Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 24,316 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
(* ========================================================================= *)
(* HOL Light Tarski plane geometry axiomatic proofs up to Gupta's theorem. *)
(* ========================================================================= *)
(* *)
(* This is a port of MML Mizar code published with Adam Grabowski and Jesse *)
(* Alama, which was a readable version of Julien Narboux's Coq pseudo-code *)
(* http://dpt-info.u-strasbg.fr/~narboux/tarski.html. We partially prove a *)
(* theorem in SchwabhΓ€user's Ishi Press book Metamathematische Methoden in *)
(* der Geometrie, that Tarski's plane geometry axioms imply Hilbert's. We *)
(* get about as far Gupta's amazing proof which implies Hilbert's axiom I1 *)
(* that two points determine a line. *)
(* *)
(* Thanks to Freek Wiedijk, who wrote the HOL Light Mizar interface miz3, in *)
(* which this code was originally written, and John Harrison, who came up *)
(* with the axiomatic framework here, and recommended writing it in miz3. *)
needs "RichterHilbertAxiomGeometry/readable.ml";;
new_type("TarskiPlane",0);;
NewConstant("β",`:TarskiPlane#TarskiPlane->TarskiPlane#TarskiPlane->bool`);;
NewConstant("β¬", `:TarskiPlane->TarskiPlane->TarskiPlane->bool`);;
ParseAsInfix("β",(12, "right"));;
ParseAsInfix("β",(12, "right"));;
ParseAsInfix("on_line",(12, "right"));;
ParseAsInfix("equal_line",(12, "right"));;
let cong_DEF = NewDefinition
`;a,b,c β x,y,z β
a,b β x,y β§ a,c β x,z β§ b,c β y,z`;;
let is_ordered_DEF = NewDefinition
`;is_ordered (a,b,c,d) β
β¬ a b c β§ β¬ a b d β§ β¬ a c d β§ β¬ b c d`;;
let Line_DEF = NewDefinition `;
x on_line a,b β
Β¬(a = b) β§ (β¬ a b x β¨ β¬ a x b β¨ β¬ x a b)`;;
let LineEq_DEF = NewDefinition `;
a,b equal_line x,y β
Β¬(a = b) β§ Β¬(x = y) β§ β c . c on_line a,b β c on_line x,y`;;
(* ------------------------------------------------------------------------- *)
(* The axioms. *)
(* ------------------------------------------------------------------------- *)
let A1 = NewAxiom `;
βa b. a,b β b,a`;;
let A2 = NewAxiom `;
βa b p q r s. a,b β p,q β§ a,b β r,s β p,q β r,s`;;
let A3 = NewAxiom `;
βa b c. a,b β c,c β a = b`;;
let A4 = NewAxiom `;
βa q b c. βx. β¬ q a x β§ a,x β b,c`;;
let A5 = NewAxiom `;
βa b c x a' b' c' x'.
Β¬(a = b) β§ a,b,c β a',b',c' β§
β¬ a b x β§ β¬ a' b' x' β§ b,x β b',x'
β c,x β c',x'`;;
let A6 = NewAxiom `;
βa b. β¬ a b a β a = b`;;
let A7 = NewAxiom `;
βa b p q z. β¬ a p z β§ β¬ b q z
β βx. β¬ p x b β§ β¬ q x a`;;
(* A4 is the Segment Construction axiom, A5 is the SAS axiom and A7 is
the Inner Pasch axiom. There are 4 more axioms we're not using yet:
there exist 3 non-collinear points;
3 points equidistant from 2 distinct points are collinear;
Euclid's β₯ postulate;
a first order version of Hilbert's Dedekind Cuts axiom.
