Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 134,091 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 |
(* (c) Copyright, Bill Richter 2013 *)
(* Distributed under the same license as HOL Light *)
(* *)
(* An ongoing readable.ml port of Multivariate/topology.ml with 3 features: *)
(* 1) A topological space will be an ordered pair Ξ± = (X, L), where L is the *)
(* the set of open sets on X. topology.ml defines a topological space to be *)
(* just L, and the topspace X is defined as UNIONS L. *)
(* 2) Result about Connectiveness, limit points, interior and closure are *)
(* first proved for general topological spaces and then specialized to *)
(* Euclidean space. *)
(* 3)All general topology theorems using subtopology Ξ± u have antecedent *)
(* u β topspace Ξ±. *)
(* The math character β is used for DIFF. *)
(* This file, together with from_topology.ml, shows that all of *)
(* Multivariate/topology.ml is either ported/modified here, or else run on *)
(* top of this file. *)
(* Thanks to Vince Aravantinos for improving the proofs of OPEN_BALL, *)
(* CONNECTED_OPEN_IN_EQ, CONNECTED_CLOSED_IN_EQ and INTERIOR_EQ. *)
needs "RichterHilbertAxiomGeometry/readable.ml";;
needs "Multivariate/determinants.ml";;
ParseAsInfix("β",(11, "right"));;
let NOTIN = NewDefinition `;
βa l. a β l β Β¬(a β l)`;;
let DIFF_UNION = theorem `;
βu s t. u β (s βͺ t) = (u β s) β© (u β t)
by set`;;
let DIFF_INTER = theorem `;
βu s t. u β (s β© t) = (u β s) βͺ (u β t)
by set`;;
let DIFF_REFL = theorem `;
βu t. t β u β u β (u β t) = t
by set`;;
let DIFF_SUBSET = theorem `;
βu s t. s β t β s β u β t β u
by set`;;
let DOUBLE_DIFF_UNION = theorem `;
βA s t. A β s β t = A β (s βͺ t)
by set`;;
let SUBSET_COMPLEMENT = theorem `;
βs t A. s β A β (s β A β t β s β© t = β
)
by set`;;
let COMPLEMENT_DISJOINT = theorem `;
βA s t. s β A β (s β t β s β© (A β t) = β
)
by set`;;
let COMPLEMENT_DUALITY = theorem `;
βA s t. s β A β§ t β A β (s = t β A β s = A β t)
by set`;;
let COMPLEMENT_DUALITY_UNION = theorem `;
βA s t. s β A β§ t β A β§ u β A β (s = t βͺ u β A β s = (A β t) β© (A β u))
by set`;;
let SUBSET_DUALITY = theorem `;
βs t u. t β u β s β u β s β t
by set`;;
let COMPLEMENT_INTER_DIFF = theorem `;
βA s t. s β A β s β t = s β© (A β t)
by set`;;
let INTERS_SUBSET = theorem `;
βf t. Β¬(f = β
) β§ (βs. s β f β s β t) β INTERS f β t
by set`;;
let IN_SET_FUNCTION_PREDICATE = theorem `;
βx f P. x β {f y | P y} β βy. x = f y β§ P y
by set`;;
let INTER_TENSOR = theorem `;
βs s' t t'. s β s' β§ t β t' β s β© t β s' β© t'
by set`;;
let UNION_TENSOR = theorem `;
βs s' t t'. s β s' β§ t β t' β s βͺ t β s' βͺ t'
by set`;;
let ExistsTensorInter = theorem `;
βF G H. (βx y. F x β§ G y β H (x β© y)) β
(βx. F x) β§ (βy. G y) β (βz. H z)
by fol`;;
let istopology = NewDefinition `;
istopology (X, L) β
