Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 64,778 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
(* ========================================================================= *)
(* L_p spaces for functions R^m->R^n based on an arbitrary set.              *)
(* ========================================================================= *)

needs "Multivariate/realanalysis.ml";;

(* ------------------------------------------------------------------------- *)
(* The space L_p of measurable functions f with |f|^p integrable (on s).     *)
(* ------------------------------------------------------------------------- *)

let lspace = new_definition
 `lspace s p =
   {f:real^M->real^N | f measurable_on s /\
                       (\x. lift(norm(f x) rpow p)) integrable_on s}`;;

let LSPACE_ZERO = prove
 (`!s. lspace s (&0) =
          if measurable s then {f:real^M->real^N | f measurable_on s} else {}`,
  REWRITE_TAC[lspace; RPOW_POW; real_pow; NORM_0; LIFT_NUM] THEN
  GEN_TAC THEN REWRITE_TAC[INTEGRABLE_ON_CONST; VEC_EQ; ARITH_EQ] THEN
  ASM_CASES_TAC `measurable(s:real^M->bool)` THEN
  ASM_REWRITE_TAC[] THEN SET_TAC[]);;

let LSPACE_CONST = prove
 (`!s p c. measurable s ==> (\x. c) IN lspace s p`,
  SIMP_TAC[lspace; IN_ELIM_THM; INTEGRABLE_ON_CONST;
           INTEGRABLE_IMP_MEASURABLE]);;

let LSPACE_0 = prove
 (`!s p. ~(p = &0) ==> (\x. vec 0) IN lspace s p`,
  SIMP_TAC[lspace; IN_ELIM_THM; NORM_0; RPOW_ZERO; LIFT_NUM] THEN
  SIMP_TAC[INTEGRABLE_IMP_MEASURABLE; INTEGRABLE_0]);;

let LSPACE_CMUL = prove
 (`!s p c f:real^M->real^N.
        f IN lspace s p ==> (\x. c % f x) IN lspace s p`,
  REPEAT GEN_TAC THEN REWRITE_TAC[lspace; IN_ELIM_THM] THEN
  SIMP_TAC[NORM_MUL; RPOW_MUL; NORM_POS_LE; LIFT_CMUL] THEN
  SIMP_TAC[MEASURABLE_ON_CMUL; INTEGRABLE_CMUL]);;

let LSPACE_NEG = prove
 (`!s p f:real^M->real^N. f IN lspace s p ==> (\x. --(f x)) IN lspace s p`,
  REWRITE_TAC[VECTOR_ARITH `--x:real^N = --(&1) % x`; LSPACE_CMUL]);;

let LSPACE_ADD = prove
 (`!s p f g:real^M->real^N.
      &0 <= p /\ f IN lspace s p /\ g IN lspace s p
      ==> (\x. f(x) + g(x)) IN lspace s p`,
  REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT] THEN ASM_CASES_TAC `p = &0` THEN
  ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[LSPACE_ZERO] THEN
    ASM_CASES_TAC `measurable(s:real^M->bool)` THEN
    ASM_REWRITE_TAC[NOT_IN_EMPTY; IN_ELIM_THM; MEASURABLE_ON_ADD];
    ALL_TAC] THEN
  REWRITE_TAC[lspace; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_ON_ADD] THEN
  MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
  EXISTS_TAC `\x. lift(&2 rpow p * (norm((f:real^M->real^N) x) rpow p +
                                    norm((g:real^M->real^N) x) rpow p))` THEN
  REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
   [SUBGOAL_THEN
     `(\x:real^M. lift(norm(f x + g x:real^N) rpow p)) =
      (lift o (\y. y rpow p) o drop) o (\x. lift(norm(f x + g x)))`
    SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; LIFT_DROP]; ALL_TAC] THEN
    MATCH_MP_TAC MEASURABLE_ON_COMPOSE_CONTINUOUS_0 THEN REPEAT CONJ_TAC THENL
     [MATCH_MP_TAC MEASURABLE_ON_NORM THEN
      MATCH_MP_TAC MEASURABLE_ON_ADD THEN ASM_REWRITE_TAC[];
      ONCE_REWRITE_TAC[GSYM IMAGE_LIFT_UNIV] THEN
      REWRITE_TAC[GSYM REAL_CONTINUOUS_ON] THEN
      MATCH_MP_TAC REAL_CONTINUOUS_ON_RPOW THEN ASM_REAL_ARITH_TAC;
      ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ] THEN
      REWRITE_TAC[LIFT_NUM]];
    REWRITE_TAC[LIFT_CMUL; LIFT_ADD] THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN
    MATCH_MP_TAC INTEGRABLE_ADD THEN ASM_REWRITE_TAC[];
    X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
    REWRITE_TAC[NORM_LIFT; REAL_ABS_NORM; LIFT_DROP] THEN
    MATCH_MP_TAC(REAL_ARITH
     `(&0 <= norm(f + g:real^N) rpow p /\ &0 <= norm f /\ &0 <= norm g /\
       norm(f + g) rpow p <= (norm f + norm g) rpow p) /\
      (&0 <= norm f /\ &0 <= norm g ==> (norm f + norm g) rpow p <= e)
      ==> abs(norm(f + g) rpow p) <= e`) THEN
    CONJ_TAC THENL
     [ASM_SIMP_TAC[NORM_POS_LE; RPOW_POS_LE; RPOW_LE2; NORM_TRIANGLE; RPOW_LE2;
                   REAL_LT_IMP_LE];
      SPEC_TAC(`norm((g:real^M->real^N) x)`,`z:real`) THEN
      SPEC_TAC(`norm((f:real^M->real^N) x)`,`w:real`) THEN
      MATCH_MP_TAC REAL_WLOG_LE THEN
      CONJ_TAC THENL [MESON_TAC[REAL_ADD_SYM]; ALL_TAC] THEN
      REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
      EXISTS_TAC `(&2 * z) rpow p` THEN CONJ_TAC THENL
       [MATCH_MP_TAC RPOW_LE2 THEN ASM_REAL_ARITH_TAC;
        ASM_SIMP_TAC[RPOW_MUL] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
        ASM_SIMP_TAC[REAL_LE_ADDL; RPOW_POS_LE; REAL_POS]]]]);;

let LSPACE_SUB = prove
 (`!s p f g:real^M->real^N.
      &0 <= p /\ f IN lspace s p /\ g IN lspace s p
      ==> (\x. f(x) - g(x)) IN lspace s p`,
  SIMP_TAC[VECTOR_SUB; LSPACE_ADD; LSPACE_NEG]);;

let LSPACE_IMP_INTEGRABLE = prove
 (`!s p f. f IN lspace s p ==> (\x. lift(norm(f x) rpow p)) integrable_on s`,
  SIMP_TAC[lspace; IN_ELIM_THM]);;

let LSPACE_NORM = prove
 (`!s p f. f IN lspace s p ==> (\x. lift(norm(f x))) IN lspace s p`,
  REWRITE_TAC[lspace; IN_ELIM_THM] THEN
  SIMP_TAC[NORM_LIFT; REAL_ABS_NORM; MEASURABLE_ON_NORM]);;

let LSPACE_VSUM = prove
 (`!s p f:A->real^M->real^N t.
        &0 < p /\ FINITE t /\ (!i. i IN t ==> (f i) IN lspace s p)
        ==> (\x. vsum t (\i. f i x)) IN lspace s p`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; LSPACE_0; REAL_LT_IMP_NZ] THEN
  ASM_SIMP_TAC[LSPACE_ADD; REAL_LT_IMP_LE; ETA_AX; IN_INSERT]);;

let LSPACE_MAX = prove
 (`!s p k f:real^M->real^N g:real^M->real^N.
      f IN lspace s p /\ g IN lspace s p /\ &0 < p
      ==> ((\x. lambda i. max (f x$i) (g x$i)):real^M->real^N) IN lspace s p`,
  REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[MEASURABLE_ON_MAX] THEN
  MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
  EXISTS_TAC
   `\x. lift(&(dimindex(:N)) rpow p *
             max (norm((f:real^M->real^N) x) rpow p)
                 (norm((g:real^M->real^N) x) rpow p))` THEN
  ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM;
               MEASURABLE_ON_MAX] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[LIFT_CMUL] THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN
    MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE THEN
    MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_MAX_1 THEN
    CONJ_TAC THEN MATCH_MP_TAC NONNEGATIVE_ABSOLUTELY_INTEGRABLE THEN
    ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
    REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP] THEN
    SIMP_TAC[RPOW_POS_LE; NORM_POS_LE];
    X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
    ASM_SIMP_TAC[REAL_MAX_RPOW; NORM_POS_LE; REAL_LT_IMP_LE] THEN
    REWRITE_TAC[GSYM RPOW_MUL; NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM] THEN
    REWRITE_TAC[LIFT_DROP] THEN MATCH_MP_TAC RPOW_LE2 THEN
    ASM_SIMP_TAC[REAL_LT_IMP_LE; NORM_POS_LE] THEN
    W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
    GEN_REWRITE_TAC
      (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN
    MATCH_MP_TAC SUM_BOUND THEN
    SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; LAMBDA_BETA] THEN
    REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
     `abs(x) <= y /\ abs(x') <= y' ==> abs(max x x') <= max y y'`) THEN
    ASM_SIMP_TAC[COMPONENT_LE_NORM]]);;

let LSPACE_MIN = prove
 (`!s p k f:real^M->real^N g:real^M->real^N.
      f IN lspace s p /\ g IN lspace s p /\ &0 < p
      ==> ((\x. lambda i. min (f x$i) (g x$i)):real^M->real^N) IN lspace s p`,
  REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[MEASURABLE_ON_MIN] THEN
  MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
  EXISTS_TAC
   `\x. lift(&(dimindex(:N)) rpow p *
             max (norm((f:real^M->real^N) x) rpow p)
                 (norm((g:real^M->real^N) x) rpow p))` THEN
  ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM;
               MEASURABLE_ON_MIN] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[LIFT_CMUL] THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN
    MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE THEN
    MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_MAX_1 THEN
    CONJ_TAC THEN MATCH_MP_TAC NONNEGATIVE_ABSOLUTELY_INTEGRABLE THEN
    ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
    REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP] THEN
    SIMP_TAC[RPOW_POS_LE; NORM_POS_LE];
    X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
    ASM_SIMP_TAC[REAL_MAX_RPOW; NORM_POS_LE; REAL_LT_IMP_LE] THEN
    REWRITE_TAC[GSYM RPOW_MUL; NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM] THEN
    REWRITE_TAC[LIFT_DROP] THEN MATCH_MP_TAC RPOW_LE2 THEN
    ASM_SIMP_TAC[REAL_LT_IMP_LE; NORM_POS_LE] THEN
    W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
    GEN_REWRITE_TAC
      (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN
    MATCH_MP_TAC SUM_BOUND THEN
    SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; LAMBDA_BETA] THEN
    REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
     `abs(x) <= y /\ abs(x') <= y' ==> abs(min x x') <= max y y'`) THEN
    ASM_SIMP_TAC[COMPONENT_LE_NORM]]);;