We shall say we apply SAS to a+cbx and a'+c'b'x'. Normally one
applies SAS by showing cb = c'b' bx = b'x' (which we assume) and
β‘ cbx β β‘ c'b'x'. One might prove the β‘ congruence
by showing that the triangles abc β§ a'b'c' were congruent by SSS
(which we also assume) and then apply the theorem that complements
of congruent angles are congruent. Hence Tarski's axiom. *)
let EquivReflexive = theorem `;
βa b. a,b β a,b
by fol A1 A2`;;
let EquivSymmetric = theorem `;
βa b c d. a,b β c,d β c,d β a,b
by fol EquivReflexive A2`;;
let EquivTransitive = theorem `;
βa b p q r s. a,b β p,q β§ p,q β r,s β a,b β r,s
by fol EquivSymmetric A2`;;
let Baaa_THM = theorem `;
βa b. β¬ a a a β§ a,a β b,b
by fol A4 A3`;;
let Bqaa_THM = theorem `;
βa q. β¬ q a a
by fol A4 A3`;;
let C1_THM = theorem `;
βa b x y. Β¬(a = b) β§ β¬ a b x β§ β¬ a b y β§ b,x β b,y
β y = x
proof
intro_TAC βa b x y, H1 H2 H3 H4;
a,b,y β a,b,y [] by fol EquivReflexive cong_DEF;
y,x β y,y [] by fol - H1 H2 H3 H4 A5;
fol - A3;
qed;
`;;
let Bsymmetry_THM = theorem `;
βa p z. β¬ a p z β β¬ z p a
proof
intro_TAC βa p z, H1;
β¬ p z z [] by fol Bqaa_THM;
consider x such that
β¬ p x p β§ β¬ z x a [xExists] by fol - H1 A7;
fol - A6;
qed;
`;;
let Baaq_THM = theorem `;
βa q. β¬ a a q
by fol Bqaa_THM Bsymmetry_THM`;;
let BEquality_THM = theorem `;
βa b c. β¬ a b c β§ β¬ b a c β a = b
proof
intro_TAC βa b c, H1 H2;
consider x such that
β¬ b x b β§ β¬ a x a [A7implies] by fol H2 H1 A7;
fol - A6;
qed;
`;;
let B124and234then123_THM = theorem `;
βa b c d. β¬ a b d β§ β¬ b c d β β¬ a b c
proof
intro_TAC βa b c d, H1 H2;
consider x such that
β¬ b x b β§ β¬ c x a [A7implies] by fol H1 H2 A7;
fol - A6 Bsymmetry_THM;
qed;
`;;
let BTransitivity_THM = theorem `;
βa b c d. Β¬(b = c) β§ β¬ a b c β§ β¬ b c d
β β¬ a c d
proof
intro_TAC βa b c d, H1 H2 H3;
consider x such that
β¬ a c x β§ c,x β c,d [X1] by fol A4;
β¬ x c b [] by fol H2 Bsymmetry_THM - B124and234then123_THM;
x = d [] by fol - Bsymmetry_THM H1 H3 X1 C1_THM;
fol - X1;
qed;
`;;
let BTransitivityOrdered_THM = theorem `;
βa b c d. Β¬(b = c) β§ β¬ a b c β§ β¬ b c d
β is_ordered (a,b,c,d)
proof
intro_TAC βa b c d, H1 H2 H3;
β¬ a c d [X1] by fol H1 H2 H3 BTransitivity_THM;
β¬ d b a [] by fol H2 Bsymmetry_THM H1 H3 BTransitivity_THM;
