Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 86,885 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 |
(* ========================================================================= *)
(* The type "real^2" regarded as the complex numbers. *)
(* *)
(* (c) Copyright, John Harrison 1998-2008 *)
(* (c) Copyright, Valentina Bruno 2010 *)
(* ========================================================================= *)
needs "Multivariate/convex.ml";;
new_type_abbrev("complex",`:real^2`);;
let prioritize_complex() =
overload_interface("--",`vector_neg:complex->complex`);
overload_interface("+",`vector_add:complex->complex->complex`);
overload_interface("-",`vector_sub:complex->complex->complex`);
overload_interface("*",`complex_mul:complex->complex->complex`);
overload_interface("/",`complex_div:complex->complex->complex`);
overload_interface("pow",`complex_pow:complex->num->complex`);
overload_interface("inv",`complex_inv:complex->complex`);;
prioritize_complex();;
(* ------------------------------------------------------------------------- *)
(* Real and imaginary parts of a number. *)
(* ------------------------------------------------------------------------- *)
let RE_DEF = new_definition
`Re(z:complex) = z$1`;;
let IM_DEF = new_definition
`Im(z:complex) = z$2`;;
(* ------------------------------------------------------------------------- *)
(* Real injection and imaginary unit. *)
(* ------------------------------------------------------------------------- *)
let complex = new_definition
`complex(x,y) = vector[x;y]:complex`;;
let CX_DEF = new_definition
`Cx(a) = complex(a,&0)`;;
let ii = new_definition
`ii = complex(&0,&1)`;;
(* ------------------------------------------------------------------------- *)
(* Complex multiplication. *)
(* ------------------------------------------------------------------------- *)
let complex_mul = new_definition
`w * z = complex(Re(w) * Re(z) - Im(w) * Im(z),
Re(w) * Im(z) + Im(w) * Re(z))`;;
let complex_inv = new_definition
`inv(z) = complex(Re(z) / (Re(z) pow 2 + Im(z) pow 2),
--(Im(z)) / (Re(z) pow 2 + Im(z) pow 2))`;;
let complex_div = new_definition
`w / z = w * inv(z)`;;
let complex_pow = define
`(x pow 0 = Cx(&1)) /\
(!n. x pow (SUC n) = x * x pow n)`;;
(* ------------------------------------------------------------------------- *)
(* Various handy rewrites. *)
(* ------------------------------------------------------------------------- *)
let RE = prove
(`(Re(complex(x,y)) = x)`,
REWRITE_TAC[RE_DEF; complex; VECTOR_2]);;
let IM = prove
(`Im(complex(x,y)) = y`,
REWRITE_TAC[IM_DEF; complex; VECTOR_2]);;
let COMPLEX_EQ = prove
(`!w z. (w = z) <=> (Re(w) = Re(z)) /\ (Im(w) = Im(z))`,
SIMP_TAC[CART_EQ; FORALL_2; DIMINDEX_2; RE_DEF; IM_DEF]);;
let COMPLEX = prove
(`!z. complex(Re(z),Im(z)) = z`,
REWRITE_TAC[COMPLEX_EQ; RE; IM]);;
let COMPLEX_EQ_0 = prove
(`z = Cx(&0) <=> Re(z) pow 2 + Im(z) pow 2 = &0`,
REWRITE_TAC[COMPLEX_EQ; CX_DEF; RE; IM] THEN
EQ_TAC THEN SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
`!x y:real. x + y = &0 ==> &0 <= x /\ &0 <= y ==> x = &0 /\ y = &0`)) THEN
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_ENTIRE]);;
let FORALL_COMPLEX = prove
(`(!z. P z) <=> (!x y. P(complex(x,y)))`,
MESON_TAC[COMPLEX]);;
let EXISTS_COMPLEX = prove
(`(?z. P z) <=> (?x y. P(complex(x,y)))`,
MESON_TAC[COMPLEX]);;
(* ------------------------------------------------------------------------- *)
(* Pseudo-definitions of other general vector concepts over R^2. *)
(* ------------------------------------------------------------------------- *)
let complex_neg = prove
(`--z = complex(--(Re(z)),--(Im(z)))`,
REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN REWRITE_TAC[RE_DEF; IM_DEF] THEN
SIMP_TAC[VECTOR_NEG_COMPONENT; DIMINDEX_2; ARITH]);;
let complex_add = prove
(`w + z = complex(Re(w) + Re(z),Im(w) + Im(z))`,
REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN REWRITE_TAC[RE_DEF; IM_DEF] THEN
SIMP_TAC[VECTOR_ADD_COMPONENT; DIMINDEX_2; ARITH]);;
let complex_sub = VECTOR_ARITH `(w:complex) - z = w + --z`;;
let complex_norm = prove
(`norm(z) = sqrt(Re(z) pow 2 + Im(z) pow 2)`,
REWRITE_TAC[vector_norm; dot; RE_DEF; IM_DEF; SUM_2; DIMINDEX_2] THEN
AP_TERM_TAC THEN REAL_ARITH_TAC);;
let COMPLEX_SQNORM = prove
(`norm(z) pow 2 = Re(z) pow 2 + Im(z) pow 2`,
REWRITE_TAC[NORM_POW_2; dot; RE_DEF; IM_DEF; SUM_2; DIMINDEX_2] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Crude tactic to automate very simple algebraic equivalences. *)
(* ------------------------------------------------------------------------- *)
let SIMPLE_COMPLEX_ARITH_TAC =
REWRITE_TAC[COMPLEX_EQ; RE; IM; CX_DEF;
complex_add; complex_neg; complex_sub; complex_mul;
complex_inv; complex_div] THEN
CONV_TAC REAL_FIELD;;
let SIMPLE_COMPLEX_ARITH tm = prove(tm,SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Basic algebraic properties that can be proved automatically by this. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_ADD_SYM = prove
(`!x y. x + y = y + x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_ASSOC = prove
(`!x y z. x + y + z = (x + y) + z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_LID = prove
(`!x. Cx(&0) + x = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_LINV = prove
(`!x. --x + x = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_SYM = prove
(`!x y. x * y = y * x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_ASSOC = prove
(`!x y z. x * y * z = (x * y) * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_LID = prove
(`!x. Cx(&1) * x = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_LDISTRIB = prove
(`!x y z. x * (y + z) = x * y + x * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_AC = prove
(`(m + n = n + m) /\ ((m + n) + p = m + n + p) /\ (m + n + p = n + m + p)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_AC = prove
(`(m * n = n * m) /\ ((m * n) * p = m * n * p) /\ (m * n * p = n * m * p)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_RID = prove
(`!x. x + Cx(&0) = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_RID = prove
(`!x. x * Cx(&1) = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_RINV = prove
(`!x. x + --x = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_RDISTRIB = prove
(`!x y z. (x + y) * z = x * z + y * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_ADD_LCANCEL = prove
(`!x y z. (x + y = x + z) <=> (y = z)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_ADD_RCANCEL = prove
(`!x y z. (x + z = y + z) <=> (x = y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_RZERO = prove
(`!x. x * Cx(&0) = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_LZERO = prove
(`!x. Cx(&0) * x = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_NEG = prove
(`!x. --(--x) = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_RNEG = prove
(`!x y. x * --y = --(x * y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_LNEG = prove
(`!x y. --x * y = --(x * y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_ADD = prove
(`!x y. --(x + y) = --x + --y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_0 = prove
(`--Cx(&0) = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_ADD_LCANCEL_0 = prove
(`!x y. (x + y = x) <=> (y = Cx(&0))`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_ADD_RCANCEL_0 = prove
(`!x y. (x + y = y) <=> (x = Cx(&0))`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_LNEG_UNIQ = prove
(`!x y. (x + y = Cx(&0)) <=> (x = --y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_RNEG_UNIQ = prove
(`!x y. (x + y = Cx(&0)) <=> (y = --x)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_LMUL = prove
(`!x y. --(x * y) = --x * y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_RMUL = prove
(`!x y. --(x * y) = x * --y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_MUL2 = prove
(`!x y. --x * --y = x * y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_ADD = prove
(`!x y. x - y + y = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_ADD2 = prove
(`!x y. y + x - y = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_REFL = prove
(`!x. x - x = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_0 = prove
(`!x y. (x - y = Cx(&0)) <=> (x = y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_EQ_0 = prove
(`!x. (--x = Cx(&0)) <=> (x = Cx(&0))`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_SUB = prove
(`!x y. --(x - y) = y - x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_SUB = prove
(`!x y. (x + y) - x = y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_EQ = prove
(`!x y. (--x = y) <=> (x = --y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_MINUS1 = prove
(`!x. --x = --Cx(&1) * x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_SUB = prove
(`!x y. x - y - x = --y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD2_SUB2 = prove
(`!a b c d. (a + b) - (c + d) = a - c + b - d`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_LZERO = prove
(`!x. Cx(&0) - x = --x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_RZERO = prove
(`!x. x - Cx(&0) = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_LNEG = prove
(`!x y. --x - y = --(x + y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_RNEG = prove
(`!x y. x - --y = x + y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_NEG2 = prove
(`!x y. --x - --y = y - x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_TRIANGLE = prove
(`!a b c. a - b + b - c = a - c`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_SUB_LADD = prove
(`!x y z. (x = y - z) <=> (x + z = y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_SUB_RADD = prove
(`!x y z. (x - y = z) <=> (x = z + y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_SUB2 = prove
(`!x y. x - (x - y) = y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_SUB2 = prove
(`!x y. x - (x + y) = --y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_DIFFSQ = prove
(`!x y. (x + y) * (x - y) = x * x - y * y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_NEG2 = prove
(`!x y. (--x = --y) <=> (x = y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_LDISTRIB = prove
(`!x y z. x * (y - z) = x * y - x * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_RDISTRIB = prove
(`!x y z. (x - y) * z = x * z - y * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_2 = prove
(`!x. Cx(&2) * x = x + x`,
SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Sometimes here we need to tweak non-zeroness assertions. *)
(* ------------------------------------------------------------------------- *)
let II_NZ = prove
(`~(ii = Cx(&0))`,
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_LINV = prove
(`!z. ~(z = Cx(&0)) ==> (inv(z) * z = Cx(&1))`,
REWRITE_TAC[COMPLEX_EQ_0] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ENTIRE = prove
(`!x y. (x * y = Cx(&0)) <=> (x = Cx(&0)) \/ (y = Cx(&0))`,
REWRITE_TAC[COMPLEX_EQ_0] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_RINV = prove
(`!z. ~(z = Cx(&0)) ==> (z * inv(z) = Cx(&1))`,
REWRITE_TAC[COMPLEX_EQ_0] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_DIV_REFL = prove
(`!x. ~(x = Cx(&0)) ==> (x / x = Cx(&1))`,
REWRITE_TAC[COMPLEX_EQ_0] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_VEC_0 = prove
(`vec 0 = Cx(&0)`,
SIMP_TAC[CART_EQ; VEC_COMPONENT; CX_DEF; complex;
DIMINDEX_2; FORALL_2; VECTOR_2]);;
let COMPLEX_CMUL = prove
(`!c x. c % x = Cx(c) * x`,
SIMP_TAC[CART_EQ; VECTOR_MUL_COMPONENT; CX_DEF; complex;
complex_mul; DIMINDEX_2; FORALL_2; IM_DEF; RE_DEF; VECTOR_2] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* More about powers. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_POW_ADD = prove
(`!x m n. x pow (m + n) = x pow m * x pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[ADD_CLAUSES; complex_pow;
COMPLEX_MUL_LID; COMPLEX_MUL_ASSOC]);;
let COMPLEX_POW_POW = prove
(`!x m n. (x pow m) pow n = x pow (m * n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; MULT_CLAUSES; COMPLEX_POW_ADD]);;
let COMPLEX_POW_1 = prove
(`!x. x pow 1 = x`,
REWRITE_TAC[num_CONV `1`] THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_RID]);;
let COMPLEX_POW_2 = prove
(`!x. x pow 2 = x * x`,
REWRITE_TAC[num_CONV `2`] THEN REWRITE_TAC[complex_pow; COMPLEX_POW_1]);;
let COMPLEX_POW_NEG = prove
(`!x n. (--x) pow n = if EVEN n then x pow n else --(x pow n)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; EVEN] THEN
ASM_CASES_TAC `EVEN n` THEN
ASM_REWRITE_TAC[COMPLEX_MUL_RNEG; COMPLEX_MUL_LNEG; COMPLEX_NEG_NEG]);;
let COMPLEX_POW_ONE = prove
(`!n. Cx(&1) pow n = Cx(&1)`,
INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID]);;
let COMPLEX_POW_MUL = prove
(`!x y n. (x * y) pow n = (x pow n) * (y pow n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID; COMPLEX_MUL_AC]);;
let COMPLEX_POW_II_2 = prove
(`ii pow 2 = --Cx(&1)`,
REWRITE_TAC[ii; COMPLEX_POW_2; complex_mul; CX_DEF; RE; IM; complex_neg] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let COMPLEX_POW_EQ_0 = prove
(`!x n. (x pow n = Cx(&0)) <=> (x = Cx(&0)) /\ ~(n = 0)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[NOT_SUC; complex_pow; COMPLEX_ENTIRE] THENL
[SIMPLE_COMPLEX_ARITH_TAC; CONV_TAC TAUT]);;
let COMPLEX_POW_ZERO = prove
(`!n. Cx(&0) pow n = if n = 0 then Cx(&1) else Cx(&0)`,
INDUCT_TAC THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_LZERO; NOT_SUC]);;
(* ------------------------------------------------------------------------- *)
(* Homomorphic embedding properties for Cx mapping. *)
(* ------------------------------------------------------------------------- *)
let CX_INJ = prove
(`!x y. (Cx(x) = Cx(y)) <=> (x = y)`,
REWRITE_TAC[CX_DEF; COMPLEX_EQ; RE; IM]);;
let CX_NEG = prove
(`!x. Cx(--x) = --(Cx(x))`,
REWRITE_TAC[CX_DEF; complex_neg; RE; IM; REAL_NEG_0]);;
let CX_ADD = prove
(`!x y. Cx(x + y) = Cx(x) + Cx(y)`,
REWRITE_TAC[CX_DEF; complex_add; RE; IM; REAL_ADD_LID]);;
let CX_SUB = prove
(`!x y. Cx(x - y) = Cx(x) - Cx(y)`,
REWRITE_TAC[complex_sub; real_sub; CX_ADD; CX_NEG]);;
let CX_INV = prove
(`!x. Cx(inv x) = inv(Cx x)`,
GEN_TAC THEN REWRITE_TAC[CX_DEF; complex_inv; RE; IM; COMPLEX_EQ] THEN
ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD);;
let CX_MUL = prove
(`!x y. Cx(x * y) = Cx(x) * Cx(y)`,
REWRITE_TAC[CX_DEF; complex_mul; RE; IM; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
REWRITE_TAC[REAL_SUB_RZERO; REAL_ADD_RID]);;
let CX_POW = prove
(`!x n. Cx(x pow n) = Cx(x) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; real_pow; CX_MUL]);;
let CX_DIV = prove
(`!x y. Cx(x / y) = Cx(x) / Cx(y)`,
REWRITE_TAC[complex_div; real_div; CX_MUL; CX_INV]);;
let CX_ABS = prove
(`!x. Cx(abs x) = Cx(norm(Cx(x)))`,
REWRITE_TAC[CX_DEF; complex_norm; COMPLEX_EQ; RE; IM] THEN
REWRITE_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_RID] THEN
REWRITE_TAC[GSYM REAL_POW_2; POW_2_SQRT_ABS]);;
let COMPLEX_NORM_CX = prove
(`!x. norm(Cx(x)) = abs(x)`,
REWRITE_TAC[GSYM CX_INJ; CX_ABS]);;
let DIST_CX = prove
(`!x y. dist(Cx x,Cx y) = abs(x - y)`,
REWRITE_TAC[dist; GSYM CX_SUB; COMPLEX_NORM_CX]);;
(* ------------------------------------------------------------------------- *)
(* Some "linear" things hold for Re and Im too. *)
(* ------------------------------------------------------------------------- *)
let RE_CX = prove
(`!x. Re(Cx x) = x`,
REWRITE_TAC[RE; CX_DEF]);;
let RE_NEG = prove
(`!x. Re(--x) = --Re(x)`,
REWRITE_TAC[complex_neg; RE]);;
let RE_ADD = prove
(`!x y. Re(x + y) = Re(x) + Re(y)`,
REWRITE_TAC[complex_add; RE]);;
let RE_SUB = prove
(`!x y. Re(x - y) = Re(x) - Re(y)`,
REWRITE_TAC[complex_sub; real_sub; RE_ADD; RE_NEG]);;
let IM_CX = prove
(`!x. Im(Cx x) = &0`,
REWRITE_TAC[IM; CX_DEF]);;
let IM_NEG = prove
(`!x. Im(--x) = --Im(x)`,
REWRITE_TAC[complex_neg; IM]);;
let IM_ADD = prove
(`!x y. Im(x + y) = Im(x) + Im(y)`,
REWRITE_TAC[complex_add; IM]);;
let IM_SUB = prove
(`!x y. Im(x - y) = Im(x) - Im(y)`,
REWRITE_TAC[complex_sub; real_sub; IM_ADD; IM_NEG]);;
(* ------------------------------------------------------------------------- *)
(* An "expansion" theorem into the traditional notation. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_EXPAND = prove
(`!z. z = Cx(Re z) + ii * Cx(Im z)`,
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_TRAD = prove
(`!x y. complex(x,y) = Cx(x) + ii * Cx(y)`,
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Real and complex parts of ii and multiples. *)
(* ------------------------------------------------------------------------- *)
let RE_II = prove
(`Re ii = &0`,
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let IM_II = prove
(`Im ii = &1`,
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let RE_MUL_II = prove
(`!z. Re(z * ii) = --(Im z) /\ Re(ii * z) = --(Im z)`,
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let IM_MUL_II = prove
(`!z. Im(z * ii) = Re z /\ Im(ii * z) = Re z`,
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NORM_II = prove
(`norm ii = &1`,
REWRITE_TAC[complex_norm; RE_II; IM_II] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SQRT_1]);;
(* ------------------------------------------------------------------------- *)
(* Limited "multiplicative" theorems for Re and Im. *)
(* ------------------------------------------------------------------------- *)
let RE_CMUL = prove
(`!a z. Re(a % z) = a * Re z`,
SIMP_TAC[RE_DEF; VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH]);;
let IM_CMUL = prove
(`!a z. Im(a % z) = a * Im z`,
SIMP_TAC[IM_DEF; VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH]);;
let RE_MUL_CX = prove
(`!x z. Re(Cx(x) * z) = x * Re z /\
Re(z * Cx(x)) = Re z * x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let IM_MUL_CX = prove
(`!x z. Im(Cx(x) * z) = x * Im z /\
Im(z * Cx(x)) = Im z * x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let RE_DIV_CX = prove
(`!z x. Re(z / Cx(x)) = Re(z) / x`,
REWRITE_TAC[complex_div; real_div; GSYM CX_INV; RE_MUL_CX]);;
let IM_DIV_CX = prove
(`!z x. Im(z / Cx(x)) = Im(z) / x`,
REWRITE_TAC[complex_div; real_div; GSYM CX_INV; IM_MUL_CX]);;
(* ------------------------------------------------------------------------- *)
(* Syntax constructors etc. for complex constants. *)
(* ------------------------------------------------------------------------- *)
let is_complex_const =
let cx_tm = `Cx` in
fun tm ->
is_comb tm &&
let l,r = dest_comb tm in l = cx_tm && is_ratconst r;;
let dest_complex_const =
let cx_tm = `Cx` in
fun tm ->
let l,r = dest_comb tm in
if l = cx_tm then rat_of_term r
else failwith "dest_complex_const";;
let mk_complex_const =
let cx_tm = `Cx` in
fun r ->
mk_comb(cx_tm,term_of_rat r);;
(* ------------------------------------------------------------------------- *)
(* Conversions for arithmetic on complex constants. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_RAT_EQ_CONV =
GEN_REWRITE_CONV I [CX_INJ] THENC REAL_RAT_EQ_CONV;;
let COMPLEX_RAT_MUL_CONV =
GEN_REWRITE_CONV I [GSYM CX_MUL] THENC RAND_CONV REAL_RAT_MUL_CONV;;
let COMPLEX_RAT_ADD_CONV =
GEN_REWRITE_CONV I [GSYM CX_ADD] THENC RAND_CONV REAL_RAT_ADD_CONV;;
let COMPLEX_RAT_POW_CONV =
let x_tm = `x:real`
and n_tm = `n:num` in
let pth = SYM(SPECL [x_tm; n_tm] CX_POW) in
fun tm ->
let lop,r = dest_comb tm in
let op,bod = dest_comb lop in
let th1 = INST [rand bod,x_tm; r,n_tm] pth in
let tm1,tm2 = dest_comb(concl th1) in
if rand tm1 <> tm then failwith "COMPLEX_RAT_POW_CONV" else
let tm3,tm4 = dest_comb tm2 in
TRANS th1 (AP_TERM tm3 (REAL_RAT_REDUCE_CONV tm4));;
(* ------------------------------------------------------------------------- *)
(* Complex polynomial normalizer. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_POLY_CLAUSES = prove
(`(!x y z. x + (y + z) = (x + y) + z) /\
(!x y. x + y = y + x) /\
(!x. Cx(&0) + x = x) /\
(!x y z. x * (y * z) = (x * y) * z) /\
(!x y. x * y = y * x) /\
(!x. Cx(&1) * x = x) /\
(!x. Cx(&0) * x = Cx(&0)) /\
(!x y z. x * (y + z) = x * y + x * z) /\
(!x. x pow 0 = Cx(&1)) /\
(!x n. x pow (SUC n) = x * x pow n)`,
REWRITE_TAC[complex_pow] THEN SIMPLE_COMPLEX_ARITH_TAC)
and COMPLEX_POLY_NEG_CLAUSES = prove
(`(!x. --x = Cx(-- &1) * x) /\
(!x y. x - y = x + Cx(-- &1) * y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_POLY_NEG_CONV,COMPLEX_POLY_ADD_CONV,COMPLEX_POLY_SUB_CONV,
COMPLEX_POLY_MUL_CONV,COMPLEX_POLY_POW_CONV,COMPLEX_POLY_CONV =
SEMIRING_NORMALIZERS_CONV COMPLEX_POLY_CLAUSES COMPLEX_POLY_NEG_CLAUSES
(is_complex_const,
COMPLEX_RAT_ADD_CONV,COMPLEX_RAT_MUL_CONV,COMPLEX_RAT_POW_CONV)
(<);;
(* ------------------------------------------------------------------------- *)
(* Extend it to handle "inv" and division, by constants after normalization. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_RAT_INV_CONV =
REWR_CONV(GSYM CX_INV) THENC RAND_CONV REAL_RAT_INV_CONV;;
let COMPLEX_POLY_CONV =
let neg_tm = `(--):complex->complex`
and inv_tm = `inv:complex->complex`