let LSPACE_BOUNDED_MEASURABLE = prove
 (`!s p f:real^M->real^N g:real^M->real^P.
        &0 < p /\ f measurable_on s /\ g IN lspace s p /\
        (!x. x IN s ==> norm(f x) <= norm(g x))
        ==> f IN lspace s p`,
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[lspace; IN_ELIM_THM] THEN
  MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
  EXISTS_TAC `\x. lift(norm((g:real^M->real^P) x) rpow p)` THEN
  ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE] THEN
  ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[NORM_LIFT; LIFT_DROP] THEN
  REWRITE_TAC[REAL_ABS_RPOW; REAL_ABS_NORM] THEN
  ASM_SIMP_TAC[RPOW_LE2; REAL_LT_IMP_LE; NORM_POS_LE]);;

let LSPACE_BOUNDED_MEASURABLE_SIMPLE = prove
 (`!s p f:real^M->real^N.
        &0 < p /\ f measurable_on s /\ measurable s /\ bounded(IMAGE f s)
        ==> f IN lspace s p`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(INST_TYPE [`:1`,`:P`] LSPACE_BOUNDED_MEASURABLE) THEN
  MATCH_MP_TAC(MESON[] `(?x. P(\a. lift x)) ==> (?x. P x)`) THEN
  ASM_SIMP_TAC[LSPACE_CONST; NORM_LIFT] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN
  MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN
  SIMP_TAC[real_abs; REAL_LT_IMP_LE]);;

let LSPACE_INTEGRABLE_PRODUCT = prove
 (`!s p q f:real^M->real^N g:real^M->real^N.
        &0 < p /\ &0 < q /\ inv(p) + inv(q) = &1 /\
        f IN lspace s p /\ g IN lspace s q
        ==> (\x. lift(norm(f x) * norm(g x))) integrable_on s`,
  REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
  EXISTS_TAC `\x. lift(norm((f:real^M->real^N) x) rpow p / p) +
                  lift(norm((g:real^M->real^N) x) rpow q / q)` THEN
  REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
   [REWRITE_TAC[LIFT_CMUL] THEN
    GEN_REWRITE_TAC (LAND_CONV o ABS_CONV o LAND_CONV)
        [GSYM LIFT_DROP] THEN
    MATCH_MP_TAC MEASURABLE_ON_DROP_MUL THEN
    CONJ_TAC THEN MATCH_MP_TAC MEASURABLE_ON_NORM THEN ASM_REWRITE_TAC[];
    MATCH_MP_TAC INTEGRABLE_ADD THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN
    REWRITE_TAC[LIFT_CMUL] THEN CONJ_TAC THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN
    ASM_REWRITE_TAC[];
    REWRITE_TAC[NORM_LIFT; REAL_ABS_MUL; REAL_ABS_NORM; LIFT_DROP;
                DROP_ADD] THEN
    REPEAT STRIP_TAC THEN MATCH_MP_TAC YOUNG_INEQUALITY THEN
    ASM_REWRITE_TAC[NORM_POS_LE]]);;

let LSPACE_1 = prove
 (`!f:real^M->real^N s. f IN lspace s (&1) <=> f absolutely_integrable_on s`,
  REWRITE_TAC[ABSOLUTELY_INTEGRABLE_MEASURABLE; lspace; IN_ELIM_THM] THEN
  REWRITE_TAC[RPOW_POW; REAL_POW_1]);;

let LSPACE_MONO = prove
 (`!f:real^M->real^N s p q.
        f IN lspace s q /\ measurable s /\ &0 < p /\ p <= q
        ==> f IN lspace s p`,
  REWRITE_TAC[lspace; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
  EXISTS_TAC `\x. lift(max (&1) (norm((f:real^M->real^N) x) rpow q))` THEN
  ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM] THEN CONJ_TAC THENL
   [MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE THEN
    MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_MAX_1 THEN
    CONJ_TAC THEN MATCH_MP_TAC NONNEGATIVE_ABSOLUTELY_INTEGRABLE THEN
    ASM_SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; INTEGRABLE_ON_CONST] THEN
    REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP] THEN
    SIMP_TAC[RPOW_POS_LE; NORM_POS_LE; REAL_POS];
    X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
    REWRITE_TAC[NORM_LIFT; LIFT_DROP; REAL_ABS_RPOW; REAL_ABS_NORM] THEN
    DISJ_CASES_TAC(ISPECL [`&1`; `norm((f:real^M->real^N) x)`] REAL_LE_TOTAL)
    THENL
     [MATCH_MP_TAC(REAL_ARITH `x <= y ==> x <= max z y`) THEN
      MATCH_MP_TAC RPOW_MONO_LE THEN ASM_REWRITE_TAC[];
      MATCH_MP_TAC(REAL_ARITH `x <= y ==> x <= max y z`) THEN
      MATCH_MP_TAC RPOW_1_LE THEN REWRITE_TAC[NORM_POS_LE] THEN
      ASM_REAL_ARITH_TAC]]);;

let LSPACE_INCLUSION = prove
 (`!s p q. measurable s /\ &0 < p /\ p <= q
           ==> (lspace s q :(real^M->real^N)->bool) SUBSET (lspace s p)`,
  REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC LSPACE_MONO THEN EXISTS_TAC `q:real` THEN
  ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The corresponding seminorm; Hoelder and Minkowski inequalities.           *)
(* ------------------------------------------------------------------------- *)

let lnorm = new_definition
 `lnorm s p f = drop(integral s (\x. lift(norm(f x) rpow p))) rpow (inv p)`;;

let LNORM_0 = prove
 (`!s p. ~(p = &0) ==> lnorm s p (\x. vec 0) = &0`,
  REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[lnorm; NORM_0; RPOW_ZERO] THEN
  ASM_REWRITE_TAC[LIFT_NUM; INTEGRAL_0; DROP_VEC; RPOW_ZERO; REAL_INV_EQ_0]);;

let LNORM_CONST = prove
  (`!s p c:real^N.
      measurable s /\ &0 < p
      ==> lnorm s p (\x:real^M. c) = measure s rpow (inv p) * norm c`,
  SIMP_TAC[lnorm; INTEGRAL_CONST_GEN; DROP_CMUL; LIFT_DROP] THEN
  SIMP_TAC[RPOW_RPOW; NORM_POS_LE; RPOW_MUL] THEN
  SIMP_TAC[REAL_MUL_RINV; REAL_LT_IMP_NZ; RPOW_POW; REAL_POW_1]);;

let LNORM_MONO = prove
 (`!f:real^M->real^N g:real^M->real^P s t p.
        &0 <= p /\ f IN lspace s p /\ g IN lspace s p /\
        negligible t /\ (!x. x IN s DIFF t ==> norm(f x) <= norm(g x))
        ==> lnorm s p f <= lnorm s p g`,
  REWRITE_TAC[lspace; lnorm; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC RPOW_LE2 THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ] THEN
  ASM_SIMP_TAC[INTEGRAL_DROP_POS; LIFT_DROP; RPOW_POS_LE; NORM_POS_LE] THEN
  MATCH_MP_TAC INTEGRAL_DROP_LE_AE THEN
  EXISTS_TAC `t:real^M->bool` THEN ASM_REWRITE_TAC[LIFT_DROP] THEN
  ASM_SIMP_TAC[RPOW_LE2; NORM_POS_LE]);;

let LNORM_NEG = prove
 (`!s p f:real^M->real^N. lnorm s p (\x. --(f x)) = lnorm s p f`,
  REWRITE_TAC[lnorm; NORM_NEG]);;

let LNORM_MUL = prove
 (`!s p f c. f IN lspace s p /\ ~(p = &0)
             ==> lnorm s p (\x. c % f x) = abs(c) * lnorm s p f`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[lnorm; NORM_MUL; RPOW_MUL; LIFT_CMUL] THEN
  ASM_SIMP_TAC[INTEGRAL_CMUL; LSPACE_IMP_INTEGRABLE] THEN
  REWRITE_TAC[DROP_CMUL; RPOW_MUL] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN
  ASM_SIMP_TAC[RPOW_RPOW; REAL_ABS_POS; REAL_MUL_RINV] THEN
  REWRITE_TAC[RPOW_POW; REAL_POW_1]);;

let LNORM_EQ_0 = prove
 (`!s p f. ~(p = &0) /\ f IN lspace s p
           ==> (lnorm s p f = &0 <=>
                negligible {x | x IN s /\ ~(f x = vec 0)})`,
  REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[lnorm; RPOW_EQ_0; REAL_INV_EQ_0] THEN
  REWRITE_TAC[GSYM LIFT_EQ; LIFT_NUM; LIFT_DROP] THEN
  ASM_SIMP_TAC[INTEGRAL_EQ_HAS_INTEGRAL] THEN
  SIMP_TAC[HAS_INTEGRAL_NEGLIGIBLE_EQ; lift; LAMBDA_BETA; NORM_POS_LE;
           RPOW_POS_LE] THEN
  AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
  SIMP_TAC[IN_ELIM_THM; CART_EQ; LAMBDA_BETA] THEN
  REWRITE_TAC[FORALL_1; DIMINDEX_1; VEC_COMPONENT] THEN
  ASM_REWRITE_TAC[RPOW_EQ_0; NORM_EQ_0; CART_EQ; VEC_COMPONENT]);;

