Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 93,867 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 |
(* ========================================================================= *)
(* Yet another formalized unification algorithm. *)
(* ========================================================================= *)
let LEFT_AND_EX_THM = prove
(`!P Q l. EX P l /\ Q <=> EX (\x. P x /\ Q) l`,
GEN_TAC THEN GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[EX] THEN CONV_TAC TAUT);;
let EX_ADHOC = prove
(`!l. (!x. ~(P x) ==> (Q x <=> R x)) ==> (~EX P l ==> (EX Q l <=> EX R l))`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[EX] THEN ASM_MESON_TAC[]);;
let ALL_ADHOC = prove
(`!l. ALL (\x. f x = g x) l ==> (EX f l <=> EX g l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; EX] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Yet more wellfoundedness lemmas. *)
(* ------------------------------------------------------------------------- *)
let WF_FINITE_LEMMA = prove
(`!(<<) s. FINITE s /\
(!x:A. ~(TC(<<) x x)) /\ (!x y. x << y ==> y IN s)
==> WF(<<)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN
DISCH_THEN(X_CHOOSE_TAC `u:num->A`) THEN
SUBGOAL_THEN `!n. (u:num->A)(n) IN s` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
MP_TAC(ISPECL [`u:num->A`; `s:A->bool`] FINITE_IMAGE_INJ) THEN
REWRITE_TAC[ASSUME `FINITE(s:A->bool)`; NOT_IMP] THEN
SUBGOAL_THEN `{n | (u:num->A)(n) IN s} = UNIV:num->bool` SUBST1_TAC THENL
[ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_UNIV]; ALL_TAC] THEN
REWRITE_TAC[num_INFINITE; GSYM INFINITE] THEN
SUBGOAL_THEN `!m n. m < n ==> TC(<<) ((u:num->A) n) (u m)`
(fun th -> ASM_MESON_TAC[th; LT_CASES]) THEN
SIMP_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `n:num` THEN GEN_TAC THEN X_GEN_TAC `d:num` THEN
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[ADD_CLAUSES] THEN
SUBGOAL_THEN `!d. RTC(<<) ((u:num->A)(n + d))(u n) ` MP_TAC THENL
[INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; RTC_REFL] THEN
ASM_MESON_TAC[RTC_TRANS; RTC_INC];
REWRITE_TAC[RTC; RC_CASES] THEN ASM_MESON_TAC[TC_INC; TC_CASES_R]]);;
let TC_REV = prove
(`!x:A y. TC (\u v. R v u) x y <=> TC R y x`,
REWRITE_TAC[TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`; FORALL_AND_THM] THEN
CONJ_TAC THENL [ALL_TAC; ONCE_REWRITE_TAC[SWAP_FORALL_THM]] THEN
MATCH_MP_TAC TC_INDUCT THEN SIMP_TAC[TC_INC] THEN MESON_TAC[TC_TRANS]);;
let WF_DISJ = prove
(`WF(R) /\ WF(\x y. ?z. S x z /\ RTC(R) z y) ==> WF(\x:A y. R x y \/ S x y)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[WF] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `P:A->bool` THEN
MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN
DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (snd(EQ_IMP_RULE(SPEC_ALL WF_TC)))) THEN
REWRITE_TAC[WF] THEN DISCH_THEN(MP_TAC o SPEC `\y:A. P(y) /\ TC R y a`) THEN
REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[RTC; RC_CASES]) THEN
ASM_MESON_TAC[TC_INC; TC_TRANS]);;
let WF_ALTERNATION = prove
(`WF(\x y. R x y \/ S x y) /\ (!x y z. ~(P x y /\ P y z))
==> WF(\(x1:A,y1) (x2,y2). S x1 x2 /\ S y1 y2 \/
R x1 x2 /\ (y1 = y2) \/
P x2 y2 /\ (x1 = y2) /\ (x2 = y1))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[WF] THEN X_GEN_TAC `s:A#A->bool` THEN
REWRITE_TAC[EXISTS_PAIR_THM] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WF]) THEN
DISCH_THEN(MP_TAC o SPEC `\x:A. ?y:A. s(x,y) \/ s(y,x)`) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
DISCH_THEN(X_CHOOSE_THEN `b0:A` ASSUME_TAC) THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
FIRST_X_ASSUM DISJ_CASES_TAC THENL
[ASM_CASES_TAC `(P:A->A->bool) a b0` THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
ASM_CASES_TAC `(s:A#A->bool)(b0,a)` THENL
[ALL_TAC;
MAP_EVERY EXISTS_TAC [`a:A`; `b0:A`] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]] THEN
ASM_CASES_TAC `?y:A. R y (b0:A) /\ s(y,a:A)` THENL
[ALL_TAC;
MAP_EVERY EXISTS_TAC [`b0:A`; `a:A`] THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WF]) THEN
DISCH_THEN(MP_TAC o SPEC `\y:A. s(y,a:A):bool`) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`b:A`; `a:A`] THEN ASM_MESON_TAC[];
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WF]) THEN
DISCH_THEN(MP_TAC o SPEC `\y:A. s(y,a:A):bool`) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `(P:A->A->bool) b a /\ s(a,b)` THENL
[MAP_EVERY EXISTS_TAC [`a:A`; `b:A`];
MAP_EVERY EXISTS_TAC [`b:A`; `a:A`]] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);;
let MULTISET_FILTEREQ = prove
(`multiplicity (multiset (\x:A. LENGTH (FILTER ((=) x) l))) a =
LENGTH (FILTER ((=) a) l)`,
MP_TAC(ISPEC `\x:A. LENGTH (FILTER ((=) x) l)`
(CONJUNCT2 multiset_tybij)) THEN
MATCH_MP_TAC(TAUT `(b ==> c) /\ a ==> ((a <=> b) ==> c)`) THEN
SIMP_TAC[] THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{a:A | MEM a l}` THEN CONJ_TAC THENL
[SPEC_TAC(`l:(A)list`,`l:(A)list`) THEN LIST_INDUCT_TAC THENL
[SUBGOAL_THEN `{a:A | MEM a []} = EMPTY`
(fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; MEM; NOT_IN_EMPTY];
SUBGOAL_THEN `{a:A | MEM a (CONS h t)} = h INSERT {a | MEM a t}`
(fun th -> ASM_SIMP_TAC[th; FINITE_RULES]) THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; MEM] THEN
REWRITE_TAC[DISJ_ACI]];
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
SPEC_TAC(`l:(A)list`,`l:(A)list`) THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[FILTER; LENGTH; MEM] THEN GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; MEM]]);;
let WF_MULTIZIP = prove
(`WF(R)
==> WF(\l1 l2. ?h:A t l0.
(l2 = CONS h t) /\ (l1 = APPEND l0 t) /\
(!k. MEM k l0 ==> R k h))`,
let lemma = INST_TYPE [`:(A)list`,`:A`] WF_MEASURE_GEN in
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `\l. multiset(\x:A. LENGTH (FILTER ((=) x) l))` o
MATCH_MP lemma o MATCH_MP MORDER_WF) THEN
REWRITE_TAC[] THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ]
WF_SUBSET) THEN
REPEAT GEN_TAC THEN
REWRITE_TAC[morder; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `l:(A)list`; `m:(A)list`] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC)) THEN DISCH_TAC THEN
EXISTS_TAC `multiset(\x:A. LENGTH (FILTER ((=) x) l))` THEN
EXISTS_TAC `a:A` THEN
EXISTS_TAC `multiset(\x:A. LENGTH (FILTER ((=) x) m))` THEN
REWRITE_TAC[mmember; MEXTENSION; MULTISET_FILTEREQ; MUNION; MSING] THEN
REWRITE_TAC[FILTER_APPEND; LENGTH_APPEND; LENGTH; FILTER; ADD_AC] THEN
CONJ_TAC THENL
[GEN_TAC THEN COND_CASES_TAC THEN
REWRITE_TAC[LENGTH; ADD1; ADD_AC; ADD_CLAUSES]; ALL_TAC] THEN
SUBGOAL_THEN `!a:A l. ~(LENGTH (FILTER ((=) a) l) = 0) ==> MEM a l`
(fun th -> ASM_MESON_TAC[th]) THEN
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[FILTER; LENGTH; MEM] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; MEM]);;
let WF_MEASURE_OR_NONINC = prove
(`!R (m:A->num).
WF(R) /\ (!x y. R x y ==> m x <= m y)
==> WF(\x y. MEASURE m x y \/ R x y)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[WF] THEN
X_GEN_TAC `P:A->bool` THEN DISCH_TAC THEN
MP_TAC(ISPEC `m:A->num` WF_MEASURE) THEN REWRITE_TAC[WF; MEASURE] THEN
DISCH_THEN(MP_TAC o SPEC `P:A->bool`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `?y. (R:A->A->bool) y a /\ P y` THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_ASSUM(MP_TAC o SPEC `\y. TC (R:A->A->bool) y a /\ P y` o
GEN_REWRITE_RULE I [WF]) THEN
ASM_REWRITE_TAC[] THEN
ANTS_TAC THENL [ASM_MESON_TAC[TC_INC]; ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:A` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `(m:A->num)(b) <= m(a)`
(fun th -> ASM_MESON_TAC[th; TC_INC; TC_TRANS; LTE_TRANS]) THEN
UNDISCH_TAC `TC R b (a:A)` THEN
MAP_EVERY SPEC_TAC [`a:A`,`a:A`; `b:A`,`b:A`] THEN
MATCH_MP_TAC TC_INDUCT THEN ASM_REWRITE_TAC[LE_TRANS]);;
let WF_PROJ_EQ = prove
(`(!x. P x ==> WF(R x))
==> WF(\(x',y') (x:A,y:B). P(x) /\ (x' = x) /\ R x y' y)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN
DISCH_THEN(X_CHOOSE_TAC `s:num->A#B`) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `FST((s:num->A#B) 0)`) THEN
FIRST_ASSUM(MP_TAC o SPEC `0`) THEN
SUBST1_TAC(SYM(ISPEC `(s:num->A#B) 0` PAIR)) THEN
SUBST1_TAC(SYM(ISPEC `(s:num->A#B) (SUC 0)` PAIR)) THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
DISCH_THEN(fun th -> REWRITE_TAC[CONJUNCT1 th]) THEN
REWRITE_TAC[WF_DCHAIN] THEN
EXISTS_TAC `SND o (s:num->A#B)` THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[o_THM] THEN
SUBGOAL_THEN `FST((s:num->A#B) 0) = FST(s n)` SUBST1_TAC THENL
[SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[] THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `FST((s:num->A#B) n)` THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN
SUBST1_TAC(SYM(ISPEC `(s:num->A#B) n` PAIR)) THEN
SUBST1_TAC(SYM(ISPEC `(s:num->A#B) (SUC n)` PAIR)) THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN SIMP_TAC[FST; SND]);;
(* ------------------------------------------------------------------------- *)
(* Definition of loop-freeness. *)
(* ------------------------------------------------------------------------- *)
let OCC = new_definition
`OCC env (x:num) y <=> ?t. MEM (x,t) env /\ y IN FVT(t)`;;
let LOOPFREE = new_definition
`LOOPFREE env <=> !z. ~(TC (OCC env) z z)`;;
(* ------------------------------------------------------------------------- *)
(* Main preservation theorem. *)
(* ------------------------------------------------------------------------- *)
let LOOP_BREAK = prove
(`!env x t u v.