and add_tm = `(+):complex->complex->complex`
and sub_tm = `(-):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex`
and div_tm = `(/):complex->complex->complex`
and pow_tm = `(pow):complex->num->complex`
and div_conv = REWR_CONV complex_div in
let rec COMPLEX_POLY_CONV tm =
if not(is_comb tm) || is_ratconst tm then REFL tm else
let lop,r = dest_comb tm in
if lop = neg_tm then
let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in
TRANS th1 (COMPLEX_POLY_NEG_CONV (rand(concl th1)))
else if lop = inv_tm then
let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in
TRANS th1 (TRY_CONV COMPLEX_RAT_INV_CONV (rand(concl th1)))
else if not(is_comb lop) then REFL tm else
let op,l = dest_comb lop in
if op = pow_tm then
let th1 = AP_THM (AP_TERM op (COMPLEX_POLY_CONV l)) r in
TRANS th1 (TRY_CONV COMPLEX_POLY_POW_CONV (rand(concl th1)))
else if op = add_tm || op = mul_tm || op = sub_tm then
let th1 = MK_COMB(AP_TERM op (COMPLEX_POLY_CONV l),
COMPLEX_POLY_CONV r) in
let fn = if op = add_tm then COMPLEX_POLY_ADD_CONV
else if op = mul_tm then COMPLEX_POLY_MUL_CONV
else COMPLEX_POLY_SUB_CONV in
TRANS th1 (fn (rand(concl th1)))
else if op = div_tm then
let th1 = div_conv tm in
TRANS th1 (COMPLEX_POLY_CONV (rand(concl th1)))
else REFL tm in
COMPLEX_POLY_CONV;;
(* ------------------------------------------------------------------------- *)
(* Complex number version of usual ring procedure. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_RING,complex_ideal_cofactors =
let COMPLEX_INTEGRAL = prove
(`(!x. Cx(&0) * x = Cx(&0)) /\
(!x y z. (x + y = x + z) <=> (y = z)) /\
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
REWRITE_TAC[COMPLEX_ENTIRE; SIMPLE_COMPLEX_ARITH
`(w * y + x * z = w * z + x * y) <=>
(w - x) * (y - z) = Cx(&0)`] THEN
SIMPLE_COMPLEX_ARITH_TAC)
and COMPLEX_RABINOWITSCH = prove
(`!x y:complex. ~(x = y) <=> ?z. (x - y) * z = Cx(&1)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM COMPLEX_SUB_0] THEN
MESON_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_LZERO;
SIMPLE_COMPLEX_ARITH `~(Cx(&1) = Cx(&0))`])
and COMPLEX_IIII = prove
(`ii * ii + Cx(&1) = Cx(&0)`,
REWRITE_TAC[ii; CX_DEF; complex_mul; complex_add; RE; IM] THEN
AP_TERM_TAC THEN BINOP_TAC THEN REAL_ARITH_TAC) in
let ring,ideal =
RING_AND_IDEAL_CONV
(dest_complex_const,mk_complex_const,COMPLEX_RAT_EQ_CONV,
`(--):complex->complex`,`(+):complex->complex->complex`,
`(-):complex->complex->complex`,`(inv):complex->complex`,
`(*):complex->complex->complex`,`(/):complex->complex->complex`,
`(pow):complex->num->complex`,
COMPLEX_INTEGRAL,COMPLEX_RABINOWITSCH,COMPLEX_POLY_CONV)
and ii_tm = `ii` and iiii_tm = concl COMPLEX_IIII in
(fun tm -> if free_in ii_tm tm then
MP (ring (mk_imp(iiii_tm,tm))) COMPLEX_IIII
else ring tm),
ideal;;
(* ------------------------------------------------------------------------- *)
(* Most basic properties of inverses. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_INV_0 = prove
(`inv(Cx(&0)) = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_INV_1 = prove
(`inv(Cx(&1)) = Cx(&1)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_INV_MUL = prove
(`!w z. inv(w * z) = inv(w) * inv(z)`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`w = Cx(&0)`; `z = Cx(&0)`] THEN
ASM_REWRITE_TAC[COMPLEX_INV_0; COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[complex_mul; complex_inv; RE; IM; COMPLEX_EQ; CX_DEF] THEN
REWRITE_TAC[GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_FIELD);;
let COMPLEX_POW_INV = prove
(`!x n. (inv x) pow n = inv(x pow n)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; COMPLEX_INV_1; COMPLEX_INV_MUL]);;
let COMPLEX_INV_INV = prove
(`!x:complex. inv(inv x) = x`,
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN
POP_ASSUM MP_TAC THEN
MAP_EVERY (fun t -> MP_TAC(SPEC t COMPLEX_MUL_RINV))
[`x:complex`; `inv(x):complex`] THEN
CONV_TAC COMPLEX_RING);;
let COMPLEX_INV_DIV = prove
(`!w z:complex. inv(w / z) = z / w`,
REWRITE_TAC[complex_div; COMPLEX_INV_MUL; COMPLEX_INV_INV] THEN
REWRITE_TAC[COMPLEX_MUL_AC]);;
let COMPLEX_EQ_INV2 = prove
(`!w z:complex. inv w = inv z <=> w = z`,
MESON_TAC[COMPLEX_INV_INV]);;
let SGN_RE_COMPLEX_INV = prove
(`!z. real_sgn(Re(inv z)) = real_sgn(Re z)`,
GEN_TAC THEN ASM_CASES_TAC `z = Cx(&0)` THEN
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN
REWRITE_TAC[RE; complex_inv; REAL_SGN_DIV] THEN
SUBGOAL_THEN `real_sgn (Re z pow 2 + Im z pow 2) = &1`
(fun th -> REWRITE_TAC[REAL_DIV_1; th]) THEN
REWRITE_TAC[REAL_SGN_EQ; real_gt; GSYM COMPLEX_SQNORM] THEN
ASM_SIMP_TAC[REAL_POW_LT; NORM_POS_LT; COMPLEX_VEC_0]);;
let RE_COMPLEX_INV_GT_0 = prove
(`!z. &0 < Re(inv z) <=> &0 < Re z`,
REWRITE_TAC[GSYM real_gt; GSYM REAL_SGN_EQ; SGN_RE_COMPLEX_INV]);;
let RE_COMPLEX_INV_GE_0 = prove
(`!z. &0 <= Re(inv z) <=> &0 <= Re z`,
REWRITE_TAC[GSYM REAL_NOT_LT] THEN
REWRITE_TAC[GSYM REAL_SGN_EQ; SGN_RE_COMPLEX_INV]);;
(* ------------------------------------------------------------------------- *)
(* And also field procedure. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_EQ_MUL_LCANCEL = prove
(`!x y z. (x * y = x * z) <=> (x = Cx(&0)) \/ (y = z)`,
CONV_TAC COMPLEX_RING);;
let COMPLEX_EQ_MUL_RCANCEL = prove
(`!x y z. (x * z = y * z) <=> (x = y) \/ (z = Cx(&0))`,
CONV_TAC COMPLEX_RING);;
let COMPLEX_FIELD =
let norm_net =
itlist (net_of_thm false o SPEC_ALL)
[FORALL_SIMP; EXISTS_SIMP; complex_div; COMPLEX_INV_INV; COMPLEX_INV_MUL;
COMPLEX_POW_ADD]
(net_of_conv
`inv((x:complex) pow n)`
(REWR_CONV(GSYM COMPLEX_POW_INV) o check (is_numeral o rand o rand))
empty_net)
and easy_nz_conv =
LAND_CONV
(GEN_REWRITE_CONV TRY_CONV[MESON[COMPLEX_POW_EQ_0; REAL_OF_NUM_EQ; CX_INJ]
`~(x pow n = Cx(&0)) <=>
~((x:complex) = Cx(&0)) \/
(Cx(&n) = Cx(&0)) \/
~(x pow n = Cx(&0))`] THENC
TOP_DEPTH_CONV(REWR_CONV CX_INJ THENC REAL_RAT_EQ_CONV)) THENC
GEN_REWRITE_CONV TRY_CONV [TAUT `(T ==> p) <=> p`] in
let prenex_conv =
TOP_DEPTH_CONV BETA_CONV THENC
NUM_REDUCE_CONV THENC
TOP_DEPTH_CONV(REWRITES_CONV norm_net) THENC
NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
PRENEX_CONV
and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
and is_inv =
let inv_tm = `inv:complex->complex`
and is_div = is_binop `(/):complex->complex->complex` in
fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) &&
not(is_ratconst(rand tm)) in
let BASIC_COMPLEX_FIELD tm =
let is_freeinv t = is_inv t && free_in t tm in
let itms = setify(map rand (find_terms is_freeinv tm)) in
let hyps = map
(fun t -> CONV_RULE easy_nz_conv (SPEC t COMPLEX_MUL_RINV)) itms in
let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in
let th1 = setup_conv tm' in
let cjs = conjuncts(rand(concl th1)) in
let ths = map COMPLEX_RING cjs in
let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
rev_itlist (C MP) hyps th2 in
fun tm ->
let th0 = prenex_conv tm in
let tm0 = rand(concl th0) in
let avs,bod = strip_forall tm0 in
let th1 = setup_conv bod in
let ths = map BASIC_COMPLEX_FIELD (conjuncts(rand(concl th1))) in
EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;
(* ------------------------------------------------------------------------- *)
(* More trivial lemmas. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_DIV_1 = prove
(`!z. z / Cx(&1) = z`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_DIV_LMUL = prove
(`!x y. ~(y = Cx(&0)) ==> y * x / y = x`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_DIV_RMUL = prove
(`!x y. ~(y = Cx(&0)) ==> x / y * y = x`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_INV_II = prove
(`inv ii = --ii`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_INV_EQ_0 = prove
(`!x. inv x = Cx(&0) <=> x = Cx(&0)`,
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN POP_ASSUM MP_TAC THEN
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_INV_NEG = prove
(`!x:complex. inv(--x) = --(inv x)`,
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN
ASM_REWRITE_TAC[COMPLEX_INV_0; COMPLEX_NEG_0] THEN
POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD);;
let COMPLEX_NEG_INV = prove
(`!x:complex. --(inv x) = inv(--x)`,
REWRITE_TAC[COMPLEX_INV_NEG]);;
let COMPLEX_INV_EQ_1 = prove
(`!x. inv x = Cx(&1) <=> x = Cx(&1)`,
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN POP_ASSUM MP_TAC THEN
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_DIV_EQ_0 = prove
(`!w z. w / z = Cx(&0) <=> w = Cx(&0) \/ z = Cx(&0)`,
REWRITE_TAC[complex_div; COMPLEX_INV_EQ_0; COMPLEX_ENTIRE]);;
let COMPLEX_POW_DIV = prove
(`!x y n. (x / y) pow n = (x pow n) / (y pow n)`,
REWRITE_TAC[complex_div; COMPLEX_POW_MUL; COMPLEX_POW_INV]);;
let COMPLEX_DIV_POW = prove
(`!x:complex n k:num.
~(x= Cx(&0)) /\ k <= n /\ ~(k = 0)
==> x pow (n - k) = x pow n / x pow k`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `x:complex pow (n - k) * x pow k =
x pow n / x pow k * x pow k` (fun th-> ASM_MESON_TAC
[th;COMPLEX_POW_EQ_0;COMPLEX_EQ_MUL_RCANCEL])
THEN ASM_SIMP_TAC[GSYM COMPLEX_POW_ADD;SUB_ADD] THEN
MP_TAC (MESON [COMPLEX_POW_EQ_0;ASSUME `~(k = 0)`; ASSUME `~(x = Cx(&0))`]
`~(x pow k = Cx(&0))`) THEN ASM_SIMP_TAC[COMPLEX_DIV_RMUL]);;
let COMPLEX_DIV_POW2 = prove
(`!z m n. ~(z = Cx(&0))
==> z pow m / z pow n =
if n <= m then z pow (m - n) else inv(z pow (n - m))`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[COMPLEX_POW_EQ_0; COMPLEX_FIELD
`~(b = Cx(&0)) /\ ~(c = Cx(&0))
==> (a / b = inv c <=> a * c = b)`] THEN
ASM_SIMP_TAC[COMPLEX_POW_EQ_0; COMPLEX_FIELD
`~(b = Cx(&0)) ==> (a / b = c <=> b * c = a)`] THEN
REWRITE_TAC[GSYM COMPLEX_POW_ADD] THEN AP_TERM_TAC THEN ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Norms (aka "moduli"). *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_NORM_ZERO = prove
(`!z. (norm z = &0) <=> (z = Cx(&0))`,
REWRITE_TAC[NORM_EQ_0; COMPLEX_VEC_0]);;
let COMPLEX_NORM_NUM = prove
(`!n. norm(Cx(&n)) = &n`,
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM]);;
let COMPLEX_NORM_0 = prove
(`norm(Cx(&0)) = &0`,
MESON_TAC[COMPLEX_NORM_ZERO]);;
let COMPLEX_NORM_NZ = prove
(`!z. &0 < norm(z) <=> ~(z = Cx(&0))`,
REWRITE_TAC[NORM_POS_LT; COMPLEX_VEC_0]);;
let COMPLEX_NORM_MUL = prove
(`!w z. norm(w * z) = norm(w) * norm(z)`,
REPEAT GEN_TAC THEN REWRITE_TAC[complex_norm; complex_mul; RE; IM] THEN
SIMP_TAC[GSYM SQRT_MUL; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
AP_TERM_TAC THEN REAL_ARITH_TAC);;
let COMPLEX_NORM_POW = prove