let LNORM_POS_LE = prove
 (`!s p f. f IN lspace s p ==> &0 <= lnorm s p f`,
  SIMP_TAC[lspace; IN_ELIM_THM; lnorm] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC RPOW_POS_LE THEN MATCH_MP_TAC INTEGRAL_DROP_POS THEN
  ASM_SIMP_TAC[LIFT_DROP; NORM_POS_LE; RPOW_POS_LE]);;

let LNORM_NORM = prove
 (`!s p f. lnorm s p (\x. lift(norm(f x))) = lnorm s p f`,
  REWRITE_TAC[lnorm; NORM_LIFT; REAL_ABS_NORM]);;

let LNORM_RPOW = prove
 (`!s p f:real^M->real^N.
        f IN lspace s p /\ ~(p = &0)
        ==> (lnorm s p f) rpow p =
            drop(integral s (\x. lift(norm(f x) rpow p)))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[lnorm] THEN
  ASM_SIMP_TAC[INTEGRAL_DROP_POS; LIFT_DROP; NORM_POS_LE; RPOW_RPOW;
               LSPACE_IMP_INTEGRABLE; RPOW_POS_LE] THEN
  ASM_SIMP_TAC[REAL_MUL_LINV; RPOW_POW; REAL_POW_1]);;

let INTEGRAL_LNORM_RPOW = prove
 (`!s p f:real^M->real^N.
        f IN lspace s p /\ ~(p = &0)
        ==> integral s (\x. lift(norm(f x) rpow p)) =
            lift((lnorm s p f) rpow p)`,
  SIMP_TAC[GSYM DROP_EQ; LIFT_DROP; LNORM_RPOW]);;

let HOELDER_INEQUALITY = prove
 (`!s p q f:real^M->real^N g:real^M->real^N.
        &0 < p /\ &0 < q /\ inv(p) + inv(q) = &1 /\
        f IN lspace s p /\ g IN lspace s q
        ==> drop(integral s (\x. lift(norm(f x) * norm(g x))))
              <= lnorm s p f * lnorm s q g`,
  MP_TAC LSPACE_INTEGRABLE_PRODUCT THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  SUBGOAL_THEN `&0 <= lnorm s p (f:real^M->real^N) /\
                &0 <= lnorm s q (g:real^M->real^N)`
  MP_TAC THENL [ASM_SIMP_TAC[LNORM_POS_LE]; REWRITE_TAC[IMP_CONJ]] THEN
  REPEAT
   (GEN_REWRITE_TAC LAND_CONV [REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN
    DISCH_THEN(DISJ_CASES_THEN2 MP_TAC ASSUME_TAC) THENL
     [ASM_SIMP_TAC[LNORM_EQ_0; REAL_LT_IMP_NZ] THEN REPEAT DISCH_TAC THEN
      MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ x = &0 ==> x <= y`) THEN
      ASM_SIMP_TAC[REAL_LE_MUL; LNORM_POS_LE; GSYM LIFT_EQ; LIFT_DROP] THEN
      ASM_SIMP_TAC[INTEGRAL_EQ_HAS_INTEGRAL; LIFT_NUM] THEN
      SIMP_TAC[HAS_INTEGRAL_NEGLIGIBLE_EQ; lift; LAMBDA_BETA; NORM_POS_LE;
               REAL_LE_MUL] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          NEGLIGIBLE_SUBSET)) THEN
      SIMP_TAC[CART_EQ; SUBSET; IN_ELIM_THM; LAMBDA_BETA] THEN
      REWRITE_TAC[DIMINDEX_1; FORALL_1; VEC_COMPONENT] THEN
      REWRITE_TAC[REAL_ENTIRE; CART_EQ; NORM_EQ_0; VEC_COMPONENT] THEN
      MESON_TAC[];
      ALL_TAC]) THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
  ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_LT_MUL] THEN
  REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN
  REWRITE_TAC[GSYM DROP_CMUL] THEN ASM_SIMP_TAC[GSYM INTEGRAL_CMUL] THEN
  REWRITE_TAC[REAL_INV_MUL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `drop(integral s
   (\x. lift(norm(inv(lnorm s p f) % (f:real^M->real^N) x) rpow p / p +
             norm(inv(lnorm s q g) % (g:real^M->real^N) x) rpow q / q)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC INTEGRAL_DROP_LE THEN
    ASM_SIMP_TAC[LIFT_DROP; INTEGRABLE_CMUL] THEN CONJ_TAC THENL
     [REWRITE_TAC[LIFT_ADD] THEN MATCH_MP_TAC INTEGRABLE_ADD THEN
      REWRITE_TAC[NORM_MUL; RPOW_MUL] THEN
      REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN
      ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE; INTEGRABLE_CMUL; LIFT_CMUL];
      REWRITE_TAC[DROP_CMUL; LIFT_DROP; NORM_MUL; REAL_ABS_INV] THEN
      ASM_SIMP_TAC[real_abs; LNORM_POS_LE; REAL_LT_IMP_NZ] THEN
      ONCE_REWRITE_TAC[REAL_ARITH
       `(a * b) * (c * d:real) = (a * c) * (b * d)`] THEN
      REPEAT STRIP_TAC THEN MATCH_MP_TAC YOUNG_INEQUALITY THEN
      ASM_SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; LNORM_POS_LE; REAL_LE_INV_EQ]];
    REWRITE_TAC[LIFT_ADD; NORM_MUL; LIFT_CMUL; RPOW_MUL] THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN
    REWRITE_TAC[LIFT_CMUL; VECTOR_MUL_ASSOC] THEN
    ASM_SIMP_TAC[INTEGRAL_ADD; INTEGRABLE_CMUL; INTEGRAL_CMUL;
                 LSPACE_IMP_INTEGRABLE; REAL_ABS_INV] THEN
    ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> abs x = x`; RPOW_INV] THEN
    ASM_SIMP_TAC[INTEGRAL_LNORM_RPOW; REAL_LT_IMP_NZ] THEN
    REWRITE_TAC[DROP_ADD; DROP_CMUL; LIFT_DROP] THEN
    ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_LT_IMP_NZ;
                 RPOW_POS_LT] THEN
    ASM_REWRITE_TAC[REAL_MUL_RID; REAL_LE_REFL]]);;

let HOELDER_INEQUALITY_FULL = prove
 (`!s p q f:real^M->real^N g:real^M->real^N.
        &0 < p /\ &0 < q /\ inv(p) + inv(q) = &1 /\
        f IN lspace s p /\ g IN lspace s q
        ==> (\x. lift(norm(f x) * norm(g x))) integrable_on s /\
            drop(integral s (\x. lift(norm(f x) * norm(g x))))
              <= lnorm s p f * lnorm s q g`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP LSPACE_INTEGRABLE_PRODUCT) THEN
  ASM_SIMP_TAC[HOELDER_INEQUALITY]);;