TC(OCC (CONS (x,t) env)) u v /\ ~(TC(OCC env) u v)
==> ?y. RTC(OCC env) u x /\ y IN FVT(t) /\ RTC(OCC env) y v`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC[TAUT `a /\ ~b ==> c <=> a ==> ~b ==> c`] THEN
MATCH_MP_TAC TC_INDUCT_L THEN REPEAT STRIP_TAC THENL
[UNDISCH_TAC `OCC (CONS (x,t) env) u v` THEN
REWRITE_TAC[OCC; MEM; PAIR_EQ] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THENL
[ASM_MESON_TAC[RTC_CASES]; ALL_TAC] THEN
UNDISCH_TAC `~TC (OCC env) u v` THEN
ONCE_REWRITE_TAC[TC_CASES_L] THEN REWRITE_TAC[OCC] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_CASES_TAC `TC (OCC env) u v` THENL
[UNDISCH_TAC `OCC (CONS (x,t) env) v z` THEN
REWRITE_TAC[OCC; MEM; PAIR_EQ] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THENL
[REWRITE_TAC[RTC; RC_CASES] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
UNDISCH_TAC `~TC (OCC env) u z` THEN
MATCH_MP_TAC(TAUT `a ==> ~a ==> b`) THEN
ONCE_REWRITE_TAC[TC_CASES_L] THEN DISJ2_TAC THEN
REWRITE_TAC[OCC] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THEN UNDISCH_TAC `OCC (CONS (x,t) env) v z` THEN
REWRITE_TAC[OCC; MEM; PAIR_EQ] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THENL
[REWRITE_TAC[RTC; RC_CASES] THEN ASM_MESON_TAC[];
ASM_MESON_TAC[RTC_CASES_L; OCC]]);;
let LOOPFREE_PRESERVE = prove
(`LOOPFREE env /\ ~(?y. y IN FVT(t) /\ RTC (OCC env) y x)
==> LOOPFREE (CONS (x,t) env)`,
MESON_TAC[LOOPFREE; RTC_CASES; LOOP_BREAK]);;
let LOOPFREE_PRESERVE_EQ = prove
(`LOOPFREE env
==> (LOOPFREE (CONS (x,t) env) = ~(?y. y IN FVT(t) /\ RTC (OCC env) y x))`,
MATCH_MP_TAC(TAUT `(a /\ ~c ==> b) /\ (c ==> ~b) ==> (a ==> (b <=> ~c))`) THEN
REWRITE_TAC[LOOPFREE_PRESERVE] THEN
DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN
REWRITE_TAC[LOOPFREE] THEN DISCH_THEN(MP_TAC o SPEC `x:num`) THEN
REWRITE_TAC[] THEN ONCE_REWRITE_TAC[TC_RTC_CASES_R] THEN
EXISTS_TAC `y:num` THEN REWRITE_TAC[OCC; MEM; PAIR_EQ] THEN CONJ_TAC THENL
[EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[];
UNDISCH_TAC `RTC (OCC env) y x` THEN
MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM] RTC_MONO) THEN
SIMP_TAC[OCC; MEM; PAIR_EQ] THEN MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* If existing env is loopfree, a naive algorithm works. *)
(* ------------------------------------------------------------------------- *)
let LOOPFREE_WF = prove
(`!env. LOOPFREE env ==> WF(\x y. OCC env y x)`,
REWRITE_TAC[LOOPFREE] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC WF_FINITE_LEMMA THEN
EXISTS_TAC `set_of_list (MAP FST (env:(num#term)list))` THEN
ASM_REWRITE_TAC[FINITE_SET_OF_LIST] THEN
ONCE_REWRITE_TAC[TC_REV] THEN
CONV_TAC(DEPTH_CONV ETA_CONV) THEN ASM_REWRITE_TAC[OCC] THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; set_of_list; MEM; IN_INSERT] THEN
ASM_MESON_TAC[FST]);;
let LOOPFREE_WF_TERM = prove
(`!env. LOOPFREE(env) ==> WF(\s t. ?y. y IN FVT(t) /\ MEM (y,s) env)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP LOOPFREE_WF) THEN
REWRITE_TAC[WF_DCHAIN; OCC; TAUT `~a ==> ~b <=> b ==> a`; SKOLEM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `s:num->term` (X_CHOOSE_THEN `x:num->num`
STRIP_ASSUME_TAC)) THEN
MAP_EVERY EXISTS_TAC [`x:num->num`; `\n. s(SUC n):term`] THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* This would be so much nicer with TFL... *)
(* ------------------------------------------------------------------------- *)
let LOOPCHECK_EXISTS = prove
(`!env x.
LOOPFREE(env)
==> ?loopcheck. !t.
loopcheck t <=>
?y. y IN FVT(t) /\
((y = x) \/ ?s. MEM (y,s) env /\ loopcheck s)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WF_REC o MATCH_MP LOOPFREE_WF_TERM) THEN
REWRITE_TAC[] THEN MESON_TAC[]);;
let loopcheck_raw =
new_specification ["loopcheck"]
(REWRITE_RULE[SKOLEM_THM; RIGHT_IMP_EXISTS_THM] LOOPCHECK_EXISTS);;
let loopcheck = prove
(`!env x.
LOOPFREE(env)
==> (!x y. loopcheck env x (V y) <=>
(y = x) \/ ?s. MEM (y,s) env /\ loopcheck env x s) /\
(!f args. loopcheck env x (Fn f args) <=>
EX (loopcheck env x) args)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC LAND_CONV [MATCH_MP loopcheck_raw th]) THEN
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; UNWIND_THM2; IN_LIST_UNION] THEN
REWRITE_TAC[LEFT_AND_EX_THM; EXISTS_EX; EX_MAP; o_THM] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP loopcheck_raw th)]) THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REFL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Prove that it does indeed work. *)
(* ------------------------------------------------------------------------- *)
let LOOPCHECK = prove
(`!env x t. LOOPFREE(env)
==> (loopcheck env x t <=> ~LOOPFREE (CONS (x,t) env))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `?y. y IN FVT t /\ RTC (OCC env) y x` THEN
ASM_SIMP_TAC[LOOPFREE_PRESERVE_EQ] THEN SPEC_TAC(`t:term`,`t:term`) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP LOOPFREE_WF_TERM) THEN
REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN
X_GEN_TAC `t:term` THEN DISCH_TAC THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP loopcheck_raw th]) THEN
AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[RTC_CASES_R] THEN
ASM_CASES_TAC `x:num = y` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[OCC; LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
AP_TERM_TAC THEN ABS_TAC THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `y:num` THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Final transformation to solved form. More non-TFL hell. *)
(* ------------------------------------------------------------------------- *)
let rightsubst = new_definition
`rightsubst (x,t) (y:num,s) =
y,termsubst (\z. if z = x then t else V(z)) s`;;
let SOLVE_EXISTS = prove
(`?SOLVE. !pr. SOLVE pr =
if SND pr = [] then FST pr
else SOLVE (CONS (HD(SND pr))
(MAP (rightsubst (HD(SND pr))) (FST pr)),
MAP (rightsubst (HD(SND pr))) (TL(SND pr)))`,
let lemma = prove
(`(if b then x else y) = (if ~b then y else x)`,
BOOL_CASES_TAC `b:bool` THEN REWRITE_TAC[]) in
ONCE_REWRITE_TAC[lemma] THEN REWRITE_TAC[WF_REC_TAIL]);;
let SOLVEC_RAW = new_specification ["SOLVEC"] SOLVE_EXISTS;;
let SOLVE = new_definition
`SOLVE sol uns = SOLVEC (sol,uns)`;;
let SOLVE = prove
(`(!sol. SOLVE sol [] = sol) /\
(!sol p oth. SOLVE sol (CONS p oth) =
SOLVE (CONS p (MAP (rightsubst p) sol))
(MAP (rightsubst p) oth))`,
REWRITE_TAC[SOLVE] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC LAND_CONV [SOLVEC_RAW] THEN
REWRITE_TAC[NOT_CONS_NIL; HD; TL]);;
(* ------------------------------------------------------------------------- *)
(* Fact that the list gives no conflicting definitions. *)
(* ------------------------------------------------------------------------- *)
let CONFLICTFREE = new_definition
`CONFLICTFREE l <=> !x. LENGTH (FILTER (\(y:num,s:term). y = x) l) <= 1`;;
(* ------------------------------------------------------------------------- *)
(* Solve step preserves loop-freeness. *)
(* ------------------------------------------------------------------------- *)
let SOLVE_PRESERVES_LOOPFREE_LEMMA = prove
(`!p oth x y.
TC(OCC (MAP (rightsubst p) oth)) x y ==> TC(OCC (CONS p oth)) x y`,
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `t:term`; `oth:(num#term)list`] THEN
GEN_REWRITE_TAC (funpow 2 BINDER_CONV o RAND_CONV o funpow 2 RATOR_CONV)
[GSYM TC_IDEMP] THEN
MATCH_MP_TAC TC_MONO THEN MAP_EVERY X_GEN_TAC [`u:num`; `v:num`] THEN
REWRITE_TAC[OCC; MEM_MAP; EXISTS_PAIR_THM; rightsubst; PAIR_EQ] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`p:term`; `y:num`; `s:term`] THEN STRIP_TAC THEN
UNDISCH_TAC `v IN FVT p` THEN ASM_REWRITE_TAC[TERMSUBST_FVT] THEN
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `z:num` MP_TAC) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THENL
[STRIP_TAC THEN MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC `x:num` THEN CONJ_TAC;
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)] THEN
MATCH_MP_TAC TC_INC THEN REWRITE_TAC[OCC] THEN ASM_MESON_TAC[MEM]);;
let SOLVE_PRESERVES_LOOPFREE = prove
(`!p oth. LOOPFREE(CONS p oth) ==> LOOPFREE(MAP (rightsubst p) oth)`,
REWRITE_TAC[LOOPFREE] THEN MESON_TAC[SOLVE_PRESERVES_LOOPFREE_LEMMA]);;
(* ------------------------------------------------------------------------- *)
(* ...and the absence of conflicts. *)
(* ------------------------------------------------------------------------- *)
let SOLVE_PRESERVES_CONFLICTFREE_LEMMA = prove
(`!p x. (\(y,s). y = x) o rightsubst p = (\(y,s). y = x)`,
REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM; rightsubst] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[EQ_SYM]);;
let SOLVE_PRESERVES_CONFLICTFREE = prove
(`CONFLICTFREE(APPEND sol (CONS p oth))
==> CONFLICTFREE(APPEND (CONS p (MAP (rightsubst p) sol))
(MAP (rightsubst p) oth))`,
REWRITE_TAC[CONFLICTFREE; FILTER_APPEND; FILTER; LENGTH_APPEND;
FILTER_MAP; LENGTH_MAP] THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; LENGTH_MAP] THEN
REWRITE_TAC[SOLVE_PRESERVES_CONFLICTFREE_LEMMA] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* ...and preserves the invariant of removing free variables. *)
(* ------------------------------------------------------------------------- *)
let SOLVE_PRESERVES_DEFREE = prove
(`LOOPFREE(CONS p oth) /\
(!x y s t. MEM (x,t) sol /\ MEM (y,s) (APPEND sol (CONS p oth))
==> ~(x IN FVT(s)))
==> (!x y s t. MEM (x,t) (CONS p (MAP (rightsubst p) sol)) /\
MEM (y,s) (APPEND (CONS p (MAP (rightsubst p) sol))
(MAP (rightsubst p) oth))
==> ~(x IN FVT(s)))`,
ONCE_REWRITE_TAC[GSYM LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[GSYM LEFT_AND_EXISTS_THM] THEN
SUBGOAL_THEN `!x. (?t. MEM (x,t) (CONS p (MAP (rightsubst p) sol))) <=>