(`!z n. norm(z pow n) = norm(z) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; real_pow; COMPLEX_NORM_NUM; COMPLEX_NORM_MUL]);;
let COMPLEX_NORM_INV = prove
(`!z. norm(inv z) = inv(norm z)`,
GEN_TAC THEN REWRITE_TAC[complex_norm; complex_inv; RE; IM] THEN
REWRITE_TAC[REAL_POW_2; real_div] THEN
REWRITE_TAC[REAL_ARITH `(r * d) * r * d + (--i * d) * --i * d =
(r * r + i * i) * d * d:real`] THEN
ASM_CASES_TAC `Re z * Re z + Im z * Im z = &0` THENL
[ASM_REWRITE_TAC[REAL_INV_0; SQRT_0; REAL_MUL_LZERO]; ALL_TAC] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
SIMP_TAC[GSYM SQRT_MUL; REAL_LE_MUL; REAL_LE_INV_EQ; REAL_LE_ADD;
REAL_LE_SQUARE] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC
`a * a * b * b:real = (a * b) * (a * b)`] THEN
ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID; SQRT_1]);;
let COMPLEX_NORM_DIV = prove
(`!w z. norm(w / z) = norm(w) / norm(z)`,
REWRITE_TAC[complex_div; real_div; COMPLEX_NORM_INV; COMPLEX_NORM_MUL]);;
let COMPLEX_NORM_TRIANGLE_SUB = prove
(`!w z. norm(w) <= norm(w + z) + norm(z)`,
MESON_TAC[NORM_TRIANGLE; NORM_NEG; COMPLEX_ADD_ASSOC;
COMPLEX_ADD_RINV; COMPLEX_ADD_RID]);;
let COMPLEX_NORM_ABS_NORM = prove
(`!w z. abs(norm w - norm z) <= norm(w - z)`,
REPEAT GEN_TAC THEN
MATCH_MP_TAC(REAL_ARITH
`a - b <= x /\ b - a <= x ==> abs(a - b) <= x:real`) THEN
MESON_TAC[COMPLEX_NEG_SUB; NORM_NEG; REAL_LE_SUB_RADD; complex_sub;
COMPLEX_NORM_TRIANGLE_SUB]);;
let COMPLEX_POW_EQ_1 = prove
(`!z n. z pow n = Cx(&1) ==> norm(z) = &1 \/ n = 0`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o AP_TERM `norm:complex->real`) THEN
SIMP_TAC[COMPLEX_NORM_POW; COMPLEX_NORM_CX; REAL_POW_EQ_1; REAL_ABS_NUM] THEN
SIMP_TAC[REAL_ABS_NORM] THEN CONV_TAC TAUT);;
(* ------------------------------------------------------------------------- *)
(* Complex conjugate. *)
(* ------------------------------------------------------------------------- *)
let cnj = new_definition
`cnj(z) = complex(Re(z),--(Im(z)))`;;
(* ------------------------------------------------------------------------- *)
(* Conjugation is an automorphism. *)
(* ------------------------------------------------------------------------- *)
let CNJ_INJ = prove
(`!w z. (cnj(w) = cnj(z)) <=> (w = z)`,
REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_EQ_NEG2]);;
let CNJ_CNJ = prove
(`!z. cnj(cnj z) = z`,
REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_NEG_NEG]);;
let CNJ_CX = prove
(`!x. cnj(Cx x) = Cx x`,
REWRITE_TAC[cnj; COMPLEX_EQ; CX_DEF; REAL_NEG_0; RE; IM]);;
let COMPLEX_NORM_CNJ = prove
(`!z. norm(cnj z) = norm(z)`,
REWRITE_TAC[complex_norm; cnj; REAL_POW_2] THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; RE; IM; REAL_NEG_NEG]);;
let CNJ_NEG = prove
(`!z. cnj(--z) = --(cnj z)`,
REWRITE_TAC[cnj; complex_neg; COMPLEX_EQ; RE; IM]);;
let CNJ_INV = prove
(`!z. cnj(inv z) = inv(cnj z)`,
REWRITE_TAC[cnj; complex_inv; COMPLEX_EQ; RE; IM] THEN
REWRITE_TAC[real_div; REAL_NEG_NEG; REAL_POW_2;
REAL_MUL_LNEG; REAL_MUL_RNEG]);;
let CNJ_ADD = prove
(`!w z. cnj(w + z) = cnj(w) + cnj(z)`,
REWRITE_TAC[cnj; complex_add; COMPLEX_EQ; RE; IM] THEN
REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);;
let CNJ_SUB = prove
(`!w z. cnj(w - z) = cnj(w) - cnj(z)`,
REWRITE_TAC[complex_sub; CNJ_ADD; CNJ_NEG]);;
let CNJ_MUL = prove
(`!w z. cnj(w * z) = cnj(w) * cnj(z)`,
REWRITE_TAC[cnj; complex_mul; COMPLEX_EQ; RE; IM] THEN
REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);;
let CNJ_DIV = prove
(`!w z. cnj(w / z) = cnj(w) / cnj(z)`,
REWRITE_TAC[complex_div; CNJ_MUL; CNJ_INV]);;
let CNJ_POW = prove
(`!z n. cnj(z pow n) = cnj(z) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; CNJ_MUL; CNJ_CX]);;
let RE_CNJ = prove
(`!z. Re(cnj z) = Re z`,
REWRITE_TAC[cnj; RE]);;
let IM_CNJ = prove
(`!z. Im(cnj z) = --Im z`,
REWRITE_TAC[cnj; IM]);;
let CNJ_EQ_CX = prove
(`!x z. cnj z = Cx x <=> z = Cx x`,
REWRITE_TAC[COMPLEX_EQ; RE_CNJ; IM_CNJ; RE_CX; IM_CX] THEN
CONV_TAC REAL_RING);;
let CNJ_EQ_0 = prove
(`!z. cnj z = Cx(&0) <=> z = Cx(&0)`,
REWRITE_TAC[CNJ_EQ_CX]);;
let COMPLEX_ADD_CNJ = prove
(`(!z. z + cnj z = Cx(&2 * Re z)) /\ (!z. cnj z + z = Cx(&2 * Re z))`,
REWRITE_TAC[COMPLEX_EQ; RE_CX; IM_CX; RE_ADD; IM_ADD; RE_CNJ; IM_CNJ] THEN
REAL_ARITH_TAC);;
let CNJ_II = prove
(`cnj ii = --ii`,
REWRITE_TAC[cnj; ii; RE; IM; complex_neg; REAL_NEG_0]);;
let CX_RE_CNJ = prove
(`!z. Cx(Re z) = (z + cnj z) / Cx(&2)`,
REWRITE_TAC[COMPLEX_EQ; RE_DIV_CX; IM_DIV_CX; RE_CX; IM_CX] THEN
REWRITE_TAC[RE_ADD; IM_ADD; RE_CNJ; IM_CNJ] THEN REAL_ARITH_TAC);;
let CX_IM_CNJ = prove
(`!z. Cx(Im z) = --ii * (z - cnj z) / Cx(&2)`,
REWRITE_TAC[COMPLEX_EQ; RE_DIV_CX; IM_DIV_CX; RE_CX; IM_CX;
COMPLEX_MUL_LNEG; RE_NEG; IM_NEG; RE_MUL_II; IM_MUL_II] THEN
REWRITE_TAC[RE_SUB; IM_SUB; RE_CNJ; IM_CNJ] THEN REAL_ARITH_TAC);;
let FORALL_CNJ = prove
(`(!z. P(cnj z)) <=> (!z. P z)`,
MESON_TAC[CNJ_CNJ]);;
let EXISTS_CNJ = prove
(`(?z. P(cnj z)) <=> (?z. P z)`,
MESON_TAC[CNJ_CNJ]);;
(* ------------------------------------------------------------------------- *)
(* Slightly ad hoc theorems relating multiplication, inverse and conjugation *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_NORM_POW_2 = prove
(`!z. Cx(norm z) pow 2 = z * cnj z`,
GEN_TAC THEN REWRITE_TAC [GSYM CX_POW; COMPLEX_SQNORM] THEN
REWRITE_TAC [cnj; complex_mul; CX_DEF; RE; IM; COMPLEX_EQ] THEN
CONV_TAC REAL_RING);;
let COMPLEX_MUL_CNJ = prove
(`!z. cnj z * z = Cx(norm(z)) pow 2 /\ z * cnj z = Cx(norm(z)) pow 2`,
GEN_TAC THEN REWRITE_TAC[COMPLEX_MUL_SYM] THEN
REWRITE_TAC[cnj; complex_mul; RE; IM; GSYM CX_POW; COMPLEX_SQNORM] THEN
REWRITE_TAC[CX_DEF] THEN AP_TERM_TAC THEN BINOP_TAC THEN
CONV_TAC REAL_RING);;
let COMPLEX_INV_CNJ = prove
(`!z. inv z = cnj z / Cx(norm z) pow 2`,
GEN_TAC THEN ASM_CASES_TAC `z = Cx(&0)` THENL
[ASM_REWRITE_TAC[CNJ_CX; complex_div; COMPLEX_INV_0; COMPLEX_MUL_LZERO];
MATCH_MP_TAC(COMPLEX_FIELD
`x * y = z /\ ~(x = Cx(&0)) /\ ~(z = Cx(&0)) ==> inv x = y / z`) THEN
ASM_REWRITE_TAC[COMPLEX_MUL_CNJ; GSYM CX_POW; CX_INJ; REAL_POW_EQ_0] THEN
ASM_REWRITE_TAC[COMPLEX_NORM_ZERO; ARITH]]);;
let COMPLEX_DIV_CNJ = prove
(`!a b. a / b = (a * cnj b) / Cx(norm b) pow 2`,
REPEAT GEN_TAC THEN REWRITE_TAC[complex_div; GSYM COMPLEX_MUL_ASSOC] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [COMPLEX_INV_CNJ] THEN
REWRITE_TAC[complex_div]);;
let RE_COMPLEX_DIV_EQ_0 = prove
(`!a b. Re(a / b) = &0 <=> Re(a * cnj b) = &0`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN
REWRITE_TAC[complex_div; GSYM CX_POW; GSYM CX_INV] THEN
REWRITE_TAC[RE_MUL_CX; REAL_INV_EQ_0; REAL_POW_EQ_0; ARITH;
REAL_ENTIRE; COMPLEX_NORM_ZERO] THEN
ASM_CASES_TAC `b = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; RE_CX]);;
let IM_COMPLEX_DIV_EQ_0 = prove
(`!a b. Im(a / b) = &0 <=> Im(a * cnj b) = &0`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN
REWRITE_TAC[complex_div; GSYM CX_POW; GSYM CX_INV] THEN
REWRITE_TAC[IM_MUL_CX; REAL_INV_EQ_0; REAL_POW_EQ_0; ARITH;
REAL_ENTIRE; COMPLEX_NORM_ZERO] THEN
ASM_CASES_TAC `b = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; IM_CX]);;
let RE_COMPLEX_DIV_GT_0 = prove
(`!a b. &0 < Re(a / b) <=> &0 < Re(a * cnj b)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN
REWRITE_TAC[complex_div; GSYM CX_POW; GSYM CX_INV] THEN
REWRITE_TAC[RE_MUL_CX; REAL_INV_EQ_0; REAL_POW_EQ_0; ARITH;
REAL_ENTIRE; COMPLEX_NORM_ZERO] THEN
ASM_CASES_TAC `b = Cx(&0)` THEN
ASM_REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; RE_CX; REAL_MUL_LZERO] THEN
REWRITE_TAC[REAL_ARITH `&0 < a * x <=> &0 * x < a * x`] THEN
ASM_SIMP_TAC[REAL_LT_RMUL_EQ; REAL_LT_INV_EQ; REAL_POW_LT; ARITH;
COMPLEX_NORM_NZ]);;
let IM_COMPLEX_DIV_GT_0 = prove
(`!a b. &0 < Im(a / b) <=> &0 < Im(a * cnj b)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN
REWRITE_TAC[complex_div; GSYM CX_POW; GSYM CX_INV] THEN
REWRITE_TAC[IM_MUL_CX; REAL_INV_EQ_0; REAL_POW_EQ_0; ARITH;
REAL_ENTIRE; COMPLEX_NORM_ZERO] THEN
ASM_CASES_TAC `b = Cx(&0)` THEN
ASM_REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; IM_CX; REAL_MUL_LZERO] THEN
REWRITE_TAC[REAL_ARITH `&0 < a * x <=> &0 * x < a * x`] THEN
ASM_SIMP_TAC[REAL_LT_RMUL_EQ; REAL_LT_INV_EQ; REAL_POW_LT; ARITH;
COMPLEX_NORM_NZ]);;
let RE_COMPLEX_DIV_GE_0 = prove
(`!a b. &0 <= Re(a / b) <=> &0 <= Re(a * cnj b)`,
REWRITE_TAC[REAL_ARITH `&0 <= x <=> &0 < x \/ x = &0`] THEN
REWRITE_TAC[RE_COMPLEX_DIV_GT_0; RE_COMPLEX_DIV_EQ_0]);;
let IM_COMPLEX_DIV_GE_0 = prove
(`!a b. &0 <= Im(a / b) <=> &0 <= Im(a * cnj b)`,
REWRITE_TAC[REAL_ARITH `&0 <= x <=> &0 < x \/ x = &0`] THEN
REWRITE_TAC[IM_COMPLEX_DIV_GT_0; IM_COMPLEX_DIV_EQ_0]);;
let RE_COMPLEX_DIV_LE_0 = prove
(`!a b. Re(a / b) <= &0 <=> Re(a * cnj b) <= &0`,
REWRITE_TAC[GSYM REAL_NOT_LT; RE_COMPLEX_DIV_GT_0]);;
let IM_COMPLEX_DIV_LE_0 = prove
(`!a b. Im(a / b) <= &0 <=> Im(a * cnj b) <= &0`,
REWRITE_TAC[GSYM REAL_NOT_LT; IM_COMPLEX_DIV_GT_0]);;
let RE_COMPLEX_DIV_LT_0 = prove
(`!a b. Re(a / b) < &0 <=> Re(a * cnj b) < &0`,
REWRITE_TAC[GSYM REAL_NOT_LE; RE_COMPLEX_DIV_GE_0]);;
let IM_COMPLEX_DIV_LT_0 = prove
(`!a b. Im(a / b) < &0 <=> Im(a * cnj b) < &0`,
REWRITE_TAC[GSYM REAL_NOT_LE; IM_COMPLEX_DIV_GE_0]);;
let IM_COMPLEX_INV_GE_0 = prove
(`!z. &0 <= Im(inv z) <=> Im(z) <= &0`,
GEN_TAC THEN MP_TAC(ISPECL [`Cx(&1)`; `z:complex`] IM_COMPLEX_DIV_GE_0) THEN
REWRITE_TAC[complex_div; COMPLEX_MUL_LID; IM_CNJ] THEN REAL_ARITH_TAC);;
let IM_COMPLEX_INV_LE_0 = prove
(`!z. Im(inv z) <= &0 <=> &0 <= Im(z)`,
MESON_TAC[IM_COMPLEX_INV_GE_0; COMPLEX_INV_INV]);;
let IM_COMPLEX_INV_GT_0 = prove
(`!z. &0 < Im(inv z) <=> Im(z) < &0`,
REWRITE_TAC[REAL_ARITH `&0 < a <=> ~(a <= &0)`; IM_COMPLEX_INV_LE_0] THEN
REAL_ARITH_TAC);;
let IM_COMPLEX_INV_LT_0 = prove
(`!z. Im(inv z) < &0 <=> &0 < Im(z)`,
REWRITE_TAC[REAL_ARITH `a < &0 <=> ~(&0 <= a)`; IM_COMPLEX_INV_GE_0] THEN
REAL_ARITH_TAC);;
let IM_COMPLEX_INV_EQ_0 = prove
(`!z. Im(inv z) = &0 <=> Im(z) = &0`,
SIMP_TAC[GSYM REAL_LE_ANTISYM; IM_COMPLEX_INV_LE_0; IM_COMPLEX_INV_GE_0] THEN
REAL_ARITH_TAC);;
let REAL_SGN_RE_COMPLEX_DIV = prove
(`!w z. real_sgn(Re(w / z)) = real_sgn(Re(w * cnj z))`,
REWRITE_TAC[real_sgn; RE_COMPLEX_DIV_GT_0; RE_COMPLEX_DIV_GE_0;
REAL_ARITH `x < &0 <=> ~(&0 <= x)`]);;
let REAL_SGN_IM_COMPLEX_DIV = prove
(`!w z. real_sgn(Im(w / z)) = real_sgn(Im(w * cnj z))`,
REWRITE_TAC[real_sgn; IM_COMPLEX_DIV_GT_0; IM_COMPLEX_DIV_GE_0;
REAL_ARITH `x < &0 <=> ~(&0 <= x)`]);;
(* ------------------------------------------------------------------------- *)