fol H2 - Bsymmetry_THM X1 H3 is_ordered_DEF;
qed;
`;;
let B124and234Ordered_THM = theorem `;
βa b c d. β¬ a b d β§ β¬ b c d β is_ordered (a,b,c,d)
proof
intro_TAC βa b c d, H1 H2;
β¬ a b c [Babc] by fol H1 H2 B124and234then123_THM;
assume Β¬(b = c) [] by fol - Bqaa_THM H1 H2 is_ordered_DEF;
fol Babc - H2 BTransitivityOrdered_THM;
qed;
`;;
let SegmentAddition_THM = theorem `;
βa b c a' b' c'. β¬ a b c β§ β¬ a' b' c' β§
a,b β a',b' β§ b,c β b',c'
β a,c β a',c'
proof
intro_TAC βa b c a' b' c', H1 H2 H3 H4;
assume Β¬(a = b) [aNOTb] by fol H3 EquivSymmetric A3 H4;
a,b,a β a',b',a' [] by fol Baaa_THM H3 A1 EquivTransitive cong_DEF;
fol - aNOTb H1 H2 H4 A5;
qed;
`;;
let CongruenceDoubleSymmetry_THM = theorem `;
βa b c d. a,b β c,d β b,a β d,c
by fol A1 EquivTransitive`;;
let C1prime_THM = theorem `;
βa b x y. Β¬(a = b) β§ β¬ a b x β§ β¬ a b y β§ a,x β a,y
β x = y
proof
intro_TAC βa b x y, H1 H2 H3 H4;
consider m such that
β¬ b a m β§ a,m β a,b [X1] by fol A4;
β¬ m a b [X2] by fol X1 Bsymmetry_THM;
Β¬(m = a) [X3] by fol X1 EquivSymmetric A3 H1;
is_ordered (m,a,b,x) [] by fol H1 X2 H2 BTransitivityOrdered_THM;
β¬ m a x [X4] by fol - is_ordered_DEF;
is_ordered (m,a,b,y) [] by fol H1 X2 H3 BTransitivityOrdered_THM;
β¬ m a y [] by fol - is_ordered_DEF;
fol - X3 X4 H4 C1_THM;
qed;
`;;
let SegmentSubtraction_THM = theorem `;
βa b c a' b' c'. β¬ a b c β§ β¬ a' b' c' β§
a,b β a',b' β§ a,c β a',c' β b,c β b',c'
proof
intro_TAC βa b c a' b' c', H1 H2 H3 H4;
assume Β¬(a = b) [Z1] by fol - H3 EquivSymmetric A3 H4;
consider x such that
β¬ a b x β§ b,x β b',c' [Z2] by fol A4;
a,x β a',c' [] by fol - H2 H3 SegmentAddition_THM;
a,x β a,c [] by fol H4 EquivSymmetric - EquivTransitive;
x = c [] by fol - Z1 Z2 H1 C1prime_THM;
fol - Z2;
qed;
`;;
let EasyAngleTransport_THM = theorem `;
βa O b. Β¬(O = a)
β βx y. β¬ b O x β§ β¬ a O y β§ x,y,O β a,b,O
proof
intro_TAC βa O b, H1;
consider x y such that
β¬ b O x β§ O,x β O,a β§
β¬ a O y β§ O,y β O,b [X2] by fol A4;
x,O β a,O [X3] by fol - CongruenceDoubleSymmetry_THM;
a,O,x β x,O,a [X5] by fol - EquivSymmetric A1 X2 cong_DEF;
x,y β a,b [] by fol H1 X5 X2 Bsymmetry_THM A5;
x,y,O β a,b,O [] by fol - X3 X2 CongruenceDoubleSymmetry_THM cong_DEF;
fol X2 -;
qed;
`;;
let B123and134Ordered_THM = theorem `;
βa b c d.