let LNORM_TRIANGLE = prove
 (`!s p f:real^M->real^N g:real^M->real^N.
        f IN lspace s p /\ g IN lspace s p /\ &1 <= p
        ==> lnorm s p (\x. f x + g x) <= lnorm s p f + lnorm s p g`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = &1` THENL
   [FIRST_X_ASSUM SUBST_ALL_TAC THEN
    ASM_SIMP_TAC[lnorm;
      MESON[RPOW_POW; REAL_POW_1; REAL_INV_1] `x rpow (inv(&1)) = x`;
      GSYM DROP_ADD; GSYM INTEGRAL_ADD; LSPACE_IMP_INTEGRABLE] THEN
    MATCH_MP_TAC INTEGRAL_DROP_LE_MEASURABLE THEN
    ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE; INTEGRABLE_ADD] THEN
    REWRITE_TAC[RPOW_POW; REAL_POW_1; LIFT_DROP; DROP_ADD] THEN
    REWRITE_TAC[NORM_POS_LE; NORM_TRIANGLE] THEN
    MATCH_MP_TAC MEASURABLE_ON_NORM THEN MATCH_MP_TAC MEASURABLE_ON_ADD THEN
    RULE_ASSUM_TAC(REWRITE_RULE[lspace; IN_ELIM_THM]) THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `&1 < p` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  SUBGOAL_THEN `&0 <= lnorm s p (\x. (f:real^M->real^N) x + g x)` MP_TAC THENL
   [ASM_SIMP_TAC[LNORM_POS_LE; LSPACE_ADD; REAL_ARITH `&1 <= p ==> &0 <= p`];
    GEN_REWRITE_TAC LAND_CONV [REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN
    STRIP_TAC THEN ASM_SIMP_TAC[LNORM_POS_LE; REAL_LE_ADD]] THEN
  MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
  EXISTS_TAC `lnorm s p (\x. (f:real^M->real^N) x + g x) rpow (p - &1)` THEN
  ASM_SIMP_TAC[RPOW_POS_LT] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_POW_1] THEN
  ASM_SIMP_TAC[GSYM RPOW_POW; GSYM RPOW_ADD] THEN
  ASM_SIMP_TAC[LSPACE_ADD; LNORM_RPOW; REAL_ARITH `p - &1 + &1 = p`;
               REAL_ARITH `&1 <= p ==> &0 <= p /\ ~(p = &0)`] THEN
  CONV_TAC(LAND_CONV(SUBS_CONV[REAL_ARITH `p = &1 + (p - &1)`])) THEN
  ASM_SIMP_TAC[RPOW_ADD_ALT; NORM_POS_LE; REAL_ARITH
   `&1 <= p ==> &1 + p - &1 = &0 ==> p - &1 = &0`] THEN
  REWRITE_TAC[RPOW_POW; REAL_POW_1] THEN
  MP_TAC(ISPECL
   [`s:real^M->bool`; `p:real`; `p / (p - &1)`;
    `\x. lift(norm((g:real^M->real^N) x))`;
    `\x. lift(norm((f:real^M->real^N)(x) + g(x)) rpow (p - &1))`]
        HOELDER_INEQUALITY_FULL) THEN
  MP_TAC(ISPECL
   [`s:real^M->bool`; `p:real`; `p / (p - &1)`;
    `\x. lift(norm((f:real^M->real^N) x))`;
    `\x. lift(norm((f:real^M->real^N)(x) + g(x)) rpow (p - &1))`]
        HOELDER_INEQUALITY_FULL) THEN
  ASM_SIMP_TAC[LSPACE_NORM; REAL_LT_DIV; REAL_SUB_LT;
               REAL_ARITH `&1 < p ==> &0 < p`;
               REAL_FIELD `&1 < p ==> inv(p) + inv(p / (p - &1)) = &1`] THEN
  MATCH_MP_TAC(TAUT
    `p /\ (q ==> r ==> s) ==> (p ==> q) ==> (p ==> r) ==> s`) THEN
  CONJ_TAC THENL
   [SIMP_TAC[lspace; IN_ELIM_THM; NORM_LIFT; REAL_ABS_NORM; REAL_ABS_RPOW;
             RPOW_RPOW; NORM_POS_LE] THEN
    ASM_SIMP_TAC[REAL_FIELD `&1 < p ==> (p - &1) * p / (p - &1) = p`] THEN
    ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE; LSPACE_ADD;
                 REAL_ARITH `&1 < p ==> &0 <= p`] THEN
    MATCH_MP_TAC MEASURABLE_ON_LIFT_RPOW THEN
    CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN
    SUBGOAL_THEN `((\x. f x + g x):real^M->real^N) IN lspace s p` MP_TAC THENL
     [ASM_SIMP_TAC[LSPACE_ADD; REAL_ARITH `&1 < p ==> &0 <= p`];
      SIMP_TAC[lspace; IN_ELIM_THM; MEASURABLE_ON_NORM]];
    ALL_TAC] THEN
  REWRITE_TAC[NORM_LIFT; REAL_ABS_NORM; LNORM_NORM; REAL_ABS_RPOW] THEN
  MATCH_MP_TAC(TAUT
   `(p1 /\ p2 ==> b1 /\ b2 ==> c) ==> p1 /\ b1 ==> p2 /\ b2 ==> c`) THEN
  STRIP_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_ADD2) THEN
  ASM_SIMP_TAC[GSYM DROP_ADD; GSYM INTEGRAL_ADD] THEN
  SUBGOAL_THEN
   `lnorm s (p / (p - &1)) (\x. lift(norm (f x + g x) rpow (p - &1))) =
    lnorm s p (\x. (f:real^M->real^N) x + g x) rpow (p - &1)`
  SUBST1_TAC THENL
   [REWRITE_TAC[lnorm] THEN
    ASM_SIMP_TAC[RPOW_RPOW; INTEGRAL_DROP_POS; LIFT_DROP; NORM_POS_LE;
                 NORM_LIFT; REAL_ABS_NORM; REAL_ABS_RPOW] THEN
    ASM_SIMP_TAC[REAL_FIELD `&1 < p ==> (p - &1) * p / (p - &1) = p`] THEN
    REWRITE_TAC[REAL_INV_DIV] THEN REWRITE_TAC[real_div] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_MP_TAC(GSYM RPOW_RPOW) THEN
    MATCH_MP_TAC INTEGRAL_DROP_POS THEN
    ASM_SIMP_TAC[LIFT_DROP; RPOW_POS_LE; NORM_POS_LE; LSPACE_IMP_INTEGRABLE;
                 LSPACE_ADD; REAL_ARITH `&1 < p ==> &0 <= p`];
    ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH
   `i2 <= i1 ==> i1 <= f * y + g * y ==> i2 <= y * (f + g)`) THEN
  MATCH_MP_TAC INTEGRAL_DROP_LE_MEASURABLE THEN
  ASM_SIMP_TAC[INTEGRABLE_ADD] THEN CONJ_TAC THENL
   [MATCH_MP_TAC MEASURABLE_ON_LIFT_MUL THEN CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC MEASURABLE_ON_LIFT_RPOW THEN
      CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC]] THEN
    (SUBGOAL_THEN `((\x. f x + g x):real^M->real^N) IN lspace s p` MP_TAC THENL
      [ASM_SIMP_TAC[LSPACE_ADD; REAL_ARITH `&1 < p ==> &0 <= p`];
       SIMP_TAC[lspace; IN_ELIM_THM; MEASURABLE_ON_NORM]]);
    REWRITE_TAC[GSYM REAL_ADD_RDISTRIB; LIFT_DROP; DROP_ADD] THEN
    SIMP_TAC[NORM_TRIANGLE; REAL_LE_RMUL; NORM_POS_LE; RPOW_POS_LE;
             REAL_LE_MUL]]);;

let VSUM_LNORM = prove
 (`!s p f:A->real^M->real^N t.
        &1 <= p /\ FINITE t /\ (!i. i IN t ==> (f i) IN lspace s p)
        ==> lnorm s p (\x. vsum t (\i. f i x)) <= sum t (\i. lnorm s p (f i))`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; LNORM_0; REAL_LE_REFL;
               REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN
  MAP_EVERY X_GEN_TAC [`i:A`; `u:A->bool`] THEN
  REWRITE_TAC[IN_INSERT] THEN
  DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
  ASM_SIMP_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  MATCH_MP_TAC(REAL_ARITH `a <= x + y ==> y <= z ==> a <= x + z`) THEN
  W(MP_TAC o PART_MATCH (lhand o rand) LNORM_TRIANGLE o lhand o snd) THEN
  ASM_SIMP_TAC[ETA_AX; LSPACE_VSUM; REAL_ARITH `&1 <= p ==> &0 < p`]);;

(* ------------------------------------------------------------------------- *)
(* Completeness (Riesz-Fischer).                                             *)
(* ------------------------------------------------------------------------- *)