(* Norm versus components for complex numbers. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_NORM_GE_RE_IM = prove
(`!z. abs(Re(z)) <= norm(z) /\ abs(Im(z)) <= norm(z)`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM POW_2_SQRT_ABS] THEN
REWRITE_TAC[complex_norm] THEN
CONJ_TAC THEN
MATCH_MP_TAC SQRT_MONO_LE THEN
ASM_SIMP_TAC[REAL_LE_ADDR; REAL_LE_ADDL; REAL_POW_2; REAL_LE_SQUARE]);;
let COMPLEX_NORM_LE_RE_IM = prove
(`!z. norm(z) <= abs(Re z) + abs(Im z)`,
GEN_TAC THEN MP_TAC(ISPEC `z:complex` NORM_LE_L1) THEN
REWRITE_TAC[DIMINDEX_2; SUM_2; RE_DEF; IM_DEF]);;
let COMPLEX_L1_LE_NORM = prove
(`!z. sqrt(&2) / &2 * (abs(Re z) + abs(Im z)) <= norm z`,
GEN_TAC THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `sqrt(&2)` THEN
SIMP_TAC[REAL_ARITH `x * x / &2 * y = (x pow 2) / &2 * y`;
SQRT_POW_2; REAL_POS; SQRT_POS_LT; REAL_OF_NUM_LT; ARITH] THEN
MP_TAC(ISPEC `z:complex` L1_LE_NORM) THEN
REWRITE_TAC[DIMINDEX_2; SUM_2; RE_DEF; IM_DEF] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Complex square roots. *)
(* ------------------------------------------------------------------------- *)
let csqrt = new_definition
`csqrt(z) = if Im(z) = &0 then
if &0 <= Re(z) then complex(sqrt(Re(z)),&0)
else complex(&0,sqrt(--Re(z)))
else complex(sqrt((norm(z) + Re(z)) / &2),
(Im(z) / abs(Im(z))) *
sqrt((norm(z) - Re(z)) / &2))`;;
let CSQRT = prove
(`!z. csqrt(z) pow 2 = z`,
GEN_TAC THEN REWRITE_TAC[COMPLEX_POW_2; csqrt] THEN COND_CASES_TAC THENL
[COND_CASES_TAC THEN
ASM_REWRITE_TAC[CX_DEF; complex_mul; RE; IM; REAL_MUL_RZERO; REAL_MUL_LZERO;
REAL_SUB_LZERO; REAL_SUB_RZERO; REAL_ADD_LID; COMPLEX_EQ] THEN
REWRITE_TAC[REAL_NEG_EQ; GSYM REAL_POW_2] THEN
ASM_SIMP_TAC[SQRT_POW_2; REAL_ARITH `~(&0 <= x) ==> &0 <= --x`];
ALL_TAC] THEN
REWRITE_TAC[complex_mul; RE; IM] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`(s * s - (i * s') * (i * s') = s * s - (i * i) * (s' * s')) /\
(s * i * s' + (i * s')* s = &2 * i * s * s')`] THEN
REWRITE_TAC[GSYM REAL_POW_2] THEN
SUBGOAL_THEN `&0 <= norm(z) + Re(z) /\ &0 <= norm(z) - Re(z)`
STRIP_ASSUME_TAC THENL
[MP_TAC(SPEC `z:complex` COMPLEX_NORM_GE_RE_IM) THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; GSYM SQRT_MUL; SQRT_POW_2] THEN
REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN CONJ_TAC THENL
[ASM_SIMP_TAC[REAL_POW_DIV; REAL_POW2_ABS;
REAL_POW_EQ_0; REAL_DIV_REFL] THEN
REWRITE_TAC[real_div; REAL_MUL_LID; GSYM REAL_SUB_RDISTRIB] THEN
REWRITE_TAC[REAL_ARITH `(m + r) - (m - r) = r * &2`] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_RID]; ALL_TAC] THEN
REWRITE_TAC[real_div] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC
`(a * b) * a' * b = (a * a') * (b * b:real)`] THEN
REWRITE_TAC[REAL_DIFFSQ] THEN
REWRITE_TAC[complex_norm; GSYM REAL_POW_2] THEN
SIMP_TAC[SQRT_POW_2; REAL_LE_ADD;
REWRITE_RULE[GSYM REAL_POW_2] REAL_LE_SQUARE] THEN
REWRITE_TAC[REAL_ADD_SUB; GSYM REAL_POW_MUL] THEN
REWRITE_TAC[POW_2_SQRT_ABS] THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_INV; REAL_ABS_NUM] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC
`&2 * (i * a') * a * h = i * (&2 * h) * a * a'`] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_LID; GSYM real_div] THEN
ASM_SIMP_TAC[REAL_DIV_REFL; REAL_ABS_ZERO; REAL_MUL_RID]);;
let CX_SQRT = prove
(`!x. &0 <= x ==> Cx(sqrt x) = csqrt(Cx x)`,
SIMP_TAC[csqrt; IM_CX; RE_CX; COMPLEX_EQ; RE; IM]);;
let CSQRT_CX = prove
(`!x. &0 <= x ==> csqrt(Cx x) = Cx(sqrt x)`,
SIMP_TAC[CX_SQRT]);;
let CSQRT_0 = prove
(`csqrt(Cx(&0)) = Cx(&0)`,
SIMP_TAC[CSQRT_CX; REAL_POS; SQRT_0]);;
let CSQRT_1 = prove
(`csqrt(Cx(&1)) = Cx(&1)`,
SIMP_TAC[CSQRT_CX; REAL_POS; SQRT_1]);;
let CSQRT_PRINCIPAL = prove
(`!z. &0 < Re(csqrt(z)) \/ Re(csqrt(z)) = &0 /\ &0 <= Im(csqrt(z))`,
GEN_TAC THEN REWRITE_TAC[csqrt] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[RE; IM]) THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP SQRT_POS_LE) THEN REAL_ARITH_TAC;
DISJ2_TAC THEN REWRITE_TAC[real_ge] THEN MATCH_MP_TAC SQRT_POS_LE THEN
ASM_REAL_ARITH_TAC;
DISJ1_TAC THEN MATCH_MP_TAC SQRT_POS_LT THEN
MATCH_MP_TAC(REAL_ARITH `abs(y) < x ==> &0 < (x + y) / &2`) THEN
REWRITE_TAC[complex_norm] THEN REWRITE_TAC[GSYM POW_2_SQRT_ABS] THEN
MATCH_MP_TAC SQRT_MONO_LT THEN
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_LT_ADDR] THEN
REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
ASM_REWRITE_TAC[REAL_LE_SQUARE; REAL_ENTIRE]]);;
let RE_CSQRT = prove
(`!z. &0 <= Re(csqrt z)`,
MP_TAC CSQRT_PRINCIPAL THEN MATCH_MP_TAC MONO_FORALL THEN REAL_ARITH_TAC);;
let CSQRT_UNIQUE = prove
(`!s z. s pow 2 = z /\ (&0 < Re s \/ Re s = &0 /\ &0 <= Im s)
==> csqrt z = s`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
MP_TAC(SPEC `(s:complex) pow 2` CSQRT) THEN
SIMP_TAC[COMPLEX_RING `a pow 2 = b pow 2 <=> a = b \/ a = --b:complex`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[COMPLEX_RING `--z = z <=> z = Cx(&0)`] THEN
FIRST_ASSUM(MP_TAC o AP_TERM `Re`) THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM `Im`) THEN
REWRITE_TAC[RE_NEG; IM_NEG; COMPLEX_EQ; RE_CX; IM_CX] THEN
MP_TAC(SPEC `(s:complex) pow 2` CSQRT_PRINCIPAL) THEN
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);;
let POW_2_CSQRT = prove
(`!z. &0 < Re z \/ Re(z) = &0 /\ &0 <= Im(z) ==> csqrt(z pow 2) = z`,
MESON_TAC[CSQRT_UNIQUE]);;
let CSQRT_EQ_0 = prove
(`!z. csqrt z = Cx(&0) <=> z = Cx(&0)`,
GEN_TAC THEN MP_TAC (SPEC `z:complex` CSQRT) THEN CONV_TAC COMPLEX_RING);;
(* ------------------------------------------------------------------------- *)
(* A few more complex-specific cases of vector notions. *)
(* ------------------------------------------------------------------------- *)
let DOT_COMPLEX_MUL_CNJ = prove
(`!w z. w dot z = Re(w * cnj z)`,
REWRITE_TAC[cnj; complex_mul; RE; IM] THEN
REWRITE_TAC[DOT_2; RE_DEF; IM_DEF] THEN REAL_ARITH_TAC);;
let DOT_CNJ = prove
(`!w z. cnj w dot cnj z = w dot z`,
REWRITE_TAC[DOT_2; GSYM RE_DEF; GSYM IM_DEF] THEN
REWRITE_TAC[cnj; RE; IM] THEN REAL_ARITH_TAC);;
let LINEAR_COMPLEX_MUL = prove
(`!c. linear (\x. c * x)`,
REWRITE_TAC[linear; COMPLEX_CMUL] THEN CONV_TAC COMPLEX_RING);;
let BILINEAR_COMPLEX_MUL = prove
(`bilinear( * )`,
REWRITE_TAC[bilinear; linear; COMPLEX_CMUL] THEN CONV_TAC COMPLEX_RING);;
let LINEAR_CNJ = prove
(`linear cnj`,
REWRITE_TAC[linear; COMPLEX_CMUL; CNJ_ADD; CNJ_MUL; CNJ_CX]);;
let ORTHOGONAL_TRANSFORMATION_CNJ = prove
(`orthogonal_transformation cnj`,
REWRITE_TAC[orthogonal_transformation; LINEAR_CNJ; DOT_CNJ]);;
let LINEAR_COMPLEX_LMUL = prove
(`!f:real^N->complex c. linear f ==> linear (\x. c * f x)`,
SIMP_TAC[linear; COMPLEX_CMUL] THEN
REPEAT STRIP_TAC THEN CONV_TAC COMPLEX_RING);;
let LINEAR_COMPLEX_RMUL = prove
(`!f:real^N->complex c. linear f ==> linear (\x. f x * c)`,
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN REWRITE_TAC[LINEAR_COMPLEX_LMUL]);;
let COMPLEX_CAUCHY_SCHWARZ_EQ = prove
(`!w z. (w dot z) pow 2 + ((ii * w) dot z) pow 2 =
norm(w) pow 2 * norm(z) pow 2`,
REWRITE_TAC[NORM_POW_2; DOT_2; GSYM RE_DEF; GSYM IM_DEF] THEN
REWRITE_TAC[ii; complex_mul; RE; IM] THEN REAL_ARITH_TAC);;
let COMPLEX_BASIS = prove
(`basis 1 = Cx(&1) /\ basis 2 = ii`,
SIMP_TAC[CART_EQ; FORALL_2; BASIS_COMPONENT; DIMINDEX_2; ARITH] THEN
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; RE_CX; IM_CX] THEN
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_LINEAR = prove
(`!f:complex->complex.
(?c. f = \z. c * z) <=>
linear f /\
(matrix f)$1$1 = (matrix f)$2$2 /\
(matrix f)$1$2 = --((matrix f)$2$1)`,
GEN_TAC THEN EQ_TAC THENL
[STRIP_TAC THEN ASM_REWRITE_TAC[LINEAR_COMPLEX_MUL] THEN
SIMP_TAC[matrix; LAMBDA_BETA; DIMINDEX_2; ARITH] THEN
REWRITE_TAC[COMPLEX_BASIS; GSYM RE_DEF; GSYM IM_DEF; ii] THEN
SIMPLE_COMPLEX_ARITH_TAC;
STRIP_TAC THEN
EXISTS_TAC `complex(matrix(f:complex->complex)$1$1,matrix f$2$1)` THEN
FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC LAND_CONV [MATCH_MP MATRIX_VECTOR_MUL th]) THEN
ASM_SIMP_TAC[CART_EQ; matrix_vector_mul; DIMINDEX_2; SUM_2; ARITH;
FORALL_2; FUN_EQ_THM; LAMBDA_BETA] THEN
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; IM; RE; complex_mul] THEN
REAL_ARITH_TAC]);;
let COMPLEX_LINEAR_ALT = prove
(`!f:complex->complex.
(?c. f = \z. c * z) <=> linear f /\ f(ii) = ii * f(Cx(&1))`,
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[LINEAR_COMPLEX_MUL] THENL
[SIMPLE_COMPLEX_ARITH_TAC; ASM_REWRITE_TAC[COMPLEX_LINEAR]] THEN
FIRST_ASSUM(MP_TAC o SYM) THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[MATCH_MP MATRIX_VECTOR_MUL th]) THEN
REWRITE_TAC[CART_EQ; FORALL_2; DIMINDEX_2] THEN
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; RE_MUL_II; IM_MUL_II] THEN
REWRITE_TAC[MATRIX_VECTOR_MUL_COMPONENT; IM_DEF; RE_DEF] THEN
SIMP_TAC[MATRIX_VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH; DOT_2] THEN
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; CX_DEF; RE; IM; RE_II; IM_II] THEN
REAL_ARITH_TAC);;
let ORTHOGONAL_TRANSFORMATION_COMPLEX_MUL = prove
(`!c. orthogonal_transformation(\z. c * z) <=> norm c = &1`,
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION; LINEAR_COMPLEX_MUL] THEN
GEN_TAC THEN REWRITE_TAC[COMPLEX_NORM_MUL] THEN
REWRITE_TAC[REAL_RING `c * v:real = v <=> c = &1 \/ v = &0`] THEN
ASM_CASES_TAC `norm(c:complex) = &1` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `Cx(&1)`) THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN
REAL_ARITH_TAC);;
let COMPLEX_ORTHOGONAL_ROTATION = prove
(`!f:complex->complex.
orthogonal_transformation f /\ det(matrix f) = &1 <=>
?c. norm c = &1 /\ f = \z. c * z`,
GEN_TAC THEN TRANS_TAC EQ_TRANS
`(!z. norm(f z) = norm z) /\ (?c. f = \z:complex. c * z)` THEN
CONJ_TAC THENL
[REWRITE_TAC[COMPLEX_LINEAR] THEN
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> (q /\ p) /\ r`] THEN
REWRITE_TAC[GSYM ORTHOGONAL_TRANSFORMATION] THEN
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX] THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN AP_TERM_TAC THEN
REWRITE_TAC[ORTHOGONAL_MATRIX_2; DET_2] THEN CONV_TAC REAL_RING;
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `c:complex` THEN REWRITE_TAC[] THEN
ASM_CASES_TAC `f:complex->complex = \z. c * z` THEN
ASM_REWRITE_TAC[COMPLEX_NORM_MUL] THEN
REWRITE_TAC[REAL_RING `c * v:real = v <=> c = &1 \/ v = &0`] THEN
ASM_CASES_TAC `norm(c:complex) = &1` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `Cx(&1)`) THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN
REAL_ARITH_TAC]);;
let COMPLEX_ORTHOGONAL_ROTOINVERSION = prove
(`!f:complex->complex.
