Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,832 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
(* ========================================================================= *)
(* Propositional logic as subsystem of FOL, leading to compactness.          *)
(* ========================================================================= *)

let pholds = new_recursive_definition form_RECURSION
  `(pholds v False <=> F) /\
   (pholds v (Atom p l) <=> v (Atom p l)) /\
   (pholds v (q --> r) <=> pholds v q ==> pholds v r) /\
   (pholds v (!!x q) <=> v (!!x q))`;;

let PHOLDS = prove
 (`(pholds v False <=> F) /\
   (pholds v True <=> T) /\
   (pholds v (Atom p l) <=> v (Atom p l)) /\
   (pholds v (Not q) <=> ~(pholds v q)) /\
   (pholds v (q || r) <=> pholds v q \/ pholds v r) /\
   (pholds v (q && r) <=> pholds v q /\ pholds v r) /\
   (pholds v (q --> r) <=> pholds v q ==> pholds v r) /\
   (pholds v (q <-> r) <=> (pholds v q = pholds v r))`,
  REWRITE_TAC
   [True_DEF; Not_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; pholds] THEN
  CONV_TAC TAUT);;

(* ------------------------------------------------------------------------- *)
(* Propositional satisfaction.                                               *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("psatisfies",(10,"right"));;

let psatisfies = new_definition
  `v psatisfies s <=> !p. p IN s ==> pholds v p`;;

let psatisfiable = new_definition
  `psatisfiable s <=> ?v. !p. p IN s ==> pholds v p`;;

let PSATISFIABLE_MONO = prove
 (`!A B. psatisfiable A /\ B SUBSET A ==> psatisfiable B`,
  REWRITE_TAC[psatisfiable] THEN MESON_TAC[SUBSET]);;

(* ------------------------------------------------------------------------- *)
(* Extensibility of finitely satisfiable set.                                *)
(* ------------------------------------------------------------------------- *)

let finsat = new_definition
  `finsat A <=> !B. B SUBSET A /\ FINITE(B) ==> psatisfiable B`;;

let FINSAT_MONO = prove
 (`!A B. finsat A /\ B SUBSET A ==> finsat B`,
  REWRITE_TAC[finsat] THEN MESON_TAC[SUBSET_TRANS; FINITE_SUBSET]);;

let SATISFIABLE_MONO = prove
 (`!A B. psatisfiable A /\ B SUBSET A ==> psatisfiable B`,
  REWRITE_TAC[psatisfiable] THEN MESON_TAC[SUBSET]);;

let FINSAT_SATISFIABLE = prove
 (`psatisfiable B ==> finsat B`,
  REWRITE_TAC[finsat] THEN
  MESON_TAC[SATISFIABLE_MONO; SUBSET_TRANS; FINITE_SUBSET]);;