(?t. MEM (x,t) (CONS p sol))`
(fun th -> REWRITE_TAC[th])
THENL
[GEN_TAC THEN REWRITE_TAC[MEM; EXISTS_OR_THM] THEN AP_TERM_TAC THEN
REWRITE_TAC[MEM_MAP; EXISTS_PAIR_THM] THEN
SUBST1_TAC(SYM(ISPEC `p:num#term` PAIR)) THEN
PURE_REWRITE_TAC[rightsubst; PAIR_EQ] THEN MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
STRIP_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[MEM] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THENL
[UNDISCH_TAC
`MEM (y,s)
(APPEND (CONS (x,t) (MAP (rightsubst (x,t)) sol))
(MAP (rightsubst (x,t)) oth))` THEN
REWRITE_TAC[APPEND; GSYM MAP_APPEND] THEN
REWRITE_TAC[MEM; MEM_MAP; PAIR_EQ] THEN
DISCH_THEN(DISJ_CASES_THEN2 (CONJUNCTS_THEN SUBST1_TAC) MP_TAC) THENL
[ALL_TAC;
REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM] THEN
SIMP_TAC[PAIR_EQ; rightsubst; TERMSUBST_FVT] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `z:num` (MP_TAC o CONJUNCT2)) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY]] THEN
UNDISCH_TAC `LOOPFREE (CONS (x,t) oth)` THEN REWRITE_TAC[LOOPFREE] THEN
DISCH_THEN(MP_TAC o SPEC `x:num`) THEN
REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN DISCH_TAC THEN
MATCH_MP_TAC TC_INC THEN REWRITE_TAC[OCC] THEN
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[MEM]; ALL_TAC] THEN
UNDISCH_TAC
`MEM (y,s)
(APPEND (CONS p (MAP (rightsubst p) sol))
(MAP (rightsubst p) oth))` THEN
REWRITE_TAC[APPEND; MEM] THEN
DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[MEM; APPEND; MEM_APPEND] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[GSYM MAP_APPEND; MEM_MAP; LEFT_IMP_EXISTS_THM;
FORALL_PAIR_THM] THEN
SUBST_ALL_TAC(SYM(ISPEC `p:num#term` PAIR)) THEN
REWRITE_TAC[rightsubst; PAIR_EQ] THEN GEN_TAC THEN X_GEN_TAC `u:term` THEN
MAP_EVERY ABBREV_TAC [`z = FST(p:num#term)`; `r = SND(p:num#term)`] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) SUBST1_TAC) THEN
REWRITE_TAC[TERMSUBST_FVT; IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `w:num` MP_TAC) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THENL
[ALL_TAC;
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (SUBST_ALL_TAC o SYM))] THEN
ASM_MESON_TAC[MEM_APPEND; MEM]);;
(* ------------------------------------------------------------------------- *)
(* ...and maintains exactly the same set of unifiers. *)
(* ------------------------------------------------------------------------- *)
let SOLVE_PRESERVES_UNIFIERS = prove
(`(!x t. MEM (x,t) (APPEND sol (CONS p oth))
==> (i(x) = termsubst i t)) <=>
(!x t. MEM (x,t) (APPEND (CONS p (MAP (rightsubst p) sol))
(MAP (rightsubst p) oth))
==> (i(x) = termsubst i t))`,
let lemma = prove
(`(!x t y s. P y s /\ (x = y) /\ (t = f s) ==> Q x t) <=>
(!x t s. P x s ==> Q x (f s))`,
MESON_TAC[]) in
REWRITE_TAC[MEM_APPEND; MEM] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[TAUT `a \/ b \/ c <=> b \/ a \/ c`] THEN
REWRITE_TAC[GSYM DISJ_ASSOC; GSYM MEM_APPEND; GSYM MAP_APPEND] THEN
SPEC_TAC(`APPEND sol (oth:(num#term)list)`,`l:(num#term)list`) THEN
GEN_TAC THEN REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
SPEC_TAC(`p:num#term`,`p:num#term`) THEN REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`y:num`; `s:term`] THEN
SIMP_TAC[PAIR_EQ; GSYM LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
DISCH_TAC THEN SIMP_TAC[MEM_MAP; LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[rightsubst; PAIR_EQ; lemma] THEN
REWRITE_TAC[TERMSUBST_TERMSUBST; o_DEF] THEN
SUBGOAL_THEN `(\x. termsubst i (if x = y then s else V x)) = i`
(fun th -> REWRITE_TAC[th]) THEN
REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[termsubst]);;
(* ------------------------------------------------------------------------- *)
(* Hence it works. *)
(* ------------------------------------------------------------------------- *)
let SOLVE_WORKS_GENERAL = prove
(`!n env sol. (LENGTH env = n) /\
LOOPFREE(env) /\
CONFLICTFREE(APPEND sol env) /\
(!x y s t. MEM (x,t) sol /\ MEM (y,s) (APPEND sol env)
==> ~(x IN FVT(s)))
==> CONFLICTFREE(SOLVE sol env) /\
(!i. (!x t. MEM (x,t) (APPEND sol env)
==> (i x = termsubst i t)) <=>
(!x t. MEM (x,t) (SOLVE sol env)
==> (i x = termsubst i t))) /\
!x y s t. MEM (x,t) (SOLVE sol env) /\
MEM (y,s) (SOLVE sol env)
==> ~(x IN FVT(s))`,
INDUCT_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THENL
[SIMP_TAC[SOLVE; APPEND_NIL] THEN MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[SUC_INJ; SOLVE] THEN X_GEN_TAC `sol:(num#term)list` THEN
FIRST_X_ASSUM(K ALL_TAC o check is_imp o snd o dest_forall o concl) THEN
REWRITE_TAC[SOLVE_PRESERVES_UNIFIERS] THEN
STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[LENGTH_MAP; SOLVE_PRESERVES_LOOPFREE;
SOLVE_PRESERVES_CONFLICTFREE] THEN
MATCH_MP_TAC SOLVE_PRESERVES_DEFREE THEN ASM_REWRITE_TAC[]);;
let SOLVE_WORKS = prove
(`!env.
LOOPFREE(env) /\ CONFLICTFREE(env)
==> CONFLICTFREE(SOLVE [] env) /\
(!i. (!x t. MEM (x,t) env ==> (i x = termsubst i t)) <=>
(!x t. MEM (x,t) (SOLVE [] env) ==> (i x = termsubst i t))) /\
!x y s t. MEM (x,t) (SOLVE [] env) /\ MEM (y,s) (SOLVE [] env)
==> ~(x IN FVT s)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!x:num t:term. MEM (x,t) env = MEM (x,t) (APPEND [] env)`
(fun th -> REWRITE_TAC[th]) THENL [REWRITE_TAC[APPEND]; ALL_TAC] THEN
MATCH_MP_TAC SOLVE_WORKS_GENERAL THEN
ASM_REWRITE_TAC[MEM; APPEND; GSYM EXISTS_REFL]);;
(* ------------------------------------------------------------------------- *)
(* The "actual code". *)
(* ------------------------------------------------------------------------- *)
let retval_INDUCT,retval_RECURSION = define_type
"retval = TT | FF | Exception";;
let retval_DISTINCT = prove_constructors_distinct retval_RECURSION;;
let ISTRIV_EXISTS = prove
(`!env x. LOOPFREE(env) /\ CONFLICTFREE(env)
==> ?istriv. !t. istriv t =
if t = V x then TT
else if ?y. (t = V y) /\ MEM y (MAP FST env)
then istriv (ASSOC (@y. (t = V y) /\ MEM y (MAP FST env)) env)
else if x IN FVT(t) then Exception
else if ?y s. y IN FVT(t) /\ MEM (y,s) env /\ ~(istriv s = FF)
then Exception else FF`,
REWRITE_TAC[CONFLICTFREE] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WF_REC o MATCH_MP LOOPFREE_WF_TERM) THEN
REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
TRY(ASM (GEN_MESON_TAC 0 10 1) []) THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[FVT; IN_INSERT; term_INJ] THEN
SUBGOAL_THEN `(@y. (z = y) /\ MEM y (MAP FST (env:(num#term)list))) = z`
SUBST1_TAC THENL
[MATCH_MP_TAC SELECT_UNIQUE THEN
X_GEN_TAC `w:num` THEN REWRITE_TAC[] THEN EQ_TAC THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
UNDISCH_TAC `MEM z (MAP FST (env:(num#term)list))` THEN
UNDISCH_TAC `!x. LENGTH (FILTER (\(y:num,s:term). y = x) env) <= 1` THEN
DISCH_THEN(MP_TAC o SPEC `z:num`) THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; MEM; ASSOC; FILTER] THEN
SPEC_TAC(`h:num#term`,`h:num#term`) THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`y:num`; `s:term`] THEN
REWRITE_TAC[FST; SND] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_CASES_TAC `y:num = z` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let istriv_raw =
new_specification ["istriv"]
(REWRITE_RULE[SKOLEM_THM; RIGHT_IMP_EXISTS_THM] ISTRIV_EXISTS);;
let istriv = prove
(`!env x.
LOOPFREE(env) /\ CONFLICTFREE(env)
==> (!x y. istriv env x (V y) =
if y = x then TT
else if MEM y (MAP FST env) then
istriv env x (ASSOC y env)
else FF) /\
(!f args. istriv env x (Fn f args) =
if EX (\a. ~(istriv env x a = FF)) args
then Exception else FF)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC LAND_CONV [MATCH_MP istriv_raw th]) THEN
REWRITE_TAC[term_INJ; term_DISTINCT] THENL
[COND_CASES_TAC THEN REWRITE_TAC[] THEN
REWRITE_TAC[UNWIND_THM1] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; UNWIND_THM2] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THENL
[AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC SELECT_UNIQUE THEN
X_GEN_TAC `w:num` THEN REWRITE_TAC[] THEN EQ_TAC THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN
UNDISCH_TAC `~MEM y (MAP FST (env:(num#term)list))` THEN
MATCH_MP_TAC(TAUT `a ==> ~a ==> b`) THEN
FIRST_ASSUM(CHOOSE_THEN (MP_TAC o CONJUNCT1)) THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; MAP] THEN
DISCH_THEN(DISJ_CASES_THEN2 (SUBST1_TAC o SYM) MP_TAC) THEN
ASM_SIMP_TAC[FST]; ALL_TAC] THEN
ASM_CASES_TAC `x IN FVT(Fn f args)` THEN ASM_REWRITE_TAC[] THENL
[COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `~EX (\a. ~(istriv env x a = FF)) args` THEN
MATCH_MP_TAC(TAUT `a ==> ~a ==> b`) THEN
UNDISCH_TAC `x IN FVT (Fn f args)` THEN
REWRITE_TAC[FVT; IN_LIST_UNION; EX_MAP] THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ]
EX_IMP) THEN
REWRITE_TAC[o_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
TRY(DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC)) THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP istriv_raw th]) THENL
[RULE_ASSUM_TAC(REWRITE_RULE[FVT; IN_INSERT; NOT_IN_EMPTY]) THEN
ASM_REWRITE_TAC[retval_DISTINCT];
ASM_REWRITE_TAC[term_DISTINCT; retval_DISTINCT]]; ALL_TAC] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FVT; IN_LIST_UNION; EX_MAP] THEN
REWRITE_TAC[LEFT_AND_EX_THM] THEN REWRITE_TAC[EXISTS_EX] THEN
REWRITE_TAC[o_THM] THEN UNDISCH_TAC `~(x IN FVT (Fn f args))` THEN
REWRITE_TAC[FVT; IN_LIST_UNION; EX_MAP] THEN
MATCH_MP_TAC EX_ADHOC THEN X_GEN_TAC `t:term` THEN
REWRITE_TAC[o_THM] THEN DISCH_TAC THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC
(RAND_CONV o RAND_CONV o LAND_CONV) [MATCH_MP istriv_raw th]) THEN
COND_CASES_TAC THENL
[UNDISCH_TAC `~(x IN FVT t)` THEN
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `?y. (t = V y) /\ MEM y (MAP FST (env:(num#term)list))` THEN
