Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 39,091 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
(* ========================================================================= *)
(* Prolog-style backchaining for definite and Horn clauses. *)
(* ========================================================================= *)
let SATISFIES_IMAGE = prove
(`M satisfies (IMAGE f s) <=>
!x v. valuation(M) v /\ x IN s ==> holds M v (f x)`,
REWRITE_TAC[satisfies; IN_IMAGE] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Definitions of definite and Horn clauses. *)
(* ------------------------------------------------------------------------- *)
let definite = new_definition
`definite(cl) <=> clause(cl) /\ (CARD {p | p IN cl /\ positive p} = 1)`;;
let horn = new_definition
`horn(cl) <=> clause(cl) /\ CARD {p | p IN cl /\ positive p} <= 1`;;
(* ------------------------------------------------------------------------- *)
(* Trivially, definite is a special case of Horn. *)
(* ------------------------------------------------------------------------- *)
let DEFINITE_IMP_HORN = prove
(`!cl. definite(cl) ==> horn(cl)`,
SIMP_TAC[definite; horn; LE_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Show first how to reduce the Horn case to the definite case. *)
(* ------------------------------------------------------------------------- *)
let falsify = new_definition
`falsify ff cl = if definite(cl) then cl else ff INSERT cl`;;
let FALSIFY_FINITE = prove
(`FINITE(cl) ==> FINITE(falsify ff cl)`,
REPEAT GEN_TAC THEN REWRITE_TAC[falsify] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[FINITE_RULES]);;
let FALSIFY_DEFINITE = prove
(`horn(cl) ==> definite(falsify (Atom P args) cl)`,
REPEAT GEN_TAC THEN REWRITE_TAC[falsify] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(definite cl)` THEN
REWRITE_TAC[horn; definite] THEN
ASM_CASES_TAC `clause cl` THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `{p | p IN Atom P args INSERT cl /\ positive p} =
(Atom P args) INSERT {p | p IN cl /\ positive p}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN
SUBGOAL_THEN `positive(Atom P args)` (fun th -> MESON_TAC[th]) THEN
REWRITE_TAC[positive; negative; ATOM] THEN
REWRITE_TAC[Not_DEF; form_DISTINCT]; ALL_TAC] THEN
DISCH_TAC THEN CONJ_TAC THENL
[REWRITE_TAC[clause; IN_INSERT; FINITE_INSERT] THEN
ASM_MESON_TAC[clause; literal; ATOM]; ALL_TAC] THEN
SUBGOAL_THEN `FINITE {p | p IN cl /\ positive p}` ASSUME_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `cl:form->bool` THEN
SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN
ASM_SIMP_TAC[CARD_CLAUSES] THEN COND_CASES_TAC THENL
[ALL_TAC;
MATCH_MP_TAC(ARITH_RULE `x <= 1 /\ ~(x = 1) ==> (SUC x = 1)`) THEN
ASM_REWRITE_TAC[]] THEN
UNDISCH_TAC `Atom P args IN {p | p IN cl /\ positive p}` THEN
SUBGOAL_THEN `{p | p IN cl /\ positive p} = {}`
(fun th -> REWRITE_TAC[th; NOT_IN_EMPTY]) THEN
ONCE_REWRITE_TAC[GSYM HAS_SIZE_0] THEN ASM_REWRITE_TAC[HAS_SIZE] THEN
MATCH_MP_TAC(ARITH_RULE `x <= 1 /\ ~(x = 1) ==> (x = 0)`) THEN
ASM_REWRITE_TAC[]);;
let HOLDS_FALSIFY = prove
(`FINITE(cl) /\ holds M v (interp cl)
==> holds M v (interp(falsify ff cl))`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[FALSIFY_FINITE; HOLDS_INTERP] THEN
REWRITE_TAC[falsify] THEN COND_CASES_TAC THEN SIMP_TAC[IN_INSERT] THEN
MESON_TAC[]);;
let REDUCE_HORN_DEFINITE = prove
(`(!c. c IN s ==> clause c) /\
~((Atom ff []) IN UNIONS s) /\ ~(Not(Atom ff []) IN UNIONS s)
==> (~(satisfiable (U:A->bool) (IMAGE interp s)) <=>
!M. ~(Dom M = {}) /\
M satisfies (IMAGE interp (IMAGE (falsify (Atom ff [])) s))
==> !v:num->A. valuation(M) v ==> holds M v (Atom ff []))`,
REWRITE_TAC[satisfiable] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[NOT_EXISTS_THM; GSYM IMAGE_o] THEN
REWRITE_TAC[SATISFIES_IMAGE] THEN EQ_TAC THENL
[MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
ASM_CASES_TAC `(Dom M):A->bool = {}` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[NOT_FORALL_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`cl:form->bool`; `v:num->A`] THEN