let FINSAT_MAX = prove
 (`!A. finsat(A) ==> ?B. A SUBSET B /\ finsat(B) /\
                         !C. B SUBSET C /\ finsat(C) ==> (C = B)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `\B C. A SUBSET B /\ B SUBSET C /\ finsat(C)` ZL) THEN
  PBETA_TAC THEN REWRITE_TAC[] THEN
  SUBGOAL_THEN `poset (\B C. A SUBSET B /\ B SUBSET C /\ finsat(C))`
  ASSUME_TAC THENL
   [REWRITE_TAC[poset; fld; IN_ELIM_THM] THEN
    MESON_TAC[SUBSET_TRANS; SUBSET_REFL; FINSAT_MONO; SUBSET_ANTISYM];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `fld(\B C. A SUBSET B /\ B SUBSET C /\ finsat(C)) =
                 \B. A SUBSET B /\ finsat(B)`
  ASSUME_TAC THENL
   [REWRITE_TAC[FUN_EQ_THM; fld; IN_ELIM_THM] THEN
    MESON_TAC[SUBSET_TRANS; FINSAT_MONO; SUBSET_REFL]; ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN
  W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
   [ALL_TAC; MESON_TAC[SUBSET_TRANS]] THEN
  X_GEN_TAC `C:(form->bool)->bool` THEN
  REWRITE_TAC[chain] THEN REWRITE_TAC[IN] THEN DISCH_TAC THEN
  ASM_CASES_TAC `C:(form->bool)->bool = EMPTY` THENL
   [EXISTS_TAC `A:form->bool` THEN ASM_REWRITE_TAC[EMPTY; SUBSET_REFL];
    ALL_TAC] THEN
  EXISTS_TAC `UNIONS (C:(form->bool)->bool)` THEN
  FIRST_ASSUM(X_CHOOSE_THEN `u:form->bool` MP_TAC o
    REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[IN] THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `A:form->bool SUBSET (UNIONS C)` ASSUME_TAC THENL
   [REWRITE_TAC[UNIONS; SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET; IN];
    ASM_REWRITE_TAC[]] THEN
  SUBGOAL_THEN `!B:form->bool. FINITE B ==> B SUBSET (UNIONS C)
                               ==> ?U. U IN C /\ B SUBSET U`
  ASSUME_TAC THENL
   [MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
     [REWRITE_TAC[EMPTY_SUBSET] THEN ASM_MESON_TAC[IN]; ALL_TAC] THEN
    X_GEN_TAC `p:form` THEN X_GEN_TAC `W:form->bool` THEN
    ASM_CASES_TAC `(p:form INSERT W) SUBSET (UNIONS C)` THEN
    ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `W:form->bool SUBSET (UNIONS C)` ASSUME_TAC THENL
     [ASM_MESON_TAC[SUBSET; IN_INSERT; IN]; ASM_REWRITE_TAC[]] THEN
    REWRITE_TAC[IN; SUBSET; INSERT; IN_ELIM_THM] THEN
    DISCH_THEN(X_CHOOSE_THEN `v1:form->bool` STRIP_ASSUME_TAC) THEN
    UNDISCH_TAC `p:form INSERT W SUBSET UNIONS C` THEN
    REWRITE_TAC[IN_INSERT; SUBSET; UNIONS; IN_ELIM_THM] THEN
    DISCH_THEN(MP_TAC o SPEC `p:form`) THEN REWRITE_TAC[] THEN
    REWRITE_TAC[IN] THEN
    DISCH_THEN(X_CHOOSE_THEN `v2:form->bool` STRIP_ASSUME_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`v1:form->bool`; `v2:form->bool`]) THEN
    ASM_REWRITE_TAC[] THEN STRIP_TAC THENL
     [EXISTS_TAC `v2:form->bool` THEN ASM_REWRITE_TAC[] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN]) THEN ASM_MESON_TAC[];
      EXISTS_TAC `v1:form->bool` THEN ASM_REWRITE_TAC[] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN]) THEN ASM_MESON_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN `finsat (UNIONS C :form->bool)` ASSUME_TAC THENL
   [REWRITE_TAC[finsat] THEN X_GEN_TAC `B:form->bool` THEN
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `B:form->bool`) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `v:form->bool` STRIP_ASSUME_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`v:form->bool`; `v:form->bool`]) THEN
    RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
    ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[finsat];
    ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:form->bool` THEN DISCH_TAC THEN
    CONJ_TAC THENL
     [ASM_MESON_TAC[];
      REWRITE_TAC[SUBSET; UNIONS; IN_ELIM_THM; IN] THEN
      ASM_MESON_TAC[]]]);;

(* ------------------------------------------------------------------------- *)
(* Compactness.                                                              *)
(* ------------------------------------------------------------------------- *)

let FINSAT_EXTEND = prove
 (`finsat(B) ==> finsat(p INSERT B) \/ finsat(Not p INSERT B)`,
  REWRITE_TAC[finsat] THEN DISCH_TAC THEN
  GEN_REWRITE_TAC I [TAUT `p <=> ~ ~ p`] THEN DISCH_THEN
   (MP_TAC o REWRITE_RULE[DE_MORGAN_THM; NOT_FORALL_THM; NOT_IMP]) THEN
  DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `C:form->bool` STRIP_ASSUME_TAC)
      (X_CHOOSE_THEN `D:form->bool` STRIP_ASSUME_TAC)) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `(C DELETE p) UNION (D DELETE Not p)`) THEN
  ASM_REWRITE_TAC[NOT_IMP; FINITE_UNION; FINITE_DELETE] THEN CONJ_TAC THENL
   [ASSUM_LIST SET_TAC;
    UNDISCH_TAC `~(psatisfiable C)` THEN UNDISCH_TAC `~(psatisfiable D)` THEN
    REWRITE_TAC[psatisfiable; IN_DELETE; IN_UNION] THEN
    REWRITE_TAC[NOT_EXISTS_THM; NOT_FORALL_THM; NOT_IMP] THEN
    REPEAT DISCH_TAC THEN X_GEN_TAC `v:form->bool` THEN
    UNDISCH_TAC `!v. ?p. p IN C /\ ~pholds v p` THEN
    DISCH_THEN(MP_TAC o SPEC `v:form->bool`) THEN
    DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN
    ASM_CASES_TAC `p:form = q` THENL
     [ALL_TAC; ASM_MESON_TAC[]] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `v:form->bool`) THEN
    DISCH_THEN(X_CHOOSE_THEN `r:form` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `r:form` THEN ASM_REWRITE_TAC[] THEN DISJ2_TAC THEN
    DISCH_THEN SUBST_ALL_TAC THEN
    UNDISCH_TAC `~pholds v (Not q)` THEN ASM_REWRITE_TAC[PHOLDS]]);;