ASM_REWRITE_TAC[] THENL
[ALL_TAC; COND_CASES_TAC THEN ASM_REWRITE_TAC[retval_DISTINCT]] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; term_INJ] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
SUBGOAL_THEN `(@z. (y = z) /\ MEM z (MAP FST (env:(num#term)list))) = y`
SUBST1_TAC THENL
[MATCH_MP_TAC SELECT_UNIQUE THEN
X_GEN_TAC `w:num` THEN REWRITE_TAC[] THEN EQ_TAC THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!s. MEM (y:num,s:term) env <=> (s = ASSOC y env)`
(fun th -> MESON_TAC[th]) THEN
GEN_TAC THEN UNDISCH_TAC `MEM y (MAP FST (env:(num#term)list))` THEN
FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
POP_ASSUM_LIST(K ALL_TAC) THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MEM; MAP] THEN
SPEC_TAC(`h:num#term`,`h:num#term`) THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `t:term`] THEN
REWRITE_TAC[FST; SND; PAIR_EQ; ASSOC] THEN
ASM_CASES_TAC `x:num = y` THEN ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC(TAUT `(b ==> ~a) ==> (a ==> (c \/ b <=> c))`) THEN
DISCH_TAC THEN REWRITE_TAC[CONFLICTFREE] THEN
DISCH_THEN(MP_TAC o SPEC `y:num`) THEN
REWRITE_TAC[FILTER; LENGTH] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[LENGTH; ARITH_RULE `~(SUC n <= 1) <=> ~(n = 0)`] THEN
REWRITE_TAC[LENGTH_EQ_NIL] THEN
DISCH_THEN(MP_TAC o AP_TERM `MEM (y:num,s:term)`) THEN
ASM_REWRITE_TAC[MEM; MEM_FILTER] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REFL_TAC;
ALL_TAC] THEN
DISCH_TAC THEN
SUBGOAL_THEN `CONFLICTFREE t` (fun th -> ASM_MESON_TAC[th]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONFLICTFREE]) THEN
REWRITE_TAC[CONFLICTFREE; MEM; FILTER] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Prove that it works. *)
(* ------------------------------------------------------------------------- *)
let EQV = new_definition
`EQV env x y = MEM (x,V y) env`;;
let EQV_IMP_OCC = prove
(`!env x y. EQV env x y ==> OCC env x y`,
REWRITE_TAC[EQV; OCC] THEN MESON_TAC[IN_INSERT; FVT]);;
let ISTRIV_WORKS = prove
(`!env x t. LOOPFREE(env) /\ CONFLICTFREE(env)
==> (istriv env x t =
if ?y. (t = V y) /\ RTC (EQV env) y x then TT
else if ?y. y IN FVT t /\ RTC (OCC env) y x then Exception
else FF)`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
GEN_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP LOOPFREE_WF_TERM o CONJUNCT1) THEN
REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN
X_GEN_TAC `t:term` THEN DISCH_TAC THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP istriv_raw th]) THEN
ASM_CASES_TAC `t = V x` THEN ASM_REWRITE_TAC[] THENL
[COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[term_INJ; RTC_REFL]; ALL_TAC] THEN
ASM_CASES_TAC `?y. (t = V y) /\ MEM y (MAP FST (env:(num#term)list))` THEN
ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[term_INJ; UNWIND_THM1] THEN
SUBGOAL_THEN `(@y. (z = y) /\ MEM y (MAP FST (env:(num#term)list))) = z`
SUBST1_TAC THENL
[MATCH_MP_TAC SELECT_UNIQUE THEN
X_GEN_TAC `w:num` THEN REWRITE_TAC[] THEN EQ_TAC THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `ASSOC z (env:(num#term)list)`) THEN
ANTS_TAC THENL
[EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[FVT; IN_INSERT] THEN
UNDISCH_TAC `MEM z (MAP FST (env:(num#term)list))` THEN
FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[CONFLICTFREE] THEN
DISCH_THEN(MP_TAC o SPEC `z:num`) THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; MEM; ASSOC; FILTER] THEN
SPEC_TAC(`h:num#term`,`h:num#term`) THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`y:num`; `s:term`] THEN
REWRITE_TAC[FST; SND] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_CASES_TAC `y:num = z` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; UNWIND_THM2] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [RTC_CASES_R] THEN
ASM_CASES_TAC `x:num = z` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[OCC; EQV] THEN
SUBGOAL_THEN `!s. MEM (z:num,s:term) env = (s = ASSOC z env)`
(fun th -> REWRITE_TAC[th])
THENL
[GEN_TAC THEN UNDISCH_TAC `MEM z (MAP FST (env:(num#term)list))` THEN
FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
POP_ASSUM_LIST(K ALL_TAC) THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MEM; MAP] THEN
SPEC_TAC(`h:num#term`,`h:num#term`) THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `t:term`] THEN
REWRITE_TAC[FST; SND; PAIR_EQ; ASSOC] THEN
ASM_CASES_TAC `x:num = z` THEN ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC(TAUT `(b ==> ~a) ==> (a ==> (c \/ b <=> c))`) THEN
DISCH_TAC THEN REWRITE_TAC[CONFLICTFREE] THEN
DISCH_THEN(MP_TAC o SPEC `z:num`) THEN
REWRITE_TAC[FILTER; LENGTH] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[LENGTH; ARITH_RULE `~(SUC n <= 1) <=> ~(n = 0)`] THEN
REWRITE_TAC[LENGTH_EQ_NIL] THEN
DISCH_THEN(MP_TAC o AP_TERM `MEM (z:num,s:term)`) THEN
ASM_REWRITE_TAC[MEM; MEM_FILTER] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REFL_TAC;
ALL_TAC] THEN
DISCH_TAC THEN
SUBGOAL_THEN `CONFLICTFREE t` (fun th -> ASM_MESON_TAC[th]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONFLICTFREE]) THEN
REWRITE_TAC[CONFLICTFREE; MEM; FILTER] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN ARITH_TAC; ALL_TAC] THEN
GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV o BINDER_CONV o
LAND_CONV) [EQ_SYM_EQ] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[UNWIND_THM2];
ALL_TAC] THEN
SUBGOAL_THEN `~(?y. (t = V y) /\ RTC (EQV env) y x)` ASSUME_TAC THENL
[UNDISCH_TAC
`~(?y. (t = V y) /\ MEM y (MAP FST (env:(num#term)list)))` THEN
REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN
ONCE_REWRITE_TAC[RTC_CASES_R] THEN REWRITE_TAC[EQV] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:num` THEN
ASM_CASES_TAC `y = x:num` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[MEM_MAP] THEN MESON_TAC[FST];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `x IN FVT(t)` THEN
ASM_REWRITE_TAC[] THENL
[SUBGOAL_THEN `?y. y IN FVT t /\ RTC (OCC env) y x`
(fun th -> REWRITE_TAC[th]) THEN
ASM_MESON_TAC[RTC_REFL]; ALL_TAC] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `y:num` THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
DISCH_TAC THEN
ONCE_REWRITE_TAC[RTC_CASES_R] THEN
ASM_CASES_TAC `y = x:num` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[OCC; LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `s:term` THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `s:term`) THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
ASM_CASES_TAC `?y. (s = V y) /\ RTC (EQV env) y x` THEN
ASM_REWRITE_TAC[retval_DISTINCT] THENL
[FIRST_X_ASSUM(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[FVT; IN_INSERT] THEN
ASM_MESON_TAC[RTC_MONO; EQV_IMP_OCC]; ALL_TAC] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[retval_DISTINCT]);;
(* ------------------------------------------------------------------------- *)
(* Wellfoundedness lemmas. *)
(* ------------------------------------------------------------------------- *)
let SUB1 = new_definition
`SUB1 s t <=> ?f args. (t = Fn f args) /\ MEM s args`;;
let WF_SUB1 = prove
(`WF(SUB1)`,
SIMP_TAC[WF_IND; SUB1; LEFT_IMP_EXISTS_THM] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[term_DISTINCT; term_INJ] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM ALL_MEM]) THEN ASM_MESON_TAC[]);;
let RTC_SUB1 = prove
(`!x t. RTC(SUB1) (V x) t <=> x IN FVT(t)`,
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; IN_LIST_UNION] THEN CONJ_TAC THEN
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[RTC_CASES_L] THEN
REWRITE_TAC[SUB1; term_INJ; term_DISTINCT] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `?y. RTC SUB1 (V x) y /\ MEM y l` THEN CONJ_TAC THENL
[MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[EX_MAP; o_DEF] THEN
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP ALL_ADHOC) THEN
REWRITE_TAC[EX_MEM]);;
let WF_SUBCOMPONENT = prove
(`LOOPFREE(env) ==> WF(\s t. ?x. MEM (x,s) env /\ RTC(SUB1) (V x) t)`,
REWRITE_TAC[RTC_SUB1] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[LOOPFREE_WF_TERM]);;
let WF_DESCENT = prove
(`LOOPFREE(env)
==> WF(\s t. (?x. (t = V x) /\ MEM (x,s) env) \/
(?f args. (t = Fn f args) /\ MEM s args))`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[DISJ_SYM] THEN
MATCH_MP_TAC WF_DISJ THEN REWRITE_TAC[GSYM SUB1] THEN
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[WF_SUB1] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2] THEN
ASM_SIMP_TAC[WF_SUBCOMPONENT]);;
(* ------------------------------------------------------------------------- *)
(* Existence of unify. *)
(* ------------------------------------------------------------------------- *)
let termcases = new_recursive_definition term_RECURSION
`(termcases cv cf (V v) = cv v) /\
(termcases cv cf (Fn f args) = cf f args)`;;
let tpcases_def = new_definition
`tpcases c1 c2 c3 (t1,t2) =
termcases (\v1. termcases
(\v2. c2 v1 (V v2))
(\f2 args2. c2 v1 (Fn f2 args2)) t2)
(\f1 args1. termcases
(\v2. c3 f1 args1 v2)
(\f2 args2. c1 f1 args1 f2 args2) t2)
t1`;;
let tpcases = prove
(`(tpcases c1 c2 c3 (Fn f1 args1,Fn f2 args2) = c1 f1 args1 f2 args2) /\
(tpcases c1 c2 c3 (V v1,t2) = c2 v1 t2) /\
(tpcases c1 c2 c3 (Fn f1 args1,V v2) = c3 f1 args1 v2)`,
SPEC_TAC(`t2:term`,`t2:term`) THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[tpcases_def; termcases]);;
let MLEFT = new_definition
`MLEFT (env,eqs) =
CARD(FVT(Fn 0 (MAP FST eqs)) UNION
FVT(Fn 0 (MAP SND eqs)) UNION
FVT(Fn 0 (MAP SND env)) UNION
FVT(Fn 0 (MAP (V o FST) env))) -
CARD(FVT(Fn 0 (MAP (V o FST) env)))`;;
let CRIGHT = new_definition
`CRIGHT (env',eqs') (env,eqs) <=>
LOOPFREE(env) /\
(env' = env) /\
((?f args1 args2 oth.