REWRITE_TAC[NOT_IMP] THEN STRIP_TAC THEN
DISCH_THEN(MP_TAC o SPECL [`cl:form->bool`; `v:num->A`]) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[o_THM; falsify] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `holds M (v:num->A) (interp (Atom ff [] INSERT cl)) <=>
holds M v (Atom ff []) \/ holds M v (interp cl)`
SUBST1_TAC THENL
[SUBGOAL_THEN `FINITE (cl:form->bool)` ASSUME_TAC THENL
[ASM_MESON_TAC[clause]; ALL_TAC] THEN
UNDISCH_TAC `~(holds M (v:num->A) (interp cl))` THEN
ASM_SIMP_TAC[HOLDS_INTERP; FINITE_INSERT; IN_INSERT] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
REWRITE_TAC[FV; NOT_IN_EMPTY; MAP; LIST_UNION]; ALL_TAC] THEN
DISCH_THEN(fun th -> GEN_TAC THEN DISCH_TAC THEN MP_TAC th) THEN
DISCH_THEN(MP_TAC o SPEC
`((Dom M):A->bool),Fun M,
(\p args. if (p = ff) /\ (args = []) then F else Pred M p args)`) THEN
REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[holds; Pred_DEF; MAP; NOT_FORALL_THM] THEN
MATCH_MP_TAC VALUATION_EXISTS THEN ASM_REWRITE_TAC[Dom_DEF]] THEN
ASM_REWRITE_TAC[Dom_DEF] THEN
MAP_EVERY X_GEN_TAC [`cl:form->bool`; `v:num->A`] THEN
SUBGOAL_THEN
`valuation(Dom M,Fun M,
(\p args. if (p = ff) /\ (args = []) then F else Pred M p args)) v =
valuation M (v:num->A)`
SUBST1_TAC THENL [REWRITE_TAC[valuation; Dom_DEF]; ALL_TAC] THEN
STRIP_TAC THEN
FIRST_X_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC
(MP_TAC o SPECL [`cl:form->bool`; `v:num->A`])) THEN
SUBGOAL_THEN `FINITE (cl:form->bool)` ASSUME_TAC THENL
[ASM_MESON_TAC[clause]; ALL_TAC] THEN
ASM_SIMP_TAC[o_THM; HOLDS_INTERP; FINITE_INSERT; IN_INSERT] THEN
DISCH_THEN(X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC HOLDS_FALSIFY THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[HOLDS_INTERP] THEN EXISTS_TAC `p:form` THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `holds M (v:num->A) p` THEN
MATCH_MP_TAC EQ_IMP THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC HOLDS_PREDICATES THEN
REWRITE_TAC[Fun_DEF; Dom_DEF; Pred_DEF] THEN
MAP_EVERY X_GEN_TAC [`r:num`; `zs:(A)list`] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH] THEN
MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN
SUBGOAL_THEN `~((Atom ff []) IN cl) /\ ~(Not(Atom ff []) IN cl)` MP_TAC THENL
[UNDISCH_TAC `~((Atom ff []) IN UNIONS s)` THEN
UNDISCH_TAC `~(Not(Atom ff []) IN UNIONS s)` THEN
REWRITE_TAC[IN_UNIONS] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[TAUT `~a /\ ~b ==> ~c <=> c ==> a \/ b`] THEN
SUBGOAL_THEN `literal p` MP_TAC THENL
[ASM_MESON_TAC[clause]; ALL_TAC] THEN
REWRITE_TAC[literal; ATOM] THEN
STRIP_TAC THEN UNDISCH_TAC `p:form IN cl` THEN
ASM_REWRITE_TAC[predicates_form; IN_INSERT; NOT_IN_EMPTY; PAIR_EQ;
Not_DEF; IN_UNION; NOT_IN_EMPTY] THEN
MESON_TAC[LENGTH_EQ_NIL]);;
(* ------------------------------------------------------------------------- *)
(* Minimal model. *)
(* ------------------------------------------------------------------------- *)
let minmodel = new_definition
`minmodel s =
herbase(functions s),
Fn,
(\p zs. !H. (Dom(H) = herbase(functions s)) /\
(Fun(H) = Fn) /\
H satisfies s
==> Pred(H) p zs)`;;
(* ------------------------------------------------------------------------- *)
(* Is minimal w.r.t. deduction of atomic formulas. *)
(* ------------------------------------------------------------------------- *)
let MINMODEL_MINIMAL = prove
(`!p v s.
atom p
==> (holds (minmodel s) v p <=>
!H. (Dom(H) = herbase(functions s)) /\
(Fun(H) = Fn) /\ H satisfies s
==> holds H v p)`,
REPEAT GEN_TAC THEN REWRITE_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `args:term list`] THEN
DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[holds; minmodel; Pred_DEF; Fun_DEF] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC
`H:(term->bool)#((num->((term)list->term))#(num->((term)list->bool)))` THEN
REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
STRIP_TAC THEN
SUBGOAL_THEN
`termval
(herbase (functions s),
Fn,
(\p zs.