let FINSAT_MAX_COMPLETE = prove
 (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
   ==> !p. p IN B \/ Not(p) IN B`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP FINSAT_EXTEND) THENL
   [DISJ1_TAC; DISJ2_TAC] THEN
  REWRITE_TAC[ABSORPTION] THEN FIRST_ASSUM MATCH_MP_TAC THEN
  ASM_REWRITE_TAC[] THEN SET_TAC[]);;

let FINSAT_MAX_COMPLETE_STRONG = prove
 (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
   ==> !p. Not(p) IN B <=> ~(p IN B)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(a \/ b) /\ ~(a /\ b) ==> (b <=> ~a)`) THEN
  CONJ_TAC THENL [ASM_MESON_TAC[FINSAT_MAX_COMPLETE]; ALL_TAC] THEN
  DISCH_TAC THEN UNDISCH_TAC `finsat B` THEN
  REWRITE_TAC[finsat] THEN
  DISCH_THEN(MP_TAC o SPEC `{ p, (Not p) }`) THEN
  REWRITE_TAC[FINITE_INSERT; FINITE_RULES] THEN
  REWRITE_TAC[psatisfiable; IN_INSERT; SUBSET; NOT_IN_EMPTY] THEN
  REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
  REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; DE_MORGAN_THM] THEN
  REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
  REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; PHOLDS] THEN
  CONV_TAC TAUT);;

let FINSAT_DEDUCTION = prove
 (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
   ==> !p. p IN B <=> ?A. FINITE(A) /\ A SUBSET B /\
                        !v. (!q. q IN A ==> pholds v q) ==> pholds v p`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [DISCH_TAC THEN EXISTS_TAC `{p:form}` THEN
    REWRITE_TAC[FINITE_INSERT; FINITE_RULES] THEN
    REWRITE_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY] THEN
    ASM_MESON_TAC[];
    STRIP_TAC THEN REWRITE_TAC[ABSORPTION] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
    UNDISCH_TAC `finsat B` THEN CONV_TAC CONTRAPOS_CONV THEN
    REWRITE_TAC[finsat; NOT_FORALL_THM; NOT_IMP] THEN
    DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `(A:form->bool) UNION (A1 DELETE p)` THEN
    ASM_REWRITE_TAC[FINITE_UNION; FINITE_DELETE] THEN
    CONJ_TAC THENL [ASSUM_LIST SET_TAC; ALL_TAC] THEN
    UNDISCH_TAC `!v. (!q. q IN A ==> pholds v q) ==> pholds v p` THEN
    UNDISCH_TAC `~(psatisfiable A1)` THEN
    REWRITE_TAC[psatisfiable; IN_UNION; IN_DELETE] THEN
    MESON_TAC[]]);;

let FINSAT_MAX_CONSISTENT = prove
 (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
   ==> ~(False IN B)`,
  DISCH_THEN(MP_TAC o CONJUNCT1) THEN
  CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
  DISCH_TAC THEN REWRITE_TAC[finsat] THEN
  DISCH_THEN(MP_TAC o SPEC `{False}`) THEN
  ASM_REWRITE_TAC[FINITE_INSERT; FINITE_RULES; psatisfiable] THEN
  REWRITE_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY] THEN
  REWRITE_TAC[NOT_IMP; NOT_FORALL_THM; NOT_EXISTS_THM] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MESON_TAC[PHOLDS]);;

