Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 30,749 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
(* ========================================================================= *)
(* Conversion to prenex form.                                                *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Quantifier-free formulas.                                                 *)
(* ------------------------------------------------------------------------- *)

let qfree = new_recursive_definition form_RECURSION
  `(qfree False <=> T) /\
   (qfree (Atom n l) <=> T) /\
   (qfree (p --> q) <=> qfree p /\ qfree q) /\
   (qfree (!!x p) <=> F)`;;

let QFREE = prove
 (`(qfree False <=> T) /\
   (qfree True <=> T) /\
   (!a l. qfree (Atom a l) <=> T) /\
   (!p. qfree (Not p) <=> qfree p) /\
   (!p q. qfree (p || q) <=> qfree p /\ qfree q) /\
   (!p q. qfree (p && q) <=> qfree p /\ qfree q) /\
   (!p q. qfree (p --> q) <=> qfree p /\ qfree q) /\
   (!p q. qfree (p <-> q) <=> qfree p /\ qfree q) /\
   (!x p. qfree (!! x p) <=> F) /\
   (!x p. qfree (?? x p) <=> F)`,
  REWRITE_TAC[Not_DEF; True_DEF; Or_DEF; And_DEF;
              Iff_DEF; Exists_DEF; qfree; CONJ_ACI]);;

let QFREE_FORMSUBST = prove
 (`!p v. qfree (formsubst v p) <=> qfree p`,
  MATCH_MP_TAC form_INDUCTION THEN
  ASM_REWRITE_TAC[formsubst; qfree; LET_DEF; LET_END_DEF] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;

let QFREE_BV_EMPTY = prove
 (`!p. qfree(p) <=> (BV(p) = EMPTY)`,
  MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree; BV] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[EMPTY_UNION] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_INSERT; NOT_IN_EMPTY]) THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Prenex and prenex universal formulas.                                     *)
(* ------------------------------------------------------------------------- *)

let prenex_RULES,prenex_INDUCT,prenex_CASES = new_inductive_definition
  `(!p. qfree p ==> prenex p) /\
   (!x p. prenex p ==> prenex (!!x p)) /\
   (!x p. prenex p ==> prenex (??x p))`;;

let universal_RULES,universal_INDUCT,universal_CASES =
  new_inductive_definition
  `(!p. qfree p ==> universal p) /\
   (!x p. universal p ==> universal (!!x p))`;;

let prenex_INDUCT_NOT = prove
 (`!P. (!p. qfree p ==> P p) /\
       (!x p. P p ==> P (!! x p)) /\
       (!x p. P p ==> P (Not p))
       ==> !a. prenex a ==> P a`,
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC prenex_INDUCT THEN
  REWRITE_TAC[Exists_DEF] THEN ASM_MESON_TAC[]);;

let PRENEX = prove
 (`(prenex False <=> T) /\
   (prenex True <=> T) /\
   (!a l. prenex (Atom a l) <=> T) /\
   (!p. prenex (Not p) <=> qfree p \/ (?q x. (Not p = ??x q) /\ prenex q)) /\
   (!p q. prenex (p || q) <=> qfree p /\ qfree q) /\
   (!p q. prenex (p && q) <=> qfree p /\ qfree q) /\
   (!p q. prenex (p --> q) <=> qfree p /\ qfree q \/
                             (?r x. (p --> q = ??x r) /\ prenex r)) /\
   (!p q. prenex (p <-> q) <=> qfree p /\ qfree q) /\
   (!x p. prenex (!! x p) <=> prenex p) /\
   (!x p. prenex (?? x p) <=> prenex p)`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [prenex_CASES] THEN
  REWRITE_TAC[True_DEF; Not_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF] THEN
  REWRITE_TAC[form_DISTINCT; form_INJ; QFREE; CONJ_ACI] THEN
  MESON_TAC[]);;

let FORMSUBST_STRUCTURE_LEMMA = prove
 (`!p i. ((formsubst i p = False) <=> (p = False)) /\
         ((?a l. formsubst i p = Atom a l) <=> (?a l. p = Atom a l)) /\
         ((?q r. formsubst i p = q --> r) <=> (?q r. p = q --> r)) /\
         ((?x q. formsubst i p = !!x q) <=> (?x q. p = !!x q))`,
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[formsubst; LET_DEF; LET_END_DEF] THEN
  REWRITE_TAC[form_DISTINCT; form_INJ] THEN REPEAT STRIP_TAC THEN
  MESON_TAC[]);;