β¬ a b c β§
β¬ a c d β
is_ordered (a,b,c,d)
proof
intro_TAC βa b c d, H1 H2;
is_ordered (d,c,b,a) [] by fol H2 H1 Bsymmetry_THM B124and234Ordered_THM;
β¬ d b a β§ β¬ d c b [] by fol - is_ordered_DEF;
fol - Bsymmetry_THM H1 H2 is_ordered_DEF;
qed;
`;;
let BextendToLine_THM = theorem `;
βa b c d. Β¬(a = b) β§ β¬ a b c β§ β¬ a b d
β βx. is_ordered (a,b,c,x) β§ is_ordered (a,b,d,x)
proof
intro_TAC βa b c d, H1 H2 H3;
consider u such that
β¬ a c u β§ c,u β b,d [X1] by fol A4;
is_ordered (a,b,c,u) [X2] by fol H2 X1 B123and134Ordered_THM;
β¬ u c b [X3] by fol X2 is_ordered_DEF Bsymmetry_THM;
u,c β b,d [X4] by fol A1 X1 EquivTransitive;
β¬ a b u [X5] by fol X2 is_ordered_DEF;
consider x such that
β¬ a d x β§ d,x β b,c [Y1] by fol A4;
is_ordered (a,b,d,x) [Y2] by fol H3 Y1 B123and134Ordered_THM;
c,b β d,x [Y5] by fol A1 Y1 EquivSymmetric EquivTransitive;
β¬ a b x [Y6] by fol Y2 is_ordered_DEF;
u,b β b,x [] by fol X3 Y2 is_ordered_DEF X4 Y5 SegmentAddition_THM;
u = x [] by fol A1 - EquivTransitive H1 X5 Y6 C1_THM;
fol - X2 Y2;
qed;
`;;
let GuptaEasy_THM = theorem `;
βa b c d. Β¬(a = b) β§ β¬ a b c β§ β¬ a b d β§
Β¬(b = c) β§ Β¬(b = d) β Β¬β¬ c b d
proof
intro_TAC βa b c d, H1 H2 H3 H4 H5;
assume β¬ c b d [H6] by fol;
consider x such that
is_ordered (a,b,c,x) β§ is_ordered (a,b,d,x) [X1] by fol H1 H2 H3 BextendToLine_THM;
β¬ b d x [] by fol X1 is_ordered_DEF;
is_ordered (c,b,d,x) [] by fol - H5 H6 BTransitivityOrdered_THM;
β¬ b c x β§ β¬ c b x [] by fol - X1 is_ordered_DEF;
fol - BEquality_THM H4;
qed;
`;;
(* The next result is like SAS: there are 5 pairs of segments 4 equivalent. *)
(* We apply Inner5Segments to abc-x and a'b'c'-x'. *)
let Inner5Segments_THM = theorem `;
βa b c x a' b' c' x'. a,b,c β a',b',c' β§
β¬ a x c β§ β¬ a' x' c' β§ c,x β c',x' β b,x β b',x'
proof
intro_TAC βa b c x a' b' c' x', H1 H2 H3 H4;
a,b β a',b' β§ a,c β a',c' β§ b,c β b',c' [X1] by fol H1 cong_DEF;
assume Β¬(x = c) [Case2] by fol H4 EquivSymmetric - A3 X1;
Β¬(a = c) [X2] by fol H2 A6 -;
consider y such that
β¬ a c y β§ c,y β a,c [X3] by fol A4;
consider y' such that
β¬ a' c' y' β§ c',y' β a,c [X4] by fol A4;
c,y β c',y' [X5] by fol - X3 EquivSymmetric EquivTransitive;
c,b β c',b' [X6] by fol X1 CongruenceDoubleSymmetry_THM;
a,c,b β a',c',b' [] by fol cong_DEF X1 -;
b,y β b',y' [X7] by fol - X2 X3 X4 X5 A5;
Β¬(y = c) [X8] by fol X3 EquivSymmetric A3 X2;
β¬ y c x [X9] by fol X3 H2 Bsymmetry_THM B124and234then123_THM;
β¬ y' c' a' β§ β¬ c' x' a' [] by fol - X4 H3 Bsymmetry_THM;