orthogonal_transformation f /\ det(matrix f) = -- &1 <=>
?c. norm c = &1 /\ f = \z. c * cnj z`,
GEN_TAC THEN
SUBGOAL_THEN
`!c. (f = \z. c * cnj z) = (f o cnj = \z. c * z)`
(fun th -> REWRITE_TAC[th])
THENL
[REWRITE_TAC[FUN_EQ_THM; o_THM] THEN MESON_TAC[CNJ_CNJ; CNJ_MUL];
REWRITE_TAC[GSYM COMPLEX_ORTHOGONAL_ROTATION]] THEN
EQ_TAC THEN DISCH_TAC THENL
[ALL_TAC;
SUBGOAL_THEN `(f:complex->complex) = (f o cnj) o cnj` SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; o_THM; CNJ_CNJ];
POP_ASSUM MP_TAC THEN
SPEC_TAC(`(f:complex->complex) o cnj`,`f:complex->complex`) THEN
REPEAT STRIP_TAC]] THEN
ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_COMPOSE; MATRIX_COMPOSE; DET_MUL;
ORTHOGONAL_TRANSFORMATION_CNJ; ORTHOGONAL_TRANSFORMATION_LINEAR] THEN
SIMP_TAC[DET_2; MATRIX_COMPONENT; DIMINDEX_2; ARITH] THEN
REWRITE_TAC[COMPLEX_BASIS; CNJ_II; CNJ_CX] THEN
REWRITE_TAC[GSYM IM_DEF; GSYM RE_DEF; IM; RE; CX_DEF; ii; complex_neg] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let COMPLEX_ORTHOGONAL_TRANSFORMATION = prove
(`!f:complex->complex.
orthogonal_transformation f <=>
?c. norm c = &1 /\ ((f = \z. c * z) \/ (f = \z. c * cnj z))`,
GEN_TAC THEN
REWRITE_TAC[LEFT_OR_DISTRIB; EXISTS_OR_THM] THEN
REWRITE_TAC[GSYM COMPLEX_ORTHOGONAL_ROTATION;
GSYM COMPLEX_ORTHOGONAL_ROTOINVERSION] THEN
MESON_TAC[DET_ORTHOGONAL_MATRIX; ORTHOGONAL_TRANSFORMATION_MATRIX]);;
(* ------------------------------------------------------------------------- *)
(* Complex-specific theorems about sums. *)
(* ------------------------------------------------------------------------- *)
let RE_VSUM = prove
(`!f s. FINITE s ==> Re(vsum s f) = sum s (\x. Re(f x))`,
SIMP_TAC[RE_DEF; VSUM_COMPONENT; DIMINDEX_2; ARITH]);;
let IM_VSUM = prove
(`!f s. FINITE s ==> Im(vsum s f) = sum s (\x. Im(f x))`,
SIMP_TAC[IM_DEF; VSUM_COMPONENT; DIMINDEX_2; ARITH]);;
let VSUM_COMPLEX_LMUL = prove
(`!c f s. FINITE(s) ==> vsum s (\x. c * f x) = c * vsum s f`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[VSUM_CLAUSES; COMPLEX_VEC_0; COMPLEX_MUL_RZERO] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let VSUM_COMPLEX_RMUL = prove
(`!c f s. FINITE(s) ==> vsum s (\x. f x * c) = vsum s f * c`,
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN REWRITE_TAC[VSUM_COMPLEX_LMUL]);;
let VSUM_CX = prove
(`!f:A->real s. vsum s (\a. Cx(f a)) = Cx(sum s f)`,
SIMP_TAC[CART_EQ; VSUM_COMPONENT] THEN
REWRITE_TAC[DIMINDEX_2; FORALL_2; GSYM RE_DEF; GSYM IM_DEF] THEN
REWRITE_TAC[IM_CX; SUM_0; RE_CX; ETA_AX]);;
let CNJ_VSUM = prove
(`!f s. FINITE s ==> cnj(vsum s f) = vsum s (\x. cnj(f x))`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[VSUM_CLAUSES; CNJ_ADD; CNJ_CX; COMPLEX_VEC_0]);;
let VSUM_CX_NUMSEG = prove
(`!f m n. vsum (m..n) (\a. Cx(f a)) = Cx(sum (m..n) f)`,
SIMP_TAC[VSUM_CX; FINITE_NUMSEG]);;
let COMPLEX_SUB_POW = prove
(`!x y n.
1 <= n ==> x pow n - y pow n =
(x - y) * vsum(0..n-1) (\i. x pow i * y pow (n - 1 - i))`,
SIMP_TAC[GSYM VSUM_COMPLEX_LMUL; FINITE_NUMSEG] THEN
REWRITE_TAC[COMPLEX_RING
`(x - y) * (a * b):complex = (x * a) * b - a * (y * b)`] THEN
SIMP_TAC[GSYM complex_pow; ADD1; ARITH_RULE
`1 <= n /\ x <= n - 1
==> n - 1 - x = n - (x + 1) /\ SUC(n - 1 - x) = n - x`] THEN
REWRITE_TAC[VSUM_DIFFS_ALT; LE_0] THEN
SIMP_TAC[SUB_0; SUB_ADD; SUB_REFL;
complex_pow; COMPLEX_MUL_LID; COMPLEX_MUL_RID]);;
let COMPLEX_SUB_POW_R1 = prove
(`!x n. 1 <= n
==> x pow n - Cx(&1) = (x - Cx(&1)) * vsum(0..n-1) (\i. x pow i)`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o SPECL [`x:complex`; `Cx(&1)`] o
MATCH_MP COMPLEX_SUB_POW) THEN
REWRITE_TAC[COMPLEX_POW_ONE; COMPLEX_MUL_RID]);;
let COMPLEX_SUB_POW_L1 = prove
(`!x n. 1 <= n
==> Cx(&1) - x pow n = (Cx(&1) - x) * vsum(0..n-1) (\i. x pow i)`,
ONCE_REWRITE_TAC[GSYM COMPLEX_NEG_SUB] THEN
SIMP_TAC[COMPLEX_SUB_POW_R1] THEN REWRITE_TAC[COMPLEX_MUL_LNEG]);;
(* ------------------------------------------------------------------------- *)
(* The complex numbers that are real (zero imaginary part). *)
(* ------------------------------------------------------------------------- *)
let real = new_definition
`real z <=> Im z = &0`;;
let REAL = prove
(`!z. real z <=> Cx(Re z) = z`,
REWRITE_TAC[COMPLEX_EQ; real; CX_DEF; RE; IM] THEN REAL_ARITH_TAC);;
let REAL_CNJ = prove
(`!z. real z <=> cnj z = z`,
REWRITE_TAC[real; cnj; COMPLEX_EQ; RE; IM] THEN REAL_ARITH_TAC);;
let REAL_IMP_CNJ = prove
(`!z. real z ==> cnj z = z`,
REWRITE_TAC[REAL_CNJ]);;
let REAL_EXISTS = prove
(`!z. real z <=> ?x. z = Cx x`,
MESON_TAC[REAL; real; IM_CX]);;
let FORALL_REAL = prove
(`(!z. real z ==> P z) <=> (!x. P(Cx x))`,
MESON_TAC[REAL_EXISTS]);;
let EXISTS_REAL = prove
(`(?z. real z /\ P z) <=> (?x. P(Cx x))`,
MESON_TAC[REAL_EXISTS]);;
let REAL_CX = prove
(`!x. real(Cx x)`,
REWRITE_TAC[REAL_CNJ; CNJ_CX]);;
let REAL_MUL_CX = prove
(`!x z. real(Cx x * z) <=> x = &0 \/ real z`,
REWRITE_TAC[real; IM_MUL_CX; REAL_ENTIRE]);;
let REAL_ADD = prove
(`!w z. real w /\ real z ==> real(w + z)`,
SIMP_TAC[REAL_CNJ; CNJ_ADD]);;
let REAL_NEG = prove
(`!z. real z ==> real(--z)`,
SIMP_TAC[REAL_CNJ; CNJ_NEG]);;
let REAL_SUB = prove
(`!w z. real w /\ real z ==> real(w - z)`,
SIMP_TAC[REAL_CNJ; CNJ_SUB]);;
let REAL_MUL = prove
(`!w z. real w /\ real z ==> real(w * z)`,
SIMP_TAC[REAL_CNJ; CNJ_MUL]);;
let REAL_POW = prove
(`!z n. real z ==> real(z pow n)`,
SIMP_TAC[REAL_CNJ; CNJ_POW]);;
let REAL_INV = prove
(`!z. real z ==> real(inv z)`,
SIMP_TAC[REAL_CNJ; CNJ_INV]);;
let REAL_INV_EQ = prove
(`!z. real(inv z) = real z`,
MESON_TAC[REAL_INV; COMPLEX_INV_INV]);;
let REAL_DIV = prove
(`!w z. real w /\ real z ==> real(w / z)`,
SIMP_TAC[REAL_CNJ; CNJ_DIV]);;
let REAL_VSUM = prove
(`!f s. FINITE s /\ (!a. a IN s ==> real(f a)) ==> real(vsum s f)`,
SIMP_TAC[CNJ_VSUM; REAL_CNJ]);;
let REAL_MUL_CNJ = prove
(`(!z. real(z * cnj z)) /\ (!z. real(cnj z * z))`,
REWRITE_TAC[COMPLEX_MUL_CNJ; GSYM CX_POW; REAL_CX]);;
let REAL_SEGMENT = prove
(`!a b x. x IN segment[a,b] /\ real a /\ real b ==> real x`,
SIMP_TAC[segment; IN_ELIM_THM; real; COMPLEX_EQ; LEFT_AND_EXISTS_THM;
LEFT_IMP_EXISTS_THM; IM_ADD; IM_CMUL] THEN
REAL_ARITH_TAC);;
let IN_SEGMENT_CX = prove
(`!a b x. Cx(x) IN segment[Cx(a),Cx(b)] <=>
a <= x /\ x <= b \/ b <= x /\ x <= a`,
REPEAT STRIP_TAC THEN REWRITE_TAC[segment; IN_ELIM_THM] THEN
REWRITE_TAC[COMPLEX_CMUL; GSYM CX_ADD; CX_INJ; GSYM CX_MUL] THEN
ASM_CASES_TAC `a:real = b` THENL
[ASM_REWRITE_TAC[REAL_ARITH `(&1 - u) * b + u * b = b`] THEN
ASM_CASES_TAC `x:real = b` THEN ASM_REWRITE_TAC[REAL_LE_ANTISYM] THEN
EXISTS_TAC `&0` THEN REWRITE_TAC[REAL_POS];
ALL_TAC] THEN
EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `u:real`
(CONJUNCTS_THEN2 STRIP_ASSUME_TAC SUBST1_TAC)) THEN
REWRITE_TAC[REAL_ARITH `a <= (&1 - u) * a + u * b <=> &0 <= u * (b - a)`;
REAL_ARITH `b <= (&1 - u) * a + u * b <=> &0 <= (&1 - u) * (a - b)`;
REAL_ARITH `(&1 - u) * a + u * b <= a <=> &0 <= u * (a - b)`;
REAL_ARITH `(&1 - u) * a + u * b <= b <=> &0 <= (&1 - u) * (b - a)`] THEN
DISJ_CASES_TAC(REAL_ARITH `a <= b \/ b <= a`) THENL
[DISJ1_TAC; DISJ2_TAC] THEN
CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN
ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
STRIP_TAC THENL
[SUBGOAL_THEN `&0 < b - a` ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC;
EXISTS_TAC `(x - a:real) / (b - a)`];
SUBGOAL_THEN `&0 < a - b` ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC;
EXISTS_TAC `(a - x:real) / (a - b)`]] THEN
(CONJ_TAC THENL
[ALL_TAC; UNDISCH_TAC `~(a:real = b)` THEN CONV_TAC REAL_FIELD]) THEN
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ] THEN
ASM_REAL_ARITH_TAC);;
let IN_SEGMENT_CX_GEN = prove
(`!a b x.
x IN segment[Cx a,Cx b] <=>
Im(x) = &0 /\ (a <= Re x /\ Re x <= b \/ b <= Re x /\ Re x <= a)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM real] THEN
ASM_CASES_TAC `real x` THENL
[FIRST_X_ASSUM(SUBST1_TAC o SYM o REWRITE_RULE[REAL]) THEN
REWRITE_TAC[IN_SEGMENT_CX; REAL_CX; RE_CX] THEN REAL_ARITH_TAC;
ASM_MESON_TAC[REAL_SEGMENT; REAL_CX]]);;
let RE_POS_SEGMENT = prove
(`!a b x. x IN segment[a,b] /\ &0 < Re a /\ &0 < Re b ==> &0 < Re x`,
SIMP_TAC[segment; IN_ELIM_THM; real; COMPLEX_EQ; LEFT_AND_EXISTS_THM;
LEFT_IMP_EXISTS_THM; RE_ADD; RE_CMUL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
`&0 <= x /\ &0 <= y /\ ~(x = &0 /\ y = &0) ==> &0 < x + y`) THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_SUB_LE; REAL_LT_IMP_LE; REAL_ENTIRE] THEN
ASM_REAL_ARITH_TAC);;
let CONVEX_REAL = prove
(`convex real`,
REWRITE_TAC[convex; IN; COMPLEX_CMUL] THEN
SIMP_TAC[REAL_ADD; REAL_MUL; REAL_CX]);;
let IMAGE_CX = prove
(`!s. IMAGE Cx s = {z | real z /\ Re(z) IN s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN MESON_TAC[RE_CX; REAL]);;
let SUBSPACE_REAL = prove
(`subspace real`,
REWRITE_TAC[subspace] THEN
SIMP_TAC[COMPLEX_CMUL; COMPLEX_VEC_0; IN; REAL_CX; REAL_ADD; REAL_MUL]);;
let DIM_REAL = prove
(`dim real = 1`,
ONCE_REWRITE_TAC[SET_RULE `real = {x | real x}`] THEN
SIMP_TAC[real; IM_DEF; DIM_SPECIAL_HYPERPLANE; DIMINDEX_2; ARITH]);;
let INTERIOR_REAL = prove
(`interior real = {}`,
MATCH_MP_TAC EMPTY_INTERIOR_LOWDIM THEN
REWRITE_TAC[DIM_REAL; DIMINDEX_2; ARITH]);;
(* ------------------------------------------------------------------------- *)
(* Useful bound-type theorems for real quantities. *)
(* ------------------------------------------------------------------------- *)
let REAL_NORM = prove
(`!z. real z ==> norm(z) = abs(Re z)`,
SIMP_TAC[real; complex_norm] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[POW_2_SQRT_ABS; REAL_ADD_RID]);;
let REAL_NORM_POS = prove
(`!z. real z /\ &0 <= Re z ==> norm(z) = Re(z)`,
SIMP_TAC[REAL_NORM] THEN REAL_ARITH_TAC);;
let COMPLEX_NORM_VSUM_SUM_RE = prove
(`!f s. FINITE s /\ (!x. x IN s ==> real(f x) /\ &0 <= Re(f x))
==> norm(vsum s f) = sum s (\x. Re(f x))`,
SIMP_TAC[GSYM RE_VSUM] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_NORM_POS THEN
ASM_SIMP_TAC[REAL_VSUM; RE_VSUM; SUM_POS_LE]);;
let COMPLEX_NORM_VSUM_BOUND = prove
(`!s f:A->complex g:A->complex.