let FORMSUBST_STRUCTURE_NOT = prove
 (`!p i. (?q. formsubst i p = Not q) <=> (?q. p = Not q)`,
  REWRITE_TAC[Not_DEF; FORMSUBST_STRUCTURE_LEMMA] THEN
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `q:form`) THENL
   [MP_TAC(el 2 (CONJUNCTS (SPEC_ALL FORMSUBST_STRUCTURE_LEMMA))) THEN
    DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    DISCH_THEN(MP_TAC o SPECL [`q:form`; `False`]) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(REPEAT_TCL CHOOSE_THEN SUBST_ALL_TAC) THEN
    POP_ASSUM MP_TAC THEN
    REWRITE_TAC[formsubst; FORMSUBST_STRUCTURE_LEMMA; form_INJ] THEN
    MESON_TAC[];
    ASM_REWRITE_TAC[formsubst] THEN MESON_TAC[]]);;

let FORMSUBST_STRUCTURE_EXISTS = prove
 (`!p i. (?x q. formsubst i p = ??x q) <=> (?x q. p = ??x q)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[Exists_DEF] THEN EQ_TAC THEN STRIP_TAC THENL
   [ALL_TAC; ASM_REWRITE_TAC[Not_DEF; formsubst; LET_DEF; LET_END_DEF] THEN
             MESON_TAC[]] THEN
  MP_TAC(fst(EQ_IMP_RULE(SPEC_ALL FORMSUBST_STRUCTURE_NOT))) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  DISCH_THEN(MP_TAC o SPEC `!! x (Not q)`) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `r:form` SUBST_ALL_TAC) THEN
  POP_ASSUM MP_TAC THEN
  REWRITE_TAC[formsubst; Not_DEF; form_INJ; LET_DEF; LET_END_DEF] THEN
  REWRITE_TAC[GSYM Not_DEF] THEN DISCH_TAC THEN
  MP_TAC(fst(EQ_IMP_RULE(last(CONJUNCTS(SPEC_ALL(SPEC `r:form`
    FORMSUBST_STRUCTURE_LEMMA)))))) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  DISCH_THEN(MP_TAC o SPECL [`x:num`; `Not q`]) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `y:num` (X_CHOOSE_THEN `s:form` SUBST_ALL_TAC)) THEN
  POP_ASSUM MP_TAC THEN
  REWRITE_TAC[formsubst; Not_DEF; form_INJ; LET_DEF; LET_END_DEF] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[GSYM Not_DEF] THEN MESON_TAC[FORMSUBST_STRUCTURE_NOT]);;

let PRENEX_FORMSUBST_LEMMA = prove
 (`!p. prenex p ==> !i q. (p = formsubst i q) ==> prenex q`,
  MATCH_MP_TAC prenex_INDUCT THEN REPEAT CONJ_TAC THENL
   [MESON_TAC[QFREE_FORMSUBST; prenex_RULES];
    REPEAT STRIP_TAC THEN
    MP_TAC(SPECL [`q:form`; `i:num->term`] FORMSUBST_STRUCTURE_LEMMA) THEN
    DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE o last o CONJUNCTS) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    DISCH_THEN(MP_TAC o SPECL [`x:num`; `p:form`]) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN
     (X_CHOOSE_THEN `y:num` (X_CHOOSE_THEN `r:form` SUBST_ALL_TAC)) THEN
    UNDISCH_TAC `!! x p = formsubst i (!! y r)` THEN
    REWRITE_TAC[formsubst; form_INJ; PRENEX; LET_DEF; LET_END_DEF] THEN
    ASM_MESON_TAC[];
    REPEAT STRIP_TAC THEN
    MP_TAC(SPECL [`q:form`; `i:num->term`] FORMSUBST_STRUCTURE_EXISTS) THEN
    DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE o last o CONJUNCTS) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    DISCH_THEN(MP_TAC o SPECL [`x:num`; `p:form`]) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN
     (X_CHOOSE_THEN `y:num` (X_CHOOSE_THEN `r:form` SUBST_ALL_TAC)) THEN
    UNDISCH_TAC `?? x p = formsubst i (?? y r)` THEN
    REWRITE_TAC[PRENEX] THEN
    REWRITE_TAC[Exists_DEF; Not_DEF; formsubst; form_INJ; LET_DEF; LET_END_DEF] THEN
    ASM_MESON_TAC[]]);;

let PRENEX_FORMSUBST = prove
 (`!p i. prenex(formsubst i p) = prenex p`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [MESON_TAC[PRENEX_FORMSUBST_LEMMA];
    SPEC_TAC(`i:num->term`,`i:num->term`) THEN
    REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
    SPEC_TAC(`p:form`,`p:form`) THEN
    MATCH_MP_TAC prenex_INDUCT THEN
    REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC[formsubst; LET_DEF; LET_END_DEF] THENL
     [ASM_MESON_TAC[QFREE_FORMSUBST; prenex_RULES];
      ASM_REWRITE_TAC[PRENEX];
      REWRITE_TAC[formsubst; Not_DEF; Exists_DEF; LET_DEF; LET_END_DEF] THEN
      REWRITE_TAC[GSYM Not_DEF; GSYM Exists_DEF] THEN
      ASM_REWRITE_TAC[PRENEX]]]);;