β¬ y' c' x' [X10] by fol - B124and234then123_THM;
y,c,b β y',c',b' [] by fol X5 X7 CongruenceDoubleSymmetry_THM cong_DEF X6;
fol - X8 X9 X10 H4 A5;
qed;
`;;
let RhombusDiagBisect_THM = theorem `;
βb c d c' d'. β¬ b c d' β§ β¬ b d c' β§
c,d' β c,d β§ d,c' β c,d β§ d',c' β c,d
β βe. β¬ c e c' β§ β¬ d e d' β§ c,e β c',e β§ d,e β d',e
proof
intro_TAC βb c d c' d', H1 H2 H3 H4 H5;
β¬ d' c b β§ β¬ c' d b [X1] by fol H1 H2 Bsymmetry_THM;
consider e such that
β¬ c e c' β§ β¬ d e d' [X2] by fol X1 A7;
c,d β c,d' [X3] by fol H3 EquivSymmetric;
c,c' β c,c' [X4] by fol EquivReflexive;
c,d,c' β c,d',c' [] by fol H5 EquivSymmetric H4 EquivTransitive X3 X4 cong_DEF;
d,e β d',e [X5] by fol - X2 EquivReflexive Inner5Segments_THM;
d,c β d,c' [X7] by fol H4 EquivSymmetric A1 EquivTransitive;
d,d' β d,d' [X8] by fol EquivReflexive;
c,d' β c',d' [] by fol A1 H5 EquivSymmetric H3 EquivTransitive;
d,c,d' β d,c',d' [] by fol EquivReflexive X7 X8 - cong_DEF;
c,e β c',e [] by fol - X2 EquivReflexive Inner5Segments_THM;
fol - X2 X5;
qed;
`;;
let FlatNormal_THM = theorem `;
βa b c d d' e. β¬ d e d' β§
c,d' β c,d β§ d,e β d',e β§ Β¬(c = d) β§ Β¬(e = d)
β βp r q. β¬ p r q β§ β¬ r c d' β§ β¬ e c p β§
r,c,p β r,c,q β§ r,c β e,c β§ p,r β d,e
proof
intro_TAC βa b c d d' e, H1 H2 H3 H4 H5;
Β¬(c = d') [] by fol H4 H2 EquivSymmetric A3;
consider p r such that
β¬ e c p β§ β¬ d' c r β§ p,r,c β d',e,c [X1] by fol
- EasyAngleTransport_THM;
p,r β d',e β§ p,c β d',c β§ r,c β e,c [X2] by fol - X1 cong_DEF;
p,r β d,e [X3] by fol H3 EquivSymmetric X2 EquivTransitive;
Β¬(p = r) [X4] by fol - EquivSymmetric H5 A3;
consider q such that
β¬ p r q β§ r,q β e,d [X5] by fol A4;
c,p β c,d [X7] by fol - X2 CongruenceDoubleSymmetry_THM H2 EquivTransitive;
:: Apply SAS to p+crq /\ d'+ced
c,q β c,d [] by fol X4 X1 X5 H1 Bsymmetry_THM A5;
r,c,p β r,c,q [] by fol - EquivSymmetric X7 EquivTransitive X5 X3 CongruenceDoubleSymmetry_THM EquivReflexive cong_DEF;
fol X1 Bsymmetry_THM X5 - X2 X1 X3;
qed;
`;;
let EqDist2PointsBetween_THM = theorem `;
βa b c p q. Β¬(a = b) β§ β¬ a b c β§ a,p β a,q β§ b,p β b,q
β c,p β c,q
proof
:: a & b are equidistant from p & q. Apply SAS to a+pbc /\ a+qbc.
intro_TAC βa b c p q, H1 H2 H3 H4;
a,b,p β a,b,q [] by fol EquivReflexive H3 H4 cong_DEF;
p,c β q,c [] by fol H1 - H2 EquivReflexive A5;
fol - CongruenceDoubleSymmetry_THM;
qed;
`;;
let EqDist2PointsInnerBetween_THM = theorem `;
βa x c p q. β¬ a x c β§ a,p β a,q β§ c,p β c,q
β x,p β x,q
proof
:: a and c are equidistant from p and q. Apply Inner5Segments to
:: apb-x /\ aqb-x.
