Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 83,318 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 |
(* ========================================================================= *)
(* A library for vectors of complex numbers. *)
(* Much inspired from HOL-Light real vector library <"vectors.ml">. *)
(* *)
(* (c) Copyright, Sanaz Khan Afshar & Vincent Aravantinos 2011-13 *)
(* Hardware Verification Group, *)
(* Concordia University *)
(* *)
(* Contact: <s_khanaf@encs.concordia.ca> *)
(* <vincent.aravantinos@fortiss.org> *)
(* *)
(* Acknowledgements: *)
(* - Harsh Singhal: n-dimensional dot product, utility theorems *)
(* *)
(* Updated for the latest version of HOL Light (JULY 2014) *)
(* *)
(* Distributed under the same license as HOL Light. *)
(* ========================================================================= *)
needs "Multivariate/complexes.ml";;
needs "Multivariate/cross.ml";;
(* ========================================================================= *)
(* ADDITIONS TO THE BASE LIBRARY *)
(* ========================================================================= *)
(* ----------------------------------------------------------------------- *)
(* Additional tacticals *)
(* ----------------------------------------------------------------------- *)
let SINGLE f x = f [x];;
let distrib fs x = map (fun f -> f x) fs;;
let DISTRIB ttacs x = EVERY (distrib ttacs x);;
let REWRITE_TACS = MAP_EVERY (SINGLE REWRITE_TAC);;
let GCONJUNCTS thm = map GEN_ALL (CONJUNCTS (SPEC_ALL thm));;
(* ----------------------------------------------------------------------- *)
(* Additions to the vectors library *)
(* ----------------------------------------------------------------------- *)
let COMPONENT_LE_NORM_ALT = prove
(`!x:real^N i. 1 <= i /\ i <= dimindex (:N) ==> x$i <= norm x`,
MESON_TAC [REAL_ABS_LE;COMPONENT_LE_NORM;REAL_LE_TRANS]);;
(* ----------------------------------------------------------------------- *)
(* Additions to the library of complex numbers *)
(* ----------------------------------------------------------------------- *)
(* Lemmas *)
let RE_IM_NORM = prove
(`!x. Re x <= norm x /\ Im x <= norm x /\ abs(Re x) <= norm x
/\ abs(Im x) <= norm x`,
REWRITE_TAC[RE_DEF;IM_DEF] THEN GEN_TAC THEN REPEAT CONJ_TAC
THEN ((MATCH_MP_TAC COMPONENT_LE_NORM_ALT
THEN REWRITE_TAC[DIMINDEX_2] THEN ARITH_TAC) ORELSE SIMP_TAC [COMPONENT_LE_NORM]));;
let [RE_NORM;IM_NORM;ABS_RE_NORM;ABS_IM_NORM] = GCONJUNCTS RE_IM_NORM;;
let NORM_RE = prove
(`!x. &0 <= norm x + Re x /\ &0 <= norm x - Re x`,
GEN_TAC THEN MP_TAC (SPEC_ALL ABS_RE_NORM) THEN REAL_ARITH_TAC);;
let [NORM_RE_ADD;NORM_RE_SUB] = GCONJUNCTS NORM_RE;;
let NORM2_ADD_REAL = prove
(`!x y.
real x /\ real y ==> norm (x + ii * y) pow 2 = norm x pow 2 + norm y pow 2`,
SIMP_TAC[real;complex_norm;RE_ADD;IM_ADD;RE_MUL_II;IM_MUL_II;REAL_NEG_0;
REAL_ADD_LID;REAL_ADD_RID;REAL_POW_ZERO;ARITH_RULE `~(2=0)`;REAL_LE_POW_2;
SQRT_POW_2;REAL_LE_ADD]);;
let COMPLEX_EQ_RCANCEL_IMP = GEN_ALL (MATCH_MP (MESON []
`(p <=> r \/ q) ==> (p /\ ~r ==> q) `) (SPEC_ALL COMPLEX_EQ_MUL_RCANCEL));;
let COMPLEX_BALANCE_DIV_MUL = prove
(`!x y z t. ~(z=Cx(&0)) ==> (x = y/z * t <=> x*z = y * t)`,
REPEAT STRIP_TAC THEN POP_ASSUM (fun x ->
ASSUME_TAC (REWRITE_RULE[x] (SPEC_ALL COMPLEX_EQ_MUL_RCANCEL))
THEN ASSUME_TAC (REWRITE_RULE[x] (SPECL [`x:complex`;`z:complex`]
COMPLEX_DIV_RMUL)))
THEN SUBGOAL_THEN `x=y/z*t <=> x*z=(y/z*t)*z:complex` (SINGLE REWRITE_TAC)
THENL [ASM_REWRITE_TAC[];
REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(y/z*t)*z=(y/z*z)*t:complex`]
THEN ASM_REWRITE_TAC[]]);;
let CSQRT_MUL_LCX_LT = prove
(`!x y. &0 < x ==> csqrt(Cx x * y) = Cx(sqrt x) * csqrt y`,
REWRITE_TAC[csqrt;complex_mul;IM;RE;IM_CX;REAL_MUL_LZERO;REAL_ADD_RID;RE_CX;
REAL_SUB_RZERO]
THEN REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC
THEN FIRST_ASSUM (ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE)
THEN ASM_SIMP_TAC[IM;RE;REAL_MUL_RZERO;SQRT_MUL]
THENL [
REPEAT (POP_ASSUM MP_TAC) THEN REWRITE_TAC[REAL_ENTIRE;REAL_MUL_POS_LE]
THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC[SQRT_0;REAL_MUL_LZERO;REAL_MUL_RZERO];
REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC [REAL_ENTIRE]
THEN MESON_TAC [REAL_LT_IMP_NZ];
ASM_MESON_TAC [REAL_LE_MUL_EQ;REAL_ARITH `~(&0 <= y) = &0 > y`];
SIMP_TAC [REAL_NEG_RMUL] THEN REPEAT (POP_ASSUM MP_TAC)
THEN SIMP_TAC [REAL_ARITH `~(&0 <= y) = y < &0`]
THEN SIMP_TAC [GSYM REAL_NEG_GT0] THEN MESON_TAC[REAL_LT_IMP_LE;SQRT_MUL];
REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC [REAL_ENTIRE]
THEN MESON_TAC [REAL_LT_IMP_NZ];
REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC [REAL_ENTIRE]
THEN SIMP_TAC [DE_MORGAN_THM];
REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC [REAL_ENTIRE]
THEN SIMP_TAC [DE_MORGAN_THM]; ALL_TAC] THENL [
SIMP_TAC [REAL_NEG_0;SQRT_0;REAL_MUL_RZERO];
ASM_MESON_TAC[REAL_ARITH `~(x<y /\ ~(x <=y))`];
ASM_MESON_TAC[REAL_ARITH `~(x<y /\ y<x)`];
ALL_TAC]
THEN REWRITE_TAC[GSYM (REWRITE_RULE[CX_DEF;complex_mul;RE;IM;
REAL_MUL_LZERO;REAL_ADD_RID;REAL_SUB_RZERO] COMPLEX_CMUL)]
THEN SIMP_TAC [NORM_MUL] THEN POP_ASSUM MP_TAC
THEN ASM_SIMP_TAC [GSYM REAL_ABS_REFL] THEN DISCH_TAC
THEN SIMP_TAC [REAL_ABS_MUL]
THEN ASM_SIMP_TAC [GSYM REAL_ABS_REFL]
THEN SIMP_TAC [GSYM REAL_ADD_LDISTRIB; GSYM REAL_SUB_LDISTRIB]
THEN SUBGOAL_THEN `(x*Im y) / (x*abs(Im y)) = Im y / abs(Im y)` ASSUME_TAC
THENL [
SIMP_TAC [real_div] THEN SIMP_TAC [REAL_INV_MUL]
THEN SIMP_TAC [GSYM REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_AC]
THEN SUBGOAL_THEN `Im y * x * inv x * inv (abs(Im y)) =
Im y * (x * inv x) * inv (abs (Im y)) ` ASSUME_TAC
THENL [SIMP_TAC [REAL_MUL_AC]; ALL_TAC]
THEN ASM_SIMP_TAC[REAL_MUL_RINV;REAL_LT_IMP_NZ]
THEN SIMP_TAC [REAL_MUL_LID] THEN SIMP_TAC [REAL_MUL_AC];
ALL_TAC]
THEN ASM_SIMP_TAC[]
THEN SUBGOAL_THEN `sqrt x * Im y / abs(Im y) * sqrt ((norm y-Re y) / &2) =
Im y / abs (Im y) * sqrt x * sqrt ((norm y - Re y) / &2)` ASSUME_TAC
THENL [SIMP_TAC [REAL_MUL_AC]; ALL_TAC] THEN ASM_SIMP_TAC[]
THEN SUBGOAL_THEN `sqrt ((x * (norm y - Re y)) / &2) =
sqrt (x * (norm y - Re y)) / sqrt (&2)` ASSUME_TAC
THENL [
SIMP_TAC[SQRT_DIV] THEN CONJ_TAC THENL [
ASM_SIMP_TAC[REAL_LE_MUL_EQ;REAL_LT_IMP_LE] THEN SIMP_TAC[NORM_RE_SUB];
REAL_ARITH_TAC];
ALL_TAC]
THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `sqrt ((norm y - Re y) / &2) =
sqrt (norm y - Re y) / sqrt (&2)` ASSUME_TAC
THENL [
SIMP_TAC[SQRT_DIV] THEN CONJ_TAC
THENL [SIMP_TAC [NORM_RE_SUB]; REAL_ARITH_TAC];
ALL_TAC ]
THEN ASM_SIMP_TAC[]
THEN SUBGOAL_THEN `sqrt ((x * (norm y + Re y)) / &2) =
sqrt (x * (norm y + Re y)) / sqrt (&2)` ASSUME_TAC
THENL [
SIMP_TAC[SQRT_DIV] THEN CONJ_TAC
THENL [
ASM_SIMP_TAC [REAL_LE_MUL_EQ;REAL_LT_IMP_LE]
THEN SIMP_TAC[NORM_RE_ADD];
REAL_ARITH_TAC];
ALL_TAC]
THEN SUBGOAL_THEN `sqrt ((norm y + Re y) / &2) =
sqrt (norm y + Re y) / sqrt (&2)` ASSUME_TAC
THENL [
SIMP_TAC[SQRT_DIV] THEN CONJ_TAC
THENL [SIMP_TAC[NORM_RE_ADD]; REAL_ARITH_TAC];
ALL_TAC]
THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `&0 <= x` ASSUME_TAC
THENL [ ASM_SIMP_TAC [REAL_LT_IMP_LE]; ALL_TAC ]
THEN SIMP_TAC[COMPLEX_EQ] THEN SIMP_TAC[RE;IM] THEN CONJ_TAC
THENL [
SUBGOAL_THEN `sqrt x * sqrt (norm y + Re y) / sqrt (&2) =
(sqrt x * sqrt (norm y + Re y)) / sqrt (&2)` ASSUME_TAC
THENL [REAL_ARITH_TAC; ALL_TAC]
THEN ASM_MESON_TAC [SQRT_MUL;NORM_RE_ADD];
SUBGOAL_THEN `Im y/abs(Im y) * sqrt x * sqrt (norm y-Re y) / sqrt(&2) =
Im y/abs (Im y) * (sqrt x * sqrt (norm y - Re y))/sqrt(&2)` ASSUME_TAC
THENL [REAL_ARITH_TAC; ALL_TAC]
THEN ASM_MESON_TAC[SQRT_MUL;NORM_RE_SUB]]);;
let CSQRT_MUL_LCX = prove
(`!x y. &0 <= x ==> csqrt(Cx x * y) = Cx(sqrt x) * csqrt y`,
REWRITE_TAC[REAL_LE_LT] THEN REPEAT STRIP_TAC
THEN ASM_SIMP_TAC[CSQRT_MUL_LCX_LT] THEN EXPAND_TAC "x"
THEN REWRITE_TAC[COMPLEX_MUL_LZERO;SQRT_0;CSQRT_0]);;
let REAL_ADD_POW_2 = prove
(`!x y:real. (x+y) pow 2 = x pow 2 + y pow 2 + &2 * x * y`,
REAL_ARITH_TAC);;
let COMPLEX_ADD_POW_2 = prove
(`!x y:complex. (x+y) pow 2 = x pow 2 + y pow 2 + Cx(&2) * x * y`,
REWRITE_TAC[COMPLEX_POW_2] THEN SIMPLE_COMPLEX_ARITH_TAC);;
(* ----------------------------------------------------------------------- *)
(* Additions to the topology library *)
(* ----------------------------------------------------------------------- *)
prioritize_vector ();;
(* Lemmas *)
let FINITE_INTER_ENUM = prove
(`!s n. FINITE(s INTER (0..n))`,
MESON_TAC[FINITE_INTER;FINITE_NUMSEG]);;
let NORM_PASTECART_GE1 = prove
(`!x y. norm x <= norm (pastecart x y)`,
MESON_TAC[FSTCART_PASTECART;NORM_FSTCART]);;
let NORM_PASTECART_GE2 = prove
(`!x y. norm y <= norm (pastecart x y)`,
MESON_TAC[SNDCART_PASTECART;NORM_SNDCART]);;
let SUMS_PASTECART = prove
(`!s f1:num->real^N f2:num->real^M l1 l2. (f1 sums l1) s /\ (f2 sums l2) s
<=> ((\x. pastecart (f1 x) (f2 x)) sums (pastecart l1 l2)) s`,
SIMP_TAC[sums;FINITE_INTER_ENUM;GSYM PASTECART_VSUM;
GSYM LIM_PASTECART_EQ]);;
let LINEAR_SUMS = prove(
`!s f l g. linear g ==> ((f sums l) s ==> ((g o f) sums (g l)) s)`,
SIMP_TAC[sums;FINITE_INTER_ENUM;GSYM LINEAR_VSUM;
REWRITE_RULE[o_DEF;CONTINUOUS_AT_SEQUENTIALLY] LINEAR_CONTINUOUS_AT]);;
(* ----------------------------------------------------------------------- *)
(* Embedding of reals in complex numbers *)
(* ----------------------------------------------------------------------- *)
let real_of_complex = new_definition `real_of_complex c = @r. c = Cx r`;;
let REAL_OF_COMPLEX = prove
(`!c. real c ==> Cx(real_of_complex c) = c`,
MESON_TAC[REAL;real_of_complex]);;
let REAL_OF_COMPLEX_RE = prove
(`!c. real c ==> real_of_complex c = Re c`,
MESON_TAC[RE_CX;REAL_OF_COMPLEX]);;
let REAL_OF_COMPLEX_CX = prove
(`!r. real_of_complex (Cx r) = r`,
SIMP_TAC[REAL_CX;REAL_OF_COMPLEX_RE;RE_CX]);;
let REAL_OF_COMPLEX_NORM = prove
(`!c. real c ==> norm c = abs (real_of_complex c)`,
MESON_TAC[REAL_NORM;REAL_OF_COMPLEX_RE]);;
let REAL_OF_COMPLEX_ADD = prove
(`!x y. real x /\ real y
==> real_of_complex (x+y) = real_of_complex x + real_of_complex y`,
MESON_TAC[REAL_ADD;REAL_OF_COMPLEX_RE;RE_ADD]);;
let REAL_MUL = prove
(`!x y. real x /\ real y ==> real (x*y)`,
REWRITE_TAC[real] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let REAL_OF_COMPLEX_MUL = prove(
`!x y. real x /\ real y
==> real_of_complex (x*y) = real_of_complex x * real_of_complex y`,
MESON_TAC[REAL_MUL;REAL_OF_COMPLEX;CX_MUL;REAL_OF_COMPLEX_CX]);;
let REAL_OF_COMPLEX_0 = prove(
`!x. real x ==> (real_of_complex x = &0 <=> x = Cx(&0))`,
REWRITE_TAC[REAL_EXISTS] THEN REPEAT STRIP_TAC
THEN ASM_SIMP_TAC[REAL_OF_COMPLEX_CX;CX_INJ]);;
let REAL_COMPLEX_ADD_CNJ = prove(
`!x. real(cnj x + x) /\ real(x + cnj x)`,
REWRITE_TAC[COMPLEX_ADD_CNJ;REAL_CX]);;
(* TODO
*let RE_EQ_NORM = prove(`!x. Re x = norm x <=> real x /\ &0 <= real_of_complex x`,
*)
(* ----------------------------------------------------------------------- *)
(* Additions to the vectors library *)
(* ----------------------------------------------------------------------- *)
let vector_const = new_definition
`vector_const (k:A) :A^N = lambda i. k`;;
let vector_map = new_definition
`vector_map (f:A->B) (v:A^N) :B^N = lambda i. f(v$i)`;;
let vector_map2 = new_definition
`vector_map2 (f:A->B->C) (v1:A^N) (v2:B^N) :C^N =
lambda i. f (v1$i) (v2$i)`;;
let vector_map3 = new_definition
`vector_map3 (f:A->B->C->D) (v1:A^N) (v2:B^N) (v3:C^N) :D^N =
lambda i. f (v1$i) (v2$i) (v3$i)`;;
let FINITE_INDEX_INRANGE_2 = prove
(`!i. ?k. 1 <= k /\ k <= dimindex(:N) /\ (!x:A^N. x$i = x$k)
/\ (!x:B^N. x$i = x$k) /\ (!x:C^N. x$i = x$k) /\ (!x:D^N. x$i = x$k)`,
REWRITE_TAC[finite_index] THEN MESON_TAC[FINITE_INDEX_WORKS]);;
let COMPONENT_TAC x =
REPEAT GEN_TAC THEN CHOOSE_TAC (SPEC_ALL FINITE_INDEX_INRANGE_2)
THEN ASM_SIMP_TAC[x;LAMBDA_BETA];;
let VECTOR_CONST_COMPONENT = prove
(`!i k. ((vector_const k):A^N)$i = k`,
COMPONENT_TAC vector_const);;
let VECTOR_MAP_COMPONENT = prove
(`!i f:A->B v:A^N. (vector_map f v)$i = f (v$i)`,
COMPONENT_TAC vector_map);;
let VECTOR_MAP2_COMPONENT = prove
(`!i f:A->B->C v1:A^N v2. (vector_map2 f v1 v2)$i = f (v1$i) (v2$i)`,
COMPONENT_TAC vector_map2);;
let VECTOR_MAP3_COMPONENT = prove(
`!i f:A->B->C->D v1:A^N v2 v3. (vector_map3 f v1 v2 v3)$i =
f (v1$i) (v2$i) (v3$i)`,
COMPONENT_TAC vector_map3);;
let COMMON_TAC =
REWRITE_TAC[vector_const;vector_map;vector_map2;vector_map3]
THEN ONCE_REWRITE_TAC[CART_EQ] THEN SIMP_TAC[LAMBDA_BETA;o_DEF];;
let VECTOR_MAP_VECTOR_CONST = prove
(`!f:A->B k. vector_map f ((vector_const k):A^N) = vector_const (f k)`,
COMMON_TAC);;
let VECTOR_MAP_VECTOR_MAP = prove
(`!f:A->B g:C->A v:C^N.