(βU. U β L β U β X) β§ β
β L β§ X β L β§
(βs t. s β L β§ t β L β s β© t β L) β§ βk. k β L β UNIONS k β L`;;
let UnderlyingSpace = NewDefinition `;
UnderlyingSpace Ξ± = FST Ξ±`;;
let OpenSets = NewDefinition `;
OpenSets Ξ± = SND Ξ±`;;
let ExistsTopology = theorem `;
βX. βΞ±. istopology Ξ± β§ UnderlyingSpace Ξ± = X
proof
intro_TAC βX;
consider L such that L = {U | U β X} [Lexists] by fol;
exists_TAC (X, L);
rewrite istopology IN_ELIM_THM Lexists UnderlyingSpace;
set;
qed;
`;;
let topology_tybij_th = theorem `;
βt. istopology t
by fol ExistsTopology`;;
let topology_tybij =
new_type_definition "topology" ("mk_topology","dest_topology")
topology_tybij_th;;
let ISTOPOLOGYdest_topology = theorem `;
βΞ±. istopology (dest_topology Ξ±)
by fol topology_tybij`;;
let OpenIn = NewDefinition `;
βΞ±. open_in Ξ± = OpenSets (dest_topology Ξ±)`;;
let topspace = NewDefinition `;
βΞ±. topspace Ξ± = UnderlyingSpace (dest_topology Ξ±)`;;
let TopologyPAIR = theorem `;
βΞ±. dest_topology Ξ± = (topspace Ξ±, open_in Ξ±)
by rewrite PAIR_EQ OpenIn topspace UnderlyingSpace OpenSets`;;
let Topology_Eq = theorem `;
βΞ± Ξ². topspace Ξ± = topspace Ξ² β§ (βU. open_in Ξ± U β open_in Ξ² U)
β Ξ± = Ξ²
proof
intro_TAC βΞ± Ξ²;
eq_tac [Right] by fol;
intro_TAC H1 H2;
dest_topology Ξ± = dest_topology Ξ² [] by simplify TopologyPAIR PAIR_EQ H1 H2 FUN_EQ_THM;
fol - topology_tybij;
qed;
`;;
let OpenInCLAUSES = theorem `;
βΞ± X. topspace Ξ± = X β
(βU. open_in Ξ± U β U β X) β§ open_in Ξ± β
β§ open_in Ξ± X β§
(βs t. open_in Ξ± s β§ open_in Ξ± t β open_in Ξ± (s β© t)) β§
βk. (βs. s β k β open_in Ξ± s) β open_in Ξ± (UNIONS k)
proof
intro_TAC βΞ± X, H1;
consider L such that L = open_in Ξ± [Ldef] by fol;
istopology (X, L) [] by fol H1 Ldef TopologyPAIR PAIR_EQ ISTOPOLOGYdest_topology;
fol Ldef - istopology IN SUBSET;
qed;
`;;
let OPEN_IN_SUBSET = theorem `;
βΞ± s. open_in Ξ± s β s β topspace Ξ±
by fol OpenInCLAUSES`;;
let OPEN_IN_EMPTY = theorem `;
βΞ±. open_in Ξ± β
by fol OpenInCLAUSES`;;
let OPEN_IN_INTER = theorem `;
βΞ± s t. open_in Ξ± s β§ open_in Ξ± t β open_in Ξ± (s β© t)
by fol OpenInCLAUSES`;;
let OPEN_IN_UNIONS = theorem `;
βΞ± k. (βs. s β k β open_in Ξ± s) β open_in Ξ± (UNIONS k)
by fol OpenInCLAUSES`;;
let OpenInTopspace = theorem `;
βΞ±. open_in Ξ± (topspace Ξ±)
by fol OpenInCLAUSES`;;
let OPEN_IN_UNION = theorem `;
βΞ± s t. open_in Ξ± s β§ open_in Ξ± t β open_in Ξ± (s βͺ t)
proof
intro_TAC βΞ± s t, H;
βx. x β {s, t} β x = s β¨ x = t [] by fol IN_INSERT NOT_IN_EMPTY;
fol - UNIONS_2 H OPEN_IN_UNIONS;
qed;
`;;
let OPEN_IN_TOPSPACE = theorem `;
βΞ±. open_in Ξ± (topspace Ξ±)
by fol OpenInCLAUSES`;;
let OPEN_IN_INTERS = theorem `;
βΞ± s. FINITE s β§ Β¬(s = β
) β§ (βt. t β s β open_in Ξ± t)
β open_in Ξ± (INTERS s)
proof
intro_TAC βΞ±;
rewrite IMP_CONJ;
MATCH_MP_TAC FINITE_INDUCT;
rewrite INTERS_INSERT NOT_INSERT_EMPTY FORALL_IN_INSERT;