intro_TAC βa x c p q, H1 H2 H3;
a,p,c β a,q,c [] by fol H2 H3 CongruenceDoubleSymmetry_THM EquivReflexive cong_DEF;
p,x β q,x [] by fol - H1 EquivReflexive Inner5Segments_THM;
fol - CongruenceDoubleSymmetry_THM;
qed;
`;;
let Gupta_THM = theorem `;
βa b c d. Β¬(a = b) β§ β¬ a b c β§ β¬ a b d
β β¬ b d c β¨ β¬ b c d
proof
intro_TAC βa b c d, H1 H2 H3;
assume Β¬(b = c) β§ Β¬(b = d) β§ Β¬(c = d) [H4] by fol - Baaq_THM Bqaa_THM;
assume Β¬β¬ b d c [H5] by fol;
consider d' such that
β¬ a c d' β§ c,d' β c,d [X1] by fol A4;
consider c' such that
β¬ a d c' β§ d,c' β c,d [X2] by fol A4;
is_ordered (a,b,c,d') [] by fol H2 X1 B123and134Ordered_THM;
β¬ a b d' β§ β¬ b c d' [X3] by fol - is_ordered_DEF;
is_ordered (a,b,d,c') [] by fol H3 X2 B123and134Ordered_THM;
β¬ a b c' β§ β¬ b d c' [X4] by fol - is_ordered_DEF;
Β¬(c = d') [X5] by fol X1 H4 A3 EquivSymmetric;
Β¬(d = c') [X6] by fol X2 H4 A3 EquivSymmetric;
Β¬(b = d') [X7] by fol X3 H4 A6;
Β¬(b = c') [X8] by fol X4 H4 A6;
:: In the proof below, we prove a stronger result than
:: BextendToLine_THM with much the same proof. We find u β§ b'
:: with essentially a,b,c,d',u and a b,d,c',b' ordered 5-tuples
:: with d'u β db β§ cb' β bc.
consider u such that
β¬ c d' u β§ d',u β b,d [Y1] by fol A4;
is_ordered (b,c,d',u) [] by fol X5 X3 Y1 BTransitivityOrdered_THM;
β¬ b c u β§ β¬ b d' u [Y2] by fol - is_ordered_DEF;
consider b' such that
β¬ d c' b' β§ c',b' β b,c [Y3] by fol A4;
is_ordered (b,d,c',b') [] by fol X6 X4 Y3 BTransitivityOrdered_THM;
β¬ b d b' β§ β¬ b c' b' [Y4] by fol - is_ordered_DEF;
c,d' β c',d [Y7] by fol X2 EquivSymmetric X1 A1 EquivTransitive;
c,u β c',b [Y8] by fol Y1 A1 EquivTransitive X4 Bsymmetry_THM Y7 SegmentAddition_THM;
b,c β b',c' [Y10] by fol Y3 EquivSymmetric A1 EquivTransitive;
b,u β b,b' [Y11] by fol Y4 Bsymmetry_THM Y2 Y10 Y8 SegmentAddition_THM A1 EquivTransitive;
is_ordered (a,b,d',u) [Y12] by fol X7 X3 Y2 BTransitivityOrdered_THM;
is_ordered (a,b,c',b') [] by fol X8 X4 Y4 BTransitivityOrdered_THM;
β¬ a b u β§ β¬ a b b' [] by fol - Y12 is_ordered_DEF;
u = b' [Y13] by fol - H1 Y11 C1_THM;
:: Show c'd' β cd by applying SAS to b+c'cd β§ b'+cc'd.
b,c,c' β b',c',c [Z2] by fol A1 Y10 Y13 Y8 EquivSymmetric CongruenceDoubleSymmetry_THM cong_DEF;
d',c' β c,d [] by fol Y3 Bsymmetry_THM H4 Z2 X3 Y7 A5 A1 EquivTransitive;
:: c,d',c',d is a "flat" rhombus. The diagonals bisect each other.
consider e such that
β¬ c e c' β§ β¬ d e d' β§ c,e β c',e β§ d,e β d',e [Z4] by fol - X3 X4 X1 X2 RhombusDiagBisect_THM;
Β¬(e = c) [U1]
proof
assume e = c [U2] by fol;
c' = c [] by fol U2 Z4 EquivSymmetric A3;
β¬ b d c [U3] by fol - X4;
fol - U3 H5;
qed;
e = d [V1]
proof
assume Β¬(e = d) [V2] by fol;
consider p r q such that
β¬ p r q β§ β¬ r c d' β§ β¬ e c p β§
r,c,p β r,c,q β§ r,c β e,c β§ p,r β d,e [W1]
proof
MP_TAC ISPECL [a; b; c; d; d'; e] FlatNormal_THM;
fol Z4 X1 H4 V2;
qed;
r,p β r,q β§ c,p β c,q [W2] by fol W1 cong_DEF;
:: r and c are equidistant from p and q, r <> c, β¬ r,c,d', thus also d'
Β¬(c = r) [] by fol W1 U1 EquivSymmetric A3;
d',p β d',q [W3] by fol - W1 W2 EqDist2PointsBetween_THM;
:: c and d' are equidistant from p and q, c <> d',
:: β¬ c,d',b', thus also b'.