(LENGTH args1 = LENGTH args2) /\
(eqs = CONS (Fn f args1,Fn f args2) oth) /\
(eqs' = APPEND (ZIP args1 args2) oth)) \/
(?x t oth. (eqs = CONS (V x,t) oth) /\
(MEM x (MAP FST env) /\
(eqs' = CONS (ASSOC x env,t) oth) \/
~(MEM x (MAP FST env)) /\
(istriv env x t = TT) /\
(eqs' = oth))) \/
(?x f args oth. (eqs = CONS (Fn f args,V x) oth) /\
(eqs' = CONS (V x,Fn f args) oth)))`;;
let CALLORDER = new_definition
`CALLORDER (env',eqs') (env,eqs) <=>
MEASURE MLEFT (env',eqs') (env,eqs) \/
CRIGHT (env',eqs') (env,eqs)`;;
let PAIRED_ETA_THM = prove
(`!g:A#B->C. (\(p1,p2). g (p1,p2)) = g`,
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);;
let WF_CRIGHT = prove
(`WF CRIGHT`,
SUBGOAL_THEN `CRIGHT = \(env',eqs') (env,eqs). CRIGHT (env',eqs') (env,eqs)`
SUBST1_TAC THENL
[REWRITE_TAC[PAIRED_ETA_THM] THEN
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN REFL_TAC; ALL_TAC] THEN
REWRITE_TAC[CRIGHT] THEN MATCH_MP_TAC WF_PROJ_EQ THEN
X_GEN_TAC `env:(num#term)list` THEN DISCH_TAC THEN REWRITE_TAC[] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP WF_DESCENT) THEN
DISCH_THEN(MP_TAC o GEN_ALL o MATCH_MP (ONCE_REWRITE_RULE
[IMP_CONJ] WF_ALTERNATION)) THEN
DISCH_THEN(MP_TAC o SPEC
`\s t. (?f args. s = Fn f args) /\ (?x. t = V x)`) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL [MESON_TAC[term_DISTINCT]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP WF_MULTIZIP) THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE
[IMP_CONJ] WF_SUBSET) THEN
MAP_EVERY X_GEN_TAC [`eqs2:(term#term)list`; `eqs1:(term#term)list`] THEN
REWRITE_TAC[] THEN STRIP_TAC THENL
[MAP_EVERY EXISTS_TAC
[`(Fn f args1,Fn f args2)`;
`oth:(term#term)list`;
`(ZIP args1 args2):(term#term)list`] THEN
ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`s:term`; `t:term`] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
DISCH_TAC THEN DISJ1_TAC THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
MAP_EVERY EXISTS_TAC
[`f:num`; `args1:term list`; `f:num`; `args2:term list`] THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP MAP_FST_ZIP);
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP MAP_SND_ZIP)] THEN
REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[FST; SND];
MAP_EVERY EXISTS_TAC
[`(V x,t:term)`;
`oth:(term#term)list`;
`[ASSOC x (env:(num#term)list),t:term]`] THEN
ASM_REWRITE_TAC[APPEND] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[MEM; PAIR_EQ] THEN
DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN
DISJ2_TAC THEN DISJ1_TAC THEN REWRITE_TAC[] THEN EXISTS_TAC `x:num` THEN
ASM_REWRITE_TAC[MEM_ASSOC];
MAP_EVERY EXISTS_TAC
[`(V x,t:term)`; `oth:(term#term)list`; `[]:(term#term)list`] THEN
ASM_REWRITE_TAC[APPEND; MEM];
MAP_EVERY EXISTS_TAC
[`(Fn f args,V x)`; `oth:(term#term)list`; `[V x,Fn f args]`] THEN
ASM_REWRITE_TAC[APPEND] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[MEM; PAIR_EQ] THEN
DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN REWRITE_TAC[] THEN
REPEAT DISJ2_TAC THEN MESON_TAC[]]);;
let WF_CALLORDER = prove
(`WF CALLORDER`,
SUBGOAL_THEN
`CALLORDER = \(env',eqs') (env,eqs). CALLORDER (env',eqs') (env,eqs)`
SUBST1_TAC THENL
[REWRITE_TAC[PAIRED_ETA_THM] THEN
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN REFL_TAC; ALL_TAC] THEN
REWRITE_TAC[CALLORDER] THEN
REWRITE_TAC[PAIRED_ETA_THM] THEN
MATCH_MP_TAC WF_MEASURE_OR_NONINC THEN
REWRITE_TAC[WF_CRIGHT; FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC
[`env':(num#term)list`; `eqs':(term#term)list`;
`env:(num#term)list`; `eqs:(term#term)list`] THEN
REWRITE_TAC[CRIGHT; MLEFT] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN
MATCH_MP_TAC(ARITH_RULE `a <= c:num ==> a - b <= c - b`) THEN
MATCH_MP_TAC CARD_SUBSET THEN
REWRITE_TAC[FINITE_UNION; FVT_FINITE] THEN
REWRITE_TAC[SUBSET; IN_UNION] THEN X_GEN_TAC `x:num` THEN
FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[MAP; MAP_APPEND; FVT; LIST_UNION; LIST_UNION_APPEND] THEN
REWRITE_TAC[IN_UNION; GSYM DISJ_ASSOC] THENL
[MATCH_MP_TAC(TAUT `(a' <=> a) /\ (c' <=> c)
==> a \/ b \/ c \/ d ==> a' \/ b \/ c' \/ d`) THEN
ASM_SIMP_TAC[MAP_FST_ZIP; MAP_SND_ZIP];
MATCH_MP_TAC(TAUT
`(a ==> e)
==> a \/ b \/ c \/ d \/ e \/ f
==> a' \/ b \/ c \/ d \/ e \/ f`) THEN
UNDISCH_TAC `MEM x' (MAP FST (env:(num#term)list))` THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; MAP; ASSOC] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[LIST_UNION; IN_UNION];
CONV_TAC TAUT;
CONV_TAC TAUT]);;
let UNIFY_EXISTS_RAW = prove
(`?unify.
!pr. unify pr =
if ~LOOPFREE(FST pr) then NONE
else if SND pr = [] then SOME(FST pr)
else tpcases
(\f fargs g gargs.
if (f = g) /\ (LENGTH fargs = LENGTH gargs)
then unify (FST pr,APPEND (ZIP fargs gargs)
(TL(SND pr)))
else NONE)
(\x t. if MEM x (MAP FST (FST pr)) then
unify (FST pr,CONS (ASSOC x (FST pr),t)
(TL(SND pr)))
else if istriv (FST pr) x t = Exception then
NONE
else if istriv (FST pr) x t = TT then
unify(FST pr,TL(SND pr))
else
unify(CONS (x,t) (FST pr),TL(SND pr)))
(\f args x. unify (FST pr,
CONS (V x,Fn f args)
(TL(SND pr))))
(HD(SND pr))`,
MATCH_MP_TAC(MATCH_MP WF_REC WF_CALLORDER) THEN
MAP_EVERY X_GEN_TAC
[`unify1:(num#term)list#(term#term)list->((num#term)list)option`;
`unify2:(num#term)list#(term#term)list->((num#term)list)option`] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`env1:(num#term)list`; `eqs1:(term#term)list`] THEN
DISCH_THEN(MP_TAC o GENL
[`env2:(num#term)list`; `eqs2:(term#term)list`] o SPEC
`(env2,eqs2):(num#term)list#(term#term)list`) THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[FST; SND] THEN DISCH_TAC THEN
ASM_CASES_TAC `LOOPFREE env1` THEN ASM_REWRITE_TAC[] THEN
MP_TAC(ISPEC `eqs1:(term#term)list` list_CASES) THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THEN REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `hpr:term#term` (X_CHOOSE_THEN
`oth:(term#term)list` SUBST_ALL_TAC)) THEN
REWRITE_TAC[NOT_CONS_NIL; HD; TL] THEN
SUBST_ALL_TAC(GSYM(ISPEC `hpr:term#term` PAIR)) THEN
MP_TAC(ISPEC `FST(hpr:term#term)` term_CASES) THEN
DISCH_THEN(DISJ_CASES_THEN2
(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC)
(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `fargs:term list` SUBST_ALL_TAC)))
THENL
[ABBREV_TAC `t = SND(hpr:term#term)`;
MP_TAC(ISPEC `SND(hpr:term#term)` term_CASES) THEN
DISCH_THEN(DISJ_CASES_THEN2
(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC)
(X_CHOOSE_THEN `g:num` (X_CHOOSE_THEN `gargs:term list`
SUBST_ALL_TAC)))] THEN
REWRITE_TAC[tpcases] THENL
[ALL_TAC;
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CALLORDER] THEN
DISJ2_TAC THEN ASM_REWRITE_TAC[CRIGHT] THEN
REPEAT DISJ2_TAC THEN ASM_MESON_TAC[];
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[CALLORDER] THEN DISJ2_TAC THEN ASM_REWRITE_TAC[CRIGHT] THEN
ASM_MESON_TAC[]] THEN
ASM_CASES_TAC `MEM x (MAP FST (env1:(num#term)list))` THEN
ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CALLORDER] THEN
DISJ2_TAC THEN ASM_REWRITE_TAC[CRIGHT] THEN
DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `istriv env1 x t = Exception` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `istriv env1 x t = TT` THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CALLORDER] THEN
DISJ2_TAC THEN ASM_REWRITE_TAC[CRIGHT] THEN
DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CALLORDER] THEN
DISJ1_TAC THEN REWRITE_TAC[MEASURE; MLEFT] THEN
REWRITE_TAC[MAP; FST; SND; LENGTH] THEN
MATCH_MP_TAC(ARITH_RULE
`(a' = a) /\ (b' = b + 1) /\ b' <= a' ==> a' - b' < a - b`) THEN
SUBGOAL_THEN
`FVT(Fn 0 (CONS ((V o FST) (x,t:term)) (MAP (V o FST) env1))) =
x INSERT FVT(Fn 0 (MAP (V o FST) (env1:(num#term)list)))`
SUBST1_TAC THENL
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST] THEN SET_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`FVT(Fn 0 (CONS (V x) (MAP FST (oth:(term#term)list)))) =
x INSERT FVT(Fn 0 (MAP FST oth))`
SUBST1_TAC THENL
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST] THEN SET_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`FVT(Fn 0 (CONS t (MAP SND env1))) =
FVT(t) UNION FVT(Fn 0 (MAP SND (env1:(num#term)list)))`
SUBST1_TAC THENL
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST]; ALL_TAC] THEN
SUBGOAL_THEN
`FVT(Fn 0 (CONS t (MAP SND oth))) =
FVT(t) UNION FVT(Fn 0 (MAP SND (oth:(term#term)list)))`
SUBST1_TAC THENL
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST]; ALL_TAC] THEN
REPEAT CONJ_TAC THENL
[AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_UNION; DISJ_ACI; IN_INSERT];
SIMP_TAC[CARD_CLAUSES; FVT_FINITE; ADD1] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN
UNDISCH_TAC `x IN FVT (Fn 0 (MAP (V o FST) (env1:(num#term)list)))` THEN
UNDISCH_TAC `~MEM x (MAP FST (env1:(num#term)list))` THEN
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> b ==> c`) THEN
SPEC_TAC(`env1:(num#term)list`,`env1:(num#term)list`) THEN
REWRITE_TAC[FVT] THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[LIST_UNION; MEM; MAP; NOT_IN_EMPTY] THEN
REWRITE_TAC[o_THM; FVT; IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN
STRIP_TAC THEN ASM_SIMP_TAC[];
MATCH_MP_TAC CARD_SUBSET THEN
REWRITE_TAC[FINITE_UNION; FVT_FINITE; FINITE_INSERT] THEN
REWRITE_TAC[SUBSET; IN_UNION; IN_INSERT] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]]);;
let unify_raw = new_specification ["unify"] UNIFY_EXISTS_RAW;;
let unify = prove
(`LOOPFREE(env)
==> (unify (env,CONS (Fn f fargs,Fn g gargs) oth) =
if (f = g) /\ (LENGTH fargs = LENGTH gargs)
then unify (env,APPEND (ZIP fargs gargs) oth)
else NONE) /\
(unify (env,CONS (V x,t) oth) =
if MEM x (MAP FST env) then unify (env,CONS (ASSOC x env,t) oth)
else if istriv env x t = Exception then NONE
else if istriv env x t = TT then unify (env,oth)
else unify (CONS (x,t) env,oth)) /\
(unify (env,CONS (Fn f fargs,V x) oth) =
unify (env,CONS (V x,Fn f fargs) oth))`,
DISCH_TAC THEN REPEAT CONJ_TAC THEN
GEN_REWRITE_TAC LAND_CONV [unify_raw] THEN
ASM_REWRITE_TAC[FST; SND; HD; TL; NOT_CONS_NIL; tpcases]);;
(* ------------------------------------------------------------------------- *)
(* Show that it does indeed work. *)
(* ------------------------------------------------------------------------- *)
let unifies = new_definition
`unifies i l <=> ALL (\(s,t). termsubst i s = termsubst i t) l`;;
let OPTION_DISTINCT = prove_constructors_distinct option_RECURSION;;
let OPTION_INJ = prove_constructors_injective option_RECURSION;;
let TC_SUB1_IRREFL = prove
(`!s t. TC SUB1 s t ==> ~(s = t)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `a ==> ~b <=> b ==> ~a`] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC WF_REFL THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
REWRITE_TAC[WF_TC; WF_SUB1]);;
let UNIFY_OCCURS = prove
(`!env i.
ALL (\(x,t). i x = termsubst i t) env
==> !x y. RTC (OCC env) x y ==> RTC SUB1 (i y) (i x)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC RTC_INDUCT THEN
REWRITE_TAC[RTC_REFL] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[RTC_TRANS]] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[OCC] THEN
DISCH_THEN(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM]) THEN
DISCH_THEN(MP_TAC o SPEC `(x:num,t:term)`) THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_SIMP_TAC[] THEN
DISCH_TAC THEN UNDISCH_TAC `y IN FVT(t)` THEN SPEC_TAC(`y:num`,`y:num`) THEN
SPEC_TAC(`t:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN
SIMP_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; termsubst; RTC_REFL] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`] THEN
DISCH_TAC THEN X_GEN_TAC `z:num` THEN REWRITE_TAC[IN_LIST_UNION] THEN
REWRITE_TAC[EX_MAP; o_DEF] THEN REWRITE_TAC[GSYM EX_MEM] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC `termsubst i s` THEN CONJ_TAC THENL
[UNDISCH_TAC
`ALL (\t. !y. y IN FVT t ==> RTC SUB1 (i y) (termsubst i t)) args` THEN
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[];
REWRITE_TAC[SUB1] THEN EXISTS_TAC `f:num` THEN
EXISTS_TAC `MAP (termsubst i) args` THEN
REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[]]);;
let UNIFY_OCCURS_PROPER = prove
(`!env i.