vector_map f (vector_map g v) = vector_map (f o g) v`,
COMMON_TAC);;
let VECTOR_MAP_VECTOR_MAP2 = prove
(`!f:A->B g:C->D->A u v:D^N.
vector_map f (vector_map2 g u v) = vector_map2 (\x y. f (g x y)) u v`,
COMMON_TAC);;
let VECTOR_MAP2_LVECTOR_CONST = prove
(`!f:A->B->C k v:B^N.
vector_map2 f (vector_const k) v = vector_map (f k) v`,
COMMON_TAC);;
let VECTOR_MAP2_RVECTOR_CONST = prove
(`!f:A->B->C k v:A^N.
vector_map2 f v (vector_const k) = vector_map (\x. f x k) v`,
COMMON_TAC);;
let VECTOR_MAP2_LVECTOR_MAP = prove
(`!f:A->B->C g:D->A v1 v2:B^N.
vector_map2 f (vector_map g v1) v2 = vector_map2 (f o g) v1 v2`,
COMMON_TAC);;
let VECTOR_MAP2_RVECTOR_MAP = prove
(`!f:A->B->C g:D->B v1 v2:D^N.
vector_map2 f v1 (vector_map g v2) = vector_map2 (\x y. f x (g y)) v1 v2`,
COMMON_TAC);;
let VECTOR_MAP2_LVECTOR_MAP2 = prove
(`!f:A->B->C g:D->E->A v1 v2 v3:B^N.
vector_map2 f (vector_map2 g v1 v2) v3 =
vector_map3 (\x y. f (g x y)) v1 v2 v3`,
COMMON_TAC);;
let VECTOR_MAP2_RVECTOR_MAP2 = prove(
`!f:A->B->C g:D->E->B v1 v2 v3:E^N.
vector_map2 f v1 (vector_map2 g v2 v3) =
vector_map3 (\x y z. f x (g y z)) v1 v2 v3`,
COMMON_TAC);;
let VECTOR_MAP_SIMP_TAC = REWRITE_TAC[
VECTOR_MAP_VECTOR_CONST;VECTOR_MAP2_LVECTOR_CONST;
VECTOR_MAP2_RVECTOR_CONST;VECTOR_MAP_VECTOR_MAP;VECTOR_MAP2_RVECTOR_MAP;
VECTOR_MAP2_LVECTOR_MAP;VECTOR_MAP2_RVECTOR_MAP2;VECTOR_MAP2_LVECTOR_MAP2;
VECTOR_MAP_VECTOR_MAP2];;
let VECTOR_MAP_PROPERTY_TAC fs prop =
REWRITE_TAC fs THEN VECTOR_MAP_SIMP_TAC THEN ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[VECTOR_MAP_COMPONENT;VECTOR_MAP2_COMPONENT;
VECTOR_MAP3_COMPONENT;VECTOR_CONST_COMPONENT;o_DEF;prop];;
let VECTOR_MAP_PROPERTY thm f prop =
prove(thm,VECTOR_MAP_PROPERTY_TAC f prop);;
let COMPLEX_VECTOR_MAP = prove
(`!f:complex->complex g. f = vector_map g
<=> !z. f z = complex (g (Re z), g (Im z))`,
REWRITE_TAC[vector_map;FUN_EQ_THM;complex] THEN REPEAT (GEN_TAC ORELSE EQ_TAC)
THEN ASM_SIMP_TAC[CART_EQ;DIMINDEX_2;FORALL_2;LAMBDA_BETA;VECTOR_2;RE_DEF;IM_DEF]);;
let COMPLEX_NEG_IS_A_MAP = prove
(`(--):complex->complex = vector_map ((--):real->real)`,
REWRITE_TAC[COMPLEX_VECTOR_MAP;complex_neg]);;
let VECTOR_NEG_IS_A_MAP = prove
(`(--):real^N->real^N = vector_map ((--):real->real)`,
REWRITE_TAC[FUN_EQ_THM;CART_EQ;VECTOR_NEG_COMPONENT;VECTOR_MAP_COMPONENT]);;
let VECTOR_MAP_VECTOR_MAP_ALT = prove
(`!f:A^N->B^N g:C^N->A^N f' g'. f = vector_map f' /\ g = vector_map g' ==>
f o g = vector_map (f' o g')`,
SIMP_TAC[o_DEF;FUN_EQ_THM;VECTOR_MAP_VECTOR_MAP]);;
let COMPLEX_VECTOR_MAP2 = prove
(`!f:complex->complex->complex g. f = vector_map2 g <=>
!z1 z2. f z1 z2 = complex (g (Re z1) (Re z2), g (Im z1) (Im z2))`,
REWRITE_TAC[vector_map2;FUN_EQ_THM;complex]
THEN REPEAT (GEN_TAC ORELSE EQ_TAC)
THEN ASM_SIMP_TAC[CART_EQ;DIMINDEX_2;FORALL_2;LAMBDA_BETA;VECTOR_2;RE_DEF;
IM_DEF]);;
let VECTOR_MAP2_RVECTOR_MAP_ALT = prove(
`!f:complex->complex->complex g:complex->complex f' g'.
f = vector_map2 f' /\ g = vector_map g'
==> (\x y. f x (g y)) = vector_map2 (\x y. f' x (g' y))`,
SIMP_TAC[FUN_EQ_THM;VECTOR_MAP2_RVECTOR_MAP]);;
let COMPLEX_ADD_IS_A_MAP = prove
(`(+):complex->complex->complex = vector_map2 ((+):real->real->real)`,
REWRITE_TAC[COMPLEX_VECTOR_MAP2;complex_add]);;
let VECTOR_ADD_IS_A_MAP = prove
(`(+):real^N->real^N->real^N = vector_map2 ((+):real->real->real)`,
REWRITE_TAC[FUN_EQ_THM;CART_EQ;VECTOR_ADD_COMPONENT;VECTOR_MAP2_COMPONENT]);;
let COMPLEX_SUB_IS_A_MAP = prove
(`(-):complex->complex->complex = vector_map2 ((-):real->real->real)`,
ONCE_REWRITE_TAC[prove(`(-) = \x y:complex. x-y`,REWRITE_TAC[FUN_EQ_THM])]
THEN ONCE_REWRITE_TAC[prove(`(-) = \x y:real. x-y`,REWRITE_TAC[FUN_EQ_THM])]
THEN REWRITE_TAC[complex_sub;real_sub]
THEN MATCH_MP_TAC VECTOR_MAP2_RVECTOR_MAP_ALT
THEN REWRITE_TAC[COMPLEX_NEG_IS_A_MAP;COMPLEX_ADD_IS_A_MAP]);;
let VECTOR_SUB_IS_A_MAP = prove
(`(-):real^N->real^N->real^N = vector_map2 ((-):real->real->real)`,
REWRITE_TAC[FUN_EQ_THM;CART_EQ;VECTOR_SUB_COMPONENT;VECTOR_MAP2_COMPONENT]);;
let COMMON_TAC x =
SIMP_TAC[CART_EQ;pastecart;x;LAMBDA_BETA] THEN REPEAT STRIP_TAC
THEN REPEAT COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[]
THEN SUBGOAL_THEN `1<= i-dimindex(:N) /\ i-dimindex(:N) <= dimindex(:M)`
ASSUME_TAC
THEN ASM_SIMP_TAC[LAMBDA_BETA]
THEN REPEAT (POP_ASSUM (MP_TAC o REWRITE_RULE[DIMINDEX_FINITE_SUM]))
THEN ARITH_TAC;;
let PASTECART_VECTOR_MAP = prove
(`!f:A->B x:A^N y:A^M.
pastecart (vector_map f x) (vector_map f y) =
vector_map f (pastecart x y)`,
COMMON_TAC vector_map);;
let PASTECART_VECTOR_MAP2 = prove
(`!f:A->B->C x1:A^N x2 y1:A^M y2.
pastecart (vector_map2 f x1 x2) (vector_map2 f y1 y2)
= vector_map2 f (pastecart x1 y1) (pastecart x2 y2)`,
COMMON_TAC vector_map2);;
let vector_zip = new_definition
`vector_zip (v1:A^N) (v2:B^N) : (A#B)^N = lambda i. (v1$i,v2$i)`;;
let VECTOR_ZIP_COMPONENT = prove
(`!i v1:A^N v2:B^N. (vector_zip v1 v2)$i = (v1$i,v2$i)`,
REPEAT GEN_TAC THEN CHOOSE_TAC (INST_TYPE [`:A#B`,`:C`] (SPEC_ALL
FINITE_INDEX_INRANGE_2)) THEN ASM_SIMP_TAC[vector_zip;LAMBDA_BETA]);;
let vector_unzip = new_definition
`vector_unzip (v:(A#B)^N):(A^N)#(B^N) = vector_map FST v,vector_map SND v`;;
let VECTOR_UNZIP_COMPONENT = prove
(`!i v:(A#B)^N. (FST (vector_unzip v))$i = FST (v$i)
/\ (SND (vector_unzip v))$i = SND (v$i)`,
REWRITE_TAC[vector_unzip;VECTOR_MAP_COMPONENT]);;
let VECTOR_MAP2_AS_VECTOR_MAP = prove
(`!f:A->B->C v1:A^N v2:B^N.