let LSPACE_SUMMABLE_UNIV = prove
 (`!f:num->real^M->real^N p s.
        &1 <= p /\
        (!i. f i IN lspace s p) /\
        real_summable (:num) (\i. lnorm s p (f i))
        ==> ?g. g IN lspace s p /\
                !e. &0 < e  ==> eventually
                                  (\n. lnorm s p (\x. vsum (0..n) (\i. f i x) -
                                                      g(x)) < e)
                                  sequentially`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_SUMS_INFSUM]) THEN
  ABBREV_TAC `M = real_infsum (:num) (\i. lnorm s p (f i:real^M->real^N))` THEN
  DISCH_TAC THEN
  ABBREV_TAC
   `g = \n x:real^M. vsum(0..n) (\i. lift(norm(f i x:real^N)))` THEN
  SUBGOAL_THEN `!n:num. lnorm s p (g n:real^M->real^1) <= M` ASSUME_TAC THENL
   [GEN_TAC THEN EXPAND_TAC "g" THEN
    W(MP_TAC o PART_MATCH (lhand o rand) VSUM_LNORM o lhand o snd) THEN
    ASM_SIMP_TAC[FINITE_NUMSEG; LSPACE_NORM; ETA_AX] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
    REWRITE_TAC[LNORM_NORM] THEN EXPAND_TAC "M" THEN
    GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SET_RULE `s = UNIV INTER s`] THEN
    REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC REAL_PARTIAL_SUMS_LE_INFSUM THEN
    ASM_SIMP_TAC[LNORM_POS_LE];
    ALL_TAC] THEN
  SUBGOAL_THEN `!n:num. (g n:real^M->real^1) IN lspace s p` ASSUME_TAC THENL
   [GEN_TAC THEN EXPAND_TAC "g" THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC LSPACE_VSUM THEN
    CONJ_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[FINITE_NUMSEG]] THEN
    ASM_SIMP_TAC[LSPACE_NORM; ETA_AX];
    ALL_TAC] THEN
  SUBGOAL_THEN `!n:num x:real^M. &0 <= drop(g n x)` ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN EXPAND_TAC "g" THEN
    SIMP_TAC[DROP_VSUM; FINITE_NUMSEG; LIFT_DROP] THEN
    MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN
    REWRITE_TAC[o_DEF; LIFT_DROP; NORM_POS_LE];
    ALL_TAC] THEN
  MP_TAC(ISPECL [`\i:num x:real^M. lift(drop(g i x) rpow p)`; `s:real^M->bool`]
        BEPPO_LEVI_MONOTONE_CONVERGENCE_INCREASING) THEN
  REWRITE_TAC[LIFT_DROP] THEN ANTS_TAC THENL
   [MATCH_MP_TAC(TAUT `b /\ a /\ c ==> a /\ b /\ c`) THEN CONJ_TAC THENL
     [REPEAT STRIP_TAC THEN EXPAND_TAC "g" THEN
      SIMP_TAC[DROP_VSUM; FINITE_NUMSEG] THEN
      MATCH_MP_TAC RPOW_LE2 THEN REPEAT CONJ_TAC THENL
       [MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN
        REWRITE_TAC[o_DEF; LIFT_DROP; NORM_POS_LE];
        SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0; REAL_LE_ADDR] THEN
        REWRITE_TAC[o_DEF; LIFT_DROP; NORM_POS_LE];
        ASM_REAL_ARITH_TAC];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `!k x. drop((g:num->real^M->real^1) k x) = norm(g k x)`
     (fun th -> REWRITE_TAC[th])
    THENL
     [REPEAT GEN_TAC THEN REWRITE_TAC[NORM_REAL; GSYM drop] THEN
      ASM_REWRITE_TAC[real_abs];
      ALL_TAC] THEN
    ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE; ETA_AX] THEN
    REWRITE_TAC[bounded] THEN EXISTS_TAC `M rpow p` THEN
      REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `n:num` THEN
      DISCH_THEN(K ALL_TAC) THEN
    ASM_SIMP_TAC[INTEGRAL_LNORM_RPOW; ETA_AX;
                 REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN
    REWRITE_TAC[NORM_LIFT; REAL_ABS_RPOW] THEN
    MATCH_MP_TAC RPOW_LE2 THEN
    ASM_SIMP_TAC[REAL_ARITH `&1 <= p ==> &0 <= p`] THEN
    MATCH_MP_TAC(REAL_ARITH
     `&0 <= x /\ x <= a ==> &0 <= abs x /\ abs x <= a`) THEN
    ASM_SIMP_TAC[LNORM_POS_LE];
    ALL_TAC] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`hp:real^M->real^1`; `k:real^M->bool`] THEN
  STRIP_TAC THEN
  ABBREV_TAC `h:real^M->real^1 = \x. lift(drop(hp x) rpow (inv p))` THEN
  SUBGOAL_THEN
   `!x. x IN s DIFF k ==> ((\i. g i x) --> ((h:real^M->real^1) x)) sequentially`
  ASSUME_TAC THENL
   [X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
    MP_TAC(ISPECL
     [`lift o (\x. x rpow (inv p)) o drop`;
      `sequentially`; `\i. lift(drop((g:num->real^M->real^1) i x) rpow p)`;
      `(hp:real^M->real^1) x`]
        LIM_CONTINUOUS_FUNCTION) THEN
    ASM_SIMP_TAC[] THEN ANTS_TAC THENL
     [GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN
      REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN
      MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN
      REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    EXPAND_TAC "h" THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN
    ASM_SIMP_TAC[RPOW_RPOW; REAL_MUL_RINV;
                 REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN
    REWRITE_TAC[RPOW_POW; REAL_POW_1; LIFT_DROP; ETA_AX];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!x. x IN s DIFF k ==> summable (:num) (\i. (f:num->real^M->real^N) i x)`
  MP_TAC THENL
   [REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_LIFT_ABSCONV_IMP_CONV THEN
    REWRITE_TAC[summable] THEN EXISTS_TAC `(h:real^M->real^1) x` THEN
    REWRITE_TAC[sums; INTER_UNIV] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM]) THEN
    ASM_SIMP_TAC[];
    ALL_TAC] THEN
  REWRITE_TAC[summable] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[SKOLEM_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real^M->real^N` THEN
  DISCH_TAC THEN
  SUBGOAL_THEN
   `!n x. x IN s DIFF k
          ==> norm(vsum (0..n) (\i. (f:num->real^M->real^N) i x)) <= drop(h x)`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    MATCH_MP_TAC VSUM_NORM_TRIANGLE THEN
    REWRITE_TAC[FINITE_NUMSEG] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM LIFT_DROP] THEN
    SIMP_TAC[LIFT_SUM; FINITE_NUMSEG] THEN
    MATCH_MP_TAC(ISPEC `sequentially` LIM_DROP_LBOUND) THEN
    EXISTS_TAC `\n. vsum (0..n)
                   (\i. lift(norm((f:num->real^M->real^N) i x)))` THEN
    REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL
     [RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM]) THEN ASM_SIMP_TAC[IN_DIFF];
      REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `n:num` THEN
      X_GEN_TAC `m:num` THEN DISCH_TAC THEN
      SIMP_TAC[DROP_VSUM; FINITE_NUMSEG; o_DEF; LIFT_DROP] THEN
      MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN
      REWRITE_TAC[SUBSET; IN_NUMSEG; NORM_POS_LE; FINITE_NUMSEG] THEN
      UNDISCH_TAC `n:num <= m` THEN ARITH_TAC];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!x. x IN s DIFF k ==> norm((l:real^M->real^N) x) <= drop(h x)`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN
    EXISTS_TAC `\n. vsum ((:num) INTER (0..n))
                         (\i. (f:num->real^M->real^N) i x)` THEN
    ASM_SIMP_TAC[IN_DIFF; GSYM sums; TRIVIAL_LIMIT_SEQUENTIALLY] THEN
    MATCH_MP_TAC ALWAYS_EVENTUALLY THEN ASM_SIMP_TAC[INTER_UNIV];
    ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [REWRITE_TAC[lspace; IN_ELIM_THM] THEN
    MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
     [MATCH_MP_TAC MEASURABLE_ON_LIMIT THEN
      EXISTS_TAC `\n x. vsum (0..n) (\i. (f:num->real^M->real^N) i x)` THEN
      EXISTS_TAC `k:real^M->bool` THEN ASM_REWRITE_TAC[] THEN
      ONCE_REWRITE_TAC[SET_RULE `0..n = UNIV INTER (0..n)`] THEN
      ASM_REWRITE_TAC[GSYM sums] THEN GEN_TAC THEN
      REWRITE_TAC[INTER_UNIV] THEN MATCH_MP_TAC MEASURABLE_ON_VSUM THEN
      RULE_ASSUM_TAC(REWRITE_RULE[lspace; IN_ELIM_THM]) THEN
      ASM_REWRITE_TAC[FINITE_NUMSEG];
      DISCH_TAC] THEN
    MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
    EXISTS_TAC
     `\x. if x IN k then lift(norm(l x:real^N) rpow p)
          else (hp:real^M->real^1) x` THEN
    ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM; ETA_AX;
                 REAL_ARITH `&1 <= p ==> &0 < p`] THEN
    CONJ_TAC THENL
     [UNDISCH_TAC `(hp:real^M->real^1) integrable_on s` THEN
      MATCH_MP_TAC INTEGRABLE_SPIKE THEN
      EXISTS_TAC `k:real^M->bool` THEN ASM_SIMP_TAC[IN_DIFF];
      REWRITE_TAC[NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM] THEN
      GEN_TAC THEN DISCH_TAC THEN COND_CASES_TAC THEN
      REWRITE_TAC[LIFT_DROP; REAL_LE_REFL] THEN
      MATCH_MP_TAC REAL_LE_TRANS THEN
      EXISTS_TAC `drop(h(x:real^M)) rpow p` THEN CONJ_TAC THENL
       [MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[NORM_POS_LE; IN_DIFF] THEN
        ASM_REAL_ARITH_TAC;
        EXPAND_TAC "h" THEN REWRITE_TAC[LIFT_DROP] THEN
        MATCH_MP_TAC(REAL_ARITH `x = y pow 1 ==> x <= y`) THEN
        MATCH_MP_TAC EQ_TRANS THEN
        EXISTS_TAC `drop(hp(x:real^M)) rpow (inv p * p)` THEN CONJ_TAC THENL
         [MATCH_MP_TAC RPOW_RPOW THEN
          MATCH_MP_TAC(ISPEC `sequentially` LIM_DROP_LBOUND) THEN
          EXISTS_TAC `\k. lift(drop((g:num->real^M->real^1) k x) rpow p)` THEN
          ASM_SIMP_TAC[IN_DIFF; TRIVIAL_LIMIT_SEQUENTIALLY] THEN
          ASM_SIMP_TAC[LIFT_DROP; RPOW_POS_LE; EVENTUALLY_TRUE];
          ASM_SIMP_TAC[REAL_MUL_LINV; REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN
          REWRITE_TAC[RPOW_POW]]]];
    DISCH_TAC] THEN
  SUBGOAL_THEN `!x:real^M. x IN s DIFF k ==> &0 <= drop(h x)` ASSUME_TAC THENL
   [ASM_MESON_TAC[REAL_LE_TRANS; NORM_POS_LE]; ALL_TAC] THEN
  SUBGOAL_THEN `!x:real^M. x IN s DIFF k ==> &0 <= drop(hp x)` ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    MATCH_MP_TAC(ISPEC `sequentially` LIM_DROP_LBOUND) THEN
    EXISTS_TAC `\k. lift(drop((g:num->real^M->real^1) k x) rpow p)` THEN
    ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; LIFT_DROP; RPOW_POS_LE] THEN
    REWRITE_TAC[EVENTUALLY_TRUE];
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`\n x. lift(norm(vsum (0..n) (\i. (f:num->real^M->real^N) i x) - l x)
                    rpow p)`;
    `(\x. vec 0):real^M->real^1`;
    `\x:real^M. &2 rpow p % lift(drop(h x) rpow p)`;
    `s DIFF k:real^M->bool`]
   DOMINATED_CONVERGENCE) THEN
  REWRITE_TAC[lnorm; INTEGRAL_0; REAL_INTEGRAL_0; INTEGRABLE_0] THEN
  ANTS_TAC THENL
   [REPEAT CONJ_TAC THENL
     [X_GEN_TAC `n:num` THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] INTEGRABLE_SPIKE_SET) THEN
      EXISTS_TAC `s:real^M->bool` THEN CONJ_TAC THENL
       [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          NEGLIGIBLE_SUBSET)) THEN SET_TAC[];
        MATCH_MP_TAC LSPACE_IMP_INTEGRABLE THEN
        MATCH_MP_TAC LSPACE_SUB THEN ASM_REWRITE_TAC[ETA_AX] THEN
        CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
        MATCH_MP_TAC LSPACE_VSUM THEN
        ASM_REWRITE_TAC[FINITE_NUMSEG] THEN ASM_REAL_ARITH_TAC];
      MATCH_MP_TAC INTEGRABLE_CMUL THEN EXPAND_TAC "h" THEN
      REWRITE_TAC[LIFT_DROP] THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] INTEGRABLE_SPIKE) THEN
      EXISTS_TAC `hp:real^M->real^1` THEN
      EXISTS_TAC `{}:real^M->bool` THEN
      ASM_SIMP_TAC[DIFF_EMPTY; NEGLIGIBLE_EMPTY; RPOW_RPOW] THEN
      ASM_SIMP_TAC[REAL_MUL_LINV; REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN
      REWRITE_TAC[LIFT_DROP; RPOW_POW; REAL_POW_1] THEN
      UNDISCH_TAC `(hp:real^M->real^1) integrable_on s` THEN
      MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
        NEGLIGIBLE_SUBSET)) THEN SET_TAC[];
      REWRITE_TAC[DROP_CMUL; GSYM RPOW_MUL; LIFT_DROP] THEN
      REPEAT STRIP_TAC THEN REWRITE_TAC[NORM_REAL; GSYM drop] THEN
      REWRITE_TAC[REAL_ABS_NORM; LIFT_DROP; REAL_ABS_RPOW] THEN
      MATCH_MP_TAC RPOW_LE2 THEN REWRITE_TAC[NORM_POS_LE] THEN
      CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN
      MATCH_MP_TAC(NORM_ARITH
       `norm(x:real^N) <= a /\ norm(y) <= a ==> norm(x - y) <= &2 * a`) THEN
      ASM_SIMP_TAC[];
      X_GEN_TAC `x:real^M` THEN STRIP_TAC THEN
      MATCH_MP_TAC LIM_NULL_RPOW THEN
      CONJ_TAC THENL [REWRITE_TAC[o_DEF]; ASM_REAL_ARITH_TAC] THEN
      REWRITE_TAC[GSYM LIM_NULL_NORM] THEN REWRITE_TAC[GSYM LIM_NULL] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[sums; INTER_UNIV]) THEN
      ASM_SIMP_TAC[]];
    GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV o ABS_CONV)
     [GSYM LIFT_DROP] THEN
    DISCH_THEN(MP_TAC o MATCH_MP
     (REWRITE_RULE[IMP_CONJ; o_DEF] LIM_NULL_RPOW)) THEN
    DISCH_THEN(MP_TAC o SPEC `inv p:real`) THEN
    ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN
    ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[tendsto; DIST_0; NORM_REAL; GSYM drop; LIFT_DROP] THEN
    MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
    MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
    SUBGOAL_THEN
     `!f:real^M->real^1. integral (s DIFF k) f = integral s f`
    MP_TAC THENL [ALL_TAC; SIMP_TAC[REAL_ARITH `abs(x) < e ==> x < e`]] THEN
    GEN_TAC THEN MATCH_MP_TAC INTEGRAL_SPIKE_SET THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
      NEGLIGIBLE_SUBSET)) THEN SET_TAC[]]);;