!H. (Dom H = herbase (functions s)) /\ (Fun H = Fn) /\ H satisfies s
==> Pred H p zs)) =
termval H`
(fun th -> REWRITE_TAC[th]) THEN
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `v:num->term` THEN
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:term` THEN
SPEC_TAC(`v:num->term`,`v:num->term`) THEN
MATCH_MP_TAC TERMVAL_FUNCTIONS THEN ASM_REWRITE_TAC[Fun_DEF]);;
(* ------------------------------------------------------------------------- *)
(* And_DEF is indeed a model of the original clauses. *)
(* ------------------------------------------------------------------------- *)
let HOLDS_ITLIST_IMP = prove
(`!M v asm c.
holds M v (ITLIST (-->) asm c) <=>
(?p. MEM p asm /\ ~(holds M v p)) \/ holds M v c`,
GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; ITLIST; HOLDS] THEN
MESON_TAC[]);;
let breakhorn = new_definition
`breakhorn(cl) =
if definite cl then
let p = @p. p IN cl /\ positive p in
MAP (~~) (list_of_set(cl DELETE p)),p
else MAP (~~) (list_of_set cl),False`;;
let hypotheses = new_definition
`hypotheses cl = FST(breakhorn cl)`;;
let conclusion = new_definition
`conclusion cl = SND(breakhorn cl)`;;
let HOLDS_HORN = prove
(`!cl. horn(cl)
==> ALL atom (hypotheses cl) /\
(if definite(cl) then atom(conclusion cl)
else (conclusion cl = False)) /\
!M (v:num->A).
holds M v (interp cl) <=>
holds M v (ITLIST (-->) (hypotheses cl) (conclusion cl))`,
REPEAT GEN_TAC THEN REWRITE_TAC[horn] THEN STRIP_TAC THEN
FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`x <= 1 ==> (x = 0) \/ (x = 1)`)) THEN
ASM_REWRITE_TAC[definite; ARITH; conclusion; hypotheses; breakhorn] THENL
[CONJ_TAC THENL
[SUBGOAL_THEN `ALL (\p. literal p /\ negative p) (list_of_set cl)`
MP_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN
ASM_SIMP_TAC[GSYM ALL_MEM; MEM_LIST_OF_SET] THEN
SUBGOAL_THEN `{p | p IN cl /\ positive p} = {}` MP_TAC THENL
[ONCE_REWRITE_TAC[GSYM HAS_SIZE_0] THEN
ASM_REWRITE_TAC[HAS_SIZE] THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `cl:form->bool` THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM];
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
MESON_TAC[positive]];
REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE
[IMP_CONJ] ALL_IMP) THEN
SIMP_TAC[o_THM; negate] THEN X_GEN_TAC `p:form` THEN STRIP_TAC THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `q:form` SUBST_ALL_TAC o
GEN_REWRITE_RULE I [negative]) THEN
REWRITE_TAC[Not_DEF; form_INJ] THEN
UNDISCH_TAC `literal (Not q)` THEN
SIMP_TAC[literal; ATOM; Not_DEF; form_DISTINCT; form_INJ] THEN
MESON_TAC[]];
REPEAT GEN_TAC THEN REWRITE_TAC[interp] THEN
SPEC_TAC(`list_of_set(cl:form->bool)`,`l:form list`) THEN
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ITLIST; HOLDS; MAP; HOLDS_NEGATE] THEN
CONV_TAC TAUT]; ALL_TAC] THEN
SUBGOAL_THEN `FINITE {p | p IN cl /\ positive p}` ASSUME_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `cl:form->bool` THEN
SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN
SUBGOAL_THEN `{p | p IN cl /\ positive p} HAS_SIZE (SUC 0)` MP_TAC THENL
[ASM_REWRITE_TAC[ARITH; HAS_SIZE]; ALL_TAC] THEN
REWRITE_TAC[HAS_SIZE_SUC] THEN STRIP_TAC THEN LET_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
SUBGOAL_THEN `p IN cl /\ positive p` STRIP_ASSUME_TAC THENL
[EXPAND_TAC "p" THEN CONV_TAC SELECT_CONV THEN
UNDISCH_TAC `~({p | p IN cl /\ positive p} = {})` THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `p:form`) THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[IN_ELIM_THM]; ALL_TAC] THEN
REWRITE_TAC[HAS_SIZE_0] THEN
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM; NOT_IN_EMPTY] THEN
DISCH_TAC THEN CONJ_TAC THENL
[SUBGOAL_THEN `ALL (\p. literal p /\ negative p)
(list_of_set(cl DELETE p))`
MP_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN
ASM_SIMP_TAC[GSYM ALL_MEM; MEM_LIST_OF_SET; FINITE_DELETE] THEN
SUBGOAL_THEN `!q. q IN (cl DELETE p) ==> literal q /\ ~(positive q)`
(fun th -> MESON_TAC[th; positive]) THEN
REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE
[IMP_CONJ] ALL_IMP) THEN
SIMP_TAC[o_THM; negate] THEN X_GEN_TAC `r:form` THEN STRIP_TAC THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `q:form` SUBST_ALL_TAC o
GEN_REWRITE_RULE I [negative]) THEN
REWRITE_TAC[Not_DEF; form_INJ] THEN
UNDISCH_TAC `literal (Not q)` THEN