FINITE s /\ (!x. x IN s ==> real(g x) /\ norm(f x) <= Re(g x))
==> norm(vsum s f) <= norm(vsum s g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum s (\x. norm((f:A->complex) x))` THEN
ASM_SIMP_TAC[VSUM_NORM] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum s (\x. Re((g:A->complex) x))` THEN
ASM_SIMP_TAC[SUM_LE] THEN
MATCH_MP_TAC(REAL_ARITH `x:real = y ==> y <= x`) THEN
MATCH_MP_TAC COMPLEX_NORM_VSUM_SUM_RE THEN
ASM_MESON_TAC[REAL_LE_TRANS; NORM_POS_LE]);;
let COMPLEX_NORM_VSUM_BOUND_SUBSET = prove
(`!f:A->complex g:A->complex s t.
FINITE s /\ t SUBSET s /\
(!x. x IN s ==> real(g x) /\ norm(f x) <= Re(g x))
==> norm(vsum t f) <= norm(vsum s g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `norm(vsum t (g:A->complex))` THEN CONJ_TAC THENL
[ASM_MESON_TAC[COMPLEX_NORM_VSUM_BOUND; SUBSET; FINITE_SUBSET];ALL_TAC] THEN
SUBGOAL_THEN
`norm(vsum t (g:A->complex)) = sum t (\x. Re(g x)) /\
norm(vsum s g) = sum s (\x. Re(g x))`
(CONJUNCTS_THEN SUBST1_TAC)
THENL
[CONJ_TAC THEN MATCH_MP_TAC COMPLEX_NORM_VSUM_SUM_RE;
MATCH_MP_TAC SUM_SUBSET THEN REWRITE_TAC[IN_DIFF]] THEN
ASM_MESON_TAC[REAL_LE_TRANS; NORM_POS_LE; FINITE_SUBSET; SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* Geometric progression. *)
(* ------------------------------------------------------------------------- *)
let VSUM_GP_BASIC = prove
(`!x n. (Cx(&1) - x) * vsum(0..n) (\i. x pow i) = Cx(&1) - x pow (SUC n)`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[VSUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[complex_pow; COMPLEX_MUL_RID; LE_0] THEN
ASM_REWRITE_TAC[COMPLEX_ADD_LDISTRIB; complex_pow] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let VSUM_GP_MULTIPLIED = prove
(`!x m n. m <= n
==> ((Cx(&1) - x) * vsum(m..n) (\i. x pow i) =
x pow m - x pow (SUC n))`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[VSUM_OFFSET_0; COMPLEX_POW_ADD; FINITE_NUMSEG;
COMPLEX_MUL_ASSOC; VSUM_GP_BASIC; VSUM_COMPLEX_RMUL] THEN
REWRITE_TAC[COMPLEX_SUB_RDISTRIB; GSYM COMPLEX_POW_ADD; COMPLEX_MUL_LID] THEN
ASM_SIMP_TAC[ARITH_RULE `m <= n ==> (SUC(n - m) + m = SUC n)`]);;
let VSUM_GP = prove
(`!x m n.
vsum(m..n) (\i. x pow i) =
if n < m then Cx(&0)
else if x = Cx(&1) then Cx(&((n + 1) - m))
else (x pow m - x pow (SUC n)) / (Cx(&1) - x)`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC(ARITH_RULE `n < m \/ ~(n < m) /\ m <= n:num`) THEN
ASM_SIMP_TAC[VSUM_TRIV_NUMSEG; COMPLEX_VEC_0] THEN COND_CASES_TAC THENL
[ASM_REWRITE_TAC[COMPLEX_POW_ONE; VSUM_CONST_NUMSEG; COMPLEX_MUL_RID];
ALL_TAC] THEN
REWRITE_TAC[COMPLEX_CMUL; COMPLEX_MUL_RID] THEN
MATCH_MP_TAC(COMPLEX_FIELD
`~(z = Cx(&1)) /\ (Cx(&1) - z) * x = y ==> x = y / (Cx(&1) - z)`) THEN
ASM_SIMP_TAC[COMPLEX_DIV_LMUL; COMPLEX_SUB_0; VSUM_GP_MULTIPLIED]);;
let VSUM_GP_OFFSET = prove
(`!x m n. vsum(m..m+n) (\i. x pow i) =
if x = Cx(&1) then Cx(&n) + Cx(&1)
else x pow m * (Cx(&1) - x pow (SUC n)) / (Cx(&1) - x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[VSUM_GP; ARITH_RULE `~(m + n < m:num)`] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[REAL_OF_NUM_ADD; GSYM CX_ADD] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN ARITH_TAC;
REWRITE_TAC[complex_div; complex_pow; COMPLEX_POW_ADD] THEN
SIMPLE_COMPLEX_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Basics about polynomial functions: extremal behaviour and root counts. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_SUB_POLYFUN = prove
(`!a x y n.
1 <= n
==> vsum(0..n) (\i. a i * x pow i) - vsum(0..n) (\i. a i * y pow i) =
(x - y) *
vsum(0..n-1) (\j. vsum(j+1..n) (\i. a i * y pow (i - j - 1)) * x pow j)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[GSYM VSUM_SUB_NUMSEG; GSYM COMPLEX_SUB_LDISTRIB] THEN
GEN_REWRITE_TAC LAND_CONV [MATCH_MP VSUM_CLAUSES_LEFT (SPEC_ALL LE_0)] THEN
REWRITE_TAC[COMPLEX_SUB_REFL; complex_pow; COMPLEX_MUL_RZERO;
COMPLEX_ADD_LID] THEN
SIMP_TAC[COMPLEX_SUB_POW; ADD_CLAUSES] THEN
ONCE_REWRITE_TAC[COMPLEX_RING `a * x * s:complex = x * a * s`] THEN
SIMP_TAC[VSUM_COMPLEX_LMUL; FINITE_NUMSEG] THEN AP_TERM_TAC THEN
SIMP_TAC[GSYM VSUM_COMPLEX_LMUL; GSYM VSUM_COMPLEX_RMUL; FINITE_NUMSEG;
VSUM_VSUM_PRODUCT; FINITE_NUMSEG] THEN
MATCH_MP_TAC VSUM_EQ_GENERAL_INVERSES THEN
REPEAT(EXISTS_TAC `\(x:num,y:num). (y,x)`) THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_ELIM_PAIR_THM; IN_NUMSEG] THEN
REWRITE_TAC[ARITH_RULE `a - b - c:num = a - (b + c)`; ADD_SYM] THEN
REWRITE_TAC[COMPLEX_MUL_AC] THEN ARITH_TAC);;
let COMPLEX_SUB_POLYFUN_ALT = prove
(`!a x y n.
1 <= n
==> vsum(0..n) (\i. a i * x pow i) - vsum(0..n) (\i. a i * y pow i) =
(x - y) *
vsum(0..n-1) (\j. vsum(0..n-j-1) (\k. a(j+k+1) * y pow k) * x pow j)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[COMPLEX_SUB_POLYFUN] THEN AP_TERM_TAC THEN
MATCH_MP_TAC VSUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC VSUM_EQ_GENERAL_INVERSES THEN
MAP_EVERY EXISTS_TAC
[`\i. i - (j + 1)`; `\k. j + k + 1`] THEN
REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
TRY(BINOP_TAC THEN AP_TERM_TAC) THEN ASM_ARITH_TAC);;
let COMPLEX_POLYFUN_LINEAR_FACTOR = prove
(`!a c n. ?b. !z. vsum(0..n) (\i. c(i) * z pow i) =
(z - a) * vsum(0..n-1) (\i. b(i) * z pow i) +
vsum(0..n) (\i. c(i) * a pow i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM COMPLEX_EQ_SUB_RADD] THEN
ASM_CASES_TAC `n = 0` THENL
[EXISTS_TAC `\i:num. Cx(&0)` THEN
ASM_SIMP_TAC[VSUM_SING; NUMSEG_SING; complex_pow; COMPLEX_MUL_LZERO] THEN
REWRITE_TAC[COMPLEX_SUB_REFL; GSYM COMPLEX_VEC_0; VSUM_0] THEN
REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_MUL_RZERO];
ASM_SIMP_TAC[COMPLEX_SUB_POLYFUN; LE_1] THEN
EXISTS_TAC `\j. vsum (j + 1..n) (\i. c i * a pow (i - j - 1))` THEN
REWRITE_TAC[]]);;
let COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT = prove
(`!a c n. vsum(0..n) (\i. c(i) * a pow i) = Cx(&0)
==> ?b. !z. vsum(0..n) (\i. c(i) * z pow i) =
(z - a) * vsum(0..n-1) (\i. b(i) * z pow i)`,
MESON_TAC[COMPLEX_POLYFUN_LINEAR_FACTOR; COMPLEX_ADD_RID]);;
let COMPLEX_POLYFUN_EXTREMAL_LEMMA = prove
(`!c n e. &0 < e
==> ?M. !z. M <= norm(z)
==> norm(vsum(0..n) (\i. c(i) * z pow i))
<= e * norm(z) pow (n + 1)`,
GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[VSUM_CLAUSES_NUMSEG; LE_0] THEN
REPEAT STRIP_TAC THENL
[REWRITE_TAC[ADD_CLAUSES; complex_pow; REAL_POW_1; COMPLEX_MUL_RID] THEN
EXISTS_TAC `norm(c 0:complex) / e` THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ] THEN
REWRITE_TAC[REAL_MUL_AC];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o C MATCH_MP (REAL_ARITH `&0 < &1 / &2`)) THEN
DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN
EXISTS_TAC `max M ((&1 / &2 + norm(c(n+1):complex)) / e)` THEN
X_GEN_TAC `z:complex` THEN REWRITE_TAC[REAL_MAX_LE] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(NORM_ARITH
`a + norm(y) <= b ==> norm(x) <= a ==> norm(x + y) <= b`) THEN
SIMP_TAC[ADD1; COMPLEX_NORM_MUL; COMPLEX_NORM_POW;
GSYM REAL_ADD_RDISTRIB; ARITH_RULE `(n + 1) + 1 = 1 + n + 1`] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REAL_POW_ADD] THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_POW_LE; NORM_POS_LE; REAL_POW_1]);;
let COMPLEX_POLYFUN_EXTREMAL = prove
(`!c n. (!k. k IN 1..n ==> c(k) = Cx(&0)) \/
!B. eventually (\z. norm(vsum(0..n) (\i. c(i) * z pow i)) >= B)
at_infinity`,
GEN_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[NUMSEG_CLAUSES; ARITH; NOT_IN_EMPTY] THEN
MP_TAC(ARITH_RULE `0 <= n`) THEN SIMP_TAC[GSYM NUMSEG_RREC] THEN
DISCH_THEN(K ALL_TAC) THEN ASM_CASES_TAC `c(n:num) = Cx(&0)` THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM NUMSEG_RREC; LE_1] THEN
SIMP_TAC[IN_INSERT; VSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
ASM_REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_ADD_LID; COND_ID] THEN
ASM_MESON_TAC[];
DISJ2_TAC THEN MP_TAC(ISPECL
[`c:num->complex`; `n - 1`; `norm(c(n:num):complex) / &2`]
COMPLEX_POLYFUN_EXTREMAL_LEMMA) THEN ASM_SIMP_TAC[SUB_ADD; LE_1] THEN
ASM_SIMP_TAC[COMPLEX_NORM_NZ; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
SIMP_TAC[IN_INSERT; VSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> ~(n <= n - 1)`] THEN
DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN X_GEN_TAC `B:real` THEN
REWRITE_TAC[EVENTUALLY_AT_INFINITY] THEN EXISTS_TAC
`max M (max (&1) ((abs B + &1) / (norm(c(n:num):complex) / &2)))` THEN
X_GEN_TAC `z:complex` THEN REWRITE_TAC[real_ge; REAL_MAX_LE] THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:complex`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(NORM_ARITH
`abs b + &1 <= norm(y) - a ==> norm(x) <= a ==> b <= norm(y + x)`) THEN
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_POW] THEN
REWRITE_TAC[REAL_ARITH `c * x - c / &2 * x = x * c / &2`] THEN
ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; COMPLEX_NORM_NZ; REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `norm(z:complex) pow 1` THEN
CONJ_TAC THENL [ASM_REWRITE_TAC[REAL_POW_1]; ALL_TAC] THEN
MATCH_MP_TAC REAL_POW_MONO THEN ASM_SIMP_TAC[LE_1]]);;
let COMPLEX_POLYFUN_ROOTBOUND = prove
(`!n c. ~(!i. i IN 0..n ==> c(i) = Cx(&0))
==> FINITE {z | vsum(0..n) (\i. c(i) * z pow i) = Cx(&0)} /\
CARD {z | vsum(0..n) (\i. c(i) * z pow i) = Cx(&0)} <= n`,
REWRITE_TAC[TAUT `~a ==> b <=> a \/ b`] THEN INDUCT_TAC THEN GEN_TAC THENL
[SIMP_TAC[NUMSEG_SING; VSUM_SING; IN_SING; complex_pow] THEN
ASM_CASES_TAC `c 0 = Cx(&0)` THEN ASM_REWRITE_TAC[COMPLEX_MUL_RID] THEN