let LSPACE_SUMMABLE = prove
 (`!f:num->real^M->real^N p s t.
        &1 <= p /\
        (!i. i IN t ==> f i IN lspace s p) /\
        real_summable t (\i. lnorm s p (f i))
        ==> ?g. g IN lspace s p /\
                ((\n. lnorm s p (\x. vsum (t INTER (0..n)) (\i. f i x) - g x))
                 ---> &0) sequentially`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUMMABLE_RESTRICT] THEN
  REWRITE_TAC[] THEN STRIP_TAC THEN
  MP_TAC(ISPECL
    [`(\n:num x. if n IN t then f n x else vec 0):num->real^M->real^N`;
     `p:real`; `s:real^M->bool`] LSPACE_SUMMABLE_UNIV) THEN
  ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
   [CONJ_TAC THENL
     [X_GEN_TAC `i:num` THEN ASM_CASES_TAC `(i:num) IN t` THEN
      ASM_SIMP_TAC[LSPACE_0; ETA_AX; REAL_ARITH `&1 <= p ==> ~(p = &0)`];
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_summable]) THEN
      REWRITE_TAC[real_summable] THEN MATCH_MP_TAC MONO_EXISTS THEN
      GEN_TAC THEN MATCH_MP_TAC EQ_IMP THEN
      AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
      REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN COND_CASES_TAC THEN
      ASM_SIMP_TAC[ETA_AX; LNORM_0; REAL_ARITH `&1 <= p ==> ~(p = &0)`]];
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^M->real^N` THEN
    ASM_CASES_TAC `(g:real^M->real^N) IN lspace s p` THEN
    ASM_REWRITE_TAC[tendsto_real] THEN
    MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
    MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
    X_GEN_TAC `n:num` THEN REWRITE_TAC[REAL_SUB_RZERO] THEN
    MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x = y ==> x < e ==> abs y < e`) THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC LNORM_POS_LE THEN MATCH_MP_TAC LSPACE_SUB THEN
      ASM_SIMP_TAC[REAL_ARITH `&1 <= p ==> &0 <= p`] THEN
      MATCH_MP_TAC LSPACE_VSUM THEN
      ASM_SIMP_TAC[FINITE_NUMSEG; REAL_ARITH `&1 <= p ==> &0 < p`] THEN
      X_GEN_TAC `i:num` THEN ASM_CASES_TAC `(i:num) IN t` THEN
      ASM_SIMP_TAC[ETA_AX; LSPACE_0; REAL_ARITH `&1 <= p ==> ~(p = &0)`];
      AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN
      X_GEN_TAC `x:real^M` THEN REWRITE_TAC[GSYM VSUM_RESTRICT_SET] THEN
      REWRITE_TAC[SET_RULE `s INTER t = {x | x IN t /\ x IN s}`]]]);;

let RIESZ_FISCHER = prove
 (`!f:num->real^M->real^N p s.
        &1 <= p /\ (!n. (f n) IN lspace s p) /\
        (!e. &0 < e
             ==> ?N. !m n. m >= N /\ n >= N
                           ==> lnorm s p (\x. f m x - f n x) < e)
        ==> ?g. g IN lspace s p /\
                !e. &0 < e
                    ==> ?N. !n. n >= N
                                ==> lnorm s p (\x. f n x - g x) < e`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `?k:num->num.
        (!n. k n < k (SUC n)) /\
        (!n. lnorm s p ((\x. f (k(SUC n)) x - f (k n) x):real^M->real^N)
             < inv(&2 pow n))`
  STRIP_ASSUME_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o GEN `n:num` o SPEC `inv(&2 pow n)`) THEN
    REWRITE_TAC[REAL_LT_INV_EQ; REAL_LT_POW2; SKOLEM_THM] THEN
    DISCH_THEN(X_CHOOSE_TAC `N:num->num`) THEN
    MP_TAC(prove_recursive_functions_exist num_RECURSION
     `k 0 = N 0 /\
      !n. k(SUC n) = MAX (k n + 1) (MAX (N n) (N(SUC n)))`) THEN
    MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC[ARITH_RULE `n < MAX (n + 1) m`] THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL [ARITH_TAC; SPEC_TAC(`n:num`,`n:num`)] THEN
    INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN ARITH_TAC;
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`\n x. f (k(SUC n)) x - (f:num->real^M->real^N) (k n) x`;
    `p:real`; `s:real^M->bool`] LSPACE_SUMMABLE_UNIV) THEN
  ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
   [ASM_SIMP_TAC[LSPACE_SUB; ETA_AX; REAL_ARITH `&1 <= p ==> &0 <= p`] THEN
    MATCH_MP_TAC REAL_SUMMABLE_COMPARISON THEN
    EXISTS_TAC `\n. inv(&2) pow n` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_SUMMABLE_GP THEN CONV_TAC REAL_RAT_REDUCE_CONV;
      EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN
      REWRITE_TAC[GSYM REAL_INV_POW] THEN
      MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x < y ==> abs x <= y`) THEN
      ASM_SIMP_TAC[LNORM_POS_LE; LSPACE_SUB; ETA_AX;
                   REAL_ARITH `&1 <= p ==> &0 <= p`]];
    DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` MP_TAC) THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "*")) THEN
    EXISTS_TAC `\x. (g:real^M->real^N) x + f (k 0:num) x` THEN
    ASM_SIMP_TAC[LSPACE_ADD; ETA_AX; REAL_ARITH `&1 <= p ==> &0 <= p`] THEN
    X_GEN_TAC `e:real` THEN DISCH_TAC THEN
    REMOVE_THEN "*" (MP_TAC o SPEC `e / &2`) THEN
    ASM_REWRITE_TAC[REAL_HALF; EVENTUALLY_SEQUENTIALLY] THEN
    REWRITE_TAC[ADD1; VSUM_DIFFS_ALT; LE_0] THEN
    DISCH_THEN(X_CHOOSE_THEN `N1:num` (LABEL_TAC "+")) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN
    ASM_REWRITE_TAC[REAL_HALF; GE] THEN
    DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN
    EXISTS_TAC `MAX N1 N2` THEN X_GEN_TAC `n:num` THEN
    REWRITE_TAC[ARITH_RULE `MAX N1 N2 <= n <=> N1 <= n /\ N2 <= n`] THEN
    STRIP_TAC THEN REMOVE_THEN "+" (MP_TAC o SPEC `n:num`) THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`k(n + 1):num`; `n:num`]) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
     [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `n + 1` THEN
      CONJ_TAC THENL [ASM_ARITH_TAC; SPEC_TAC(`n + 1`,`m:num`)] THEN
      INDUCT_TAC THEN REWRITE_TAC[LE_0] THEN
      MATCH_MP_TAC(ARITH_RULE
       `m <= k m /\ k m < k(SUC m) ==> SUC m <= k(SUC m)`) THEN
      ASM_REWRITE_TAC[];
      REPEAT DISCH_TAC THEN
      ONCE_REWRITE_TAC[VECTOR_ARITH
       `f n x - (g x + f (k 0) x):real^N =
        (f (k (n + 1)) x - f (k 0) x - g x) +
        --(f (k (n + 1)) x - f n x)`] THEN
      W(MP_TAC o PART_MATCH (lhand o rand) LNORM_TRIANGLE o lhand o snd) THEN
      ASM_SIMP_TAC[LSPACE_SUB; LSPACE_NEG; ETA_AX;
                    REAL_ARITH `&1 <= p ==> &0 <= p`] THEN
      MATCH_MP_TAC(REAL_ARITH
       `x < e / &2 /\ y < e / &2 ==> z <= x + y ==> z < e`) THEN
      ASM_SIMP_TAC[LNORM_NEG; LSPACE_SUB; ETA_AX;
                   REAL_ARITH `&1 <= p ==> &0 <= p`]]]);;

(* ------------------------------------------------------------------------- *)
(* A sort of dominated convergence theorem for L_p spaces.                   *)
(* ------------------------------------------------------------------------- *)