SIMP_TAC[literal; ATOM; Not_DEF; form_DISTINCT; form_INJ] THEN
MESON_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL
[SUBGOAL_THEN `literal p` MP_TAC THENL
[ASM_MESON_TAC[clause]; ALL_TAC] THEN
REWRITE_TAC[literal] THEN STRIP_TAC THEN
UNDISCH_TAC `positive p` THEN ASM_REWRITE_TAC[positive; negative] THEN
REWRITE_TAC[Not_DEF; form_INJ; GSYM EXISTS_REFL]; ALL_TAC] THEN
REPEAT GEN_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN
ASM_SIMP_TAC[HOLDS_INTERP] THEN
REWRITE_TAC[HOLDS_ITLIST_IMP; MEM_MAP] THEN
ASM_SIMP_TAC[MEM_LIST_OF_SET; FINITE_DELETE] THEN
REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[HOLDS_NEGATE]);;
let MINMODEL_MODEL = prove
(`(!cl. cl IN s ==> definite(cl))
==> minmodel(IMAGE interp s) satisfies (IMAGE interp s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[IMP_CONJ_ALT; RIGHT_FORALL_IMP_THM] THEN
GEN_TAC THEN REWRITE_TAC[IN_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `cl:form->bool` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN
SUBGOAL_THEN `definite cl` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `horn cl` ASSUME_TAC THENL
[ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN
MAP_EVERY ABBREV_TAC [`asm = hypotheses cl`; `c = conclusion cl`] THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN
REWRITE_TAC[HOLDS_ITLIST_IMP] THEN
ONCE_REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ ~b) <=> a ==> b`] THEN
REWRITE_TAC[ALL_MEM] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
ASM_SIMP_TAC[MINMODEL_MINIMAL] THEN DISCH_TAC THEN
SUBGOAL_THEN
`ALL (\c. !H. (Dom H = herbase (functions (IMAGE interp s))) /\
(Fun H = Fn) /\
H satisfies IMAGE interp s
==> holds H v c) asm`
MP_TAC THENL
[MATCH_MP_TAC ALL_IMP THEN
EXISTS_TAC `holds (minmodel (IMAGE interp s)) v` THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[ALL_MEM; MINMODEL_MINIMAL]; ALL_TAC] THEN
REWRITE_TAC[GSYM FORALL_ALL] THEN
MATCH_MP_TAC MONO_FORALL THEN
X_GEN_TAC
`H:(term->bool)#((num->((term)list->term))#(num->((term)list->bool)))` THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `holds H (v:num->term) (ITLIST (-->) asm c)` MP_TAC THENL
[FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[satisfies; IN_IMAGE]) THEN
FIRST_ASSUM MATCH_MP_TAC THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
UNDISCH_TAC `valuation (minmodel (IMAGE interp s)) v` THEN
ASM_REWRITE_TAC[valuation; Dom_DEF; minmodel]; ALL_TAC] THEN
REWRITE_TAC[HOLDS_ITLIST_IMP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN
MESON_TAC[]);;
let CONCLUSION_DEFINITE = prove
(`!cl p. definite cl /\ p IN cl /\ positive p
==> (conclusion cl = p)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[conclusion; breakhorn] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[SND] THEN
MATCH_MP_TAC SELECT_UNIQUE THEN X_GEN_TAC `q:form` THEN
REWRITE_TAC[] THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN STRIP_TAC THEN
UNDISCH_TAC `definite cl` THEN REWRITE_TAC[definite] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ONCE_REWRITE_TAC[TAUT `a ==> b <=> ~b ==> ~a`] THEN DISCH_TAC THEN
MATCH_MP_TAC(ARITH_RULE `2 <= a ==> ~(a = 1)`) THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD {p, (q:form)}` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RULES; IN_SING; NOT_IN_EMPTY; ARITH];
ALL_TAC] THEN
MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL
[REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `cl:form->bool` THEN
SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[clause]);;
let CONCLUSION_DEFINITE_ALT = prove
(`!cl p. clause cl /\ p IN cl /\ positive p /\
(!q. q IN cl /\ ~(q = p) ==> negative q)
==> (conclusion cl = p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONCLUSION_DEFINITE THEN
ASM_REWRITE_TAC[definite] THEN
SUBGOAL_THEN `{p | p IN cl /\ positive p} = {p}` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN
ASM_MESON_TAC[positive];
SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; FINITE_RULES; ARITH]]);;
let HYPOTHESES_CONCLUSION = prove
(`!cl. definite cl
==> (set_of_list(hypotheses cl) =
IMAGE (~~) (cl DELETE (conclusion cl)))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[hypotheses; breakhorn; conclusion] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[FST; SND] THEN
REWRITE_TAC[IN_IMAGE; EXTENSION; IN_SET_OF_LIST; IN_DELETE] THEN
REWRITE_TAC[MEM_MAP] THEN