ALL (\(x,t). i x = termsubst i t) env
==> !x y. RTC (OCC env) x y
==> RTC (EQV env) x y \/ TC SUB1 (i y) (i x)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC RTC_INDUCT THEN
REWRITE_TAC[RTC_REFL] THEN CONJ_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[RTC_TRANS];
DISJ2_TAC THEN ONCE_REWRITE_TAC[TC_TC_RTC_CASES];
DISJ2_TAC THEN ONCE_REWRITE_TAC[TC_RTC_TC_CASES];
ASM_MESON_TAC[TC_TRANS]] THEN
EXISTS_TAC `(i:num->term) y` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP UNIFY_OCCURS) THEN
ASM_MESON_TAC[EQV_IMP_OCC; RTC_MONO]] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[OCC] THEN
DISCH_THEN(X_CHOOSE_THEN `t:term` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM]) THEN
DISCH_THEN(MP_TAC o SPEC `(x:num,t:term)`) THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_SIMP_TAC[] THEN
DISCH_TAC THEN
SUBGOAL_THEN
`!t y. y IN FVT t ==> (t = V y) \/ TC SUB1 (i y) (termsubst i t)`
MP_TAC THENL
[ALL_TAC; ASM_MESON_TAC[EQV; RTC_INC]] THEN
SUBGOAL_THEN `!t y. y IN FVT t ==> RTC SUB1 (V y) t` MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[RTC; RC_CASES] THEN
SUBGOAL_THEN
`!s t. TC SUB1 s t ==> TC SUB1 (termsubst i s) (termsubst i t)`
(fun th -> MESON_TAC[th; termsubst]) THEN
MATCH_MP_TAC TC_INDUCT THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[TC_TRANS]] THEN
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN
DISCH_THEN(fun th -> MATCH_MP_TAC TC_INC THEN MP_TAC th) THEN
REWRITE_TAC[SUB1] THEN
DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `args:term list`
STRIP_ASSUME_TAC)) THEN
MAP_EVERY EXISTS_TAC [`f:num`; `MAP (termsubst i) args`] THEN
ASM_REWRITE_TAC[termsubst; MEM_MAP] THEN ASM_MESON_TAC[]] THEN
MATCH_MP_TAC term_INDUCT THEN
SIMP_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; RTC_REFL] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`] THEN
DISCH_TAC THEN REWRITE_TAC[IN_LIST_UNION] THEN
REWRITE_TAC[EX_MAP; o_DEF] THEN X_GEN_TAC `z:num` THEN
REWRITE_TAC[GSYM EX_MEM] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC `s:term` THEN CONJ_TAC THENL
[UNDISCH_TAC
`ALL (\t. !y. y IN FVT t ==> RTC SUB1 (V y) t) args` THEN
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[];
REWRITE_TAC[SUB1] THEN ASM_MESON_TAC[]]);;
let GOODLOOP_UNIFIABLE = prove
(`!env x t.
LOOPFREE(env) /\ CONFLICTFREE(env) /\ (istriv env x t = TT)
==> !i. unifies i (CONS (V x,t) (MAP (\(x,t). V x,t) env)) =
unifies i (MAP (\(x,t). V x,t) env)`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[ISTRIV_WORKS] THEN
REPEAT(COND_CASES_TAC THEN REWRITE_TAC[retval_DISTINCT]) THEN
X_GEN_TAC `i:num->term` THEN REWRITE_TAC[unifies; ALL] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b <=> b) <=> (b ==> a)`] THEN
REWRITE_TAC[ALL_MAP; o_DEF] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM PAIRED_ETA_THM] THEN
REWRITE_TAC[] THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[termsubst] THEN DISCH_TAC THEN
UNDISCH_TAC `?y. (t = V y) /\ RTC (EQV env) y x` THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
SPEC_TAC(`x:num`,`x:num`) THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN
SUBGOAL_THEN `!x y. RTC (EQV env) x y ==> (i x :term = i y)`
(fun th -> MESON_TAC[th; termsubst]) THEN
MATCH_MP_TAC RTC_INDUCT THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
MAP_EVERY X_GEN_TAC [`u:num`; `v:num`] THEN REWRITE_TAC[EQV] THEN
UNDISCH_TAC `ALL (\(p1,p2). i p1 = termsubst i p2) env` THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; MEM] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[PAIR_EQ] THEN
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[termsubst]);;
let BADLOOP_UNUNIFIABLE = prove
(`!env x t.
LOOPFREE(env) /\ CONFLICTFREE(env) /\ (istriv env x t = Exception)
==> !i. ~(unifies i (CONS (V x,t) (MAP (\(x,t). V x,t) env)))`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[ISTRIV_WORKS] THEN
REPEAT(COND_CASES_TAC THEN REWRITE_TAC[retval_DISTINCT]) THEN
X_GEN_TAC `i:num->term` THEN REWRITE_TAC[unifies; ALL] THEN
MATCH_MP_TAC(TAUT `(b ==> ~a) ==> ~(a /\ b)`) THEN
REWRITE_TAC[ALL_MAP; o_DEF] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM PAIRED_ETA_THM] THEN
REWRITE_TAC[] THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[termsubst] THEN DISCH_TAC THEN
UNDISCH_TAC `?y. y IN FVT t /\ RTC (OCC env) y x` THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:num` THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
DISCH_THEN(MP_TAC o SPEC `y:num`) THEN
ASM_CASES_TAC `RTC (EQV env) y x` THEN ASM_REWRITE_TAC[] THENL
[DISCH_TAC THEN STRIP_TAC THEN MATCH_MP_TAC TC_SUB1_IRREFL THEN
ONCE_REWRITE_TAC[TC_RTC_TC_CASES] THEN
EXISTS_TAC `(i:num->term) y` THEN CONJ_TAC THENL
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP UNIFY_OCCURS) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`!t y. y IN FVT t ==> (t = V y) \/ TC SUB1 (i y) (termsubst i t)`
(fun th -> ASM_MESON_TAC[th]) THEN
SUBGOAL_THEN `!t y. y IN FVT t ==> RTC SUB1 (V y) t` MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[RTC; RC_CASES] THEN
SUBGOAL_THEN
`!s t. TC SUB1 s t ==> TC SUB1 (termsubst i s) (termsubst i t)`
(fun th -> MESON_TAC[th; termsubst]) THEN
MATCH_MP_TAC TC_INDUCT THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[TC_TRANS]] THEN
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN
DISCH_THEN(fun th -> MATCH_MP_TAC TC_INC THEN MP_TAC th) THEN
REWRITE_TAC[SUB1] THEN
DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `args:term list`
STRIP_ASSUME_TAC)) THEN
MAP_EVERY EXISTS_TAC [`f:num`; `MAP (termsubst i) args`] THEN
ASM_REWRITE_TAC[termsubst; MEM_MAP] THEN ASM_MESON_TAC[]] THEN
MATCH_MP_TAC term_INDUCT THEN
SIMP_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; RTC_REFL] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`] THEN
DISCH_TAC THEN REWRITE_TAC[IN_LIST_UNION] THEN
REWRITE_TAC[EX_MAP; o_DEF] THEN X_GEN_TAC `z:num` THEN
REWRITE_TAC[GSYM EX_MEM] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC `s:term` THEN CONJ_TAC THENL
[UNDISCH_TAC
`ALL (\t. !y. y IN FVT t ==> RTC SUB1 (V y) t) args` THEN
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[];
REWRITE_TAC[SUB1] THEN ASM_MESON_TAC[]];
ALL_TAC] THEN
STRIP_TAC THEN MATCH_MP_TAC TC_SUB1_IRREFL THEN
ONCE_REWRITE_TAC[TC_TC_RTC_CASES] THEN
EXISTS_TAC `(i:num->term) y` THEN CONJ_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP UNIFY_OCCURS_PROPER) THEN
DISCH_THEN(MP_TAC o SPECL [`y:num`; `x:num`]) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!t y. y IN FVT t ==> RTC SUB1 (V y) t` MP_TAC THENL
[ALL_TAC;
SUBGOAL_THEN
`!s t. RTC SUB1 s t ==> RTC SUB1 (termsubst i s) (termsubst i t)`
(fun th -> ASM_MESON_TAC[th; termsubst]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[RTC_REFL] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[RTC_TRANS]] THEN
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN
DISCH_THEN(fun th -> MATCH_MP_TAC RTC_INC THEN MP_TAC th) THEN
REWRITE_TAC[SUB1] THEN
DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `args:term list`
STRIP_ASSUME_TAC)) THEN
MAP_EVERY EXISTS_TAC [`f:num`; `MAP (termsubst i) args`] THEN
ASM_REWRITE_TAC[termsubst; MEM_MAP] THEN ASM_MESON_TAC[]] THEN
MATCH_MP_TAC term_INDUCT THEN
SIMP_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; RTC_REFL] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`] THEN
DISCH_TAC THEN REWRITE_TAC[IN_LIST_UNION] THEN
REWRITE_TAC[EX_MAP; o_DEF] THEN X_GEN_TAC `z:num` THEN
REWRITE_TAC[GSYM EX_MEM] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC `s:term` THEN CONJ_TAC THENL
[UNDISCH_TAC
`ALL (\t. !y. y IN FVT t ==> RTC SUB1 (V y) t) args` THEN
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[];
REWRITE_TAC[SUB1] THEN ASM_MESON_TAC[]]);;
let UNIFY_WORKS_RAW = prove
(`!pr. LOOPFREE(FST pr) /\ CONFLICTFREE(FST pr)
==> ((unify pr = NONE)
==> !i. ~(unifies i (APPEND (MAP (\(x,t). V x,t) (FST pr))
(SND pr)))) /\
!ans. (unify pr = SOME ans)
==> LOOPFREE(ans) /\ CONFLICTFREE(ans) /\
!i. unifies i (APPEND (MAP (\(x,t). V x,t) (FST pr))
(SND pr)) =
unifies i (MAP (\(x,t). V x,t) ans)`,
MATCH_MP_TAC(REWRITE_RULE[WF_IND] WF_CALLORDER) THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`env:(num#term)list`; `eqs:(term#term)list`] THEN
DISCH_THEN(MP_TAC o GENL [`env':(num#term)list`; `eqs':(term#term)list`] o
SPEC `env':(num#term)list,eqs':(term#term)list`) THEN
REWRITE_TAC[FST; SND] THEN DISCH_TAC THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
ONCE_REWRITE_TAC[unify_raw] THEN
ASM_REWRITE_TAC[FST; SND] THEN
MP_TAC(ISPEC `eqs:(term#term)list` list_CASES) THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
[ASM_REWRITE_TAC[APPEND_NIL; OPTION_INJ; OPTION_DISTINCT] THEN
GEN_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [EXISTS_PAIR_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` (X_CHOOSE_THEN `t:term`
(X_CHOOSE_THEN `oth:(term#term)list` SUBST_ALL_TAC))) THEN
REWRITE_TAC[NOT_CONS_NIL; HD; TL] THEN
MP_TAC(SPEC `s:term` term_CASES) THEN
DISCH_THEN(DISJ_CASES_THEN2
(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC)
(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `fargs:term list`
SUBST_ALL_TAC)))
THENL
[ALL_TAC;
MP_TAC(ISPEC `t:term` term_CASES) THEN
DISCH_THEN(DISJ_CASES_THEN2
(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC)
(X_CHOOSE_THEN `g:num` (X_CHOOSE_THEN `gargs:term list`
SUBST_ALL_TAC)))] THEN
REWRITE_TAC[tpcases] THENL
[ASM_CASES_TAC `MEM x (MAP FST (env:(num#term)list))` THEN
ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM(MP_TAC o SPECL
[`env:(num#term)list`;
`CONS (ASSOC (x:num) env,t) (oth:(term#term)list)`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[CALLORDER; CRIGHT] THEN
DISJ2_TAC THEN DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!i. unifies i
(APPEND (MAP (\(x,t). V x,t) env) (CONS (ASSOC x env,t) oth)) =
unifies i
(APPEND (MAP (\(x,t). V x,t) env) (CONS (V x,t) oth))`
(fun th -> REWRITE_TAC[th]) THEN
X_GEN_TAC `i:num->term` THEN
REWRITE_TAC[unifies; ALL; ALL_APPEND] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[ALL_MAP] THEN
MATCH_MP_TAC(TAUT
`(a ==> (b <=> b')) ==> (a /\ b /\ c <=> a /\ b' /\ c)`) THEN