(* ------------------------------------------------------------------------- *)
(* It's more convenient to argue by non-structural induction here.           *)
(* ------------------------------------------------------------------------- *)

let size = new_recursive_definition form_RECURSION
  `(size False = 1) /\
   (size (Atom p l) = 1) /\
   (size (q --> r) = size q + size r) /\
   (size (!!x q) = 1 + size q)`;;

let SIZE = prove
 (`(size False = 1) /\
   (size True = 2) /\
   (!a l. size (Atom a l) = 1) /\
   (!p. size (Not p) = 1 + size p) /\
   (!p q. size (p || q) = size p + 2 * size q) /\
   (!p q. size (p && q) = size p + 2 * size q + 4) /\
   (!p q. size (p --> q) = size p + size q) /\
   (!p q. size (p <-> q) = 3 * size p + 3 * size q + 4) /\
   (!x p.size (!! x p) = 1 + size p) /\
   (!x p. size (?? x p) = 3 + size p)`,
  REWRITE_TAC[True_DEF; Not_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; size] THEN
  REPEAT STRIP_TAC THEN ARITH_TAC);;

let SIZE_FORMSUBST = prove
 (`!p i. size (formsubst i p) = size p`,
  MATCH_MP_TAC form_INDUCTION THEN
  ASM_REWRITE_TAC[formsubst; size; LET_END_DEF; LET_DEF] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Constructive prenexing procedure.                                         *)
(* ------------------------------------------------------------------------- *)

let PPAT_DEF = new_definition
  `PPAT A B C r =
     if ?x p. r = !!x p then
                    A (@x. ?p. r = !!x p)
                      (@p. r = !!(@x. ?p. r = !!x p) p)
                  else if ?x p. r = ??x p then
                    B (@x. ?p. r = ??x p)
                      (@p. r = ??(@x. ?p. r = ??x p) p)
                  else C r`;;

let PRENEX_DISTINCT = prove
 (`!x y p q. ((!!x p = !!y q) <=> (x = y) /\ (p = q)) /\
             ((??x p = ??y q) <=> (x = y) /\ (p = q)) /\
             ~(!!x p = ??y q)`,
  REWRITE_TAC[Exists_DEF; Not_DEF; form_DISTINCT; form_INJ]);;

let PPAT = prove
 (`!A B C. (!x p. PPAT A B C (!!x p) = A x p :A) /\
           (!x p. PPAT A B C (??x p) = B x p) /\
           !r. ~(?x p. r = !!x p) /\ ~(?x p. r = ??x p)
               ==> (PPAT A B C  r = C r)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[PPAT_DEF] THEN REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[PRENEX_DISTINCT] THEN
  (COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
              SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
                                (SPEC_ALL SELECT_REFL)]);;

let SIZE_REC = prove
 (`!H. (!f g x. (!z. size z < size x ==> (f z = g z)) ==> (H f x = H g x))
       ==> (?f. !x. f x = H f x)`,
  MATCH_MP_TAC WF_REC THEN
  REWRITE_TAC[REWRITE_RULE[MEASURE] WF_MEASURE]);;

let PRENEX_RIGHT_EXISTENCE = prove
 (`?Prenex_right.
        (!p x q. Prenex_right p (!!x q) =
                   let y = VARIANT(FV(p) UNION FV(!!x q)) in
                   !!y (Prenex_right p (formsubst (valmod (x,V y) V) q))) /\
        (!p x q. Prenex_right p (??x q) =
                   let y = VARIANT(FV(p) UNION FV(??x q)) in
                   ??y (Prenex_right p (formsubst (valmod (x,V y) V) q))) /\
        (!p q. qfree q ==> (Prenex_right p q = p --> q))`,
  SUBGOAL_THEN
   `!p. ?Prenex_right. !r. Prenex_right r =
           PPAT (\x q. let y = VARIANT(FV(p) UNION FV(!!x q)) in
                 !!y (Prenex_right (formsubst (valmod (x,V y) V) q)))
                (\x q. let y = VARIANT(FV(p) UNION FV(??x q)) in
                 ??y (Prenex_right (formsubst (valmod (x,V y) V) q)))
                (\q. p --> q) r`
  MP_TAC THENL
   [GEN_TAC THEN MATCH_MP_TAC SIZE_REC THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[PPAT_DEF] THEN
    ASM_CASES_TAC `?x p. r = !!x p` THEN ASM_REWRITE_TAC[] THENL
     [FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN
      REWRITE_TAC[form_DISTINCT; form_INJ] THEN
      REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
              SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
                                (SPEC_ALL SELECT_REFL)] THEN
      REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
      AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
      REWRITE_TAC[SIZE_FORMSUBST; SIZE] THEN ARITH_TAC; ALL_TAC] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN
    REWRITE_TAC[PRENEX_DISTINCT] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
              SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
                                (SPEC_ALL SELECT_REFL)] THEN
    REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
    AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[SIZE_FORMSUBST; SIZE] THEN ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [SKOLEM_THM]) THEN
  DISCH_THEN(X_CHOOSE_TAC `Prenex_right:form->form->form`) THEN
  EXISTS_TAC `Prenex_right:form->form->form` THEN
  REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN TRY DISCH_TAC THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
  REWRITE_TAC[PPAT] THEN
  UNDISCH_TAC `qfree q` THEN REWRITE_TAC[PPAT_DEF] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  COND_CASES_TAC THENL [POP_ASSUM(STRIP_ASSUME_TAC) THEN
                        ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
  COND_CASES_TAC THENL [POP_ASSUM(STRIP_ASSUME_TAC) THEN
                        ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
  REWRITE_TAC[]);;