b',p β b',q [W4] by fol Y1 Y13 X5 W2 W3 EqDist2PointsBetween_THM;
:: d' and c are equidistant from p and q, d' <> c, β¬ d',c,b, thus also b.
b,p β b,q [] by fol X3 Bsymmetry_THM X5 W3 W2 EqDist2PointsBetween_THM;
:: b and b' are equidistant from p and q, β¬ b,c',b, thus also c'.
c',p β c',q [W7] by fol Y4 W4 - EqDist2PointsInnerBetween_THM;
:: c' and c are equidistant from p and q, c' <> c, β¬ c',c,p, thus also p.
is_ordered (c',e,c,p) [] by fol Z4 Bsymmetry_THM U1 W1 BTransitivityOrdered_THM;
β¬ c' c p [W8] by fol - is_ordered_DEF;
Β¬(c' = c) [] by fol Z4 U1 A6;
p,p β p,q [] by fol - W8 W7 W2 EqDist2PointsBetween_THM;
:: Now we deduce a contradiction from p = q.
fol - W1 A6 EquivSymmetric A3 V2;
qed;
fol V1 Z4 EquivSymmetric A3 X3;
qed;
`;;
(* Using Gupta's theorem, we prove Hilbert's axiom I3; a line is determined *)
(* by fol two points. *)
let I1part1_THM = theorem `;
βa b x. Β¬(a = b) β§ Β¬(a = x) β§ x on_line a,b β
βc. c on_line a,b β c on_line a,x
proof
intro_TAC βa b x, H1 H2 H3, βc, H4;
β¬ a b x β¨ β¬ a x b β¨ β¬ x a b [X1] by fol H3 Line_DEF;
β¬ a b c β¨ β¬ a c b β¨ β¬ c a b [X2] by fol H4 Line_DEF;
assume Β¬(x = b) β§ Β¬(b = c) [Case2] by fol - H4 X1 Bsymmetry_THM H2 Line_DEF;
β¬ a x c β¨ β¬ a c x β¨ β¬ x a c []
proof
case_split Y1 | Y2 | Y3 by fol X1;
suppose β¬ a b x;
case_split Y11 | Bacb | Bcab by fol X2;
suppose β¬ a b c;
β¬ b x c β¨ β¬ b c x [] by fol - Y1 H1 Gupta_THM;
is_ordered (a,b,x,c) β¨ is_ordered (a,b,c,x) [] by fol Case2 Y1 Y11 - BTransitivityOrdered_THM;
fol - is_ordered_DEF;
end;
suppose β¬ a c b;
is_ordered (a,c,b,x) [] by fol - Y1 B123and134Ordered_THM;
fol - is_ordered_DEF;
end;
suppose β¬ c a b;
is_ordered (c,a,b,x) [] by fol H1 - Y1 BTransitivityOrdered_THM;
fol - is_ordered_DEF Bsymmetry_THM;
end;
end;
suppose β¬ a x b;
case_split Babc | Y22 | Bcab by fol X2;
suppose β¬ a b c;
is_ordered (a,x,b,c) [] by fol - Y2 B123and134Ordered_THM;
fol - is_ordered_DEF;
end;
suppose β¬ a c b;
consider m such that
β¬ b a m β§ a,m β a,b [X5] by fol - A4;
Β¬(a = m) [X6] by fol H1 X5 EquivSymmetric A3;
β¬ m a b [] by fol X5 Bsymmetry_THM; :: m,a,c,b & m,a,x,b
β¬ m a c β§ β¬ m a x [] by fol - Y22 Y2 B124and234then123_THM;
fol - X6 Gupta_THM;
end;
suppose β¬ c a b;
β¬ c a x [] by fol - Y2 B124and234then123_THM; :: c,a,x,b
fol - Bsymmetry_THM;
end;
end;
suppose β¬ x a b;
case_split Babc | Bacb | Bcab by fol X2;
suppose β¬ a b c;
