL [ASSUM_LIST SET_TAC; ALL_TAC] THEN
UNDISCH_TAC `!v. (!q. q IN A ==> pholds v q) ==> pholds v p` THEN
UNDISCH_TAC `~(psatisfiable A1)` THEN
REWRITE_TAC[psatisfiable; IN_UNION; IN_DELETE] THEN
MESON_TAC[]]);;
let FINSAT_MAX_CONSISTENT = prove
(`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
==> ~(False IN B)`,
DISCH_THEN(MP_TAC o CONJUNCT1) THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_TAC THEN REWRITE_TAC[finsat] THEN
DISCH_THEN(MP_TAC o SPEC `{False}`) THEN
ASM_REWRITE_TAC[FINITE_INSERT; FINITE_RULES; psatisfiable] THEN
REWRITE_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[NOT_IMP; NOT_FORALL_THM; NOT_EXISTS_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MESON_TAC[PHOLDS]);;
let FINSAT_MAX_HOMO = prove
(`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
==> !p q. (p --> q) IN B <=> p IN B ==> q IN B`,
DISCH_TAC THEN REPEAT GEN_TAC THEN EQ_TAC THENL
[FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_DEDUCTION th]) THEN
DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` STRIP_ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `A2:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(A1:form->bool) UNION A2` THEN
ASM_REWRITE_TAC[FINITE_UNION] THEN
CONJ_TAC THENL [ASSUM_LIST SET_TAC; ALL_TAC] THEN
UNDISCH_TAC `!v. (!q. q IN A2 ==> pholds v q) ==> pholds v p` THEN
UNDISCH_TAC `!v. (!q. q IN A1 ==> pholds v q) ==> pholds v (p --> q)` THEN
REWRITE_TAC[entails; IN_UNION; PHOLDS] THEN MESON_TAC[];
GEN_REWRITE_TAC LAND_CONV [TAUT `p ==> q <=> ~p \/ q`] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC
[GSYM(MATCH_MP FINSAT_MAX_COMPLETE_STRONG th)]) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_DEDUCTION th]) THEN
STRIP_TAC THEN EXISTS_TAC `A:form->bool` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
REWRITE_TAC[PHOLDS] THEN MESON_TAC[]]);;
let COMPACT_PROP = prove
(`(!B. FINITE(B) /\ B SUBSET A
==> ?d. !r. r IN B ==> pholds(d) r)
==> ?d. !r. r IN A ==> pholds(d) r`,
STRIP_TAC THEN
SUBGOAL_THEN `finsat(A)` (MP_TAC o MATCH_MP FINSAT_MAX) THENL
[REWRITE_TAC[finsat; psatisfiable] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `B:form->bool` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
EXISTS_TAC `\p:form. p IN B` THEN
SUBGOAL_THEN `!r. pholds (\p. p IN B) r <=> r IN B`
(fun th -> ASM_MESON_TAC[th; SUBSET]) THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[pholds] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_MAX_CONSISTENT th]) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_MAX_HOMO th]) THEN
SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Important variant used in proving Uniformity for FOL. *)
(* ------------------------------------------------------------------------- *)
let COMPACT_PROP_ALT = prove
(`!A. (!d. ?p. p IN A /\ pholds d p)
==> ?B. FINITE(B) /\ B SUBSET A /\ (!d. ?p. p IN B /\ pholds d p)`,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `~(?d. !r. r IN { Not q | q IN A } ==> pholds(d) r)`
MP_TAC THENL
[REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; NOT_IMP] THEN
REWRITE_TAC[IN_ELIM_THM; Not_DEF] THEN ASM_MESON_TAC[pholds]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP
(GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] COMPACT_PROP)) THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `{ r | Not r IN B }` THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_IMAGE_INJ THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN
REWRITE_TAC[Not_DEF; form_INJ];
UNDISCH_TAC `B SUBSET {Not q | q IN A}` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
DISCH_TAC THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[Not_DEF; form_INJ] THEN MESON_TAC[];
ASM_MESON_TAC[el 3 (CONJUNCTS PHOLDS)]]]);;
let FINITE_DISJ_LEMMA = prove
(`!A. FINITE(A) ==> ?ps. ALL (\p. p IN A) ps /\
!d. pholds(d) (ITLIST (||) ps False) <=>
?p. p IN A /\ pholds d p`,
MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
[EXISTS_TAC `[] :form list` THEN REWRITE_TAC[ALL; ITLIST] THEN
REWRITE_TAC[pholds; NOT_IN_EMPTY];
X_GEN_TAC `q:form` THEN X_GEN_TAC `s:form->bool` THEN
DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `CONS (q:form) ps` THEN REWRITE_TAC[ALL; ITLIST] THEN
ASM_REWRITE_TAC[PHOLDS; IN_INSERT] THEN CONJ_TAC THENL
[MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\p:form. p IN s` THEN
ASM_REWRITE_TAC[] THEN MESON_TAC[];
MESON_TAC[]]]);;
let COMPACT_DISJ = prove
(`!A. (!d. ?p. p IN A /\ pholds d p)
==> ?ps. ALL (\p. p IN A) ps /\
!d. pholds(d) (ITLIST (||) ps False)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP COMPACT_PROP_ALT) THEN
DISCH_THEN(X_CHOOSE_THEN `B:form->bool` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC o
MATCH_MP FINITE_DISJ_LEMMA) THEN
EXISTS_TAC `ps:form list` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\p:form. p IN B` THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET]);;
|