let PRENEX_RIGHT = new_specification ["Prenex_right"] PRENEX_RIGHT_EXISTENCE;;

let PRENEX_LEFT_EXISTENCE = prove
 (`?Prenex_left.
        (!p x q. Prenex_left (!!x q) p =
                   let y = VARIANT(FV(!!x q) UNION FV(p)) in
                   ??y (Prenex_left (formsubst (valmod (x,V y) V) q) p)) /\
        (!p x q. Prenex_left (??x q) p =
                   let y = VARIANT(FV(??x q) UNION FV(p)) in
                   !!y (Prenex_left (formsubst (valmod (x,V y) V) q) p)) /\
        (!p q. qfree q ==> (Prenex_left q p = Prenex_right q p))`,
  SUBGOAL_THEN
   `!p. ?Prenex_left. !r. Prenex_left r =
           PPAT (\x q. let y = VARIANT(FV(!!x q) UNION FV(p)) in
                 ??y (Prenex_left (formsubst (valmod (x,V y) V) q)))
                (\x q. let y = VARIANT(FV(??x q) UNION FV(p)) in
                 !!y (Prenex_left (formsubst (valmod (x,V y) V) q)))
                (\q. Prenex_right q p) r`
  MP_TAC THENL
   [GEN_TAC THEN MATCH_MP_TAC SIZE_REC THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[PPAT_DEF] THEN
    ASM_CASES_TAC `?x p. r = !!x p` THEN ASM_REWRITE_TAC[] THENL
     [FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN
      REWRITE_TAC[form_DISTINCT; form_INJ] THEN
      REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
              SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
                                (SPEC_ALL SELECT_REFL)] THEN
      REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
      AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
      REWRITE_TAC[SIZE_FORMSUBST; SIZE] THEN ARITH_TAC; ALL_TAC] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN
    REWRITE_TAC[PRENEX_DISTINCT] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
              SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
                                (SPEC_ALL SELECT_REFL)] THEN
    REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
    AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[SIZE_FORMSUBST; SIZE] THEN ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [SKOLEM_THM]) THEN
  DISCH_THEN(X_CHOOSE_TAC `Prenex_left:form->form->form`) THEN
  EXISTS_TAC `\q p. (Prenex_left:form->form->form) p q` THEN
  REWRITE_TAC[] THEN
  REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN TRY DISCH_TAC THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
  REWRITE_TAC[PPAT] THEN
  UNDISCH_TAC `qfree q` THEN REWRITE_TAC[PPAT_DEF] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  COND_CASES_TAC THENL [POP_ASSUM(STRIP_ASSUME_TAC) THEN
                        ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
  COND_CASES_TAC THENL [POP_ASSUM(STRIP_ASSUME_TAC) THEN
                        ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
  REWRITE_TAC[]);;

let PRENEX_LEFT = new_specification ["Prenex_left"] PRENEX_LEFT_EXISTENCE;;

let Prenex_DEF = new_recursive_definition form_RECURSION
  `(Prenex False = False) /\
   (Prenex (Atom a l) = Atom a l) /\
   (Prenex (p --> q) = Prenex_left (Prenex p) (Prenex q)) /\
   (Prenex (!!x p) = !!x (Prenex p))`;;