is_ordered (x,a,b,c) [] by fol H1 - Y3 BTransitivityOrdered_THM;
fol - is_ordered_DEF;
end;
suppose β¬ a c b;
fol Y3 - B124and234then123_THM;
end; :: x,a,c,b
suppose β¬ c a b;
β¬ b a x β§ β¬ b a c [] by fol Y3 - Bsymmetry_THM;
fol - H1 Gupta_THM;
end;
end;
qed;
fol - Bsymmetry_THM H2 Line_DEF;
qed;
`;;
let I1part2_THM = theorem `;
βa b x. Β¬(a = b) β§ Β¬(a = x) β§ x on_line a,b β a,b equal_line a,x
proof
intro_TAC βa b x, H1 H2 H3;
βc. c on_line a,b β c on_line a,x []
proof
intro_TAC βc;
eq_tac [Left] by fol H1 H2 H3 I1part1_THM;
b on_line a,x [] by fol H3 Line_DEF Bsymmetry_THM H2 Line_DEF;
fol - H1 H2 I1part1_THM;
qed;
fol H1 H2 - LineEq_DEF;
qed;
`;;
let LineEqRefl_THM = theorem `;
βa b. Β¬(a = b) β a,b equal_line a,b
by fol LineEq_DEF`;;
let LineEqA1_THM = theorem `;
βa b. Β¬(a = b) β a,b equal_line b,a
proof
intro_TAC βa b, H1;
βc. c on_line a,b β c on_line b,a [] by fol Line_DEF Bsymmetry_THM H1;
fol H1 - LineEq_DEF;
qed;
`;;
let LineEqSymmetric_THM = theorem `;
βa b c d. Β¬(a = b) β§ Β¬(c = d) β a,b equal_line c,d
β c,d equal_line a,b
by fol LineEq_DEF`;;
let LineEqTrans_THM = theorem `;
βa b c d e f. Β¬(a = b) β§ Β¬(c = d) β§ Β¬(e = f) β a,b equal_line c,d β
c,d equal_line e,f β a,b equal_line e,f
proof
intro_TAC βa b c d e f, H1, H2, H3;
βy. y on_line a,b β y on_line e,f [] by fol H2 H3 LineEq_DEF;
fol - H1 LineEq_DEF;
qed;
`;;
let onlineEq_THM = theorem `;
βa b c d x. x on_line a,b β a,b equal_line c,d
β x on_line c,d
by fol LineEq_DEF`;;
let I1part2Reverse_THM = theorem `;
βa b y. Β¬(a = b) β§ Β¬(b = y) β y on_line a,b
β a,b equal_line y,b
proof
intro_TAC βa b y, H1, H3;
a,b equal_line b,a β§ b,y equal_line y,b [Y1] by fol H1 LineEqA1_THM;
y on_line b,a [] by fol H3 Y1 onlineEq_THM;
a,b equal_line b,y [] by fol - H1 Y1 I1part2_THM LineEqTrans_THM;
fol - H1 Y1 LineEqTrans_THM;
qed;
`;;
let I1_THM = theorem `;
βa b x y. Β¬(a = b) β§ Β¬(x = y) β§ a on_line x,y β§ b on_line x,y
β x,y equal_line a,b
proof
intro_TAC βa b x y, H1 H2 H3 H4;
case_split H5 | H6 by fol;
suppose (x = b);
b,a equal_line a,b β§ x,y equal_line b,y [] by fol H1 LineEqA1_THM H2 H5 LineEqRefl_THM;
fol H3 H5 H2 I1part2_THM H1 H2 - LineEqTrans_THM;
end;
suppose
Β¬(x = b);
x,y equal_line x,b [P4] by fol - H2 H6 H4 I1part2_THM;
a on_line x,b [] by fol - H2 H6 H3 onlineEq_THM;
x,b equal_line a,b [] by fol - H6 H1 I1part2Reverse_THM;
fol H1 H2 H6 P4 - LineEqTrans_THM;
end;
qed;
`;;
|