vector_map2 f v1 v2 = vector_map (UNCURRY f) (vector_zip v1 v2)`,
REWRITE_TAC[CART_EQ;VECTOR_MAP2_COMPONENT;VECTOR_MAP_COMPONENT;
VECTOR_ZIP_COMPONENT;UNCURRY_DEF]);;
(* ========================================================================= *)
(* BASIC ARITHMETIC *)
(* ========================================================================= *)
make_overloadable "%" `:A-> B-> B`;;
let prioritize_cvector () =
overload_interface("--",`(cvector_neg):complex^N->complex^N`);
overload_interface("+",`(cvector_add):complex^N->complex^N->complex^N`);
overload_interface("-",`(cvector_sub):complex^N->complex^N->complex^N`);
overload_interface("%",`(cvector_mul):complex->complex^N->complex^N`);;
let cvector_zero = new_definition
`cvector_zero:complex^N = vector_const (Cx(&0))`;;
let cvector_neg = new_definition
`cvector_neg :complex^N->complex^N = vector_map (--)`;;
let cvector_add = new_definition
`cvector_add :complex^N->complex^N->complex^N = vector_map2 (+)`;;
let cvector_sub = new_definition
`cvector_sub :complex^N->complex^N->complex^N = vector_map2 (-)`;;
let cvector_mul = new_definition
`(cvector_mul:complex->complex^N->complex^N) a = vector_map (( * ) a)`;;
overload_interface("%",`(%):real->real^N->real^N`);;
prioritize_cvector ();;
let CVECTOR_ZERO_COMPONENT = prove
(`!i. (cvector_zero:complex^N)$i = Cx(&0)`,
REWRITE_TAC[cvector_zero;VECTOR_CONST_COMPONENT]);;
let CVECTOR_NON_ZERO = prove
(`!x:complex^N. ~(x=cvector_zero)
<=> ?i. 1 <= i /\ i <= dimindex(:N) /\ ~(x$i = Cx(&0))`,
GEN_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [CART_EQ]
THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT] THEN MESON_TAC[]);;
let CVECTOR_ADD_COMPONENT = prove
(`!X Y:complex^N i. ((X + Y)$i = X$i + Y$i)`,
REWRITE_TAC[cvector_add;VECTOR_MAP2_COMPONENT]);;
let CVECTOR_SUB_COMPONENT = prove
(`!X:complex^N Y i. ((X - Y)$i = X$i - Y$i)`,
REWRITE_TAC[cvector_sub;VECTOR_MAP2_COMPONENT]);;
let CVECTOR_NEG_COMPONENT = prove
(`!X:complex^N i. ((--X)$i = --(X$i))`,
REWRITE_TAC[cvector_neg;VECTOR_MAP_COMPONENT]);;
let CVECTOR_MUL_COMPONENT = prove
(`!c:complex X:complex^N i. ((c % X)$i = c * X$i)`,
REWRITE_TAC[cvector_mul;VECTOR_MAP_COMPONENT]);;
(* Simple generic tactic adapted from VECTOR_ARITH_TAC *)
let CVECTOR_ARITH_TAC =
let RENAMED_LAMBDA_BETA th =
if fst(dest_fun_ty(type_of(funpow 3 rand (concl th)))) = aty
then INST_TYPE [aty,bty; bty,aty] LAMBDA_BETA else LAMBDA_BETA
in
POP_ASSUM_LIST(K ALL_TAC) THEN
REPEAT(GEN_TAC ORELSE CONJ_TAC ORELSE DISCH_TAC ORELSE EQ_TAC) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN
GEN_REWRITE_TAC ONCE_DEPTH_CONV [CART_EQ] THEN
REWRITE_TAC[AND_FORALL_THM] THEN TRY EQ_TAC THEN
TRY(MATCH_MP_TAC MONO_FORALL) THEN GEN_TAC THEN
REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`;
TAUT `(a ==> b) \/ (a ==> c) <=> a ==> b \/ c`] THEN
TRY(MATCH_MP_TAC(TAUT `(a ==> b ==> c) ==> (a ==> b) ==> (a ==> c)`)) THEN
REWRITE_TAC[cvector_zero;cvector_add; cvector_sub; cvector_neg; cvector_mul; vector_map;vector_map2;vector_const] THEN
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP(RENAMED_LAMBDA_BETA th) th]) THEN
SIMPLE_COMPLEX_ARITH_TAC;;
let CVECTOR_ARITH tm = prove(tm,CVECTOR_ARITH_TAC);;
(* ========================================================================= *)
(* VECTOR SPACE AXIOMS AND ADDITIONAL BASIC RESULTS *)
(* ========================================================================= *)
let CVECTOR_MAP_PROPERTY thm =
VECTOR_MAP_PROPERTY thm [cvector_zero;cvector_add;cvector_sub;cvector_neg;
cvector_mul];;
let CVECTOR_ADD_SYM = CVECTOR_MAP_PROPERTY
`!x y:complex^N. x + y = y + x`
COMPLEX_ADD_SYM;;
let CVECTOR_ADD_ASSOC = CVECTOR_MAP_PROPERTY
`!x y z:complex^N. x + (y + z) = (x + y) + z`
COMPLEX_ADD_ASSOC;;
let CVECTOR_ADD_ID = CVECTOR_MAP_PROPERTY
`!x:complex^N. x + cvector_zero = x /\ cvector_zero + x = x`
(CONJ COMPLEX_ADD_RID COMPLEX_ADD_LID);;
let [CVECTOR_ADD_RID;CVECTOR_ADD_LID] = GCONJUNCTS CVECTOR_ADD_ID;;
let CVECTOR_ADD_INV = CVECTOR_MAP_PROPERTY
`!x:complex^N. x + -- x = cvector_zero /\ --x + x = cvector_zero`
(CONJ COMPLEX_ADD_RINV COMPLEX_ADD_LINV);;
let CVECTOR_MUL_ASSOC = CVECTOR_MAP_PROPERTY
`!a b x:complex^N. a % (b % x) = (a * b) % x`
COMPLEX_MUL_ASSOC;;
let CVECTOR_SUB_LDISTRIB = CVECTOR_MAP_PROPERTY
`!c x y:complex^N. c % (x - y) = c % x - c % y`
COMPLEX_SUB_LDISTRIB;;
let CVECTOR_SCALAR_RDIST = CVECTOR_MAP_PROPERTY
`!a b x:complex^N. (a + b) % x = a % x + b % x`
COMPLEX_ADD_RDISTRIB;;
let CVECTOR_MUL_ID = CVECTOR_MAP_PROPERTY
`!x:complex^N. Cx(&1) % x = x`
COMPLEX_MUL_LID;;
let CVECTOR_SUB_REFL = CVECTOR_MAP_PROPERTY
`!x:complex^N. x - x = cvector_zero`
COMPLEX_SUB_REFL;;
let CVECTOR_SUB_RADD = CVECTOR_MAP_PROPERTY
`!x y:complex^N. x - (x + y) = --y`
COMPLEX_ADD_SUB2;;
let CVECTOR_NEG_SUB = CVECTOR_MAP_PROPERTY
`!x y:complex^N. --(x - y) = y - x`
COMPLEX_NEG_SUB;;
let CVECTOR_SUB_EQ = CVECTOR_MAP_PROPERTY
`!x y:complex^N. (x - y = cvector_zero) <=> (x = y)`
COMPLEX_SUB_0;;
let CVECTOR_MUL_LZERO = CVECTOR_MAP_PROPERTY
`!x. Cx(&0) % x = cvector_zero`
COMPLEX_MUL_LZERO;;
let CVECTOR_SUB_ADD = CVECTOR_MAP_PROPERTY
`!x y:complex^N. (x - y) + y = x`
COMPLEX_SUB_ADD;;
let CVECTOR_SUB_ADD2 = CVECTOR_MAP_PROPERTY
`!x y:complex^N. y + (x - y) = x`
COMPLEX_SUB_ADD2;;
let CVECTOR_ADD_LDISTRIB = CVECTOR_MAP_PROPERTY
`!c x y:complex^N. c % (x + y) = c % x + c % y`
COMPLEX_ADD_LDISTRIB;;
let CVECTOR_ADD_RDISTRIB = CVECTOR_MAP_PROPERTY
`!a b x:complex^N. (a + b) % x = a % x + b % x`
COMPLEX_ADD_RDISTRIB;;
let CVECTOR_SUB_RDISTRIB = CVECTOR_MAP_PROPERTY
`!a b x:complex^N. (a - b) % x = a % x - b % x`
COMPLEX_SUB_RDISTRIB;;
let CVECTOR_ADD_SUB = CVECTOR_MAP_PROPERTY
`!x y:complex^N. (x + y:complex^N) - x = y`
COMPLEX_ADD_SUB;;
let CVECTOR_EQ_ADDR = CVECTOR_MAP_PROPERTY
`!x y:complex^N. (x + y = x) <=> (y = cvector_zero)`
COMPLEX_EQ_ADD_LCANCEL_0;;
let CVECTOR_SUB = CVECTOR_MAP_PROPERTY
`!x y:complex^N. x - y = x + --(y:complex^N)`
complex_sub;;
let CVECTOR_SUB_RZERO = CVECTOR_MAP_PROPERTY
`!x:complex^N. x - cvector_zero = x`
COMPLEX_SUB_RZERO;;
let CVECTOR_MUL_RZERO = CVECTOR_MAP_PROPERTY
`!c:complex. c % cvector_zero = cvector_zero`
COMPLEX_MUL_RZERO;;
let CVECTOR_MUL_LZERO = CVECTOR_MAP_PROPERTY
`!x:complex^N. Cx(&0) % x = cvector_zero`
COMPLEX_MUL_LZERO;;
let CVECTOR_MUL_EQ_0 = prove
(`!a:complex x:complex^N.
(a % x = cvector_zero <=> a = Cx(&0) \/ x = cvector_zero)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [
ASM_CASES_TAC `a=Cx(&0)` THENL [
ASM_REWRITE_TAC[];
GEN_REWRITE_TAC (RATOR_CONV o DEPTH_CONV) [CART_EQ]
THEN ASM_REWRITE_TAC[CVECTOR_MUL_COMPONENT;CVECTOR_ZERO_COMPONENT;
COMPLEX_ENTIRE]
THEN GEN_REWRITE_TAC (RAND_CONV o DEPTH_CONV) [CART_EQ]
THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT];
];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[CVECTOR_MUL_RZERO;CVECTOR_MUL_LZERO];
]);;
let CVECTOR_NEG_MINUS1 = CVECTOR_MAP_PROPERTY
`!x:complex^N. --x = (--(Cx(&1))) % x`
(GSYM COMPLEX_NEG_MINUS1);;
let CVECTOR_SUB_LZERO = CVECTOR_MAP_PROPERTY
`!x:complex^N. cvector_zero - x = --x`
COMPLEX_SUB_LZERO;;
let CVECTOR_NEG_NEG = CVECTOR_MAP_PROPERTY
`!x:complex^N. --(--(x:complex^N)) = x`
COMPLEX_NEG_NEG;;
let CVECTOR_MUL_LNEG = CVECTOR_MAP_PROPERTY
`!c x:complex^N. --c % x = --(c % x)`
COMPLEX_MUL_LNEG;;
let CVECTOR_MUL_RNEG = CVECTOR_MAP_PROPERTY
`!c x:complex^N. c % --x = --(c % x)`
COMPLEX_MUL_RNEG;;
let CVECTOR_NEG_0 = CVECTOR_MAP_PROPERTY
`--cvector_zero = cvector_zero`
COMPLEX_NEG_0;;
let CVECTOR_NEG_EQ_0 = CVECTOR_MAP_PROPERTY
`!x:complex^N. --x = cvector_zero <=> x = cvector_zero`
COMPLEX_NEG_EQ_0;;
let CVECTOR_ADD_AC = prove
(`!x y z:complex^N.
(x + y = y + x) /\ ((x + y) + z = x + y + z) /\ (x + y + z = y + x + z)`,
MESON_TAC[CVECTOR_ADD_SYM;CVECTOR_ADD_ASSOC]);;
let CVECTOR_MUL_LCANCEL = prove
(`!a x y:complex^N. a % x = a % y <=> a = Cx(&0) \/ x = y`,
MESON_TAC[CVECTOR_MUL_EQ_0;CVECTOR_SUB_LDISTRIB;CVECTOR_SUB_EQ]);;
let CVECTOR_MUL_RCANCEL = prove
(`!a b x:complex^N. a % x = b % x <=> a = b \/ x = cvector_zero`,
MESON_TAC[CVECTOR_MUL_EQ_0;CVECTOR_SUB_RDISTRIB;COMPLEX_SUB_0;CVECTOR_SUB_EQ]);;
(* ========================================================================= *)
(* LINEARITY *)
(* ========================================================================= *)
let clinear = new_definition
`clinear (f:complex^M->complex^N)
<=> (!x y. f(x + y) = f(x) + f(y)) /\ (!c x. f(c % x) = c % f(x))`;;
let COMMON_TAC additional_thms =
SIMP_TAC[clinear] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CART_EQ]
THEN SIMP_TAC(CVECTOR_ADD_COMPONENT::CVECTOR_MUL_COMPONENT::additional_thms)
THEN SIMPLE_COMPLEX_ARITH_TAC;;
let CLINEAR_COMPOSE_CMUL = prove
(`!f:complex^M->complex^N c. clinear f ==> clinear (\x. c % f x)`,
COMMON_TAC[]);;
let CLINEAR_COMPOSE_NEG = prove
(`!f:complex^M->complex^N. clinear f ==> clinear (\x. --(f x))`,
COMMON_TAC[CVECTOR_NEG_COMPONENT]);;
let CLINEAR_COMPOSE_ADD = prove
(`!f:complex^M->complex^N g. clinear f /\ clinear g ==> clinear (\x. f x + g x)`,
COMMON_TAC[]);;
let CLINEAR_COMPOSE_SUB = prove
(`!f:complex^M->complex^N g. clinear f /\ clinear g ==> clinear (\x. f x - g x)`,
COMMON_TAC[CVECTOR_SUB_COMPONENT]);;
let CLINEAR_COMPOSE = prove
(`!f:complex^M->complex^N g. clinear f /\ clinear g ==> clinear (g o f)`,
SIMP_TAC[clinear;o_THM]);;
let CLINEAR_ID = prove
(`clinear (\x:complex^N. x)`,
REWRITE_TAC[clinear]);;
let CLINEAR_I = prove
(`clinear (I:complex^N->complex^N)`,
REWRITE_TAC[I_DEF;CLINEAR_ID]);;
let CLINEAR_ZERO = prove
(`clinear ((\x. cvector_zero):complex^M->complex^N)`,
COMMON_TAC[CVECTOR_ZERO_COMPONENT]);;
let CLINEAR_NEGATION = prove
(`clinear ((--):complex^N->complex^N)`,
COMMON_TAC[CVECTOR_NEG_COMPONENT]);;
let CLINEAR_VMUL_COMPONENT = prove
(`!f:complex^M->complex^N v:complex^P k.
clinear f /\ 1 <= k /\ k <= dimindex(:N) ==> clinear (\x. (f x)$k % v)`,
COMMON_TAC[]);;
let CLINEAR_0 = prove
(`!f:complex^M->complex^N. clinear f ==> (f cvector_zero = cvector_zero)`,
MESON_TAC[CVECTOR_MUL_LZERO;clinear]);;
let CLINEAR_CMUL = prove
(`!f:complex^M->complex^N c x. clinear f ==> (f (c % x) = c % f x)`,
SIMP_TAC[clinear]);;
let CLINEAR_NEG = prove
(`!f:complex^M->complex^N x. clinear f ==> (f (--x) = --(f x))`,
ONCE_REWRITE_TAC[CVECTOR_NEG_MINUS1] THEN SIMP_TAC[CLINEAR_CMUL]);;
let CLINEAR_ADD = prove
(`!f:complex^M->complex^N x y. clinear f ==> (f (x + y) = f x + f y)`,
SIMP_TAC[clinear]);;
let CLINEAR_SUB = prove
(`!f:complex^M->complex^N x y. clinear f ==> (f(x - y) = f x - f y)`,
SIMP_TAC[CVECTOR_SUB;CLINEAR_ADD;CLINEAR_NEG]);;
let CLINEAR_INJECTIVE_0 = prove
(`!f:complex^M->complex^N.
clinear f
==> ((!x y. f x = f y ==> x = y)
<=> (!x. f x = cvector_zero ==> x = cvector_zero))`,
ONCE_REWRITE_TAC[GSYM CVECTOR_SUB_EQ]
THEN SIMP_TAC[CVECTOR_SUB_RZERO;GSYM CLINEAR_SUB]
THEN MESON_TAC[CVECTOR_SUB_RZERO]);;
(* ========================================================================= *)
(* PASTING COMPLEX VECTORS *)
(* ========================================================================= *)
let CLINEAR_FSTCART_SNDCART = prove
(`clinear fstcart /\ clinear sndcart`,
SIMP_TAC[clinear;fstcart;sndcart;CART_EQ;LAMBDA_BETA;CVECTOR_ADD_COMPONENT;
CVECTOR_MUL_COMPONENT; DIMINDEX_FINITE_SUM;
ARITH_RULE `x <= a ==> x <= a + b:num`;
ARITH_RULE `x <= b ==> x + a <= a + b:num`]);;
let FSTCART_CLINEAR = CONJUNCT1 CLINEAR_FSTCART_SNDCART;;
let SNDCART_CLINEAR = CONJUNCT2 CLINEAR_FSTCART_SNDCART;;
let FSTCART_SNDCART_CVECTOR_ZERO = prove
(`fstcart cvector_zero = cvector_zero /\ sndcart cvector_zero = cvector_zero`,
SIMP_TAC[CVECTOR_ZERO_COMPONENT;fstcart;sndcart;LAMBDA_BETA;CART_EQ;
DIMINDEX_FINITE_SUM;ARITH_RULE `x <= a ==> x <= a + b:num`;
ARITH_RULE `x <= b ==> x + a <= a + b:num`]);;
let FSTCART_CVECTOR_ZERO = CONJUNCT1 FSTCART_SNDCART_CVECTOR_ZERO;;
let SNDCART_CVECTOR_ZERO = CONJUNCT2 FSTCART_SNDCART_CVECTOR_ZERO;;
let FSTCART_SNDCART_CVECTOR_ADD = prove
(`!x:complex^(M,N)finite_sum y.