REWRITE_TAC[EMPTY_GSPEC; FINITE_RULES; CARD_CLAUSES; LE_REFL];
ALL_TAC] THEN
ASM_CASES_TAC `{z | vsum(0..SUC n) (\i. c(i) * z pow i) = Cx(&0)} = {}` THEN
ASM_REWRITE_TAC[FINITE_RULES; CARD_CLAUSES; LE_0] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `a:complex` MP_TAC o
GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT) THEN
DISCH_THEN(X_CHOOSE_TAC `b:num->complex`) THEN
ASM_REWRITE_TAC[COMPLEX_ENTIRE; COMPLEX_SUB_0; SUC_SUB1; SET_RULE
`{z | z = a \/ P z} = a INSERT {z | P z}`] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `b:num->complex`) THEN
STRIP_TAC THEN ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RULES] THENL
[DISJ1_TAC; ASM_ARITH_TAC] THEN
MP_TAC(SPECL [`c:num->complex`; `SUC n`] COMPLEX_POLYFUN_EXTREMAL) THEN
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `Cx(&0)`) THEN
ASM_SIMP_TAC[SUC_SUB1; COMPLEX_MUL_LZERO] THEN
SIMP_TAC[COMPLEX_POW_ZERO; COND_RAND; COMPLEX_MUL_RZERO] THEN
ASM_SIMP_TAC[VSUM_0; GSYM COMPLEX_VEC_0; VSUM_DELTA; IN_NUMSEG; LE_0] THEN
REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_MUL_RZERO; COMPLEX_NORM_NUM] THEN
REWRITE_TAC[COMPLEX_MUL_RID; real_ge; EVENTUALLY_AT_INFINITY] THEN
REPEAT STRIP_TAC THENL [ASM_MESON_TAC[LE_1]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `&1`) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN
REWRITE_TAC[NOT_EXISTS_THM; NOT_FORALL_THM] THEN X_GEN_TAC `b:real` THEN
MP_TAC(SPEC `b:real` (INST_TYPE [`:2`,`:N`] VECTOR_CHOOSE_SIZE)) THEN
ASM_MESON_TAC[NORM_POS_LE; REAL_LE_TOTAL; REAL_LE_TRANS]);;
let COMPLEX_POLYFUN_FINITE_ROOTS = prove
(`!n c. FINITE {x | vsum(0..n) (\i. c i * x pow i) = Cx(&0)} <=>
?i. i IN 0..n /\ ~(c i = Cx(&0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[TAUT `a /\ ~b <=> ~(a ==> b)`] THEN
REWRITE_TAC[GSYM NOT_FORALL_THM] THEN EQ_TAC THEN
SIMP_TAC[COMPLEX_POLYFUN_ROOTBOUND] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
SIMP_TAC[COMPLEX_MUL_LZERO] THEN SIMP_TAC[GSYM COMPLEX_VEC_0; VSUM_0] THEN
REWRITE_TAC[SET_RULE `{x | T} = (:complex)`; GSYM INFINITE;
EUCLIDEAN_SPACE_INFINITE]);;
let COMPLEX_POLYFUN_EQ_0 = prove
(`!n c. (!z. vsum(0..n) (\i. c i * z pow i) = Cx(&0)) <=>
(!i. i IN 0..n ==> c i = Cx(&0))`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[GEN_REWRITE_TAC I [TAUT `p <=> ~ ~p`] THEN DISCH_THEN(MP_TAC o MATCH_MP
COMPLEX_POLYFUN_ROOTBOUND) THEN
ASM_REWRITE_TAC[EUCLIDEAN_SPACE_INFINITE; GSYM INFINITE; DE_MORGAN_THM;
SET_RULE `{x | T} = (:complex)`];
ASM_SIMP_TAC[IN_NUMSEG; LE_0; COMPLEX_MUL_LZERO] THEN
REWRITE_TAC[GSYM COMPLEX_VEC_0; VSUM_0]]);;
let COMPLEX_POLYFUN_EQ_CONST = prove
(`!n c k. (!z. vsum(0..n) (\i. c i * z pow i) = k) <=>
c 0 = k /\ (!i. i IN 1..n ==> c i = Cx(&0))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`!x. vsum(0..n) (\i. (if i = 0 then c 0 - k else c i) * x pow i) =
Cx(&0)` THEN
CONJ_TAC THENL
[SIMP_TAC[VSUM_CLAUSES_LEFT; LE_0; complex_pow; COMPLEX_MUL_RID] THEN
REWRITE_TAC[COMPLEX_RING `(c - k) + s = Cx(&0) <=> c + s = k`] THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN
REWRITE_TAC[IN_NUMSEG] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH];
REWRITE_TAC[COMPLEX_POLYFUN_EQ_0; IN_NUMSEG; LE_0] THEN
GEN_REWRITE_TAC LAND_CONV [MESON[]
`(!n. P n) <=> P 0 /\ (!n. ~(n = 0) ==> P n)`] THEN
SIMP_TAC[LE_0; COMPLEX_SUB_0] THEN MESON_TAC[LE_1]]);;
(* ------------------------------------------------------------------------- *)
(* Complex products. *)
(* ------------------------------------------------------------------------- *)
let cproduct = new_definition
`cproduct = iterate (( * ):complex->complex->complex)`;;
let NEUTRAL_COMPLEX_MUL = prove
(`neutral(( * ):complex->complex->complex) = Cx(&1)`,
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
MESON_TAC[COMPLEX_MUL_LID; COMPLEX_MUL_RID]);;
let MONOIDAL_COMPLEX_MUL = prove
(`monoidal(( * ):complex->complex->complex)`,
REWRITE_TAC[monoidal; NEUTRAL_COMPLEX_MUL] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let CPRODUCT_CLAUSES = prove
(`(!f. cproduct {} f = Cx(&1)) /\
(!x f s. FINITE(s)
==> (cproduct (x INSERT s) f =
if x IN s then cproduct s f else f(x) * cproduct s f))`,
REWRITE_TAC[cproduct; GSYM NEUTRAL_COMPLEX_MUL] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_COMPLEX_MUL]);;
let CPRODUCT_EQ_0 = prove
(`!f s. FINITE s ==> (cproduct s f = Cx(&0) <=> ?x. x IN s /\ f(x) = Cx(&0))`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_ENTIRE; IN_INSERT; CX_INJ; REAL_OF_NUM_EQ;
ARITH; NOT_IN_EMPTY] THEN
MESON_TAC[]);;
let CPRODUCT_INV = prove
(`!f s. FINITE s ==> cproduct s (\x. inv(f x)) = inv(cproduct s f)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_INV_1; COMPLEX_INV_MUL]);;
let CPRODUCT_MUL = prove
(`!f g s. FINITE s
==> cproduct s (\x. f x * g x) = cproduct s f * cproduct s g`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_MUL_AC; COMPLEX_MUL_LID]);;
let CPRODUCT_EQ_1 = prove
(`!f s. (!x:A. x IN s ==> (f(x) = Cx(&1))) ==> (cproduct s f = Cx(&1))`,
REWRITE_TAC[cproduct; GSYM NEUTRAL_COMPLEX_MUL] THEN
SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_COMPLEX_MUL]);;
let CPRODUCT_1 = prove
(`!s. cproduct s (\n. Cx(&1)) = Cx(&1)`,
SIMP_TAC[CPRODUCT_EQ_1]);;
let CPRODUCT_POW = prove
(`!f s n. FINITE s
==> cproduct s (\x. f x pow n) = (cproduct s f) pow n`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
DISCH_TAC THEN INDUCT_TAC THEN
ASM_SIMP_TAC[complex_pow; CPRODUCT_MUL; CPRODUCT_1]);;
let NORM_CPRODUCT = prove
(`!f s. FINITE s ==> norm(cproduct s f) = product s (\x. norm(f x))`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_NORM_CX; REAL_ABS_NUM;
CPRODUCT_MUL; PRODUCT_CLAUSES; COMPLEX_NORM_MUL]);;
let CPRODUCT_EQ = prove
(`!f g s. (!x. x IN s ==> (f x = g x)) ==> cproduct s f = cproduct s g`,
REWRITE_TAC[cproduct] THEN MATCH_MP_TAC ITERATE_EQ THEN
REWRITE_TAC[MONOIDAL_COMPLEX_MUL]);;
let CPRODUCT_SING = prove
(`!f x. cproduct {x} f = f(x)`,
SIMP_TAC[CPRODUCT_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; COMPLEX_MUL_RID]);;
let CPRODUCT_CLAUSES_NUMSEG = prove
(`(!m. cproduct(m..0) f = if m = 0 then f(0) else Cx(&1)) /\
(!m n. cproduct(m..SUC n) f = if m <= SUC n then cproduct(m..n) f * f(SUC n)
else cproduct(m..n) f)`,
REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[CPRODUCT_SING; CPRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; COMPLEX_MUL_AC]);;
let CPRODUCT_CLAUSES_RIGHT = prove
(`!f m n. 0 < n /\ m <= n ==> cproduct(m..n) f = cproduct(m..n-1) f * (f n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
SIMP_TAC[LT_REFL; CPRODUCT_CLAUSES_NUMSEG; SUC_SUB1]);;
let CPRODUCT_CLAUSES_LEFT = prove
(`!f m n. m <= n ==> cproduct(m..n) f = f m * cproduct(m + 1..n) f`,
SIMP_TAC[GSYM NUMSEG_LREC; CPRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
ARITH_TAC);;
let CPRODUCT_IMAGE = prove
(`!f g s. (!x y. x IN s /\ y IN s /\ f x = f y ==> (x = y))
==> (cproduct (IMAGE f s) g = cproduct s (g o f))`,
REWRITE_TAC[cproduct; GSYM NEUTRAL_COMPLEX_MUL] THEN
MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_COMPLEX_MUL]);;
let CPRODUCT_OFFSET = prove
(`!f m p. cproduct(m+p..n+p) f = cproduct(m..n) (\i. f(i + p))`,
SIMP_TAC[NUMSEG_OFFSET_IMAGE; CPRODUCT_IMAGE;
EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
REWRITE_TAC[o_DEF]);;
let CPRODUCT_CONST = prove
(`!c s. FINITE s ==> cproduct s (\x. c) = c pow (CARD s)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CPRODUCT_CLAUSES; CARD_CLAUSES; complex_pow]);;
let CPRODUCT_CONST_NUMSEG = prove
(`!c m n. cproduct (m..n) (\x. c) = c pow ((n + 1) - m)`,
SIMP_TAC[CPRODUCT_CONST; CARD_NUMSEG; FINITE_NUMSEG]);;
let CPRODUCT_PAIR = prove
(`!f m n. cproduct(2*m..2*n+1) f = cproduct(m..n) (\i. f(2*i) * f(2*i+1))`,
MP_TAC(MATCH_MP ITERATE_PAIR MONOIDAL_COMPLEX_MUL) THEN
REWRITE_TAC[cproduct; NEUTRAL_COMPLEX_MUL]);;
let CPRODUCT_REFLECT = prove
(`!x m n. cproduct(m..n) x =
if n < m then Cx(&1) else cproduct(0..n-m) (\i. x(n - i))`,
REPEAT GEN_TAC THEN REWRITE_TAC[cproduct] THEN
GEN_REWRITE_TAC LAND_CONV
[MATCH_MP ITERATE_REFLECT MONOIDAL_COMPLEX_MUL] THEN
REWRITE_TAC[NEUTRAL_COMPLEX_MUL]);;
let CNJ_CPRODUCT = prove
(`!f s. FINITE s ==> cnj(cproduct s f) = cproduct s (\i. cnj(f i))`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CPRODUCT_CLAUSES; CNJ_MUL; CNJ_CX]);;
let CX_PRODUCT = prove
(`!f s. FINITE s ==> Cx(product s f) = cproduct s (\i. Cx(f i))`,
GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CPRODUCT_CLAUSES; PRODUCT_CLAUSES; GSYM CX_MUL]);;
let CPRODUCT_SUPERSET = prove
(`!f:A->complex u v.
u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f(x) = Cx(&1))
==> cproduct v f = cproduct u f`,
REWRITE_TAC[cproduct; GSYM NEUTRAL_COMPLEX_MUL] THEN
REWRITE_TAC[MATCH_MP ITERATE_SUPERSET MONOIDAL_COMPLEX_MUL]);;
let CPRODUCT_UNION = prove
(`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
==> (cproduct (s UNION t) f = cproduct s f * cproduct t f)`,
SIMP_TAC[cproduct; ITERATE_UNION; MONOIDAL_COMPLEX_MUL]);;
let th = prove
(`(!f g s. (!x. x IN s ==> f(x) = g(x))
==> cproduct s (\i. f(i)) = cproduct s g) /\
(!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
==> cproduct(a..b) (\i. f(i)) = cproduct(a..b) g) /\
(!f g p. (!x. p x ==> f x = g x)
==> cproduct {y | p y} (\i. f(i)) = cproduct {y | p y} g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CPRODUCT_EQ THEN
ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;
|