UNDISCH_TAC `MEM x (MAP FST (env:(num#term)list))` THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[MEM; ALL; MAP] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`y:num`; `s:term`; `eev:(num#term)list`] THEN
REWRITE_TAC[FST; SND; o_DEF] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_CASES_TAC `x = y:num` THEN ASM_REWRITE_TAC[ASSOC] THEN
MESON_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `istriv env x t = Exception` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[OPTION_DISTINCT] THEN
MP_TAC(SPECL [`env:(num#term)list`; `x:num`; `t:term`]
BADLOOP_UNUNIFIABLE) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[unifies; ALL_APPEND; ALL] THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN CONV_TAC TAUT; ALL_TAC] THEN
ASM_CASES_TAC `istriv env x t = TT` THEN ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM(MP_TAC o SPECL
[`env:(num#term)list`; `oth:(term#term)list`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[CALLORDER; CRIGHT] THEN
DISJ2_TAC THEN DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!i. unifies i
(APPEND (MAP (\(x,t). V x,t) env) (CONS (V x,t) oth)) =
unifies i
(APPEND (MAP (\(x,t). V x,t) env) oth)`
(fun th -> REWRITE_TAC[th]) THEN
MP_TAC(SPECL [`env:(num#term)list`; `x:num`; `t:term`]
GOODLOOP_UNIFIABLE) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[unifies; ALL_APPEND; ALL] THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN CONV_TAC TAUT;
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`CONS (x:num,t:term) env`; `oth:(term#term)list`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[CALLORDER] THEN DISJ1_TAC THEN
REWRITE_TAC[MEASURE; MLEFT] THEN
REWRITE_TAC[MAP; FST; SND; LENGTH] THEN
MATCH_MP_TAC(ARITH_RULE
`(a' = a) /\ (b' = b + 1) /\ b' <= a' ==> a' - b' < a - b`) THEN
SUBGOAL_THEN
`FVT(Fn 0 (CONS ((V o FST) (x,t:term)) (MAP (V o FST) env))) =
x INSERT FVT(Fn 0 (MAP (V o FST) (env:(num#term)list)))`
SUBST1_TAC THENL
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST] THEN SET_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`FVT(Fn 0 (CONS (V x) (MAP FST (oth:(term#term)list)))) =
x INSERT FVT(Fn 0 (MAP FST oth))`
SUBST1_TAC THENL
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST] THEN SET_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`FVT(Fn 0 (CONS t (MAP SND env))) =
FVT(t) UNION FVT(Fn 0 (MAP SND (env:(num#term)list)))`
SUBST1_TAC THENL
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST]; ALL_TAC] THEN
SUBGOAL_THEN
`FVT(Fn 0 (CONS t (MAP SND oth))) =
FVT(t) UNION FVT(Fn 0 (MAP SND (oth:(term#term)list)))`
SUBST1_TAC THENL
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST]; ALL_TAC] THEN
REPEAT CONJ_TAC THENL
[AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_UNION; DISJ_ACI; IN_INSERT];
SIMP_TAC[CARD_CLAUSES; FVT_FINITE; ADD1] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN
UNDISCH_TAC
`x IN FVT (Fn 0 (MAP (V o FST) (env:(num#term)list)))` THEN
UNDISCH_TAC `~MEM x (MAP FST (env:(num#term)list))` THEN
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> b ==> c`) THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
REWRITE_TAC[FVT] THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[LIST_UNION; MEM; MAP; NOT_IN_EMPTY] THEN
REWRITE_TAC[o_THM; FVT; IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN
STRIP_TAC THEN ASM_SIMP_TAC[];
MATCH_MP_TAC CARD_SUBSET THEN
REWRITE_TAC[FINITE_UNION; FVT_FINITE; FINITE_INSERT] THEN
REWRITE_TAC[SUBSET; IN_UNION; IN_INSERT] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN
ANTS_TAC THENL
[MP_TAC(SPECL [`env:(num#term)list`; `x:num`; `t:term`] ISTRIV_WORKS) THEN
ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
ASM_SIMP_TAC[LOOPFREE_PRESERVE_EQ] THEN
UNDISCH_TAC `CONFLICTFREE env` THEN
REWRITE_TAC[CONFLICTFREE; LENGTH; FILTER] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:num` THEN
ASM_CASES_TAC `x:num = y` THEN ASM_REWRITE_TAC[LENGTH] THEN
MATCH_MP_TAC(ARITH_RULE `(x = 0) ==> y <= z ==> SUC x <= 1`) THEN
UNDISCH_THEN `x:num = y` (SUBST_ALL_TAC o SYM) THEN
REWRITE_TAC[LENGTH_EQ_NIL] THEN
UNDISCH_TAC `~(MEM x (MAP FST (env:(num#term)list)))` THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MEM; MAP; FILTER; NOT_CONS_NIL] THEN
SUBST1_TAC(SYM(ISPEC `h:num#term` PAIR)) THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[FST; SND] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!i. unifies i (APPEND (MAP (\(x,t). V x,t) (CONS (x,t) env)) oth) =
unifies i (APPEND (MAP (\(x,t). V x,t) env) (CONS (V x,t) oth))`
(fun th -> REWRITE_TAC[th]) THEN
REWRITE_TAC[unifies; ALL_APPEND; ALL; MAP] THEN GEN_TAC THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN CONV_TAC TAUT;
FIRST_X_ASSUM(MP_TAC o SPECL
[`env:(num#term)list`; `CONS (V x,Fn f fargs) oth`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[CALLORDER; CRIGHT] THEN
REPEAT DISJ2_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[unifies; ALL_APPEND; ALL] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[EQ_SYM_EQ];
COND_CASES_TAC THEN ASM_REWRITE_TAC[OPTION_DISTINCT] THENL
[ALL_TAC;
REWRITE_TAC[unifies; ALL; ALL_APPEND] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[termsubst; term_INJ] THEN
ASM_MESON_TAC[LENGTH_MAP]] THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`env:(num#term)list`;
`APPEND (ZIP fargs gargs) (oth:(term#term)list)`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[CALLORDER; CRIGHT] THEN
DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`!i. unifies i (APPEND (MAP (\(x,t). V x,t) env)
(APPEND (ZIP fargs gargs) oth)) =
unifies i (APPEND (MAP (\(x,t). V x,t) env)
(CONS (Fn g fargs,Fn g gargs) oth))`
(fun th -> REWRITE_TAC[th]) THEN
X_GEN_TAC `i:num->term` THEN REWRITE_TAC[unifies; ALL; ALL_APPEND] THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[termsubst; term_INJ] THEN
FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN
SPEC_TAC(`gargs:term list`,`gargs:term list`) THEN
SPEC_TAC(`fargs:term list`,`fargs:term list`) THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LENGTH; ALL; MAP; NOT_SUC; ZIP] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_SIMP_TAC[SUC_INJ; CONS_11]]);;
(* ------------------------------------------------------------------------- *)
(* Constructively show that unifiers exist via "solve". *)
(* ------------------------------------------------------------------------- *)
let THE = new_recursive_definition option_RECURSION
`THE(SOME x) = x`;;
let unifier = new_definition
`unifier env =
let sol = SOLVE [] env in ITLIST valmod sol V`;;
let ITLIST_VALMOD_LEMMA = prove
(`!env x. CONFLICTFREE(env)
==> !t. (ITLIST valmod env V x = t) <=>
MEM (x,t) env \/ (t = V x) /\ ~(MEM x (MAP FST env))`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONFLICTFREE] THEN
DISCH_THEN(MP_TAC o SPEC `x:num`) THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[FILTER; LENGTH; ITLIST; MAP; MEM] THENL
[MESON_TAC[]; ALL_TAC] THEN
SPEC_TAC(`h:num#term`,`h:num#term`) THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`z:num`; `s:term`] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_CASES_TAC `z = x:num` THEN
ASM_REWRITE_TAC[PAIR_EQ; LENGTH; valmod] THEN
REWRITE_TAC[ARITH_RULE `SUC n <= 1 <=> (n = 0)`; LENGTH_EQ_NIL] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN GEN_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> ~c) /\ (b <=> b') ==> a ==> (b <=> b' \/ c)`) THEN
CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[EQ_SYM_EQ]] THEN
DISCH_THEN(MP_TAC o AP_TERM `MEM (x:num,t':term)`) THEN
REWRITE_TAC[MEM; MEM_FILTER] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);;
let UNIFIER_WORKS = prove
(`!env. LOOPFREE(env) /\ CONFLICTFREE(env)
==> unifies (unifier env) (MAP (\(x,t). V x,t) env)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[unifier] THEN LET_TAC THEN
MP_TAC(SPEC `env:(num#term)list` SOLVE_WORKS) THEN ASM_REWRITE_TAC[] THEN
ABBREV_TAC `i = ITLIST valmod sol V` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SPEC `i:num->term`) MP_TAC) THEN
DISCH_TAC THEN
REWRITE_TAC[unifies; ALL_MAP; o_DEF] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM PAIRED_ETA_THM] THEN
REWRITE_TAC[] THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[termsubst; GSYM ALL_MEM] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `t:term`] THEN DISCH_TAC THEN
EXPAND_TAC "i" THEN ASM_SIMP_TAC[ITLIST_VALMOD_LEMMA] THEN
SUBGOAL_THEN `termsubst i t = t` (fun th -> ASM_REWRITE_TAC[th]) THEN
GEN_REWRITE_TAC RAND_CONV [GSYM TERMSUBST_TRIV] THEN
MATCH_MP_TAC TERMSUBST_VALUATION THEN X_GEN_TAC `z:num` THEN DISCH_TAC THEN
EXPAND_TAC "i" THEN ASM_SIMP_TAC[ITLIST_VALMOD_LEMMA] THEN
DISJ2_TAC THEN REWRITE_TAC[MEM_MAP] THEN
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN ASM_MESON_TAC[FST]);;
let UNIFIER_MGU = prove
(`!env. LOOPFREE(env) /\ CONFLICTFREE(env)
==> !i. unifies i (MAP (\(x,t). V x,t) env)
==> (termsubst i =
termsubst i o
termsubst (ITLIST valmod env V))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
X_GEN_TAC `s:term` THEN REWRITE_TAC[TERMSUBST_TERMSUBST] THEN
MATCH_MP_TAC TERMSUBST_VALUATION THEN X_GEN_TAC `y:num` THEN
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[o_THM] THEN
UNDISCH_TAC `unifies i (MAP (\(x,t). V x,t) env)` THEN
REWRITE_TAC[unifies; ALL_MAP; o_DEF] THEN
GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM PAIRED_ETA_THM] THEN
REWRITE_TAC[] THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN
REWRITE_TAC[termsubst] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; TERMSUBST_TRIV; termsubst] THEN
SPEC_TAC(`h:num#term`,`h:num#term`) THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`z:num`; `s:term`] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[unifies; ALL; MAP] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
UNDISCH_THEN `y = z:num` (SUBST_ALL_TAC o SYM) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN
ASM_SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Hence we can strengthen the main theorem. *)
(* ------------------------------------------------------------------------- *)
let UNIFY_WORKS = prove
(`!env eqs.