fstcart(x + y) = fstcart(x) + fstcart(y)
/\ sndcart(x + y) = sndcart(x) + sndcart(y)`,
REWRITE_TAC[REWRITE_RULE[clinear] CLINEAR_FSTCART_SNDCART]);;
let FSTCART_SNDCART_CVECTOR_MUL = prove
(`!x:complex^(M,N)finite_sum c.
fstcart(c % x) = c % fstcart(x) /\ sndcart(c % x) = c % sndcart(x)`,
REWRITE_TAC[REWRITE_RULE[clinear] CLINEAR_FSTCART_SNDCART]);;
let PASTECART_TAC xs =
REWRITE_TAC(PASTECART_EQ::FSTCART_PASTECART::SNDCART_PASTECART::xs);;
let PASTECART_CVECTOR_ZERO = prove
(`pastecart (cvector_zero:complex^N) (cvector_zero:complex^M) = cvector_zero`,
PASTECART_TAC[FSTCART_SNDCART_CVECTOR_ZERO]);;
let PASTECART_EQ_CVECTOR_ZERO = prove
(`!x:complex^N y:complex^M.
pastecart x y = cvector_zero <=> x = cvector_zero /\ y = cvector_zero`,
PASTECART_TAC [FSTCART_SNDCART_CVECTOR_ZERO]);;
let PASTECART_CVECTOR_ADD = prove
(`!x1 y2 x2:complex^N y2:complex^M.
pastecart x1 y1 + pastecart x2 y2 = pastecart (x1 + x2) (y1 + y2)`,
PASTECART_TAC [FSTCART_SNDCART_CVECTOR_ADD]);;
let PASTECART_CVECTOR_MUL = prove
(`!x1 x2 c:complex.
pastecart (c % x1) (c % y1) = c % pastecart x1 y1`, PASTECART_TAC [FSTCART_SNDCART_CVECTOR_MUL]);;
(* ========================================================================= *)
(* REAL AND IMAGINARY VECTORS *)
(* ========================================================================= *)
let cvector_re = new_definition
`cvector_re :complex^N -> real^N = vector_map Re`;;
let cvector_im = new_definition
`cvector_im :complex^N -> real^N = vector_map Im`;;
let vector_to_cvector = new_definition
`vector_to_cvector :real^N -> complex^N = vector_map Cx`;;
let CVECTOR_RE_COMPONENT = prove
(`!x:complex^N i. (cvector_re x)$i = Re (x$i)`,
REWRITE_TAC[cvector_re;VECTOR_MAP_COMPONENT]);;
let CVECTOR_IM_COMPONENT = prove
(`!x:complex^N i. (cvector_im x)$i = Im (x$i)`,
REWRITE_TAC[cvector_im;VECTOR_MAP_COMPONENT]);;
let VECTOR_TO_CVECTOR_COMPONENT = prove
(`!x:real^N i. (vector_to_cvector x)$i = Cx(x$i)`,
REWRITE_TAC[vector_to_cvector;VECTOR_MAP_COMPONENT]);;
let VECTOR_TO_CVECTOR_ZERO = prove
(`vector_to_cvector (vec 0) = cvector_zero:complex^N`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_ZERO_COMPONENT;
VEC_COMPONENT]);;
let VECTOR_TO_CVECTOR_ZERO_EQ = prove
(`!x:real^N. vector_to_cvector x = cvector_zero <=> x = vec 0`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[VECTOR_TO_CVECTOR_ZERO]
THEN ONCE_REWRITE_TAC[CART_EQ]
THEN SIMP_TAC[VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_ZERO_COMPONENT;
VEC_COMPONENT;CX_INJ]);;
let CVECTOR_ZERO_VEC0 = prove
(`!x:complex^N. x = cvector_zero <=> cvector_re x = vec 0 /\ cvector_im x = vec 0`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT;CVECTOR_RE_COMPONENT;
CVECTOR_IM_COMPONENT;VEC_COMPONENT;COMPLEX_EQ;RE_CX;IM_CX]
THEN MESON_TAC[]);;
let VECTOR_TO_CVECTOR_MUL = prove
(`!a x:real^N. vector_to_cvector (a % x) = Cx a % vector_to_cvector x`,
ONCE_REWRITE_TAC[CART_EQ] THEN REWRITE_TAC[VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_MUL_COMPONENT;VECTOR_MUL_COMPONENT;CX_MUL]);;
let CVECTOR_EQ = prove
(`!x:complex^N y z.
x = vector_to_cvector y + ii % vector_to_cvector z
<=> cvector_re x = y /\ cvector_im x = z`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_ADD_COMPONENT;CVECTOR_MUL_COMPONENT;
CVECTOR_RE_COMPONENT;CVECTOR_IM_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT]
THEN REWRITE_TAC[COMPLEX_EQ;RE_CX;IM_CX;RE_ADD;IM_ADD;RE_MUL_II;REAL_NEG_0;
REAL_ADD_RID;REAL_ADD_LID;IM_MUL_II] THEN MESON_TAC[]);;
let CVECTOR_RE_VECTOR_TO_CVECTOR = prove
(`!x:real^N. cvector_re (vector_to_cvector x) = x`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_RE_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;RE_CX]);;
let CVECTOR_IM_VECTOR_TO_CVECTOR = prove
(`!x:real^N. cvector_im (vector_to_cvector x) = vec 0`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;IM_CX;
VEC_COMPONENT]);;
let CVECTOR_IM_VECTOR_TO_CVECTOR_IM = prove
(`!x:real^N. cvector_im (ii % vector_to_cvector x) = x`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;IM_CX;
VEC_COMPONENT;CVECTOR_MUL_COMPONENT;IM_MUL_II;RE_CX]);;
let VECTOR_TO_CVECTOR_CVECTOR_RE_IM = prove
(`!x:complex^N.
vector_to_cvector (cvector_re x) + ii % vector_to_cvector (cvector_im x)
= x`,
GEN_TAC THEN MATCH_MP_TAC EQ_SYM THEN REWRITE_TAC[CVECTOR_EQ]);;
let CVECTOR_IM_VECTOR_TO_CVECTOR_RE_IM = prove
(`!x y:real^N. cvector_im (vector_to_cvector x + ii % vector_to_cvector y) = y`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;CVECTOR_ADD_COMPONENT;
CVECTOR_MUL_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;IM_ADD;IM_CX;IM_MUL_II;
RE_CX;REAL_ADD_LID]);;
let CVECTOR_RE_VECTOR_TO_CVECTOR_RE_IM = prove
(`!x y:real^N. cvector_re (vector_to_cvector x + ii % vector_to_cvector y)= x`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_RE_COMPONENT;CVECTOR_ADD_COMPONENT;
CVECTOR_MUL_COMPONENT;RE_ADD;VECTOR_TO_CVECTOR_COMPONENT;RE_CX;RE_MUL_CX;
RE_II;REAL_MUL_LZERO;REAL_ADD_RID]);;
let CVECTOR_RE_ADD = prove
(`!x y:complex^N. cvector_re (x+y) = cvector_re x + cvector_re y`,
ONCE_REWRITE_TAC[CART_EQ] THEN REWRITE_TAC[CVECTOR_RE_COMPONENT;
VECTOR_ADD_COMPONENT;CVECTOR_ADD_COMPONENT;RE_ADD]);;
let CVECTOR_IM_ADD = prove
(`!x y:complex^N. cvector_im (x+y) = cvector_im x + cvector_im y`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;VECTOR_ADD_COMPONENT;
CVECTOR_ADD_COMPONENT;IM_ADD]);;
let CVECTOR_RE_MUL = prove
(`!a x:complex^N. cvector_re (Cx a % x) = a % cvector_re x`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_RE_COMPONENT;VECTOR_MUL_COMPONENT;
CVECTOR_MUL_COMPONENT;RE_MUL_CX]);;
let CVECTOR_IM_MUL = prove
(`!a x:complex^N. cvector_im (Cx a % x) = a % cvector_im x`,
ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;VECTOR_MUL_COMPONENT;
CVECTOR_MUL_COMPONENT;IM_MUL_CX]);;
let CVECTOR_RE_VECTOR_MAP = prove
(`!f v:A^N. cvector_re (vector_map f v) = vector_map (Re o f) v`,
REWRITE_TAC[cvector_re;VECTOR_MAP_VECTOR_MAP]);;
let CVECTOR_IM_VECTOR_MAP = prove
(`!f v:A^N. cvector_im (vector_map f v) = vector_map (Im o f) v`,
REWRITE_TAC[cvector_im;VECTOR_MAP_VECTOR_MAP]);;
let VECTOR_MAP_CVECTOR_RE = prove
(`!f:real->A v:complex^N.
vector_map f (cvector_re v) = vector_map (f o Re) v`,
REWRITE_TAC[cvector_re;VECTOR_MAP_VECTOR_MAP]);;
let VECTOR_MAP_CVECTOR_IM = prove
(`!f:real->A v:complex^N.
vector_map f (cvector_im v) = vector_map (f o Im) v`,
REWRITE_TAC[cvector_im;VECTOR_MAP_VECTOR_MAP]);;
let CVECTOR_RE_VECTOR_MAP2 = prove
(`!f v1:A^N v2:B^N.
cvector_re (vector_map2 f v1 v2) = vector_map2 (\x y. Re (f x y)) v1 v2`,
REWRITE_TAC[cvector_re;VECTOR_MAP_VECTOR_MAP2]);;
let CVECTOR_IM_VECTOR_MAP2 = prove
(`!f v1:A^N v2:B^N.
cvector_im (vector_map2 f v1 v2) = vector_map2 (\x y. Im (f x y)) v1 v2`,
REWRITE_TAC[cvector_im;VECTOR_MAP_VECTOR_MAP2]);;
(* ========================================================================= *)
(* FLATTENING COMPLEX VECTORS INTO REAL VECTORS *)
(* *)
(* Note: *)
(* Theoretically, the following could be defined more generally for matrices *)
(* instead of complex vectors, but this would require a "finite_prod" type *)
(* constructor, which is not available right now, and which, at first sight, *)
(* would probably require dependent types. *)
(* ========================================================================= *)
let cvector_flatten = new_definition
`cvector_flatten (v:complex^N) :real^(N,N) finite_sum =
pastecart (cvector_re v) (cvector_im v)`;;
let FLATTEN_RE_IM_COMPONENT = prove
(`!v:complex^N i.
1 <= i /\ i <= 2 * dimindex(:N)
==> (cvector_flatten v)$i =
if i <= dimindex(:N)
then (cvector_re v)$i
else (cvector_im v)$(i-dimindex(:N))`,
SIMP_TAC[MULT_2;GSYM DIMINDEX_FINITE_SUM;cvector_flatten;pastecart;
LAMBDA_BETA]);;
let complex_vector = new_definition
`complex_vector (v1,v2) :complex^N
= vector_map2 (\x y. Cx x + ii * Cx y) v1 v2`;;
let COMPLEX_VECTOR_TRANSPOSE = prove(
`!v1 v2:real^N.
complex_vector (v1,v2) = vector_to_cvector v1 + ii % vector_to_cvector v2`,
ONCE_REWRITE_TAC[CART_EQ]
THEN SIMP_TAC[complex_vector;CVECTOR_ADD_COMPONENT;CVECTOR_MUL_COMPONENT;
VECTOR_TO_CVECTOR_COMPONENT;VECTOR_MAP2_COMPONENT]);;
let cvector_unflatten = new_definition
`cvector_unflatten (v:real^(N,N) finite_sum) :complex^N
= complex_vector (fstcart v, sndcart v)`;;
let UNFLATTEN_FLATTEN = prove
(`cvector_unflatten o cvector_flatten = I :complex^N -> complex^N`,
REWRITE_TAC[FUN_EQ_THM;o_DEF;I_DEF;cvector_flatten;cvector_unflatten;
FSTCART_PASTECART;SNDCART_PASTECART;COMPLEX_VECTOR_TRANSPOSE;
VECTOR_TO_CVECTOR_CVECTOR_RE_IM]);;
let FLATTEN_UNFLATTEN = prove
(`cvector_flatten o cvector_unflatten =
I :real^(N,N) finite_sum -> real^(N,N) finite_sum`,
REWRITE_TAC[FUN_EQ_THM;o_DEF;I_DEF;cvector_flatten;cvector_unflatten;
PASTECART_FST_SND;COMPLEX_VECTOR_TRANSPOSE;
CVECTOR_RE_VECTOR_TO_CVECTOR_RE_IM;CVECTOR_IM_VECTOR_TO_CVECTOR_RE_IM]);;
let FLATTEN_CLINEAR = prove
(`!f:complex^N->complex^M.
clinear f ==> linear (cvector_flatten o f o cvector_unflatten)`,
REWRITE_TAC[clinear;linear;cvector_flatten;cvector_unflatten;o_DEF;
FSTCART_ADD;SNDCART_ADD;PASTECART_ADD;complex_vector;GSYM PASTECART_CMUL]
THEN REPEAT STRIP_TAC THEN REPEAT (AP_TERM_TAC ORELSE MK_COMB_TAC)
THEN REWRITE_TAC(map GSYM [CVECTOR_RE_ADD;CVECTOR_IM_ADD;CVECTOR_RE_MUL;
CVECTOR_IM_MUL])
THEN AP_TERM_TAC THEN ASSUM_LIST (REWRITE_TAC o map GSYM)
THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[CART_EQ]
THEN SIMP_TAC[VECTOR_MAP2_COMPONENT;VECTOR_ADD_COMPONENT;
CVECTOR_ADD_COMPONENT;CX_ADD;VECTOR_MUL_COMPONENT;CVECTOR_MUL_COMPONENT;
FSTCART_CMUL;SNDCART_CMUL;CX_MUL]
THEN SIMPLE_COMPLEX_ARITH_TAC);;
let FLATTEN_MAP = prove
(`!f g.
f = vector_map g
==> !x:complex^N.
cvector_flatten (vector_map f x) = vector_map g (cvector_flatten x)`,
SIMP_TAC[cvector_flatten;CVECTOR_RE_VECTOR_MAP;CVECTOR_IM_VECTOR_MAP;
GSYM PASTECART_VECTOR_MAP;VECTOR_MAP_CVECTOR_RE;VECTOR_MAP_CVECTOR_IM;
o_DEF;IM_DEF;RE_DEF;VECTOR_MAP_COMPONENT]);;
let FLATTEN_NEG = prove
(`!x:complex^N. cvector_flatten (--x) = --(cvector_flatten x)`,
REWRITE_TAC[cvector_neg;MATCH_MP FLATTEN_MAP COMPLEX_NEG_IS_A_MAP]
THEN REWRITE_TAC[VECTOR_NEG_IS_A_MAP]);;
let CVECTOR_NEG_ALT = prove
(`!x:complex^N. --x = cvector_unflatten (--(cvector_flatten x))`,
REWRITE_TAC[GSYM FLATTEN_NEG;
REWRITE_RULE[o_DEF;FUN_EQ_THM;I_DEF] UNFLATTEN_FLATTEN]);;
let FLATTEN_MAP2 = prove(
`!f g.
f = vector_map2 g ==>
!x y:complex^N.