(* ------------------------------------------------------------------------- *)
(* Proof that it does indeed prenex.                                         *)
(* ------------------------------------------------------------------------- *)

let PRENEX_RIGHT_FORALL = prove
 (`~(Dom M :A->bool = EMPTY)
   ==> (holds M v (p --> !!x q) <=>
        holds M v (!! (VARIANT (FV(p) UNION FV(!!x q)))
                      (p --> formsubst (valmod
                               (x,V(VARIANT (FV(p) UNION FV(!!x q)))) V) q)))`,
  DISCH_TAC THEN
  ABBREV_TAC `y = VARIANT (FV(p) UNION FV(!!x q))` THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `holds M (v:num->A)
                    (p --> !!y (formsubst (valmod (x,V y) V) q))` THEN
  SUBGOAL_THEN `~(y IN FV(p)) /\ ~(y IN FV(!!x q))` STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM IN_UNION] THEN
    EXPAND_TAC "y" THEN REWRITE_TAC[VARIANT_THM; GSYM FV]; ALL_TAC] THEN
  CONJ_TAC THENL
   [ONCE_REWRITE_TAC[holds] THEN
    MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
    DISCH_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN
    AP_TERM_TAC THEN ABS_TAC THEN
    MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
    DISCH_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN
    X_GEN_TAC `z:num` THEN DISCH_TAC THEN
    REWRITE_TAC[valmod; o_THM] THEN
    COND_CASES_TAC THEN REWRITE_TAC[termval] THEN
    COND_CASES_TAC THEN REWRITE_TAC[] THEN
    UNDISCH_TAC `~(y IN FV(!!x q))` THEN
    ASM_REWRITE_TAC[FV; IN_DELETE] THEN ASM_MESON_TAC[];
    REWRITE_TAC[HOLDS] THEN
    SUBGOAL_THEN `!v a:A. holds M (valmod (y,a) v) p = holds M v p`
    (fun th -> REWRITE_TAC[th]) THENL
    [ALL_TAC; ASM_CASES_TAC `holds M (v:num->A) p` THEN ASM_REWRITE_TAC[]] THEN
    REPEAT GEN_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN
    GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[]]);;

let PRENEX_RIGHT_EXISTS = prove
 (`~(Dom M :A->bool = EMPTY)
   ==> (holds M v (p --> ??x q) <=>
        holds M v (?? (VARIANT (FV(p) UNION FV(??x q)))
                      (p --> formsubst (valmod
                               (x,V(VARIANT (FV(p) UNION FV(??x q)))) V) q)))`,
  DISCH_TAC THEN
  ABBREV_TAC `y = VARIANT (FV(p) UNION FV(??x q))` THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `holds M (v:num->A)
                    (p --> ??y (formsubst (valmod (x,V y) V) q))` THEN
  SUBGOAL_THEN `~(y IN FV(p)) /\ ~(y IN FV(??x q))` STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM IN_UNION] THEN
    EXPAND_TAC "y" THEN REWRITE_TAC[VARIANT_THM; GSYM FV]; ALL_TAC] THEN
  CONJ_TAC THENL
   [ONCE_REWRITE_TAC[holds] THEN
    MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
    DISCH_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN
    AP_TERM_TAC THEN ABS_TAC THEN
    MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a /\ b) <=> (a /\ c))`) THEN
    DISCH_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN
    X_GEN_TAC `z:num` THEN DISCH_TAC THEN
    REWRITE_TAC[valmod; o_THM] THEN
    COND_CASES_TAC THEN REWRITE_TAC[termval] THEN
    COND_CASES_TAC THEN REWRITE_TAC[] THEN
    UNDISCH_TAC `~(y IN FV(??x q))` THEN
    ASM_REWRITE_TAC[FV; Not_DEF; Exists_DEF; UNION_EMPTY; IN_DELETE] THEN
    ASM_MESON_TAC[];
    REWRITE_TAC[HOLDS] THEN
    SUBGOAL_THEN `!v a:A. holds M (valmod (y,a) v) p = holds M v p`
    (fun th -> REWRITE_TAC[th]) THENL
     [REPEAT GEN_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN
      GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
      ASM_REWRITE_TAC[];
      ASM_CASES_TAC `holds M (v:num->A) p` THEN ASM_REWRITE_TAC[] THEN
      ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]]]);;

let PRENEX_DUALITY_LEMMAS = prove
 (`(holds M v (??x p --> q) <=> holds M v (Not q --> !!x (Not p))) /\
   (holds M v (!!x p --> q) <=> holds M v (Not q --> ??x (Not p)))`,
  REWRITE_TAC[HOLDS] THEN MESON_TAC[]);;