let LSPACE_DOMINATED_CONVERGENCE = prove
 (`!f:num->real^M->real^N g h:real^M->real^N s p k.
        &0 < p /\
        (!n. (f n) IN lspace s p) /\ h IN lspace s p /\
        (!n x. x IN s ==> norm(f n x) <= norm(h x)) /\
        negligible k /\
        (!x. x IN s DIFF k ==> ((\n. f n x) --> g(x)) sequentially)
        ==> g IN lspace s p /\
            ((\n. lnorm s p (\x. f n x - g x)) ---> &0) sequentially`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MP_TAC(ISPECL
   [`\n x. lift(norm((f:num->real^M->real^N) n x) rpow p)`;
    `\x. lift(norm((g:real^M->real^N) x) rpow p)`;
    `\x. lift(norm((h:real^M->real^N) x) rpow p)`;
    `s DIFF k:real^M->bool`] DOMINATED_CONVERGENCE) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [REPEAT CONJ_TAC THENL
     [X_GEN_TAC `k:num` THEN
      FIRST_ASSUM(MP_TAC o MATCH_MP LSPACE_IMP_INTEGRABLE o SPEC `k:num`) THEN
      MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          NEGLIGIBLE_SUBSET)) THEN SET_TAC[];
      FIRST_ASSUM(MP_TAC o MATCH_MP LSPACE_IMP_INTEGRABLE) THEN
      MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          NEGLIGIBLE_SUBSET)) THEN SET_TAC[];
      MAP_EVERY X_GEN_TAC [`k:num`; `x:real^M`] THEN
      REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN
      REWRITE_TAC[NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM; LIFT_DROP] THEN
      MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[NORM_POS_LE; REAL_LT_IMP_LE];
      X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o ISPEC
       `(lift o (\x. x rpow p) o  drop) o (lift o (norm:real^N->real))` o
         MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN
      ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_NUM] THEN
      REWRITE_TAC[o_THM; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN
      MATCH_MP_TAC CONTINUOUS_AT_COMPOSE THEN
      REWRITE_TAC[CONTINUOUS_AT_LIFT_NORM] THEN
      GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN
      REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN
      MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN
      REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC];
    STRIP_TAC] THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [REWRITE_TAC[lspace; IN_ELIM_THM] THEN CONJ_TAC THENL
     [MATCH_MP_TAC MEASURABLE_ON_LIMIT THEN
      EXISTS_TAC `f:num->real^M->real^N` THEN
      EXISTS_TAC `k:real^M->bool` THEN ASM_REWRITE_TAC[] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[lspace; IN_ELIM_THM]) THEN ASM_REWRITE_TAC[];
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE
       [TAUT `a ==> b ==> c <=> b ==> a ==> c`] INTEGRABLE_SPIKE_SET)) THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
        NEGLIGIBLE_SUBSET)) THEN SET_TAC[]];
    DISCH_TAC] THEN
  SUBGOAL_THEN
   `!x. x IN s DIFF k
        ==> norm((g:real^M->real^N) x) <= norm((h:real^M->real^N) x)`
  ASSUME_TAC THENL
   [X_GEN_TAC `x:real^M` THEN STRIP_TAC THEN
    MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN
    EXISTS_TAC `\n. (f:num->real^M->real^N) n x` THEN
    ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN
    MATCH_MP_TAC ALWAYS_EVENTUALLY THEN
    RULE_ASSUM_TAC(REWRITE_RULE[IN_DIFF]) THEN ASM_SIMP_TAC[];
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`\n x. lift(norm((f:num->real^M->real^N) n x - g x) rpow p)`;
    `(\x. vec 0):real^M->real^1`;
    `\x. lift(norm(&2 % (h:real^M->real^N) x) rpow p)`;
    `s DIFF k:real^M->bool`] DOMINATED_CONVERGENCE) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [REPEAT CONJ_TAC THENL
     [X_GEN_TAC `k:num` THEN
      SUBGOAL_THEN `(\x. (f:num->real^M->real^N) k x - g x) IN lspace s p`
      MP_TAC THENL
       [ASM_SIMP_TAC[LSPACE_SUB; REAL_LT_IMP_LE; ETA_AX]; ALL_TAC] THEN
      DISCH_THEN(MP_TAC o MATCH_MP LSPACE_IMP_INTEGRABLE) THEN
      REWRITE_TAC[] THEN MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          NEGLIGIBLE_SUBSET)) THEN SET_TAC[];
      REWRITE_TAC[NORM_MUL; RPOW_MUL; LIFT_CMUL] THEN
      MATCH_MP_TAC INTEGRABLE_CMUL THEN
      UNDISCH_TAC `(h:real^M->real^N) IN lspace s p` THEN
      DISCH_THEN(MP_TAC o MATCH_MP LSPACE_IMP_INTEGRABLE) THEN
      MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          NEGLIGIBLE_SUBSET)) THEN SET_TAC[];
      MAP_EVERY X_GEN_TAC [`k:num`; `x:real^M`] THEN
      REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN
      REWRITE_TAC[NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM; LIFT_DROP] THEN
      MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[NORM_POS_LE; REAL_LT_IMP_LE] THEN
      MATCH_MP_TAC(NORM_ARITH
        `norm(x:real^N) <= norm(z) /\ norm(y) <= norm z
         ==> norm(x - y) <= norm(&2 % z:real^N)`) THEN
      ASM_SIMP_TAC[IN_DIFF];
      X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
      UNDISCH_TAC
       `!x. x IN s DIFF k
            ==> ((\n. (f:num->real^M->real^N) n x) --> g x) sequentially` THEN
      DISCH_THEN(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN
      GEN_REWRITE_TAC LAND_CONV [LIM_NULL] THEN
      DISCH_THEN(MP_TAC o ISPEC
       `(lift o (\x. x rpow p) o  drop) o (lift o (norm:real^N->real))` o
         MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN
      ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_NUM] THEN
      ASM_SIMP_TAC[NORM_0; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_DROP; LIFT_NUM] THEN
      DISCH_THEN MATCH_MP_TAC THEN
      MATCH_MP_TAC CONTINUOUS_AT_COMPOSE THEN
      REWRITE_TAC[CONTINUOUS_AT_LIFT_NORM] THEN
      GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN
      REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN
      MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN
      REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC];
    DISCH_THEN(MP_TAC o CONJUNCT2)] THEN
  REWRITE_TAC[INTEGRAL_0; TENDSTO_REAL; lnorm; o_DEF; LIFT_DROP; LIFT_NUM] THEN
  DISCH_THEN(MP_TAC o ISPEC `lift o (\x. x rpow inv p) o  drop` o
     MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN
  ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_NUM] THEN
  ASM_SIMP_TAC[REAL_INV_EQ_0; REAL_LT_IMP_NZ; LIFT_NUM] THEN ANTS_TAC THENL
   [GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN
    REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN
    MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN
    REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM) THEN
  MATCH_MP_TAC LIM_EVENTUALLY THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN
  X_GEN_TAC `k:num` THEN REWRITE_TAC[VECTOR_SUB_EQ] THEN
  AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
  MATCH_MP_TAC INTEGRAL_SPIKE_SET THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          NEGLIGIBLE_SUBSET)) THEN SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Approximation of functions in L_p by bounded ones and continuous ones,    *)
(* and (for bounded domain sets) by purely polynomial ones.                  *)
(* ------------------------------------------------------------------------- *)

let LSPACE_APPROXIMATE_BOUNDED = prove
 (`!f:real^M->real^N s p e.
        &0 < p /\ measurable s /\ f IN lspace s p /\ &0 < e
        ==> ?g. g IN lspace s p /\
                bounded (IMAGE g s) /\
                lnorm s p (\x. f x - g x) < e`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL
   [`(\n x. (lambda i. max (--(&n)) (min (&n) ((f:real^M->real^N)(x)$i))))
     :num->real^M->real^N`;
    `f:real^M->real^N`;
    `f:real^M->real^N`;
    `s:real^M->bool`; `p:real`; `{}:real^M->bool`]
        LSPACE_DOMINATED_CONVERGENCE) THEN
  ASM_REWRITE_TAC[NEGLIGIBLE_EMPTY] THEN
  MATCH_MP_TAC(TAUT
   `b /\ c /\ a /\ (a /\ d ==> e)
    ==> (a /\ b /\ c ==> d) ==> e`) THEN
  REPEAT CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN
    SIMP_TAC[LAMBDA_BETA] THEN REAL_ARITH_TAC;
    X_GEN_TAC `x:real^M` THEN REWRITE_TAC[DIFF_EMPTY] THEN DISCH_TAC THEN
    MATCH_MP_TAC LIM_EVENTUALLY THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN
    MP_TAC(ISPEC
      `sup(IMAGE (\i. abs((f:real^M->real^N) x$i)) (1..dimindex(:N)))`
      REAL_ARCH_SIMPLE) THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
    SIMP_TAC[REAL_SUP_LE_FINITE; FINITE_NUMSEG; NUMSEG_EMPTY;
             NOT_LT; DIMINDEX_GE_1; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
    SIMP_TAC[FORALL_IN_IMAGE; IN_NUMSEG; CART_EQ; LAMBDA_BETA] THEN
    DISCH_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
    X_GEN_TAC `i:num` THEN STRIP_TAC THEN
    MATCH_MP_TAC(REAL_ARITH
     `abs(x) <= n ==> max (--n) (min n x) = x`) THEN
    ASM_MESON_TAC[REAL_OF_NUM_LE; REAL_LE_TRANS];
    X_GEN_TAC `n:num` THEN
    MP_TAC(ISPECL
     [`s:real^M->bool`; `p:real`; `vec n:real^N`] LSPACE_CONST) THEN
    ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `(f:real^M->real^N) IN lspace s p` THEN
    REWRITE_TAC[IMP_IMP] THEN
    DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE
     [TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] LSPACE_MIN)) THEN
    ASM_REWRITE_TAC[] THEN
    MP_TAC(ISPECL
     [`s:real^M->bool`; `p:real`; `--vec n:real^N`] LSPACE_CONST) THEN
    ASM_REWRITE_TAC[IMP_IMP] THEN
    DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE
     [TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] LSPACE_MAX)) THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC(MESON[] `x = y ==> x IN s ==> y IN s`) THEN
    SIMP_TAC[FUN_EQ_THM; CART_EQ; LAMBDA_BETA; VEC_COMPONENT;
             VECTOR_NEG_COMPONENT] THEN REAL_ARITH_TAC;
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    REWRITE_TAC[REALLIM_SEQUENTIALLY] THEN
    DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `n:num` (MP_TAC o SPEC `n:num`)) THEN
    REWRITE_TAC[LE_REFL; REAL_SUB_RZERO] THEN DISCH_TAC THEN
    EXISTS_TAC
     `(\x. (lambda i. max (-- &n) (min (&n) ((f:real^M->real^N) x$i))))
      :real^M->real^N` THEN
    ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [REWRITE_TAC[bounded; FORALL_IN_IMAGE] THEN
      EXISTS_TAC `&(dimindex(:N)) * &n` THEN
      X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
      W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
      GEN_REWRITE_TAC
        (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN
      MATCH_MP_TAC SUM_BOUND THEN
      SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; LAMBDA_BETA] THEN REAL_ARITH_TAC;
      MATCH_MP_TAC(REAL_ARITH `abs(x) < e ==> x < e`) THEN
      ONCE_REWRITE_TAC[GSYM LNORM_NEG] THEN
      ASM_REWRITE_TAC[VECTOR_NEG_SUB]]]);;