cvector_flatten (vector_map2 f x y) =
vector_map2 g (cvector_flatten x) (cvector_flatten y)`,
SIMP_TAC[cvector_flatten;CVECTOR_RE_VECTOR_MAP2;CVECTOR_IM_VECTOR_MAP2;
CVECTOR_RE_VECTOR_MAP2;GSYM PASTECART_VECTOR_MAP2]
THEN REWRITE_TAC[cvector_re;cvector_im;VECTOR_MAP2_LVECTOR_MAP;
VECTOR_MAP2_RVECTOR_MAP]
THEN REPEAT MK_COMB_TAC
THEN REWRITE_TAC[FUN_EQ_THM;IM_DEF;RE_DEF;VECTOR_MAP2_COMPONENT;o_DEF]);;
let FLATTEN_ADD = prove
(`!x y:complex^N.
cvector_flatten (x+y) = cvector_flatten x + cvector_flatten y`,
REWRITE_TAC[cvector_add;MATCH_MP FLATTEN_MAP2 COMPLEX_ADD_IS_A_MAP]
THEN REWRITE_TAC[VECTOR_ADD_IS_A_MAP]);;
let CVECTOR_ADD_ALT = prove
(`!x y:complex^N.
x+y = cvector_unflatten (cvector_flatten x + cvector_flatten y)`,
REWRITE_TAC[GSYM FLATTEN_ADD;
REWRITE_RULE[o_DEF;FUN_EQ_THM;I_DEF] UNFLATTEN_FLATTEN]);;
let FLATTEN_SUB = prove
(`!x y:complex^N. cvector_flatten (x-y) = cvector_flatten x - cvector_flatten y`,
REWRITE_TAC[cvector_sub;MATCH_MP FLATTEN_MAP2 COMPLEX_SUB_IS_A_MAP]
THEN REWRITE_TAC[VECTOR_SUB_IS_A_MAP]);;
let CVECTOR_SUB_ALT = prove
(`!x y:complex^N. x-y = cvector_unflatten (cvector_flatten x - cvector_flatten y)`,
REWRITE_TAC[GSYM FLATTEN_SUB;
REWRITE_RULE[o_DEF;FUN_EQ_THM;I_DEF] UNFLATTEN_FLATTEN]);;
(* ========================================================================= *)
(* CONJUGATE VECTOR. *)
(* ========================================================================= *)
let cvector_cnj = new_definition
`cvector_cnj : complex^N->complex^N = vector_map cnj`;;
let CVECTOR_MAP_PROPERTY thm =
VECTOR_MAP_PROPERTY thm [cvector_zero;cvector_add;cvector_sub;cvector_neg;
cvector_mul;cvector_cnj;cvector_re;cvector_im];;
let CVECTOR_CNJ_ADD = CVECTOR_MAP_PROPERTY
`!x y:complex^N. cvector_cnj (x+y) = cvector_cnj x + cvector_cnj y`
CNJ_ADD;;
let CVECTOR_CNJ_SUB = CVECTOR_MAP_PROPERTY
`!x y:complex^N. cvector_cnj (x-y) = cvector_cnj x - cvector_cnj y`
CNJ_SUB;;
let CVECTOR_CNJ_NEG = CVECTOR_MAP_PROPERTY
`!x:complex^N. cvector_cnj (--x) = --(cvector_cnj x)`
CNJ_NEG;;
let CVECTOR_RE_CNJ = CVECTOR_MAP_PROPERTY
`!x:complex^N. cvector_re (cvector_cnj x) = cvector_re x`
RE_CNJ;;
let CVECTOR_IM_CNJ = prove
(`!x:complex^N. cvector_im (cvector_cnj x) = --(cvector_im x)`,
VECTOR_MAP_PROPERTY_TAC[cvector_im;cvector_cnj;VECTOR_NEG_IS_A_MAP] IM_CNJ);;
let CVECTOR_CNJ_CNJ = CVECTOR_MAP_PROPERTY
`!x:complex^N. cvector_cnj (cvector_cnj x) = x`
CNJ_CNJ;;
(* ========================================================================= *)
(* CROSS PRODUCTS IN COMPLEX^3. *)
(* ========================================================================= *)
prioritize_vector();;
parse_as_infix("ccross",(20,"right"));;
let ccross = new_definition
`((ccross):complex^3 -> complex^3 -> complex^3) x y = vector [
x$2 * y$3 - x$3 * y$2;
x$3 * y$1 - x$1 * y$3;
x$1 * y$2 - x$2 * y$1
]`;;
let CCROSS_COMPONENT = prove
(`!x y:complex^3.
(x ccross y)$1 = x$2 * y$3 - x$3 * y$2
/\ (x ccross y)$2 = x$3 * y$1 - x$1 * y$3
/\ (x ccross y)$3 = x$1 * y$2 - x$2 * y$1`,
REWRITE_TAC[ccross;VECTOR_3]);;
(* simple handy instantiation of CART_EQ for dimension 3*)
let CART_EQ3 = prove
(`!x y:complex^3. x = y <=> x$1 = y$1 /\ x$2 = y$2 /\ x$3 = y$3`,
GEN_REWRITE_TAC (PATH_CONV "rbrblr") [CART_EQ]
THEN REWRITE_TAC[DIMINDEX_3;FORALL_3]);;
let CCROSS_TAC lemmas =
REWRITE_TAC(CART_EQ3::CCROSS_COMPONENT::lemmas)
THEN SIMPLE_COMPLEX_ARITH_TAC;;
let CCROSS_LZERO = prove
(`!x:complex^3. cvector_zero ccross x = cvector_zero`,
CCROSS_TAC[CVECTOR_ZERO_COMPONENT]);;
let CCROSS_RZERO = prove
(`!x:complex^3. x ccross cvector_zero = cvector_zero`,
CCROSS_TAC[CVECTOR_ZERO_COMPONENT]);;
let CCROSS_SKEW = prove
(`!x y:complex^3. (x ccross y) = --(y ccross x)`,
CCROSS_TAC[CVECTOR_NEG_COMPONENT]);;
let CCROSS_REFL = prove
(`!x:complex^3. x ccross x = cvector_zero`,
CCROSS_TAC[CVECTOR_ZERO_COMPONENT]);;
let CCROSS_LADD = prove
(`!x y z:complex^3. (x + y) ccross z = (x ccross z) + (y ccross z)`,
CCROSS_TAC[CVECTOR_ADD_COMPONENT]);;
let CCROSS_RADD = prove
(`!x y z:complex^3. x ccross(y + z) = (x ccross y) + (x ccross z)`,
CCROSS_TAC[CVECTOR_ADD_COMPONENT]);;
let CCROSS_LMUL = prove
(`!c x y:complex^3. (c % x) ccross y = c % (x ccross y)`,
CCROSS_TAC[CVECTOR_MUL_COMPONENT]);;
let CCROSS_RMUL = prove
(`!c x y:complex^3. x ccross (c % y) = c % (x ccross y)`,
CCROSS_TAC[CVECTOR_MUL_COMPONENT]);;
let CCROSS_LNEG = prove
(`!x y:complex^3. (--x) ccross y = --(x ccross y)`,
CCROSS_TAC[CVECTOR_NEG_COMPONENT]);;
let CCROSS_RNEG = prove
(`!x y:complex^3. x ccross (--y) = --(x ccross y)`,
CCROSS_TAC[CVECTOR_NEG_COMPONENT]);;
let CCROSS_JACOBI = prove
(`!(x:complex^3) y z.
x ccross (y ccross z) + y ccross (z ccross x) + z ccross (x ccross y) =
cvector_zero`,
REWRITE_TAC[CART_EQ3]
THEN REWRITE_TAC[CVECTOR_ADD_COMPONENT;CCROSS_COMPONENT;
CVECTOR_ZERO_COMPONENT] THEN SIMPLE_COMPLEX_ARITH_TAC);;
(* ========================================================================= *)
(* DOT PRODUCTS IN COMPLEX^N *)
(* *)
(* Only difference with the real case: *)
(* we take the conjugate of the 2nd argument *)
(* ========================================================================= *)
prioritize_complex();;
parse_as_infix("cdot",(20,"right"));;
let cdot = new_definition
`(cdot) (x:complex^N) (y:complex^N) =
vsum (1..dimindex(:N)) (\i. x$i * cnj(y$i))`;;
(* The dot product is symmetric MODULO the conjugate *)
let CDOT_SYM = prove
(`!x:complex^N y. x cdot y = cnj (y cdot x)`,
REWRITE_TAC[cdot]
THEN REWRITE_TAC[MATCH_MP (SPEC_ALL CNJ_VSUM) (SPEC `dimindex (:N)` (GEN_ALL
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))]
THEN REWRITE_TAC[CNJ_MUL;CNJ_CNJ;COMPLEX_MUL_SYM]);;
let REAL_CDOT_SELF = prove
(`!x:complex^N. real(x cdot x)`,
REWRITE_TAC[REAL_CNJ;GSYM CDOT_SYM]);;
(* The following theorems are usual axioms of the hermitian dot product, they are proved later on.
* let CDOT_SELF_POS = prove(`!x:complex^N. &0 <= real_of_complex (x cdot x)`, ...
* let CDOT_EQ_0 = prove(`!x:complex^N. x cdot x = Cx(&0) <=> x = cvector_zero`
*)
let CDOT_LADD = prove
(`!x:complex^N y z. (x + y) cdot z = (x cdot z) + (y cdot z)`,
REWRITE_TAC[cdot]
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_ADD) (SPEC `dimindex (:N)` (GEN_ALL
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))]
THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN DISCH_TAC
THEN REWRITE_TAC[FUN_EQ_THM]
THEN REWRITE_TAC[SPECL [`(x:real^2^N)$(x':num)`;`(y:real^2^N)$(x':num)`;
`cnj ((z:real^2^N)$(x':num))`] (GSYM COMPLEX_ADD_RDISTRIB)]
THEN REWRITE_TAC[CVECTOR_ADD_COMPONENT]);;
let CDOT_RADD = prove
(`!x:complex^N y z. x cdot (y + z) = (x cdot y) + (x cdot z)`,
REWRITE_TAC[cdot]
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_ADD) (SPEC `dimindex (:N)` (GEN_ALL
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))]
THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN DISCH_TAC
THEN REWRITE_TAC[FUN_EQ_THM]
THEN REWRITE_TAC[SPECL [`(x:real^2^N)$(x':num)`; `cnj((y:real^2^N)$(x':num))`;
`cnj ((z:real^2^N)$(x':num))`] (GSYM COMPLEX_ADD_LDISTRIB)]
THEN REWRITE_TAC[CNJ_ADD; CVECTOR_ADD_COMPONENT]);;
let CDOT_LSUB = prove
(`!x:complex^N y z. (x - y) cdot z = (x cdot z) - (y cdot z)`,
REWRITE_TAC[cdot]
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_SUB) (SPEC `dimindex (:N)` (GEN_ALL
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))]
THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN DISCH_TAC
THEN REWRITE_TAC[FUN_EQ_THM]
THEN REWRITE_TAC[SPECL [`(x:real^2^N)$(x':num)`; `(y:real^2^N)$(x':num)`;
`cnj ((z:real^2^N)$(x':num))`] (GSYM COMPLEX_SUB_RDISTRIB)]
THEN REWRITE_TAC[CVECTOR_SUB_COMPONENT]);;
let CDOT_RSUB = prove
(`!x:complex^N y z. x cdot (y - z) = (x cdot y) - (x cdot z)`,
REWRITE_TAC[cdot]
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_SUB) (SPEC `dimindex (:N)` (GEN_ALL
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))]
THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN DISCH_TAC
THEN REWRITE_TAC[FUN_EQ_THM]
THEN REWRITE_TAC[SPECL [`(x:real^2^N)$(x':num)`; `cnj((y:real^2^N)$(x':num))`;
`cnj ((z:real^2^N)$(x':num))`] (GSYM COMPLEX_SUB_LDISTRIB)]
THEN REWRITE_TAC[CNJ_SUB; CVECTOR_SUB_COMPONENT]);;
let CDOT_LMUL = prove
(`!c:complex x:complex^N y. (c % x) cdot y = c * (x cdot y)`,
REWRITE_TAC[cdot]
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_COMPLEX_LMUL) (SPEC `dimindex (:N)`
(GEN_ALL (CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE]
HAS_SIZE_NUMSEG_1)))))]
THEN REWRITE_TAC[CVECTOR_MUL_COMPONENT; GSYM COMPLEX_MUL_ASSOC]);;
let CDOT_RMUL = prove
(`!c:complex x:complex^N x y. x cdot (c % y) = cnj c * (x cdot y)`,
REWRITE_TAC[cdot]
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_COMPLEX_LMUL) (SPEC `dimindex (:N)`
(GEN_ALL (CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE]
HAS_SIZE_NUMSEG_1)))))]
THEN REWRITE_TAC[CVECTOR_MUL_COMPONENT; CNJ_MUL; COMPLEX_MUL_AC]);;
let CDOT_LNEG = prove
(`!x:complex^N y. (--x) cdot y = --(x cdot y)`,
REWRITE_TAC[cdot] THEN ONCE_REWRITE_TAC[COMPLEX_NEG_MINUS1]
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_COMPLEX_LMUL) (SPEC `dimindex (:N)`
(GEN_ALL (CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE]
HAS_SIZE_NUMSEG_1)))))]
THEN REWRITE_TAC[CVECTOR_NEG_COMPONENT] THEN ONCE_REWRITE_TAC[GSYM
COMPLEX_NEG_MINUS1] THEN REWRITE_TAC[COMPLEX_NEG_LMUL]);;
let CDOT_RNEG = prove
(`!x:complex^N y. x cdot (--y) = --(x cdot y)`,
REWRITE_TAC[cdot] THEN ONCE_REWRITE_TAC[COMPLEX_NEG_MINUS1]
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_COMPLEX_LMUL) (SPEC `dimindex (:N)`
(GEN_ALL (CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE]
HAS_SIZE_NUMSEG_1)))))]
THEN ONCE_REWRITE_TAC[GSYM COMPLEX_NEG_MINUS1]
THEN REWRITE_TAC[CVECTOR_NEG_COMPONENT; CNJ_NEG; COMPLEX_NEG_RMUL]);;
let CDOT_LZERO = prove
(`!x:complex^N. cvector_zero cdot x = Cx (&0)`,
REWRITE_TAC[cdot] THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT]
THEN REWRITE_TAC[COMPLEX_MUL_LZERO; GSYM COMPLEX_VEC_0; VSUM_0]);;
let CNJ_ZERO = prove(
`cnj (Cx(&0)) = Cx(&0)`,
REWRITE_TAC[cnj;RE_CX;IM_CX;CX_DEF;REAL_NEG_0]);;
let CDOT_RZERO = prove(
`!x:complex^N. x cdot cvector_zero = Cx (&0)`,
REWRITE_TAC[cdot] THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT]
THEN REWRITE_TAC[CNJ_ZERO]
THEN REWRITE_TAC[COMPLEX_MUL_RZERO;GSYM COMPLEX_VEC_0;VSUM_0]);;
(* Cauchy Schwarz inequality: proved later on
* let CDOT_CAUCHY_SCHWARZ = prove (`!x y:complex^N. norm (x cdot y) pow 2 <= cnorm2 x * cnorm2 y`,
* let CDOT_CAUCHY_SCHWARZ_EQUAL = prove(`!x y:complex^N. norm (x cdot y) pow 2 = cnorm2 x * cnorm2 y <=> collinear_cvectors x y`,
*)
let CDOT3 = prove
(`!x y:complex^3.
x cdot y = (x$1 * cnj (y$1) + x$2 * cnj (y$2) + x$3 * cnj (y$3))`,
REWRITE_TAC[cdot] THEN SIMP_TAC [DIMINDEX_3] THEN REWRITE_TAC[VSUM_3]);;
let ADD_CDOT_SYM = prove(
`!x y:complex^N. x cdot y + y cdot x = Cx(&2 * Re(x cdot y))`,
MESON_TAC[CDOT_SYM;COMPLEX_ADD_CNJ]);;
(* ========================================================================= *)
(* RELATION WITH REAL DOT AND CROSS PRODUCTS *)
(* ========================================================================= *)
let CCROSS_LREAL = prove
(`!r c.