RULE_ASSUM_TAC(REWRITE_RULE[definite; clause]) THEN
ASM_SIMP_TAC[MEM_LIST_OF_SET; FINITE_DELETE] THEN
REWRITE_TAC[IN_DELETE] THEN REWRITE_TAC[CONJ_ACI]);;
(* ------------------------------------------------------------------------- *)
(* Backchaining. *)
(* ------------------------------------------------------------------------- *)
let gbackchain_RULES,gbackchain_INDUCT,gbackchain_CASES =
new_inductive_definition
`!cl i ns. cl IN s /\
(!x. i(x) IN herbase(functions(IMAGE interp s))) /\
ALL2 (gbackchain s) ns (MAP (formsubst i) (hypotheses cl))
==> gbackchain s (ITLIST (+) ns 1)
(formsubst i (conclusion cl))`;;
let ALL2_TRIV = prove
(`!l1 l2. ALL2 (\n. P) l1 l2 <=> (LENGTH l1 = LENGTH l2) /\ ALL P l2`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[ALL2; ALL; LENGTH; NOT_SUC; SUC_INJ] THEN
REWRITE_TAC[CONJ_ACI]);;
let GBACKCHAIN_SOUND = prove
(`(!cl. cl IN s ==> definite(cl)) /\ valuation (minmodel (IMAGE interp s)) v
==> !n p. gbackchain s n p ==> holds (minmodel(IMAGE interp s)) v p`,
STRIP_TAC THEN MATCH_MP_TAC gbackchain_INDUCT THEN
REWRITE_TAC[ALL2_TRIV] THEN
MAP_EVERY X_GEN_TAC [`cl:form->bool`; `i:num->term`; `ns:num list`] THEN
REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP MINMODEL_MODEL) THEN
REWRITE_TAC[satisfies] THEN
DISCH_THEN(MP_TAC o SPEC
`termval (minmodel (IMAGE interp s)) (v:num->term) o (i:num->term)`) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `interp cl`) THEN ANTS_TAC THENL
[ALL_TAC;
SUBGOAL_THEN `horn cl` MP_TAC THENL
[ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HOLDS_ITLIST_IMP] THEN
REWRITE_TAC[GSYM HOLDS_FORMSUBST] THEN
UNDISCH_TAC `ALL (holds (minmodel (IMAGE interp s)) v)
(MAP (formsubst i) (hypotheses cl))` THEN
REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN
REWRITE_TAC[o_THM] THEN MESON_TAC[]] THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[IN_IMAGE]] THEN
REWRITE_TAC[valuation; o_THM] THEN X_GEN_TAC `x:num` THEN
SUBGOAL_THEN `i(x:num) IN herbase (functions (IMAGE interp s))` MP_TAC THENL
[ASM_REWRITE_TAC[]; ALL_TAC] THEN
SPEC_TAC(`(i:num->term) x`,`t:term`) THEN
GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
W(EXISTS_TAC o fst o dest_exists o snd) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN
`interpretation (functions(IMAGE interp s),predicates(IMAGE interp s))
(minmodel (IMAGE interp s))`
MP_TAC THENL
[MATCH_MP_TAC HERBRAND_INTERPRETATION THEN
REWRITE_TAC[herbrand; minmodel; Dom_DEF; Fun_DEF]; ALL_TAC] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
ASM_SIMP_TAC[HERBASE_FUNCTIONS]);;
let GBACKCHAIN_COMPLETE = prove
(`(!cl. cl IN s ==> definite(cl)) /\
atom(p) /\ (FV p = {}) /\ (!v. holds (minmodel (IMAGE interp s)) v p)
==> ?n. gbackchain s n p`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP MINMODEL_MINIMAL th]) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `v:num->term`) THEN
DISCH_THEN(MP_TAC o SPEC
`herbase(functions(IMAGE interp s)),Fn,
(\p tms. ?n. gbackchain s n (Atom p tms))`) THEN
REWRITE_TAC[Dom_DEF; Fun_DEF] THEN
FIRST_ASSUM(X_CHOOSE_THEN `P:num` MP_TAC o GEN_REWRITE_RULE I [ATOM]) THEN
DISCH_THEN(X_CHOOSE_THEN `tms:term list` SUBST_ALL_TAC) THEN
REWRITE_TAC[holds; Pred_DEF] THEN
MATCH_MP_TAC(TAUT `(b <=> c) /\ a ==> (a ==> b) ==> c`) THEN CONJ_TAC THENL
[AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN
UNDISCH_TAC `FV(Atom P tms) = {}` THEN
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; FV; IN_LIST_UNION] THEN
REWRITE_TAC[EX_MAP] THEN REWRITE_TAC[GSYM ALL_MEM; GSYM EX_MEM] THEN
REWRITE_TAC[o_THM; NOT_EXISTS_THM] THEN DISCH_TAC THEN
X_GEN_TAC `t:term` THEN DISCH_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `termval(herbase (functions (IMAGE interp s)),
Fn,(\p tms. ?n. gbackchain s n (Atom p tms))) V t` THEN
CONJ_TAC THENL
[MATCH_MP_TAC TERMVAL_VALUATION THEN ASM_MESON_TAC[]; ALL_TAC] THEN
SPEC_TAC(`t:term`,`t:term`) THEN MATCH_MP_TAC TERMVAL_TRIV THEN
REWRITE_TAC[Fun_DEF]; ALL_TAC] THEN
REWRITE_TAC[satisfies] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[valuation; Dom_DEF] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[IN_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `cl:form->bool`
(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)) THEN
SUBGOAL_THEN `horn cl` MP_TAC THENL
[ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HOLDS_ITLIST_IMP] THEN
REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`; NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ ~b) <=> a ==> b`] THEN
REWRITE_TAC[ALL_MEM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
ABBREV_TAC `gbmod = herbase (functions (IMAGE interp s)),
Fn,
(\p tms. ?n. gbackchain s n (Atom p tms))` THEN
SUBGOAL_THEN
`!p. atom p ==> (holds gbmod v p <=>
?n. gbackchain s n (formsubst v p))`
ASSUME_TAC THENL
[SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN
EXPAND_TAC "gbmod" THEN REWRITE_TAC[HOLDS] THEN
REWRITE_TAC[Pred_DEF; formsubst] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[GSYM ALL_MEM] THEN
X_GEN_TAC `t:term` THEN DISCH_TAC THEN
CONV_TAC SYM_CONV THEN
SPEC_TAC(`t:term`,`t:term`) THEN SPEC_TAC(`v:num->term`,`v:num->term`) THEN
MATCH_MP_TAC TERMSUBST_TERMVAL THEN REWRITE_TAC[Fun_DEF]; ALL_TAC] THEN
SUBGOAL_THEN
`holds gbmod v (conclusion cl) <=>
?n. gbackchain s n (formsubst v (conclusion cl))`
SUBST1_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o check (is_cond o concl)) THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`ALL (holds gbmod v) (hypotheses cl) <=>
ALL (\p. ?n. gbackchain s n (formsubst v p)) (hypotheses cl)`
SUBST1_TAC THENL
[UNDISCH_TAC `ALL atom (hypotheses cl)` THEN
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(TAUT `!b. (a ==> b) /\ (b ==> c) ==> a ==> c`) THEN EXISTS_TAC
`?ns. ALL2 (gbackchain s) ns (MAP (formsubst v) (hypotheses cl))` THEN
CONJ_TAC THENL
[SPEC_TAC(`hypotheses cl`,`l:form list`) THEN
POP_ASSUM_LIST(K ALL_TAC) THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL; MAP] THENL
[EXISTS_TAC `[]:num list` THEN REWRITE_TAC[ALL2]; ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `n:num`) ASSUME_TAC) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `ns:num list`) THEN
EXISTS_TAC `CONS (n:num) ns` THEN ASM_REWRITE_TAC[ALL2]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `ns:num list`) THEN
EXISTS_TAC `ITLIST (+) ns 1` THEN
MATCH_MP_TAC gbackchain_RULES THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Combine these results. *)
(* ------------------------------------------------------------------------- *)
let GBACKCHAIN_MINIMAL = prove
(`!s p. (!cl. cl IN s ==> definite cl) /\ atom p /\ (FV p = {})
==> !v. holds (minmodel (IMAGE interp s)) v p <=> ?n. gbackchain s n p`,
REPEAT STRIP_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN MATCH_MP_TAC GBACKCHAIN_COMPLETE THEN
ASM_REWRITE_TAC[] THEN GEN_TAC THEN
ASM_SIMP_TAC[HOLDS_VALUATION; NOT_IN_EMPTY];
DISCH_TAC THEN
SUBGOAL_THEN `?w. valuation (minmodel (IMAGE interp s)) w`
(X_CHOOSE_TAC `w:num->term`)
THENL
[MATCH_MP_TAC VALUATION_EXISTS THEN
MATCH_MP_TAC HERBRAND_NONEMPTY THEN
REWRITE_TAC[herbrand; minmodel; Dom_DEF; Fun_DEF] THEN
EXISTS_TAC `functions(IMAGE interp s),predicates summat` THEN
REWRITE_TAC[FST]; ALL_TAC] THEN
SUBGOAL_THEN `holds (minmodel (IMAGE interp s)) w p` MP_TAC THENL
[UNDISCH_TAC `?n. gbackchain s n p` THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
SPEC_TAC(`p:form`,`p:form`) THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MATCH_MP_TAC GBACKCHAIN_SOUND THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]]);;
(* ------------------------------------------------------------------------- *)
(* A free-variable version, also considering valuation restriction. *)
(* (This doesn't really matter for the ground case, above.) *)
(* ------------------------------------------------------------------------- *)
let iminmodel = new_definition
`iminmodel s =
terms(functions s),
Fn,
(\p zs. !C. (Dom(C) = terms(functions s)) /\
(Fun(C) = Fn) /\
(!v p. p IN s /\ valuation C v ==> holds C v p)
==> Pred(C) p zs)`;;
let IMINMODEL_MINIMAL = prove
(`!p v s.
atom p
==> (holds (iminmodel s) v p <=>
!C. (Dom(C) = terms(functions s)) /\
(Fun(C) = Fn) /\
(!v q. q IN s /\ valuation C v ==> holds C v q)
==> holds C v p)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `args:term list`] THEN
DISCH_THEN SUBST_ALL_TAC THEN
REWRITE_TAC[holds; iminmodel; Pred_DEF; Fun_DEF] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC
`C:(term->bool)#((num->((term)list->term))#(num->((term)list->bool)))` THEN
REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
STRIP_TAC THEN
SUBGOAL_THEN
`termval
(terms (functions s),
Fn,
(\p zs.