let PRENEX_LEFT_FORALL = prove
 (`~(Dom M :A->bool = EMPTY)
   ==> (holds M v (!!x p --> q) <=>
        holds M v (?? (VARIANT (FV(!!x p) UNION FV(q)))
                      (formsubst (valmod
                        (x,V(VARIANT (FV(!!x p) UNION FV(q)))) V) p --> q)))`,
  DISCH_TAC THEN REWRITE_TAC[PRENEX_DUALITY_LEMMAS] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP PRENEX_RIGHT_EXISTS th]) THEN
  REWRITE_TAC[Exists_DEF; Not_DEF; FV; UNION_EMPTY; UNION_COMM] THEN
  REWRITE_TAC[holds; formsubst; TAUT `(~a ==> ~b) <=> (b ==> a)`]);;

let PRENEX_LEFT_EXISTS = prove
 (`~(Dom M :A->bool = EMPTY)
   ==> (holds M v (??x p --> q) <=>
        holds M v (!! (VARIANT (FV(??x p) UNION FV(q)))
                      (formsubst (valmod
                        (x,V(VARIANT (FV(??x p) UNION FV(q)))) V) p --> q)))`,
  DISCH_TAC THEN REWRITE_TAC[PRENEX_DUALITY_LEMMAS] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP PRENEX_RIGHT_FORALL th]) THEN
  REWRITE_TAC[Exists_DEF; Not_DEF; FV; UNION_EMPTY; UNION_COMM] THEN
  REWRITE_TAC[holds; formsubst; TAUT `(~a ==> ~b) <=> (b ==> a)`]);;

(* ------------------------------------------------------------------------- *)
(* Extras about free variables.                                              *)
(* ------------------------------------------------------------------------- *)

let PRENEX_RIGHT_FORALL_FV = prove
 (`FV(p --> !!x q) = FV(!! (VARIANT (FV(p) UNION FV(!!x q)))
                           (p --> formsubst (valmod
                              (x,V(VARIANT (FV(p) UNION FV(!!x q)))) V) q))`,
  let lemma = prove
   (`(s UNION t) DELETE x = (s DELETE x) UNION (t DELETE x)`,SET_TAC[]) in
  REWRITE_TAC[FV; FORMSUBST_RENAME; lemma] THEN
  MP_TAC(SPEC `p --> !!x q` VARIANT_THM) THEN
  REWRITE_TAC[EXTENSION; FV; IN_UNION; IN_DELETE] THEN MESON_TAC[]);;

let PRENEX_RIGHT_EXISTS_FV = prove
 (`FV(p --> ??x q) =
   FV(?? (VARIANT (FV(p) UNION FV(??x q)))
           (p --> formsubst (valmod
                   (x,V(VARIANT (FV(p) UNION FV(??x q)))) V) q))`,
  let lemma = prove
   (`(s UNION t) DELETE x = (s DELETE x) UNION (t DELETE x)`,SET_TAC[]) in
  REWRITE_TAC[FV; FV_EXISTS; FORMSUBST_RENAME; lemma] THEN
  MP_TAC(SPEC `p --> ??x q` VARIANT_THM) THEN
  REWRITE_TAC[EXTENSION; FV; FV_EXISTS; IN_UNION; IN_DELETE] THEN
  MESON_TAC[]);;

let PRENEX_LEFT_FORALL_FV = prove
 (`FV(!!x p --> q) =
   FV(?? (VARIANT (FV(!!x p) UNION FV(q)))
                      (formsubst (valmod
                        (x,V(VARIANT (FV(!!x p) UNION FV(q)))) V) p --> q))`,
  let lemma = prove
   (`(s UNION t) DELETE x = (s DELETE x) UNION (t DELETE x)`,SET_TAC[]) in
  REWRITE_TAC[FV; FV_EXISTS; FORMSUBST_RENAME; lemma] THEN
  MP_TAC(SPEC `!!x p --> q` VARIANT_THM) THEN
  REWRITE_TAC[EXTENSION; FV; FV_EXISTS; IN_UNION; IN_DELETE] THEN
  MESON_TAC[]);;

let PRENEX_LEFT_EXISTS_FV = prove
 (`FV(??x p --> q) =
   FV(!! (VARIANT (FV(??x p) UNION FV(q)))
                      (formsubst (valmod
                        (x,V(VARIANT (FV(??x p) UNION FV(q)))) V) p --> q))`,
  let lemma = prove
   (`(s UNION t) DELETE x = (s DELETE x) UNION (t DELETE x)`,SET_TAC[]) in
  REWRITE_TAC[FV; FV_EXISTS; FORMSUBST_RENAME; lemma] THEN
  MP_TAC(SPEC `??x p --> q` VARIANT_THM) THEN
  REWRITE_TAC[EXTENSION; FV; FV_EXISTS; IN_UNION; IN_DELETE] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* And extras about the language.                                            *)
(* ------------------------------------------------------------------------- *)