(vector_to_cvector r) ccross c =
vector_to_cvector (r cross (cvector_re c))
+ ii % (vector_to_cvector (r cross (cvector_im c)))`,
REWRITE_TAC[CART_EQ3;CVECTOR_ADD_COMPONENT;CVECTOR_MUL_COMPONENT;
VECTOR_TO_CVECTOR_COMPONENT;CCROSS_COMPONENT;CROSS_COMPONENTS;
CVECTOR_RE_COMPONENT;CVECTOR_IM_COMPONENT;complex_mul;RE_CX;IM_CX;CX_DEF;
complex_sub;complex_neg;complex_add;RE;IM;RE_II;IM_II]
THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ]
THEN ARITH_TAC);;
let CCROSS_RREAL = prove
(`!r c.
c ccross (vector_to_cvector r) =
vector_to_cvector ((cvector_re c) cross r)
+ ii % (vector_to_cvector ((cvector_im c) cross r))`,
REWRITE_TAC[CART_EQ3;CVECTOR_ADD_COMPONENT;CVECTOR_MUL_COMPONENT;
VECTOR_TO_CVECTOR_COMPONENT;CCROSS_COMPONENT;CROSS_COMPONENTS;
CVECTOR_RE_COMPONENT;CVECTOR_IM_COMPONENT;complex_mul;RE_CX;IM_CX;CX_DEF;
complex_sub;complex_neg;complex_add;RE;IM;RE_II;IM_II]
THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ]
THEN ARITH_TAC);;
let CDOT_LREAL = prove
(`!r c.
(vector_to_cvector r) cdot c =
Cx (r dot (cvector_re c)) - ii * Cx (r dot (cvector_im c))`,
REWRITE_TAC[cdot; dot; VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_RE_COMPONENT;
CVECTOR_IM_COMPONENT] THEN REPEAT GEN_TAC
THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [COMPLEX_EXPAND]
THEN REWRITE_TAC[MATCH_MP RE_VSUM (SPEC `dimindex (:N)` (GEN_ALL (CONJUNCT1
(SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))]
THEN REWRITE_TAC[MATCH_MP (IM_VSUM) (SPEC `dimindex (:N)` (GEN_ALL
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE]
HAS_SIZE_NUMSEG_1)))))]
THEN REWRITE_TAC[RE_MUL_CX;RE_CNJ;IM_MUL_CX;IM_CNJ]
THEN REWRITE_TAC[COMPLEX_POLY_NEG_CLAUSES] THEN REWRITE_TAC[COMPLEX_MUL_AC]
THEN REWRITE_TAC[COMPLEX_MUL_ASSOC] THEN REWRITE_TAC[GSYM CX_MUL]
THEN REWRITE_TAC[GSYM SUM_LMUL]
THEN REWRITE_TAC[GSYM REAL_NEG_MINUS1;GSYM REAL_MUL_RNEG]);;
let CDOT_RREAL = prove
(`!r c.
c cdot (vector_to_cvector r) =
Cx ((cvector_re c) dot r) + ii * Cx ((cvector_im c) dot r)`,
REWRITE_TAC[cdot; dot; VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_RE_COMPONENT;
CVECTOR_IM_COMPONENT]
THEN REPEAT GEN_TAC
THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [COMPLEX_EXPAND]
THEN REWRITE_TAC[MATCH_MP RE_VSUM (SPEC `dimindex (:N)` (GEN_ALL (CONJUNCT1
(SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))]
THEN REWRITE_TAC[MATCH_MP IM_VSUM (SPEC `dimindex (:N)` (GEN_ALL (CONJUNCT1
(SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))]
THEN REWRITE_TAC[CNJ_CX]
THEN REWRITE_TAC[RE_MUL_CX;RE_CNJ;IM_MUL_CX;IM_CNJ]);;
(* ========================================================================= *)
(* NORM, UNIT VECTORS. *)
(* ========================================================================= *)
let cnorm2 = new_definition
`cnorm2 (v:complex^N) = real_of_complex (v cdot v)`;;
let CX_CNORM2 = prove
(`!v:complex^N. Cx(cnorm2 v) = v cdot v`,
SIMP_TAC[cnorm2;REAL_CDOT_SELF;REAL_OF_COMPLEX]);;
let CNORM2_CVECTOR_ZERO = prove
(`cnorm2 (cvector_zero:complex^N) = &0`,
REWRITE_TAC[cnorm2;CDOT_RZERO;REAL_OF_COMPLEX_CX]);;
let CNORM2_MODULUS = prove
(`!x:complex^N. cnorm2 x = (vector_map norm x) dot (vector_map norm x)`,
REWRITE_TAC[cnorm2;cdot;COMPLEX_MUL_CNJ;COMPLEX_POW_2;GSYM CX_MUL;
VSUM_CX_NUMSEG;dot;VECTOR_MAP_COMPONENT;REAL_OF_COMPLEX_CX]);;
let CNORM2_EQ_0 = prove
(`!x:complex^N. cnorm2 x = &0 <=> x = cvector_zero`,
REWRITE_TAC[CNORM2_MODULUS;CX_INJ;DOT_EQ_0] THEN GEN_TAC
THEN GEN_REWRITE_TAC (RATOR_CONV o DEPTH_CONV) [CART_EQ]
THEN REWRITE_TAC[VEC_COMPONENT;VECTOR_MAP_COMPONENT;COMPLEX_NORM_ZERO]
THEN GEN_REWRITE_TAC (RAND_CONV o DEPTH_CONV) [CART_EQ]
THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT]);;
let CDOT_EQ_0 = prove
(`!x:complex^N. x cdot x = Cx(&0) <=> x = cvector_zero`,
SIMP_TAC[TAUT `(p<=>q) <=> ((p==>q) /\ (q==>p))`;CDOT_LZERO]
THEN GEN_TAC THEN DISCH_THEN (MP_TAC o MATCH_MP (MESON[REAL_OF_COMPLEX_CX]
`x = Cx y ==> real_of_complex x = y`))
THEN REWRITE_TAC[GSYM cnorm2;CNORM2_EQ_0]);;
let CNORM2_POS = prove
(`!x:complex^N. &0 <= cnorm2 x`, REWRITE_TAC[CNORM2_MODULUS;DOT_POS_LE]);;
let CDOT_SELF_POS = prove
(`!x:complex^N. &0 <= real_of_complex (x cdot x)`,
REWRITE_TAC[GSYM cnorm2;CNORM2_POS]);;
let CNORM2_MUL = prove
(`!a x:complex^N. cnorm2 (a % x) = (norm a) pow 2 * cnorm2 x`,
SIMP_TAC[cnorm2;CDOT_LMUL;CDOT_RMUL;
SIMPLE_COMPLEX_ARITH `x * cnj x * y = (x * cnj x) * y`;COMPLEX_MUL_CNJ;
REAL_OF_COMPLEX_CX;REAL_OF_COMPLEX_MUL;REAL_CX;REAL_CDOT_SELF;
GSYM CX_POW]);;
let CNORM2_NORM2_2 = prove
(`!x y:real^N.
cnorm2 (vector_to_cvector x + ii % vector_to_cvector y) =
norm x pow 2 + norm y pow 2`,
REWRITE_TAC[cnorm2;vector_norm;cdot;CVECTOR_ADD_COMPONENT;
CVECTOR_MUL_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;CNJ_ADD;CNJ_CX;CNJ_MUL;
CNJ_II;COMPLEX_ADD_RDISTRIB;COMPLEX_ADD_LDISTRIB;
SIMPLE_COMPLEX_ARITH
`(x*x+x*(--ii)*y)+(ii*y)*x+(ii*y)*(--ii)*y = x*x-(ii*ii)*y*y`]
THEN REWRITE_TAC[GSYM COMPLEX_POW_2;COMPLEX_POW_II_2;
SIMPLE_COMPLEX_ARITH `x-(--Cx(&1))*y = x+y`]
THEN SIMP_TAC[MESON[CARD_NUMSEG_1;HAS_SIZE_NUMSEG_1;FINITE_HAS_SIZE]
`FINITE (1..dimindex(:N))`;VSUM_ADD;GSYM CX_POW;VSUM_CX;GSYM dot;
REAL_POW_2;GSYM dot]
THEN SIMP_TAC[GSYM CX_ADD;REAL_OF_COMPLEX_CX;GSYM REAL_POW_2;DOT_POS_LE;
SQRT_POW_2]);;
let CNORM2_NORM2 = prove
(`!v:complex^N.
cnorm2 v = norm (cvector_re v) pow 2 + norm (cvector_im v) pow 2`,
GEN_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [GSYM
VECTOR_TO_CVECTOR_CVECTOR_RE_IM] THEN REWRITE_TAC[CNORM2_NORM2_2]);;
let CNORM2_ALT = prove
(`!x:complex^N. cnorm2 x = norm (x cdot x)`,
SIMP_TAC[cnorm2;REAL_OF_COMPLEX_NORM;REAL_CDOT_SELF;EQ_SYM_EQ;REAL_ABS_REFL;
REWRITE_RULE[cnorm2] CNORM2_POS]);;
let CNORM2_SUB = prove
(`!x y:complex^N. cnorm2 (x-y) = cnorm2 (y-x)`,
REWRITE_TAC[cnorm2;CDOT_LSUB;CDOT_RSUB] THEN REPEAT GEN_TAC THEN AP_TERM_TAC
THEN SIMPLE_COMPLEX_ARITH_TAC);;
let CNORM2_VECTOR_TO_CVECTOR = prove
(`!x:real^N. cnorm2 (vector_to_cvector x) = norm x pow 2`,
REWRITE_TAC[CNORM2_ALT;CDOT_RREAL;CVECTOR_RE_VECTOR_TO_CVECTOR;
CVECTOR_IM_VECTOR_TO_CVECTOR;DOT_LZERO;COMPLEX_MUL_RZERO;COMPLEX_ADD_RID;
DOT_SQUARE_NORM;CX_POW;COMPLEX_NORM_POW;COMPLEX_NORM_CX;REAL_POW2_ABS]);;
let cnorm = new_definition
`cnorm :complex^N->real = sqrt o cnorm2`;;
overload_interface ("norm",`cnorm:complex^N->real`);;
let CNORM_CVECTOR_ZERO = prove
(`norm (cvector_zero:complex^N) = &0`,
REWRITE_TAC[cnorm;CNORM2_CVECTOR_ZERO;o_DEF;SQRT_0]);;
let CNORM_POW_2 = prove
(`!x:complex^N. norm x pow 2 = cnorm2 x`,
SIMP_TAC[cnorm;o_DEF;SQRT_POW_2;CNORM2_POS]);;
let CNORM_NORM_2 = prove
(`!x y:real^N.
norm (vector_to_cvector x + ii % vector_to_cvector y) =
sqrt(norm x pow 2 + norm y pow 2)`,
REWRITE_TAC[cnorm;o_DEF;CNORM2_NORM2_2]);;
let CNORM_NORM = prove(
`!v:complex^N.
norm v = sqrt(norm (cvector_re v) pow 2 + norm (cvector_im v) pow 2)`,
GEN_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [GSYM
VECTOR_TO_CVECTOR_CVECTOR_RE_IM] THEN REWRITE_TAC[CNORM_NORM_2]);;
let CNORM_MUL = prove
(`!a x:complex^N. norm (a % x) = norm a * norm x`,
SIMP_TAC[cnorm;o_DEF;CNORM2_MUL;REAL_LE_POW_2;SQRT_MUL;CNORM2_POS;
NORM_POS_LE;POW_2_SQRT]);;
let CNORM_EQ_0 = prove
(`!x:complex^N. norm x = &0 <=> x = cvector_zero`,
SIMP_TAC[cnorm;o_DEF;SQRT_EQ_0;CNORM2_POS;CNORM2_EQ_0]);;
let CNORM_POS = prove
(`!x:complex^N. &0 <= norm x`,
SIMP_TAC[cnorm;o_DEF;SQRT_POS_LE;CNORM2_POS]);;
let CNORM_SUB = prove
(`!x y:complex^N. norm (x-y) = norm (y-x)`,
REWRITE_TAC[cnorm;o_DEF;CNORM2_SUB]);;
let CNORM_VECTOR_TO_CVECTOR = prove
(`!x:real^N. norm (vector_to_cvector x) = norm x`,
SIMP_TAC[cnorm;o_DEF;CNORM2_VECTOR_TO_CVECTOR;POW_2_SQRT;NORM_POS_LE]);;
let CNORM_BASIS = prove
(`!k. 1 <= k /\ k <= dimindex(:N)
==> norm (vector_to_cvector (basis k :real^N)) = &1`,
SIMP_TAC[NORM_BASIS;CNORM_VECTOR_TO_CVECTOR]);;
let CNORM_BASIS_1 = prove
(`norm(basis 1:real^N) = &1`,
SIMP_TAC[NORM_BASIS_1;CNORM_VECTOR_TO_CVECTOR]);;
let CVECTOR_CHOOSE_SIZE = prove
(`!c. &0 <= c ==> ?x:complex^N. norm(x) = c`,
MESON_TAC[VECTOR_CHOOSE_SIZE;CNORM_VECTOR_TO_CVECTOR]);;
(* Triangle inequality. Proved later on using Cauchy Schwarz inequality.
* let CNORM_TRIANGLE = prove(`!x y:complex^N. norm (x+y) <= norm x + norm y`, ...
*)
let cunit = new_definition
`cunit (X:complex^N) = inv(Cx(norm X))% X`;;
let CUNIT_CVECTOR_ZERO = prove
(`cunit cvector_zero = cvector_zero:complex^N`,
REWRITE_TAC[cunit;CNORM_CVECTOR_ZERO;COMPLEX_INV_0;CVECTOR_MUL_LZERO]);;
let CDOT_CUNIT_MUL_CUNIT = prove
(`!x:complex^N. (cunit x cdot x) % cunit x = x`,
GEN_TAC THEN ASM_CASES_TAC `x = cvector_zero:complex^N`
THEN ASM_REWRITE_TAC[CUNIT_CVECTOR_ZERO;CDOT_LZERO;CVECTOR_MUL_LZERO]
THEN SIMP_TAC[cunit;CVECTOR_MUL_ASSOC;CDOT_LMUL;
SIMPLE_COMPLEX_ARITH `(x*y)*x=(x*x)*y`;GSYM COMPLEX_INV_MUL;GSYM CX_MUL;
GSYM REAL_POW_2;cnorm;o_DEF;CNORM2_POS;SQRT_POW_2]
THEN ASM_SIMP_TAC[cnorm2;REAL_OF_COMPLEX;REAL_CDOT_SELF;CDOT_EQ_0;
CNORM2_CVECTOR_ZERO;CVECTOR_MUL_RZERO;CNORM2_EQ_0;COMPLEX_MUL_LINV;
CVECTOR_MUL_ID]);;
(* ========================================================================= *)
(* COLLINEARITY *)
(* ========================================================================= *)
(* Definition of collinearity between complex vectors.