LOOPFREE(env) /\ CONFLICTFREE(env)
==> ((unify (env,eqs) = NONE)
==> !i. ~(unifies i (APPEND (MAP (\(x,t). V x,t) env) eqs))) /\
((unify (env,eqs) = SOME ans)
==> LOOPFREE(ans) /\ CONFLICTFREE(ans) /\
unifies (unifier ans) (APPEND (MAP (\(x,t). V x,t) env) eqs) /\
!i. unifies i (APPEND (MAP (\(x,t). V x,t) env) eqs)
==> (termsubst i = termsubst i o termsubst (unifier ans)))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(SPEC `env:(num#term)list,eqs:(term#term)list` UNIFY_WORKS_RAW) THEN
ASM_REWRITE_TAC[FST; SND] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ans:(num#term)list`) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[unifier] THEN LET_TAC THEN
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN
MP_TAC(SPEC `ans:(num#term)list` SOLVE_WORKS) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
MP_TAC(SPEC `ans:(num#term)list` UNIFIER_WORKS) THEN
MP_TAC(SPEC `sol:(num#term)list` UNIFIER_MGU) THEN
SUBGOAL_THEN `LOOPFREE(sol)` ASSUME_TAC THENL
[REWRITE_TAC[LOOPFREE] THEN X_GEN_TAC `z:num` THEN
ONCE_REWRITE_TAC[TC_RTC_CASES_R] THEN
ONCE_REWRITE_TAC[RTC_CASES_R] THEN
REWRITE_TAC[OCC] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `!i. unifies i (MAP (\(x,t). V x,t) ans) =
unifies i (MAP (\(x,t). V x,t) sol)`
(fun th -> SIMP_TAC[th])
THENL
[GEN_TAC THEN REWRITE_TAC[unifies; ALL_MAP; o_DEF] THEN
REWRITE_TAC[GSYM ALL_MEM] THEN ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_REWRITE_TAC[termsubst]; ALL_TAC] THEN
ASM_REWRITE_TAC[unifier] THEN
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Special case where there is no initial environment. *)
(* ------------------------------------------------------------------------- *)
let UNIFY_WORKS_SIMPLE = prove
(`!eqs. ((unify ([],eqs) = NONE) ==> !i. ~(unifies i eqs)) /\
((unify ([],eqs) = SOME ans)
==> LOOPFREE(ans) /\ CONFLICTFREE(ans) /\
unifies (unifier ans) eqs /\
!i. unifies i eqs
==> (termsubst i = termsubst i o termsubst (unifier ans)))`,
GEN_TAC THEN MP_TAC(SPEC `[]:(num#term)list` UNIFY_WORKS) THEN
REWRITE_TAC[MAP; APPEND] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[LOOPFREE; CONFLICTFREE; LENGTH; FILTER; ARITH] THEN
ONCE_REWRITE_TAC[TC_CASES_L] THEN REWRITE_TAC[OCC; MEM]);;
(* ------------------------------------------------------------------------- *)
(* Slight variant: MGU of a set (not list of pairs) of formulas (not terms) *)
(* ------------------------------------------------------------------------- *)
let Unifies_DEF = new_definition
`Unifies i s <=> !p q. p IN s /\ q IN s ==> (formsubst i p = formsubst i q)`;;
let UNIFIES = prove
(`Unifies i s <=> ?q. !p. p IN s ==> (formsubst i p = q)`,
MESON_TAC[Unifies_DEF]);;
let UNIFIER_FORMPAIR_TERMLIST = prove
(`!p q. qfree(p) /\ qfree(q)
==> ?l. !i. (formsubst i p = formsubst i q) <=> unifies i l`,
let lemma = prove
(`?l. !i. ~(unifies i l)`,
EXISTS_TAC `[Fn 0 [], Fn 1 []]` THEN
REWRITE_TAC[ALL; unifies] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[termsubst; term_INJ; ARITH]) in
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree] THEN
REPEAT CONJ_TAC THENL
[ALL_TAC;
MAP_EVERY X_GEN_TAC [`f:num`; `fargs:term list`];
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC] THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree] THEN
REWRITE_TAC[formsubst; form_DISTINCT; lemma] THENL
[EXISTS_TAC `[]:(term#term)list` THEN REWRITE_TAC[unifies; ALL];
MAP_EVERY X_GEN_TAC [`g:num`; `gargs:term list`] THEN
REWRITE_TAC[form_INJ] THEN
ASM_CASES_TAC `f:num = g` THEN ASM_REWRITE_TAC[lemma] THEN
ASM_CASES_TAC `LENGTH(fargs:term list) = LENGTH(gargs:term list)` THENL
[ALL_TAC; ASM_MESON_TAC[LENGTH_MAP; lemma]] THEN
EXISTS_TAC `ZIP (fargs:term list) (gargs:term list)` THEN
REWRITE_TAC[unifies] THEN X_GEN_TAC `i:num->term` THEN
UNDISCH_TAC `LENGTH(fargs:term list) = LENGTH(gargs:term list)` THEN
SPEC_TAC(`gargs:term list`,`gargs:term list`) THEN
SPEC_TAC(`fargs:term list`,`fargs:term list`) THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[LENGTH; NOT_SUC; MAP; ZIP; ALL; SUC_INJ] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_SIMP_TAC[CONS_11];
MAP_EVERY X_GEN_TAC [`r:form`; `s:form`] THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_SIMP_TAC[form_INJ] THEN
UNDISCH_TAC
`!q. qfree q
==> (?l. !i. (formsubst i p = formsubst i q) <=> unifies i l)` THEN
DISCH_THEN(MP_TAC o SPEC `r:form`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `l1:(term#term)list`
(fun th -> REWRITE_TAC[th])) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `s:form`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `l2:(term#term)list`
(fun th -> REWRITE_TAC[th])) THEN
EXISTS_TAC `APPEND (l1:(term#term)list) l2` THEN
REWRITE_TAC[unifies; ALL_APPEND]]);;
let UNIFIER_SUBTERMS = prove
(`!A. FINITE A /\ (!p. p IN A ==> qfree p)
==> ?l. !i. Unifies i A = unifies i l`,
REPEAT STRIP_TAC THEN
ABBREV_TAC `B = {(x:form,y) | x IN A /\ y IN A}` THEN
SUBGOAL_THEN `!i. Unifies i A =
!p q. (p,q) IN B ==> (formsubst i p = formsubst i q)`
(fun th -> REWRITE_TAC[th])
THENL
[EXPAND_TAC "B" THEN
REWRITE_TAC[IN_ELIM_THM; Unifies_DEF; PAIR_EQ] THEN MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!p q. (p,q) IN B ==> qfree p /\ qfree q` MP_TAC THENL
[EXPAND_TAC "B" THEN
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `FINITE(B:(form#form)->bool)` MP_TAC THENL
[EXPAND_TAC "B" THEN MATCH_MP_TAC FINITE_PRODUCT THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SPEC_TAC(`B:(form#form)->bool`,`B:(form#form)->bool`) THEN
POP_ASSUM_LIST(K ALL_TAC) THEN MATCH_MP_TAC FINITE_INDUCT THEN
CONJ_TAC THENL
[STRIP_TAC THEN EXISTS_TAC `[]:(term#term)list` THEN
REWRITE_TAC[NOT_IN_EMPTY; ALL; unifies]; ALL_TAC] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`; `B:(form#form)->bool`] THEN
REWRITE_TAC[IN_INSERT; PAIR_EQ] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL;
LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `l:(term#term)list`) THEN
MP_TAC(SPECL [`p:form`; `q:form`] UNIFIER_FORMPAIR_TERMLIST) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `m:(term#term)list`) THEN
EXISTS_TAC `APPEND (l:(term#term)list) m` THEN
REWRITE_TAC[unifies; ALL_APPEND] THEN
ASM_REWRITE_TAC[GSYM unifies] THEN REWRITE_TAC[CONJ_ACI]);;
let MGU_EXISTS = prove
(`FINITE s /\ (!p. p IN s ==> qfree p)
==> ((?i. Unifies i s) <=>
(?i. Unifies i s /\
!j. Unifies j s
==> !p. qfree p
==> (formsubst j p = formsubst j (formsubst i p))))`,
DISCH_THEN(X_CHOOSE_THEN `l:(term#term)list` (fun th -> REWRITE_TAC[th]) o
MATCH_MP UNIFIER_SUBTERMS) THEN
EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `i:num->term` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
EXISTS_TAC `unifier(THE(unify([],l)))` THEN
MP_TAC(GEN `ans:(num#term)list`
(SPEC `l:(term#term)list` UNIFY_WORKS_SIMPLE)) THEN
SPEC_TAC(`unify ([],l)`,`u:((num#term)list)option`) THEN
MATCH_MP_TAC option_INDUCT THEN
REWRITE_TAC[prove_constructors_distinct option_RECURSION;
prove_constructors_injective option_RECURSION] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
X_GEN_TAC `u:(num#term)list` THEN
DISCH_THEN(MP_TAC o SPEC `u:(num#term)list`) THEN REWRITE_TAC[THE] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN
X_GEN_TAC `j:num->term` THEN
MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
REWRITE_TAC[FUN_EQ_THM; o_THM] THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[formsubst; qfree] THEN SIMP_TAC[] THEN
REWRITE_TAC[GSYM MAP_o] THEN
REPEAT GEN_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
ASM_REWRITE_TAC[o_THM; ALL_T]);;
let mgu = new_definition
`mgu s = @i. Unifies i s /\
!j. Unifies j s
==> !p. qfree p
==> (formsubst j p =
formsubst j (formsubst i p))`;;
let MGU = prove
(`!s. FINITE s /\ (!p. p IN s ==> qfree p) /\ (?i. Unifies i s)
==> Unifies (mgu s) s /\
!i. Unifies i s
==> !p. qfree p
==> (formsubst i p =
formsubst i (formsubst (mgu s) p))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[mgu] THEN
CONV_TAC SELECT_CONV THEN ASM_SIMP_TAC[GSYM MGU_EXISTS] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* General notion of an MGU. *)
(* ------------------------------------------------------------------------- *)
let FORMSUBST_TERMSUBST_LEMMA = prove
(`(!p. qfree(p) ==> (formsubst i p = formsubst j (formsubst k p))) <=>
(termsubst i = termsubst j o termsubst k)`,
REWRITE_TAC[FUN_EQ_THM; o_THM] THEN EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `t:term` THEN FIRST_X_ASSUM(MP_TAC o SPEC `Atom p [t]`) THEN
REWRITE_TAC[qfree; formsubst; MAP; form_INJ; CONS_11];
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree] THEN
SIMP_TAC[formsubst] THEN REWRITE_TAC[form_INJ; GSYM MAP_o] THEN
GEN_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM; ALL_T]]);;
let ismgu = new_definition
`ismgu s i <=> Unifies i s /\
!j. Unifies j s
==> ?k. (termsubst j = termsubst k o termsubst i)`;;
let ISMGU = prove
(`ismgu s i <=> Unifies i s /\
!j. Unifies j s
==> ?k. !p. qfree(p)
==> (formsubst j p =
formsubst k (formsubst i p))`,
REWRITE_TAC[ismgu; FORMSUBST_TERMSUBST_LEMMA]);;
let ISMGU_MGU = prove
(`!s. FINITE(s) /\ (!p. p IN s ==> qfree p) /\ (?i. Unifies i s)
==> ismgu s (mgu s)`,
GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP MGU) THEN
ASM_REWRITE_TAC[ISMGU] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Renaming. Note that we assume a bijection; the usual definition demands *)
(* only the existence of a left inverse, but then you need to be explicit *)
(* about the fact that the support is finite, hence the right inverse exists *)
(* anyway. *)
(* ------------------------------------------------------------------------- *)
let renaming = new_definition
`renaming i <=> ?j. (termsubst j o termsubst i = I) /\
(termsubst i o termsubst j = I)`;;
let RENAMING = prove
(`renaming i ==> (!x. ?y. i(x) = V y) /\
(!x x'. (i(x') = i(x)) ==> (x' = x))`,
REWRITE_TAC[renaming; FUN_EQ_THM; o_THM; I_DEF] THEN
DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN
CONJ_TAC THENL
[X_GEN_TAC `x:num` THEN FIRST_X_ASSUM(MP_TAC o SPEC `V x`) THEN
REWRITE_TAC[termsubst] THEN
MESON_TAC[term_CASES; termsubst; term_DISTINCT];
MAP_EVERY X_GEN_TAC [`x1:num`; `x2:num`] THEN
FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `V x1` th) THEN
MP_TAC(SPEC `V x2` th)) THEN
REWRITE_TAC[termsubst] THEN MESON_TAC[term_INJ]]);;
|