let PRENEX_RIGHT_FORALL_LANGUAGE = prove
 (`language {(p --> !!x q)} = language {(!! (VARIANT (FV(p) UNION FV(!!x q)))
                           (p --> formsubst (valmod
                              (x,V(VARIANT (FV(p) UNION FV(!!x q)))) V) q))}`,
  REWRITE_TAC[LANGUAGE_1; functions_form; predicates_form] THEN
  REWRITE_TAC[REWRITE_RULE[PAIR_EQ; LANGUAGE_1] FORMSUBST_LANGUAGE_RENAME]);;

let PRENEX_RIGHT_EXISTS_LANGUAGE = prove
 (`language {(p --> ??x q)} =
   language {(?? (VARIANT (FV(p) UNION FV(??x q)))
           (p --> formsubst (valmod
                   (x,V(VARIANT (FV(p) UNION FV(??x q)))) V) q))}`,
  REWRITE_TAC[LANGUAGE_1; functions_form; predicates_form;
              Exists_DEF; Not_DEF; UNION_EMPTY] THEN
  REWRITE_TAC[REWRITE_RULE[PAIR_EQ; LANGUAGE_1] FORMSUBST_LANGUAGE_RENAME]);;

let PRENEX_LEFT_FORALL_LANGUAGE = prove
 (`language {(!!x p --> q)} =
   language {(?? (VARIANT (FV(!!x p) UNION FV(q)))
                      (formsubst (valmod
                        (x,V(VARIANT (FV(!!x p) UNION FV(q)))) V) p --> q))}`,
  REWRITE_TAC[LANGUAGE_1; functions_form; predicates_form;
              Exists_DEF; Not_DEF; UNION_EMPTY] THEN
  REWRITE_TAC[REWRITE_RULE[PAIR_EQ; LANGUAGE_1] FORMSUBST_LANGUAGE_RENAME]);;

let PRENEX_LEFT_EXISTS_LANGUAGE = prove
 (`language {(??x p --> q)} =
   language {(!! (VARIANT (FV(??x p) UNION FV(q)))
                      (formsubst (valmod
                        (x,V(VARIANT (FV(??x p) UNION FV(q)))) V) p --> q))}`,
  REWRITE_TAC[LANGUAGE_1; functions_form; predicates_form;
              Exists_DEF; Not_DEF; UNION_EMPTY] THEN
  REWRITE_TAC[REWRITE_RULE[PAIR_EQ; LANGUAGE_1] FORMSUBST_LANGUAGE_RENAME]);;

(* ------------------------------------------------------------------------- *)
(* Proofs that things work properly.                                         *)
(* ------------------------------------------------------------------------- *)

let PRENEX_LEMMA_FORALL = prove
 (`P /\
   (FV r1 = FV r2) /\
   (language {r1} = language {r2}) /\
   (!M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v p <=> holds M v q))
   ==> P /\
       (FV(!!z r1) = FV(!!z r2)) /\
       (language {(!!z r1)} = language {(!!z r2)}) /\
       !M v. ~(Dom M :A->bool = EMPTY)
               ==> (holds M v (!!x p) <=> holds M v (!!x q))`,
  REWRITE_TAC[LANGUAGE_1; PAIR_EQ] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[FV; functions_form; predicates_form] THEN
  ASM_SIMP_TAC[HOLDS]);;

let PRENEX_LEMMA_EXISTS = prove
 (`P /\
   (FV r1 = FV r2) /\
   (language {r1} = language {r2}) /\
   (!M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v p <=> holds M v q))
   ==> P /\
       (FV(??z r1) = FV(??z r2)) /\
       (language {(??z r1)} = language {(??z r2)}) /\
       !M v. ~(Dom M :A->bool = EMPTY)
               ==> (holds M v (??x p) <=> holds M v (??x q))`,
  REWRITE_TAC[LANGUAGE_1; PAIR_EQ] THEN
  STRIP_TAC THEN
  ASM_REWRITE_TAC[FV; FV_EXISTS] THEN
  ASM_SIMP_TAC[HOLDS] THEN
  ASM_REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; predicates_form]);;