* Note: This is different from collinearity between points (which is the one defined in HOL-Light library)
*)
let collinear_cvectors = new_definition
`collinear_cvectors x (y:complex^N) <=> ?a. y = a % x \/ x = a % y`;;
let COLLINEAR_CVECTORS_SYM = prove
(`!x y:complex^N. collinear_cvectors x y <=> collinear_cvectors y x`,
REWRITE_TAC[collinear_cvectors] THEN MESON_TAC[]);;
let COLLINEAR_CVECTORS_0 = prove
(`!x:complex^N. collinear_cvectors x cvector_zero`,
REWRITE_TAC[collinear_cvectors] THEN GEN_TAC THEN EXISTS_TAC `Cx(&0)`
THEN REWRITE_TAC[CVECTOR_MUL_LZERO]);;
let NON_NULL_COLLINEARS = prove
(`!x y:complex^N.
collinear_cvectors x y /\ ~(x=cvector_zero) /\ ~(y=cvector_zero)
==> ?a. ~(a=Cx(&0)) /\ y = a % x`,
REWRITE_TAC[collinear_cvectors] THEN REPEAT STRIP_TAC THENL [
ASM_MESON_TAC[CVECTOR_MUL_LZERO];
SUBGOAL_THEN `~(a=Cx(&0))` ASSUME_TAC THENL [
ASM_MESON_TAC[CVECTOR_MUL_LZERO];
EXISTS_TAC `inv a :complex`
THEN ASM_REWRITE_TAC[COMPLEX_INV_EQ_0;CVECTOR_MUL_ASSOC]
THEN ASM_SIMP_TAC[COMPLEX_MUL_LINV;CVECTOR_MUL_ID]]]);;
let COLLINEAR_LNONNULL = prove(
`!x y:complex^N.
collinear_cvectors x y /\ ~(x=cvector_zero) ==> ?a. y = a % x`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `y=cvector_zero:complex^N` THENL [
ASM_REWRITE_TAC[] THEN EXISTS_TAC `Cx(&0)`
THEN ASM_MESON_TAC[CVECTOR_MUL_LZERO];
ASM_MESON_TAC[NON_NULL_COLLINEARS] ]);;
let COLLINEAR_RNONNULL = prove(
`!x y:complex^N.
collinear_cvectors x y /\ ~(y=cvector_zero) ==> ?a. x = a % y`,
MESON_TAC[COLLINEAR_LNONNULL;COLLINEAR_CVECTORS_SYM]);;
let COLLINEAR_RUNITREAL = prove(
`!x y:real^N.
collinear_cvectors x (vector_to_cvector y) /\ norm y = &1
==> x = (x cdot (vector_to_cvector y)) % vector_to_cvector y`,
REPEAT STRIP_TAC
THEN POP_ASSUM (DISTRIB [ASSUME_TAC; ASSUME_TAC o REWRITE_RULE[NORM_EQ_0;
GSYM VECTOR_TO_CVECTOR_ZERO_EQ] o MATCH_MP
(REAL_ARITH `!x. x= &1 ==> ~(x= &0)`)])
THEN FIRST_X_ASSUM (fun x -> FIRST_X_ASSUM (fun y ->
CHOOSE_THEN (SINGLE ONCE_REWRITE_TAC) (MATCH_MP COLLINEAR_RNONNULL
(CONJ y x))))
THEN REWRITE_TAC[CDOT_LMUL;CDOT_LREAL;CVECTOR_RE_VECTOR_TO_CVECTOR;
CVECTOR_IM_VECTOR_TO_CVECTOR;DOT_RZERO;COMPLEX_MUL_RZERO;COMPLEX_SUB_RZERO]
THEN POP_ASSUM ((fun x ->
REWRITE_TAC[x;COMPLEX_MUL_RID]) o REWRITE_RULE[NORM_EQ_1]));;
let CCROSS_COLLINEAR_CVECTORS = prove
(`!x y:complex^3. x ccross y = cvector_zero <=> collinear_cvectors x y`,
REWRITE_TAC[ccross;collinear_cvectors;CART_EQ3;VECTOR_3;
CVECTOR_ZERO_COMPONENT;COMPLEX_SUB_0;CVECTOR_MUL_COMPONENT]
THEN REPEAT GEN_TAC THEN EQ_TAC
THENL [
REPEAT (POP_ASSUM MP_TAC) THEN ASM_CASES_TAC `(x:complex^3)$1 = Cx(&0)`
THENL [
ASM_CASES_TAC `(x:complex^3)$2 = Cx(&0)` THENL [
ASM_CASES_TAC `(x:complex^3)$3 = Cx(&0)` THENL [
REPEAT DISCH_TAC THEN EXISTS_TAC `Cx(&0)`
THEN ASM_REWRITE_TAC[COMPLEX_POLY_CLAUSES];
REPEAT STRIP_TAC THEN EXISTS_TAC `(y:complex^3)$3/(x:complex^3)$3`
THEN ASM_SIMP_TAC[COMPLEX_BALANCE_DIV_MUL]
THEN ASM_MESON_TAC[COMPLEX_MUL_AC];];
REPEAT STRIP_TAC THEN EXISTS_TAC `(y:complex^3)$2/(x:complex^3)$2`
THEN ASM_SIMP_TAC[COMPLEX_BALANCE_DIV_MUL]
THEN ASM_MESON_TAC[COMPLEX_MUL_AC]; ];
REPEAT STRIP_TAC THEN EXISTS_TAC `(y:complex^3)$1/(x:complex^3)$1`
THEN ASM_SIMP_TAC[COMPLEX_BALANCE_DIV_MUL]
THEN ASM_MESON_TAC[COMPLEX_MUL_AC];];
SIMPLE_COMPLEX_ARITH_TAC ]);;
let CVECTOR_MUL_INV = prove
(`!a x y:complex^N. ~(a = Cx(&0)) /\ x = a % y ==> y = inv a % x`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CVECTOR_MUL_ASSOC;
MESON[] `(p\/q) <=> (~p ==> q)`;COMPLEX_MUL_LINV;CVECTOR_MUL_ID]);;
let CVECTOR_MUL_INV2 = prove
(`!a x y:complex^N. ~(x = cvector_zero) /\ x = a % y ==> y = inv a % x`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `a=Cx(&0)`
THEN ASM_MESON_TAC[CVECTOR_MUL_LZERO;CVECTOR_MUL_INV]);;
let COLLINEAR_CVECTORS_VECTOR_TO_CVECTOR = prove(
`!x y:real^N.
collinear_cvectors (vector_to_cvector x) (vector_to_cvector y)
<=> collinear {vec 0,x,y}`,
REWRITE_TAC[COLLINEAR_LEMMA_ALT;collinear_cvectors]
THEN REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL [
POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_MUL_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;
VECTOR_MUL_COMPONENT;COMPLEX_EQ;RE_CX;RE_MUL_CX]
THEN REPEAT STRIP_TAC THEN DISJ2_TAC THEN EXISTS_TAC `Re a`
THEN ASM_SIMP_TAC[];
REWRITE_TAC[MESON[]`(p\/q) <=> (~p ==> q)`]
THEN REWRITE_TAC[GSYM VECTOR_TO_CVECTOR_ZERO_EQ]
THEN DISCH_TAC
THEN SUBGOAL_TAC "" `vector_to_cvector (y:real^N) =
inv a % vector_to_cvector x` [ASM_MESON_TAC[CVECTOR_MUL_INV2]]
THEN POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[CART_EQ]
THEN REWRITE_TAC[CVECTOR_MUL_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;
VECTOR_MUL_COMPONENT;COMPLEX_EQ;RE_CX;RE_MUL_CX]
THEN REPEAT STRIP_TAC THEN EXISTS_TAC `Re(inv a)` THEN ASM_SIMP_TAC[];
EXISTS_TAC `Cx(&0)` THEN ASM_REWRITE_TAC[VECTOR_TO_CVECTOR_ZERO;
CVECTOR_MUL_LZERO];
ASM_REWRITE_TAC[VECTOR_TO_CVECTOR_MUL] THEN EXISTS_TAC `Cx c`
THEN REWRITE_TAC[];
]);;
(* ========================================================================= *)
(* ORTHOGONALITY *)
(* ========================================================================= *)
let corthogonal = new_definition
`corthogonal (x:complex^N) y <=> x cdot y = Cx(&0)`;;
let CORTHOGONAL_SYM = prove(
`!x y:complex^N. corthogonal x y <=> corthogonal y x`,
MESON_TAC[corthogonal;CDOT_SYM;CNJ_ZERO]);;
let CORTHOGONAL_0 = prove(
`!x:complex^N. corthogonal cvector_zero x /\ corthogonal x cvector_zero`,
REWRITE_TAC[corthogonal;CDOT_LZERO;CDOT_RZERO]);;
let [CORTHOGONAL_LZERO;CORTHOGONAL_RZERO] = GCONJUNCTS CORTHOGONAL_0;;
let CORTHOGONAL_COLLINEAR_CVECTORS = prove
(`!x y:complex^N.
collinear_cvectors x y /\ ~(x=cvector_zero) /\ ~(y=cvector_zero)
==> ~(corthogonal x y)`,
REWRITE_TAC[collinear_cvectors;corthogonal] THEN REPEAT STRIP_TAC
THEN POP_ASSUM MP_TAC
THEN ASM_REWRITE_TAC[CDOT_RMUL;CDOT_LMUL;COMPLEX_ENTIRE;GSYM cnorm2;
CDOT_EQ_0;CNJ_EQ_0]
THEN ASM_MESON_TAC[CVECTOR_MUL_LZERO]);;
let CORTHOGONAL_MUL_CLAUSES = prove
(`!x y a.
(corthogonal x y ==> corthogonal x (a%y))
/\ (corthogonal x y \/ a = Cx(&0) <=> corthogonal x (a%y))
/\ (corthogonal x y ==> corthogonal (a%x) y)
/\ (corthogonal x y \/ a = Cx(&0) <=> corthogonal (a%x) y)`,
SIMP_TAC[corthogonal;CDOT_RMUL;CDOT_LMUL;COMPLEX_ENTIRE;CNJ_EQ_0]
THEN MESON_TAC[]);;
let [CORTHOGONAL_RMUL;CORTHOGONAL_RMUL_EQ;CORTHOGONAL_LMUL;
CORTHOGONAL_LMUL_EQ] = GCONJUNCTS CORTHOGONAL_MUL_CLAUSES;;
let CORTHOGONAL_LRMUL_CLAUSES = prove
(`!x y a b.
(corthogonal x y ==> corthogonal (a%x) (b%y))
/\ (corthogonal x y \/ a = Cx(&0) \/ b = Cx(&0)
<=> corthogonal (a%x) (b%y))`,
MESON_TAC[CORTHOGONAL_MUL_CLAUSES]);;
let [CORTHOGONAL_LRMUL;CORTHOGONAL_LRMUL_EQ] =
GCONJUNCTS CORTHOGONAL_LRMUL_CLAUSES;;
let CORTHOGONAL_REAL_CLAUSES = prove
(`!r c.
(corthogonal c (vector_to_cvector r)
<=> orthogonal (cvector_re c) r /\ orthogonal (cvector_im c) r)
/\ (corthogonal (vector_to_cvector r) c
<=> orthogonal r (cvector_re c) /\ orthogonal r (cvector_im c))`,
REWRITE_TAC[corthogonal;orthogonal;CDOT_LREAL;CDOT_RREAL;COMPLEX_SUB_0;
COMPLEX_EQ;RE_CX;IM_CX;RE_SUB;IM_SUB;RE_ADD;IM_ADD]
THEN REWRITE_TAC[RE_DEF;CX_DEF;IM_DEF;complex;complex_mul;VECTOR_2;ii]
THEN CONV_TAC REAL_FIELD);;
let [CORTHOGONAL_RREAL;CORTHOGONAL_LREAL] =
GCONJUNCTS CORTHOGONAL_REAL_CLAUSES;;
let CORTHOGONAL_UNIT = prove
(`!x y:complex^N.
(corthogonal x (cunit y) <=> corthogonal x y)
/\ (corthogonal (cunit x) y <=> corthogonal x y)`,
REWRITE_TAC[cunit;GSYM CORTHOGONAL_MUL_CLAUSES;COMPLEX_INV_EQ_0;CX_INJ;
CNORM_EQ_0]
THEN MESON_TAC[CORTHOGONAL_0]);;
let [CORTHOGONAL_RUNIT;CORTHOGONAL_LUNIT] = GCONJUNCTS CORTHOGONAL_UNIT;;
let CORTHOGONAL_PROJECTION = prove(
`!x y:complex^N. corthogonal (x - (x cdot cunit y) % cunit y) y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `y=cvector_zero:complex^N`
THEN ASM_REWRITE_TAC[corthogonal;CDOT_RZERO]
THEN REWRITE_TAC[CDOT_LSUB;cunit;CVECTOR_MUL_ASSOC;GSYM cnorm2;CDOT_LMUL;
CDOT_RMUL;REWRITE_RULE[REAL_CNJ] (MATCH_MP REAL_INV (SPEC_ALL REAL_CX))]
THEN REWRITE_TAC[COMPLEX_MUL_AC;GSYM COMPLEX_INV_MUL;GSYM COMPLEX_POW_2;
cnorm;o_DEF;CSQRT]
THEN SIMP_TAC[CNORM2_POS;CX_SQRT;cnorm2;REAL_CDOT_SELF;REAL_OF_COMPLEX;CSQRT]
THEN ASM_SIMP_TAC[CDOT_EQ_0;COMPLEX_MUL_RINV;COMPLEX_MUL_RID;
COMPLEX_SUB_REFL]);;
let CDOT_PYTHAGOREAN = prove
(`!x y:complex^N. corthogonal x y ==> cnorm2 (x+y) = cnorm2 x + cnorm2 y`,
SIMP_TAC[corthogonal;cnorm2;CDOT_LADD;CDOT_RADD;COMPLEX_ADD_RID;
COMPLEX_ADD_LID;REAL_OF_COMPLEX_ADD;REAL_CDOT_SELF;
MESON[CDOT_SYM;CNJ_ZERO] `x cdot y = Cx (&0) ==> y cdot x = Cx(&0)`]);;
let CDOT_CAUCHY_SCHWARZ_POW_2 = prove
(`!x y:complex^N. norm (x cdot y) pow 2 <= cnorm2 x * cnorm2 y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `y = cvector_zero:complex^N`
THEN ASM_REWRITE_TAC[CNORM2_CVECTOR_ZERO;CDOT_RZERO;COMPLEX_NORM_0;
REAL_POW_2;REAL_MUL_RZERO;REAL_OF_COMPLEX_CX;REAL_LE_REFL]
THEN ONCE_REWRITE_TAC[MATCH_MP (MESON[CVECTOR_SUB_ADD]
`(!x:complex^N y. p (x - f x y) y)
==> cnorm2 x * z = cnorm2 (x - f x y + f x y) * z`) CORTHOGONAL_PROJECTION]
THEN MATCH_MP_TAC (GEN_ALL (MATCH_MP (MESON[] `(!x y. P x y ==> f x y = (g x y:real))
==> P x y /\ a <= g x y * b ==> a <= f x y * b`) CDOT_PYTHAGOREAN))
THEN REWRITE_TAC[GSYM CORTHOGONAL_MUL_CLAUSES;CORTHOGONAL_RUNIT;
CORTHOGONAL_PROJECTION]
THEN SIMP_TAC[cnorm2;GSYM REAL_OF_COMPLEX_ADD;REAL_CDOT_SELF;REAL_ADD;
GSYM REAL_OF_COMPLEX_MUL]
THEN REWRITE_TACS[cunit;CDOT_RMUL;CVECTOR_MUL_ASSOC;REWRITE_RULE[REAL_CNJ]
(MATCH_MP REAL_INV (SPEC_ALL REAL_CX));COMPLEX_MUL_AC;GSYM COMPLEX_INV_MUL;
GSYM COMPLEX_POW_2;cnorm;o_DEF;CSQRT;COMPLEX_ADD_LDISTRIB;cnorm2;CDOT_RMUL;
CNJ_MUL;CDOT_LMUL;GSYM cnorm2;
REWRITE_RULE[REAL_CNJ] (MATCH_MP REAL_INV (SPEC_ALL REAL_CX))]
THEN SIMP_TAC[CX_SQRT;CNORM2_POS;CSQRT;CX_CNORM2]
THEN REWRITE_TAC[SIMPLE_COMPLEX_ARITH
`x * ((y * inv x) * x) * (z * inv x') * inv x'
= (y * z) * (x * inv x) * (x * inv x' * inv x'):complex`]
THEN ASM_SIMP_TAC[CDOT_EQ_0;COMPLEX_MUL_RINV;COMPLEX_MUL_LID;COMPLEX_MUL_CNJ;
GSYM COMPLEX_INV_MUL]
THEN ONCE_REWRITE_TAC[
GSYM (MATCH_MP REAL_OF_COMPLEX (SPEC_ALL REAL_CDOT_SELF))]
THEN SIMP_TAC[GSYM cnorm2;GSYM CX_SQRT;CNORM2_POS;GSYM CX_MUL;
GSYM COMPLEX_POW_2;GSYM CX_POW;SQRT_POW_2;GSYM CX_INV]
THEN ASM_SIMP_TAC[REAL_MUL_RINV;CNORM2_EQ_0;REAL_MUL_RID;GSYM CX_ADD;
REAL_OF_COMPLEX_CX;GSYM REAL_POW_2;REAL_LE_ADDL;REAL_LE_MUL;CNORM2_POS]);;
let CDOT_CAUCHY_SCHWARZ = prove
(`!x y:complex^N. norm (x cdot y) <= norm x * norm y`,
REPEAT GEN_TAC THEN MATCH_MP_TAC (REWRITE_RULE[REAL_LE_SQUARE_ABS]
(REAL_ARITH `&0 <= x /\ &0 <= y /\ abs x <= abs y ==> x <= y`))
THEN SIMP_TAC[NORM_POS_LE;CNORM_POS;REAL_LE_MUL;REAL_POW_MUL;CNORM_POW_2;
CDOT_CAUCHY_SCHWARZ_POW_2]);;
let CDOT_CAUCHY_SCHWARZ_POW_2_EQUAL = prove
(`!x y:complex^N.