let FINSAT_MAX_HOMO = prove
 (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B))
   ==> !p q. (p --> q) IN B <=> p IN B ==> q IN B`,
  DISCH_TAC THEN REPEAT GEN_TAC THEN EQ_TAC THENL
   [FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_DEDUCTION th]) THEN
    DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` STRIP_ASSUME_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `A2:form->bool` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `(A1:form->bool) UNION A2` THEN
    ASM_REWRITE_TAC[FINITE_UNION] THEN
    CONJ_TAC THENL [ASSUM_LIST SET_TAC; ALL_TAC] THEN
    UNDISCH_TAC `!v. (!q. q IN A2 ==> pholds v q) ==> pholds v p` THEN
    UNDISCH_TAC `!v. (!q. q IN A1 ==> pholds v q) ==> pholds v (p --> q)` THEN
    REWRITE_TAC[entails; IN_UNION; PHOLDS] THEN MESON_TAC[];
    GEN_REWRITE_TAC LAND_CONV [TAUT `p ==> q <=> ~p \/ q`] THEN
    FIRST_ASSUM(fun th -> REWRITE_TAC
     [GSYM(MATCH_MP FINSAT_MAX_COMPLETE_STRONG th)]) THEN
    FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_DEDUCTION th]) THEN
    STRIP_TAC THEN EXISTS_TAC `A:form->bool` THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
    REWRITE_TAC[PHOLDS] THEN MESON_TAC[]]);;

let COMPACT_PROP = prove
 (`(!B. FINITE(B) /\ B SUBSET A
        ==> ?d. !r. r IN B ==> pholds(d) r)
   ==> ?d. !r. r IN A ==> pholds(d) r`,
  STRIP_TAC THEN
  SUBGOAL_THEN `finsat(A)` (MP_TAC o MATCH_MP FINSAT_MAX) THENL
   [REWRITE_TAC[finsat; psatisfiable] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:form->bool` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
  EXISTS_TAC `\p:form. p IN B` THEN
  SUBGOAL_THEN `!r. pholds (\p. p IN B) r <=> r IN B`
   (fun th -> ASM_MESON_TAC[th; SUBSET]) THEN
  MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[pholds] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_MAX_CONSISTENT th]) THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_MAX_HOMO th]) THEN
  SIMP_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Important variant used in proving Uniformity for FOL.                     *)
(* ------------------------------------------------------------------------- *)

let COMPACT_PROP_ALT = prove
 (`!A. (!d. ?p. p IN A /\ pholds d p)
       ==> ?B. FINITE(B) /\ B SUBSET A /\ (!d. ?p. p IN B /\ pholds d p)`,
  GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `~(?d. !r. r IN { Not q | q IN A } ==> pholds(d) r)`
  MP_TAC THENL
   [REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; NOT_IMP] THEN
    REWRITE_TAC[IN_ELIM_THM; Not_DEF] THEN ASM_MESON_TAC[pholds]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP
   (GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] COMPACT_PROP)) THEN
  REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; NOT_IMP] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `{ r | Not r IN B }` THEN ASM_REWRITE_TAC[] THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC FINITE_IMAGE_INJ THEN
    ASM_REWRITE_TAC[IN_ELIM_THM] THEN
    REWRITE_TAC[Not_DEF; form_INJ];
    UNDISCH_TAC `B SUBSET {Not q | q IN A}` THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
    DISCH_TAC THEN CONJ_TAC THENL
     [GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
      REWRITE_TAC[Not_DEF; form_INJ] THEN MESON_TAC[];
      ASM_MESON_TAC[el 3 (CONJUNCTS PHOLDS)]]]);;

let FINITE_DISJ_LEMMA = prove
 (`!A. FINITE(A) ==> ?ps. ALL (\p. p IN A) ps /\
                          !d. pholds(d) (ITLIST (||) ps False) <=>
                              ?p. p IN A /\ pholds d p`,
  MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
   [EXISTS_TAC `[] :form list` THEN REWRITE_TAC[ALL; ITLIST] THEN
    REWRITE_TAC[pholds; NOT_IN_EMPTY];
    X_GEN_TAC `q:form` THEN X_GEN_TAC `s:form->bool` THEN
    DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `CONS (q:form) ps` THEN REWRITE_TAC[ALL; ITLIST] THEN
    ASM_REWRITE_TAC[PHOLDS; IN_INSERT] THEN CONJ_TAC THENL
     [MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\p:form. p IN s` THEN
      ASM_REWRITE_TAC[] THEN MESON_TAC[];
      MESON_TAC[]]]);;

let COMPACT_DISJ = prove
 (`!A. (!d. ?p. p IN A /\ pholds d p)
       ==> ?ps. ALL (\p. p IN A) ps /\
                !d. pholds(d) (ITLIST (||) ps False)`,
  GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP COMPACT_PROP_ALT) THEN
  DISCH_THEN(X_CHOOSE_THEN `B:form->bool` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC o
    MATCH_MP FINITE_DISJ_LEMMA) THEN
  EXISTS_TAC `ps:form list` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\p:form. p IN B` THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET]);;