!C. (Dom C = terms (functions s)) /\ (Fun C = Fn) /\
(!v p. p IN s /\ valuation C v ==> holds C v p)
==> Pred C p zs)) =
termval C`
(fun th -> REWRITE_TAC[th]) THEN
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `w:num->term` THEN
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:term` THEN
SPEC_TAC(`w:num->term`,`w:num->term`) THEN
MATCH_MP_TAC TERMVAL_FUNCTIONS THEN ASM_REWRITE_TAC[Fun_DEF]);;
let IMINMODEL_MODEL = prove
(`(!cl. cl IN s ==> definite(cl))
==> !v p. p IN s /\ (!x. v(x) IN terms(functions(IMAGE interp s)))
==> holds (iminmodel(IMAGE interp s)) v (interp p)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN
SUBGOAL_THEN `definite cl` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `horn cl` ASSUME_TAC THENL
[ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN
MAP_EVERY ABBREV_TAC [`asm = hypotheses cl`; `c = conclusion cl`] THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN
REWRITE_TAC[HOLDS_ITLIST_IMP] THEN
ONCE_REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ ~b) <=> a ==> b`] THEN
REWRITE_TAC[ALL_MEM] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
ASM_SIMP_TAC[IMINMODEL_MINIMAL] THEN DISCH_TAC THEN
SUBGOAL_THEN
`ALL (\c. !C. (Dom C = terms (functions (IMAGE interp s))) /\
(Fun C = Fn) /\
(!v p. p IN (IMAGE interp s) /\ valuation C v ==> holds C v p)
==> holds C v c) asm`
MP_TAC THENL
[MATCH_MP_TAC ALL_IMP THEN
EXISTS_TAC `holds (iminmodel (IMAGE interp s)) v` THEN
ASM_REWRITE_TAC[] THEN
X_GEN_TAC `p:form` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN `atom p`
(fun th -> REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN
ASM_MESON_TAC[ALL_MEM]; ALL_TAC] THEN
REWRITE_TAC[GSYM FORALL_ALL] THEN
MATCH_MP_TAC MONO_FORALL THEN
X_GEN_TAC
`C:(term->bool)#((num->((term)list->term))#(num->((term)list->bool)))` THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `holds C (v:num->term) (ITLIST (-->) asm c)` MP_TAC THENL
[FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[valuation; Dom_DEF] THEN ASM_MESON_TAC[IN_IMAGE]; ALL_TAC] THEN
REWRITE_TAC[HOLDS_ITLIST_IMP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN
MESON_TAC[]);;
let IMINMODEL_INTERPRETATION = prove
(`!s. interpretation(language s) (iminmodel s)`,
GEN_TAC THEN REWRITE_TAC[interpretation; iminmodel; language; Dom_DEF] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[Fun_DEF; IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
ASM_SIMP_TAC[terms_RULES]);;
let ibackchain_RULES,ibackchain_INDUCT,ibackchain_CASES =
new_inductive_definition
`!cl i ns. cl IN s /\ (!x. i(x) IN terms(functions(IMAGE interp s))) /\
ALL2 (ibackchain s) ns (MAP (formsubst i) (hypotheses cl))
==> ibackchain s (ITLIST (+) ns 1)
(formsubst i (conclusion cl))`;;
let IBACKCHAIN_SOUND = prove
(`(!cl. cl IN s ==> definite(cl))
==> !v n p. ibackchain s n p /\
(!x. v(x) IN terms(functions(IMAGE interp s)))
==> holds (iminmodel(IMAGE interp s)) v p`,
REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC ibackchain_INDUCT THEN REWRITE_TAC[ALL2_TRIV] THEN
MAP_EVERY X_GEN_TAC [`cl:form->bool`; `i:num->term`; `ns:num list`] THEN
REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN STRIP_TAC THEN
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP IMINMODEL_MODEL) THEN
DISCH_THEN(MP_TAC o SPEC
`termval (iminmodel (IMAGE interp s)) (v:num->term) o (i:num->term)`) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `horn cl` MP_TAC THENL
[ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HOLDS_ITLIST_IMP] THEN
REWRITE_TAC[GSYM HOLDS_FORMSUBST] THEN
MATCH_MP_TAC(TAUT `a /\ ~b ==> ((a ==> b \/ c) ==> c)`) THEN CONJ_TAC THENL
[X_GEN_TAC `x:num` THEN REWRITE_TAC[o_THM] THEN
SUBGOAL_THEN `termval(iminmodel (IMAGE interp s)) v (i(x:num)) IN
Dom(iminmodel (IMAGE interp s))`
MP_TAC THENL [ALL_TAC; REWRITE_TAC[iminmodel; Dom_DEF]] THEN
MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
EXISTS_TAC `{}:(num#num)->bool` THEN CONJ_TAC THENL
[MP_TAC(SPEC `IMAGE interp s` IMINMODEL_INTERPRETATION) THEN
REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
SUBGOAL_THEN `i(x:num) IN terms(FST(language(IMAGE interp s)))`