norm (x cdot y) pow 2 = cnorm2 x * cnorm2 y <=> collinear_cvectors x y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `y = cvector_zero:complex^N`
THEN ASM_REWRITE_TAC[CNORM2_CVECTOR_ZERO;CDOT_RZERO;COMPLEX_NORM_0;
REAL_POW_2;REAL_MUL_RZERO;REAL_OF_COMPLEX_CX;COLLINEAR_CVECTORS_0]
THEN EQ_TAC THENL [
ONCE_REWRITE_TAC[MATCH_MP (MESON[CVECTOR_SUB_ADD]
`(!x:complex^N y. p (x - f x y) y) ==>
cnorm2 x * z = cnorm2 (x - f x y + f x y) * z`) CORTHOGONAL_PROJECTION]
THEN MATCH_MP_TAC (GEN_ALL (MATCH_MP (MESON[]
`(!x y. P x y ==> g x y = (f x y:real)) ==>
P x y /\ (a = f x y * z ==> R) ==> (a = g x y * z ==> R)`)
CDOT_PYTHAGOREAN))
THEN REWRITE_TAC[GSYM CORTHOGONAL_MUL_CLAUSES;CORTHOGONAL_RUNIT;
CORTHOGONAL_PROJECTION]
THEN SIMP_TAC[cnorm2;GSYM REAL_OF_COMPLEX_ADD;REAL_CDOT_SELF;REAL_ADD;
GSYM REAL_OF_COMPLEX_MUL]
THEN REWRITE_TACS[cunit;CDOT_RMUL;CVECTOR_MUL_ASSOC;REWRITE_RULE[REAL_CNJ]
(MATCH_MP REAL_INV (SPEC_ALL REAL_CX));COMPLEX_MUL_AC;
GSYM COMPLEX_INV_MUL;GSYM COMPLEX_POW_2;cnorm;o_DEF;CSQRT;
COMPLEX_ADD_LDISTRIB;cnorm2;CDOT_RMUL;CNJ_MUL;CDOT_LMUL;GSYM cnorm2;
REWRITE_RULE[REAL_CNJ] (MATCH_MP REAL_INV (SPEC_ALL REAL_CX))]
THEN SIMP_TAC[CX_SQRT;CNORM2_POS;CSQRT;CX_CNORM2]
THEN REWRITE_TAC[SIMPLE_COMPLEX_ARITH
`x * ((y * inv x) * x) * (z * inv x') * inv x' =
(y * z) * (x * inv x) * (x * inv x' * inv x'):complex`]
THEN ONCE_REWRITE_TAC[GSYM (MATCH_MP REAL_OF_COMPLEX
(SPEC_ALL REAL_CDOT_SELF))]
THEN SIMP_TAC[GSYM cnorm2;GSYM CX_SQRT;CNORM2_POS;GSYM CX_MUL;
GSYM COMPLEX_POW_2;GSYM CX_POW;SQRT_POW_2;GSYM CX_INV;REAL_POW_INV]
THEN ASM_SIMP_TAC[REAL_MUL_RINV;CNORM2_EQ_0;REAL_MUL_RID;GSYM CX_ADD;
REAL_OF_COMPLEX_CX;GSYM REAL_POW_2;REAL_LE_ADDL;REAL_LE_MUL;CNORM2_POS;
GSYM CX_POW;REAL_POW_ONE;COMPLEX_MUL_RID;COMPLEX_MUL_CNJ;
REAL_ARITH `x = y + x <=> y = &0`;REAL_ENTIRE;CNORM2_EQ_0;
CVECTOR_SUB_EQ;collinear_cvectors]
THEN MESON_TAC[];
REWRITE_TAC[collinear_cvectors] THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC[cnorm2;CDOT_LMUL;CDOT_RMUL;COMPLEX_NORM_MUL;
COMPLEX_MUL_ASSOC]
THEN SIMP_TAC[COMPLEX_MUL_CNJ;GSYM cnorm2;COMPLEX_NORM_CNJ;GSYM CX_POW;
REAL_OF_COMPLEX_MUL;REAL_CX;REAL_CDOT_SELF;REAL_OF_COMPLEX_CX;
GSYM CNORM2_ALT]
THEN SIMPLE_COMPLEX_ARITH_TAC
]);;
let CDOT_CAUCHY_SCHWARZ_EQUAL = prove
(`!x y:complex^N.
norm (x cdot y) = norm x * norm y <=> collinear_cvectors x y`,
ONCE_REWRITE_TAC[REWRITE_RULE[REAL_EQ_SQUARE_ABS] (REAL_ARITH
`x=y <=> abs x = abs y /\ (&0 <= x /\ &0 <= y \/ x < &0 /\ y < &0)`)]
THEN SIMP_TAC[NORM_POS_LE;CNORM_POS;REAL_LE_MUL;REAL_POW_MUL;CNORM_POW_2;
CDOT_CAUCHY_SCHWARZ_POW_2_EQUAL]);;
let CNORM_TRIANGLE = prove
(`!x y:complex^N. norm (x+y) <= norm x + norm y`,
REPEAT GEN_TAC THEN MATCH_MP_TAC (REWRITE_RULE[REAL_LE_SQUARE_ABS]
(REAL_ARITH `abs x <= abs y /\ &0 <= x /\ &0 <= y ==> x <= y`))
THEN SIMP_TAC[CNORM_POS;REAL_LE_ADD;REAL_ADD_POW_2;CNORM_POW_2;cnorm2;
CDOT_LADD;CDOT_RADD;SIMPLE_COMPLEX_ARITH `(x+y)+z+t = x+(y+z)+t:complex`;
ADD_CDOT_SYM;REAL_OF_COMPLEX_ADD;REAL_CDOT_SELF;REAL_CX;REAL_ADD;
REAL_OF_COMPLEX_CX;REAL_ARITH `x+ &2*y+z<=x+z+ &2*t <=> y<=t:real`]
THEN MESON_TAC[CDOT_CAUCHY_SCHWARZ;RE_NORM;REAL_LE_TRANS]);;
let REAL_ABS_SUB_CNORM = prove
(`!x y:complex^N. abs (norm x - norm y) <= norm (x-y)`,
let lemma =
REWRITE_RULE[CVECTOR_SUB_ADD2;REAL_ARITH `x<=y+z <=> x-y<=z:real`]
(SPECL [`x:complex^N`;`y-x:complex^N`] CNORM_TRIANGLE)
in
REPEAT GEN_TAC
THEN MATCH_MP_TAC (MATCH_MP (MESON[]
`(!x y. P x y <=> Q x y) ==> Q x y ==> P x y`) REAL_ABS_BOUNDS)
THEN ONCE_REWRITE_TAC[REAL_ARITH `--x <= y <=> --y <= x`]
THEN REWRITE_TAC[REAL_NEG_SUB]
THEN REWRITE_TAC[lemma;ONCE_REWRITE_RULE[CNORM_SUB] lemma]);;
(* ========================================================================= *)
(* VSUM *)
(* ========================================================================= *)
let cvsum = new_definition
`(cvsum:(A->bool)->(A->complex^N)->complex^N) s f = lambda i. vsum s (\x. (f x)$i)`;;
(* ========================================================================= *)
(* INFINITE SUM *)
(* ========================================================================= *)
let csummable = new_definition
`csummable (s:num->bool) (f:num->complex^N)
<=> summable s (cvector_re o f) /\ summable s (cvector_im o f)`;;
let cinfsum = new_definition
`cinfsum (s:num->bool) (f:num->complex^N) :complex^N
= vector_to_cvector (infsum s (\x. cvector_re (f x)))
+ ii % vector_to_cvector (infsum s (\x.cvector_im (f x)))`;;
let CSUMMABLE_FLATTEN_CVECTOR = prove
(`!s (f:num->complex^N). csummable s f <=> summable s (cvector_flatten o f)`,
REWRITE_TAC[csummable;summable;cvector_flatten;o_DEF]
THEN REPEAT (STRIP_TAC ORELSE EQ_TAC)
THENL [
EXISTS_TAC `pastecart (l:real^N) (l':real^N)`
THEN ASM_SIMP_TAC[GSYM SUMS_PASTECART];
EXISTS_TAC `fstcart (l:real^(N,N) finite_sum)`
THEN MATCH_MP_TAC (GEN_ALL (MATCH_MP (TAUT `(p /\ q <=> r) ==> (r ==> p)`)
(INST_TYPE [`:N`,`:M`] (SPEC_ALL SUMS_PASTECART))))
THEN EXISTS_TAC `(cvector_im o f) :num->real^N`
THEN EXISTS_TAC `sndcart (l:real^(N,N) finite_sum)`
THEN ASM_REWRITE_TAC[ETA_AX;o_DEF;PASTECART_FST_SND];
EXISTS_TAC `sndcart (l:real^(N,N) finite_sum)`
THEN MATCH_MP_TAC (GEN_ALL (MATCH_MP (TAUT `(p /\ q <=> r) ==> (r ==> q)`)
(INST_TYPE [`:N`,`:M`] (SPEC_ALL SUMS_PASTECART))))
THEN EXISTS_TAC `(cvector_re o f) :num->real^N`
THEN EXISTS_TAC `fstcart (l:real^(N,N) finite_sum)`
THEN ASM_REWRITE_TAC[ETA_AX;o_DEF;PASTECART_FST_SND];
]);;
let FLATTEN_CINFSUM = prove
(`!s f.
csummable s f ==>
((cinfsum s f):complex^N) =
cvector_unflatten (infsum s (cvector_flatten o f))`,
SIMP_TAC[cinfsum;cvector_unflatten;COMPLEX_VECTOR_TRANSPOSE;LINEAR_FSTCART;
LINEAR_SNDCART;CSUMMABLE_FLATTEN_CVECTOR;GSYM INFSUM_LINEAR;o_DEF;
cvector_flatten;FSTCART_PASTECART;SNDCART_PASTECART]);;
let CSUMMABLE_LINEAR = prove
(`!f h:complex^N->complex^M s.
csummable s f /\ clinear h ==> csummable s (h o f)`,
REWRITE_TAC[CSUMMABLE_FLATTEN_CVECTOR] THEN REPEAT STRIP_TAC
THEN POP_ASSUM (ASSUME_TAC o MATCH_MP FLATTEN_CLINEAR)
THEN SUBGOAL_THEN
`cvector_flatten o (h:complex^N -> complex^M) o (f:num -> complex^N) =
\n. (cvector_flatten o h o cvector_unflatten) (cvector_flatten (f n))`
(SINGLE REWRITE_TAC)
THENL [
REWRITE_TAC[o_DEF;FUN_EQ_THM] THEN GEN_TAC THEN REPEAT AP_TERM_TAC
THEN REWRITE_TAC[REWRITE_RULE[o_DEF;I_DEF;FUN_EQ_THM] UNFLATTEN_FLATTEN];
MATCH_MP_TAC SUMMABLE_LINEAR THEN ASM_SIMP_TAC[GSYM o_DEF]
]);;
let CINFSUM_LINEAR = prove
(`!f (h:complex^M->complex^N) s.
csummable s f /\ clinear h ==> cinfsum s (h o f) = h (cinfsum s f)`,
REPEAT GEN_TAC
THEN DISCH_THEN (fun x -> MP_TAC (CONJ (MATCH_MP CSUMMABLE_LINEAR x) x))
THEN SIMP_TAC[FLATTEN_CINFSUM;CSUMMABLE_FLATTEN_CVECTOR]
THEN REPEAT STRIP_TAC THEN POP_ASSUM (ASSUME_TAC o MATCH_MP FLATTEN_CLINEAR)
THEN SUBGOAL_THEN
`cvector_flatten o (h:complex^M->complex^N) o (f:num->complex^M) =
\n. (cvector_flatten o h o cvector_unflatten) ((cvector_flatten o f) n)`
(SINGLE REWRITE_TAC)
THENL [
REWRITE_TAC[o_DEF;FUN_EQ_THM] THEN GEN_TAC THEN REPEAT AP_TERM_TAC
THEN REWRITE_TAC[REWRITE_RULE[o_DEF;I_DEF;FUN_EQ_THM] UNFLATTEN_FLATTEN];
FIRST_ASSUM (fun x -> FIRST_ASSUM (fun y -> REWRITE_TAC[MATCH_MP
(MATCH_MP (REWRITE_RULE[IMP_CONJ] INFSUM_LINEAR) x) y]))
THEN REWRITE_TAC[o_DEF;REWRITE_RULE[o_DEF;I_DEF;FUN_EQ_THM]
UNFLATTEN_FLATTEN]
]);;
|