let PRENEX_RIGHT_THM = prove
 (`!p q. qfree p /\ prenex q
         ==> prenex (Prenex_right p q) /\
             (FV(Prenex_right p q) = FV(p --> q)) /\
             (language {(Prenex_right p q)} = language {(p --> q)}) /\
             (!M v. ~(Dom M :A->bool = EMPTY)
                    ==> (holds M v (Prenex_right p q) <=>
                         holds M v (p --> q)))`,
  SUBGOAL_THEN
   `!p. qfree p
        ==> !n q. prenex(q) /\ (size(q) = n)
                  ==> prenex (Prenex_right p q) /\
                      (FV(Prenex_right p q) = FV(p --> q)) /\
                      (language {(Prenex_right p q)} = language {(p --> q)}) /\
                      (!M v. ~(Dom M :A->bool = EMPTY)
                              ==> (holds M v (Prenex_right p q) <=>
                                   holds M v (p --> q)))`
  (fun th -> MESON_TAC[th]) THEN
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN STRIP_TAC THEN
  FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [prenex_CASES]) THENL
   [ASM_SIMP_TAC [PRENEX_RIGHT; PRENEX]; ALL_TAC; ALL_TAC] THEN
  ASM_REWRITE_TAC[PRENEX_RIGHT] THEN
  REWRITE_TAC[LET_DEF; LET_END_DEF; PRENEX] THEN
  SIMP_TAC [PRENEX_RIGHT_FORALL; PRENEX_RIGHT_EXISTS] THEN
  REWRITE_TAC[PRENEX_RIGHT_FORALL_FV; PRENEX_RIGHT_FORALL_LANGUAGE] THEN
  REWRITE_TAC[PRENEX_RIGHT_EXISTS_FV; PRENEX_RIGHT_EXISTS_LANGUAGE] THENL
   [MATCH_MP_TAC PRENEX_LEMMA_FORALL; MATCH_MP_TAC PRENEX_LEMMA_EXISTS] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM;
                              IMP_IMP]) THEN
  FIRST_ASSUM MATCH_MP_TAC THEN
  EXISTS_TAC `size p'` THEN
  REWRITE_TAC[PRENEX_FORMSUBST; SIZE_FORMSUBST] THEN
  UNDISCH_TAC `size q = n` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
  ASM_REWRITE_TAC[SIZE] THEN ARITH_TAC);;

let PRENEX_LEFT_THM = prove
 (`!p q. prenex p /\ prenex q
         ==> prenex (Prenex_left p q) /\
             (FV(Prenex_left p q) = FV(p --> q)) /\
             (language {(Prenex_left p q)} = language {(p --> q)}) /\
             (!M v. ~(Dom M :A->bool = EMPTY)
                    ==> (holds M v (Prenex_left p q) <=> holds M v (p --> q)))`,
  SUBGOAL_THEN
   `!q. prenex(q)
        ==> !n p. prenex(p) /\ (size(p) = n)
                  ==> prenex (Prenex_left p q) /\
                      (FV(Prenex_left p q) = FV(p --> q)) /\
                      (language {(Prenex_left p q)} = language {(p --> q)}) /\
                      (!M v. ~(Dom M :A->bool = EMPTY)
                              ==> (holds M v (Prenex_left p q) <=>
                                   holds M v (p --> q)))`
  (fun th -> MESON_TAC[th]) THEN
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN STRIP_TAC THEN
  FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [prenex_CASES]) THENL
   [ASM_SIMP_TAC [PRENEX_LEFT; PRENEX] THEN
    MATCH_MP_TAC PRENEX_RIGHT_THM THEN ASM_REWRITE_TAC[];
    ALL_TAC; ALL_TAC] THEN
  ASM_REWRITE_TAC[PRENEX_LEFT] THEN
  REWRITE_TAC[LET_DEF; LET_END_DEF; PRENEX] THEN
  SIMP_TAC [PRENEX_LEFT_FORALL; PRENEX_LEFT_EXISTS] THEN
  REWRITE_TAC[PRENEX_LEFT_FORALL_FV; PRENEX_LEFT_FORALL_LANGUAGE] THEN
  REWRITE_TAC[PRENEX_LEFT_EXISTS_FV; PRENEX_LEFT_EXISTS_LANGUAGE] THENL
   [MATCH_MP_TAC PRENEX_LEMMA_EXISTS; MATCH_MP_TAC PRENEX_LEMMA_FORALL] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM;
                              IMP_IMP]) THEN
  FIRST_ASSUM MATCH_MP_TAC THEN
  EXISTS_TAC `size p'` THEN
  REWRITE_TAC[PRENEX_FORMSUBST; SIZE_FORMSUBST] THEN
  UNDISCH_TAC `size p = n` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
  ASM_REWRITE_TAC[SIZE] THEN ARITH_TAC);;

let PRENEX_THM = prove
 (`!p. prenex(Prenex p) /\
       (FV(Prenex p) = FV(p)) /\
       (language {(Prenex p)} = language {p}) /\
       !M v. ~(Dom M = EMPTY)
             ==> (holds M (v:num->A) (Prenex p) <=> holds M v p)`,
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[PRENEX; Prenex_DEF] THEN REWRITE_TAC[HOLDS] THEN
  MP_TAC PRENEX_LEFT_THM THEN
  REWRITE_TAC[HOLDS; FV; LANGUAGE_1; PAIR_EQ] THEN
  REWRITE_TAC[functions_form; predicates_form] THEN
  MESON_TAC[]);;