MP_TAC THENL [ASM_REWRITE_TAC[language; FST]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP STUPID_CANONDOM_LEMMA) THEN
REWRITE_TAC[language; FST];
ASM_REWRITE_TAC[valuation; iminmodel; Dom_DEF]];
ALL_TAC] THEN
UNDISCH_TAC `ALL
(\p. (!x. v x IN terms (functions (IMAGE interp s)))
==> holds (iminmodel (IMAGE interp s)) v p)
(MAP (formsubst i) (hypotheses cl))` THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN
REWRITE_TAC[o_THM] THEN MESON_TAC[]);;
let IBACKCHAIN_COMPLETE = prove
(`(!cl. cl IN s ==> definite(cl)) /\
atom(p) /\
(!v. (!x. v(x) IN terms(functions(IMAGE interp s)))
==> holds (iminmodel (IMAGE interp s)) v p)
==> ?n. ibackchain s n p`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN
DISCH_THEN(MP_TAC o SPEC `V`) THEN ANTS_TAC THENL
[REWRITE_TAC[terms_RULES; IN]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC
`terms(functions(IMAGE interp s)),Fn,
(\p tms. ?n. ibackchain s n (Atom p tms))`) THEN
REWRITE_TAC[Dom_DEF; Fun_DEF] THEN
FIRST_ASSUM(X_CHOOSE_THEN `P:num` MP_TAC o GEN_REWRITE_RULE I [ATOM]) THEN
DISCH_THEN(X_CHOOSE_THEN `tms:term list` SUBST_ALL_TAC) THEN
REWRITE_TAC[holds; Pred_DEF] THEN
MATCH_MP_TAC(TAUT `(b <=> c) /\ a ==> (a ==> b) ==> c`) THEN CONJ_TAC THENL
[AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN
REWRITE_TAC[GSYM ALL_MEM; GSYM EX_MEM] THEN
X_GEN_TAC `t:term` THEN DISCH_TAC THEN
SPEC_TAC(`t:term`,`t:term`) THEN MATCH_MP_TAC TERMVAL_TRIV THEN
REWRITE_TAC[Fun_DEF]; ALL_TAC] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `cl:form->bool`
(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)) THEN
SUBGOAL_THEN `horn cl` MP_TAC THENL
[ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HOLDS_ITLIST_IMP] THEN
REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`; NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ ~b) <=> a ==> b`] THEN
REWRITE_TAC[ALL_MEM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
ABBREV_TAC `gbmod = terms (functions (IMAGE interp s)),
Fn,
(\p tms. ?n. ibackchain s n (Atom p tms))` THEN
SUBGOAL_THEN
`!p. atom p ==> (holds gbmod v p <=>
?n. ibackchain s n (formsubst v p))`
ASSUME_TAC THENL
[SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN
EXPAND_TAC "gbmod" THEN REWRITE_TAC[HOLDS] THEN
REWRITE_TAC[Pred_DEF; formsubst] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[GSYM ALL_MEM] THEN
X_GEN_TAC `t:term` THEN DISCH_TAC THEN
CONV_TAC SYM_CONV THEN
SPEC_TAC(`t:term`,`t:term`) THEN SPEC_TAC(`v:num->term`,`v:num->term`) THEN
MATCH_MP_TAC TERMSUBST_TERMVAL THEN REWRITE_TAC[Fun_DEF]; ALL_TAC] THEN
SUBGOAL_THEN
`holds gbmod v (conclusion cl) <=>
?n. ibackchain s n (formsubst v (conclusion cl))`
SUBST1_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o check (is_cond o concl)) THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`ALL (holds gbmod v) (hypotheses cl) <=>
ALL (\p. ?n. ibackchain s n (formsubst v p)) (hypotheses cl)`
SUBST1_TAC THENL
[UNDISCH_TAC `ALL atom (hypotheses cl)` THEN
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(TAUT `!b. (a ==> b) /\ (b ==> c) ==> a ==> c`) THEN EXISTS_TAC
`?ns. ALL2 (ibackchain s) ns (MAP (formsubst v) (hypotheses cl))` THEN
CONJ_TAC THENL
[SPEC_TAC(`hypotheses cl`,`l:form list`) THEN
POP_ASSUM_LIST(K ALL_TAC) THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL; MAP] THENL
[EXISTS_TAC `[]:num list` THEN REWRITE_TAC[ALL2]; ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `n:num`) ASSUME_TAC) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `ns:num list`) THEN
EXISTS_TAC `CONS (n:num) ns` THEN ASM_REWRITE_TAC[ALL2]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `ns:num list`) THEN
EXISTS_TAC `ITLIST (+) ns 1` THEN
MATCH_MP_TAC ibackchain_RULES THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `valuation gbmod (v:num->term)` THEN
EXPAND_TAC "gbmod" THEN REWRITE_TAC[valuation; Dom_DEF]);;
let IBACKCHAIN_MINIMAL = prove
(`!s p. (!cl. cl IN s ==> definite cl) /\ atom p
==> ((!v. (!x. v(x) IN terms(functions(IMAGE interp s)))
==> holds (iminmodel(IMAGE interp s)) v p) <=>
?n. ibackchain s n p)`,
MESON_TAC[IBACKCHAIN_SOUND; IBACKCHAIN_COMPLETE]);;
|