let LSPACE_APPROXIMATE_CONTINUOUS =  prove
 (`!f:real^M->real^N s p e.
        &1 <= p /\ measurable s /\ f IN lspace s p /\ &0 < e
        ==> ?g. g continuous_on (:real^M) /\
                g IN lspace s p /\
                lnorm s p (\x. f x - g x) < e`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REAL_ARITH `&1 <= p ==> &0 < p`)) THEN
  MP_TAC(ISPECL [`f:real^M->real^N`; `s:real^M->bool`; `p:real`; `e / &2`]
        LSPACE_APPROXIMATE_BOUNDED) THEN
  ASM_REWRITE_TAC[REAL_HALF] THEN
  DISCH_THEN(X_CHOOSE_THEN `h:real^M->real^N` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN
  REWRITE_TAC[FORALL_IN_IMAGE] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN
   `?k g. negligible k /\
          (!n. g n continuous_on (:real^M)) /\
          (!n x. x IN s ==> norm(g n x:real^N) <= norm(B % vec 1:real^N)) /\
          (!x. x IN (s DIFF k)  ==> ((\n. g n x) --> h x) sequentially)`
  STRIP_ASSUME_TAC THENL
   [SUBGOAL_THEN `(h:real^M->real^N) measurable_on s` MP_TAC THENL
     [RULE_ASSUM_TAC(REWRITE_RULE[lspace; IN_ELIM_THM]) THEN ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[measurable_on] THEN MATCH_MP_TAC MONO_EXISTS THEN
    X_GEN_TAC `k:real^M->bool` THEN
    DISCH_THEN(X_CHOOSE_THEN `g:num->real^M->real^N` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `(\n x. lambda i. max (--B) (min B (((g n x):real^N)$i))):
                num->real^M->real^N` THEN
    ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
     [X_GEN_TAC `n:num` THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN
      MP_TAC(ISPECL [`(:real^M)`; `(lambda i. B):real^N`]
                CONTINUOUS_ON_CONST) THEN
      REWRITE_TAC[IMP_IMP] THEN
      DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_ON_MIN) THEN
      MP_TAC(ISPECL [`(:real^M)`; `(lambda i. --B):real^N`]
                CONTINUOUS_ON_CONST) THEN
      REWRITE_TAC[IMP_IMP] THEN
      DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_ON_MAX) THEN
      MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
      SIMP_TAC[FUN_EQ_THM; CART_EQ; LAMBDA_BETA];
      REPEAT STRIP_TAC THEN MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN
      SIMP_TAC[LAMBDA_BETA; VEC_COMPONENT; VECTOR_MUL_COMPONENT] THEN
      REAL_ARITH_TAC;
      X_GEN_TAC `x:real^M` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[LIM_SEQUENTIALLY] THEN
      MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `ee:real` THEN
      MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
      MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `n:num` THEN
      MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
      MATCH_MP_TAC(NORM_ARITH
       `norm(c - a:real^N) <= norm(b - a)
        ==> dist(b,a) < ee ==> dist(c,a) < ee`) THEN
      MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN
      SIMP_TAC[LAMBDA_BETA; VECTOR_SUB_COMPONENT] THEN
      X_GEN_TAC `k:num` THEN STRIP_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o MATCH_MP NORM_BOUND_COMPONENT_LE) THEN
      DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN
      REAL_ARITH_TAC];
    ALL_TAC] THEN
  SUBGOAL_THEN `!n. ((g:num->real^M->real^N) n) IN lspace s p` ASSUME_TAC THENL
   [X_GEN_TAC `n:num` THEN
    MATCH_MP_TAC(INST_TYPE [`:N`,`:P`] LSPACE_BOUNDED_MEASURABLE) THEN
    EXISTS_TAC `(\x. B % vec 1):real^M->real^N` THEN
    ASM_SIMP_TAC[LSPACE_CONST] THEN
    ONCE_REWRITE_TAC[GSYM MEASURABLE_ON_UNIV] THEN
    MATCH_MP_TAC(REWRITE_RULE[lebesgue_measurable; indicator]
        MEASURABLE_ON_RESTRICT) THEN
    ASM_SIMP_TAC[CONTINUOUS_IMP_MEASURABLE_ON; ETA_AX] THEN
    MATCH_MP_TAC INTEGRABLE_IMP_MEASURABLE THEN
    ASM_REWRITE_TAC[GSYM MEASURABLE_INTEGRABLE];
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`g:num->real^M->real^N`; `h:real^M->real^N`;
    `(\x. B % vec 1):real^M->real^N`;
    `s:real^M->bool`; `p:real`; `k:real^M->bool`]
        LSPACE_DOMINATED_CONVERGENCE) THEN
  ASM_SIMP_TAC[LSPACE_CONST] THEN
  REWRITE_TAC[REALLIM_SEQUENTIALLY; REAL_SUB_RZERO] THEN
  DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN
  DISCH_THEN(X_CHOOSE_THEN `n:num` (MP_TAC o SPEC `n:num`)) THEN
  REWRITE_TAC[LE_REFL] THEN DISCH_TAC THEN
  EXISTS_TAC `(g:num->real^M->real^N) n` THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN
   `(\x. f x - (g:num->real^M->real^N) n x) =
    (\x. (f x - h x) + --(g n x - h x))`
  SUBST1_TAC THENL [SIMP_TAC[FUN_EQ_THM] THEN VECTOR_ARITH_TAC; ALL_TAC] THEN
  W(MP_TAC o PART_MATCH (lhand o rand) LNORM_TRIANGLE o lhand o snd) THEN
  ASM_SIMP_TAC[LSPACE_SUB; ETA_AX; REAL_LT_IMP_LE; LSPACE_NEG] THEN
  MATCH_MP_TAC(REAL_ARITH
   `y < e / &2 /\ z < e / &2 ==> x <= y + z ==> x < e`) THEN
  ASM_SIMP_TAC[LNORM_NEG; REAL_ARITH `abs x < e ==> x < e`]);;

let LSPACE_APPROXIMATE_VECTOR_POLYNOMIAL_FUNCTION = prove
 (`!f:real^M->real^N s p e.
        &1 <= p /\ bounded s /\ measurable s /\ f IN lspace s p /\ &0 < e
        ==> ?g. vector_polynomial_function g /\
                g IN lspace s p /\
                lnorm s p (\x. f x - g x) < e`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL
   [`f:real^M->real^N`; `s:real^M->bool`; `p:real`; `e / &2`]
        LSPACE_APPROXIMATE_CONTINUOUS) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; REAL_HALF] THEN
  X_GEN_TAC `g:real^M->real^N` THEN STRIP_TAC THEN
  MP_TAC(ISPECL [`g:real^M->real^N`; `closure s:real^M->bool`;
                 `e / &2 / (measure(s:real^M->bool) rpow (inv p) + &1)`]
        STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION) THEN
  ASM_REWRITE_TAC[REAL_HALF; COMPACT_CLOSURE] THEN ANTS_TAC THENL
   [CONJ_TAC THENL
     [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV];
      MATCH_MP_TAC REAL_LT_DIV THEN ASM_REWRITE_TAC[REAL_HALF] THEN
      MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 < x + &1`) THEN
      ASM_SIMP_TAC[RPOW_POS_LE; MEASURE_POS_LE]];
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:real^M->real^N` THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN
  MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC LSPACE_BOUNDED_MEASURABLE_SIMPLE THEN
    CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[]] THEN
    ASM_SIMP_TAC[CONTINUOUS_IMP_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET;
                 MEASURABLE_IMP_LEBESGUE_MEASURABLE;
                 CONTINUOUS_ON_VECTOR_POLYNOMIAL_FUNCTION] THEN
    MATCH_MP_TAC BOUNDED_SUBSET THEN
    EXISTS_TAC `IMAGE (h:real^M->real^N) (closure s)` THEN
    SIMP_TAC[IMAGE_SUBSET; CLOSURE_SUBSET] THEN
    MATCH_MP_TAC COMPACT_IMP_BOUNDED THEN
    MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN
    ASM_SIMP_TAC[CONTINUOUS_ON_VECTOR_POLYNOMIAL_FUNCTION; COMPACT_CLOSURE];
    DISCH_TAC] THEN
  TRANS_TAC REAL_LET_TRANS
   `lnorm s p (\x. (f:real^M->real^N) x - g x) +
    lnorm s p (\x. g x - h x)` THEN
  CONJ_TAC THENL
   [W(MP_TAC o PART_MATCH (rand o rand) LNORM_TRIANGLE o rand o snd) THEN
    ASM_SIMP_TAC[LSPACE_SUB; REAL_ARITH `&1 <= p ==> &0 <= p`] THEN
    REWRITE_TAC[VECTOR_ARITH `(f - g) + (g - h):real^N = f - h`];
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `x < e / &2 ==> y <= e / &2 ==> x + y < e`))] THEN
  TRANS_TAC REAL_LE_TRANS
   `lnorm (s:real^M->bool) p
          (\x. lift(e / &2 / (measure s rpow inv p + &1)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC LNORM_MONO THEN EXISTS_TAC `{}:real^M->bool` THEN
    REWRITE_TAC[NEGLIGIBLE_EMPTY; DIFF_EMPTY] THEN
    CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_SIMP_TAC[LSPACE_SUB; LSPACE_CONST; REAL_ARITH `&1 <= p ==> &0 <= p`;
                 NORM_LIFT; REAL_ARITH `x < y ==> x <= abs y`;
                 REWRITE_RULE[SUBSET] CLOSURE_SUBSET];
    ASM_SIMP_TAC[LNORM_CONST; REAL_ARITH `&1 <= p ==> &0 < p`] THEN
    REWRITE_TAC[NORM_LIFT; REAL_ABS_DIV; REAL_ABS_NUM] THEN
    ASM_SIMP_TAC[REAL_ARITH
      `&0 < e ==> x * abs e / &2 / y = (x * e / &2) / y`] THEN
    ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4)
     [MEASURE_POS_LE; RPOW_POS_LE; REAL_LE_LDIV_EQ;
      REAL_ARITH `abs x = if &0 < x then x else --x`;
      REAL_ARITH `&0 <= x ==> &0 < x + &1`] THEN
    REWRITE_TAC[REAL_ARITH `m * e / &2 <= e / &2 * n <=> e * m <= e * n`] THEN
    ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN REAL_ARITH_TAC]);;