intro_TAC βx s, H1, xWorks sWorks;
assume Β¬(s = β
) [Nonempty] by simplify INTERS_0 INTER_UNIV xWorks;
fol xWorks Nonempty H1 sWorks OPEN_IN_INTER;
qed;
`;;
let OPEN_IN_SUBOPEN = theorem `;
βΞ± s. open_in Ξ± s β βx. x β s β βt. open_in Ξ± t β§ x β t β§ t β s
proof
intro_TAC βΞ± s;
eq_tac [Left] by set;
intro_TAC ALLtExist;
consider f such that
βx. x β s β open_in Ξ± (f x) β§ x β f x β§ f x β s [fExists] by fol ALLtExist SKOLEM_THM_GEN;
s = UNIONS (IMAGE f s) [] by set -;
fol - fExists FORALL_IN_IMAGE OPEN_IN_UNIONS;
qed;
`;;
let closed_in = NewDefinition `;
βΞ± s. closed_in Ξ± s β
s β topspace Ξ± β§ open_in Ξ± (topspace Ξ± β s)`;;
let CLOSED_IN_SUBSET = theorem `;
βΞ± s. closed_in Ξ± s β s β topspace Ξ±
by fol closed_in`;;
let CLOSED_IN_EMPTY = theorem `;
βΞ±. closed_in Ξ± β
by fol closed_in EMPTY_SUBSET DIFF_EMPTY OPEN_IN_TOPSPACE`;;
let CLOSED_IN_TOPSPACE = theorem `;
βΞ±. closed_in Ξ± (topspace Ξ±)
by fol closed_in SUBSET_REFL DIFF_EQ_EMPTY OPEN_IN_EMPTY`;;
let CLOSED_IN_UNION = theorem `;
βΞ± s t. closed_in Ξ± s β§ closed_in Ξ± t β closed_in Ξ± (s βͺ t)
proof
intro_TAC βΞ± s t, Hst;
fol Hst closed_in DIFF_UNION UNION_SUBSET OPEN_IN_INTER;
qed;
`;;
let CLOSED_IN_INTERS = theorem `;
βΞ± k. Β¬(k = β
) β§ (βs. s β k β closed_in Ξ± s) β closed_in Ξ± (INTERS k)
proof
intro_TAC βΞ± k, H1 H2;
consider X such that X = topspace Ξ± [Xdef] by fol;
simplify GSYM Xdef closed_in DIFF_INTERS SIMPLE_IMAGE;
fol H1 H2 Xdef INTERS_SUBSET closed_in FORALL_IN_IMAGE OPEN_IN_UNIONS;
qed;
`;;
let CLOSED_IN_FORALL_IN = theorem `;
βΞ± P Q. Β¬(P = β
) β§ (βa. P a β closed_in Ξ± {x | Q a x}) β
closed_in Ξ± {x | βa. P a β Q a x}
proof
intro_TAC βΞ± P Q, Pnonempty H1;
consider f such that f = {{x | Q a x} | P a} [fDef] by fol;
Β¬(f = β
) [fNonempty] by set fDef Pnonempty;
(βa. P a β closed_in Ξ± {x | Q a x}) β (βs. s β f β closed_in Ξ± s) [] by simplify fDef FORALL_IN_GSPEC;
closed_in Ξ± (INTERS f) [] by fol fNonempty H1 - CLOSED_IN_INTERS;
MP_TAC -;
{x | βa. P a β x β {x | Q a x}} = {x | βa. P a β Q a x} [] by set;
simplify fDef INTERS_GSPEC -;
qed;
`;;
let CLOSED_IN_INTER = theorem `;
βΞ± s t. closed_in Ξ± s β§ closed_in Ξ± t β closed_in Ξ± (s β© t)
proof
intro_TAC βΞ± s t, Hs Ht;
rewrite GSYM INTERS_2;
MATCH_MP_TAC CLOSED_IN_INTERS;
set Hs Ht;
qed;
`;;
let OPEN_IN_CLOSED_IN_EQ = theorem `;
βΞ± s. open_in Ξ± s β s β topspace Ξ± β§ closed_in Ξ± (topspace Ξ± β s)
proof
intro_TAC βΞ± s;
simplify closed_in SUBSET_DIFF OPEN_IN_SUBSET;
fol SET_RULE [X β (X β s) = X β© s β§ (s β X β X β© s = s)] OPEN_IN_SUBSET;
qed;
`;;
let OPEN_IN_CLOSED_IN = theorem `;
βs. s β topspace Ξ±
β (open_in Ξ± s β closed_in Ξ± (topspace Ξ± β s))
by fol OPEN_IN_CLOSED_IN_EQ`;;
let OPEN_IN_DIFF = theorem `;
βΞ± s t. open_in Ξ± s β§ closed_in Ξ± t β open_in Ξ± (s β t)
proof
intro_TAC βΞ± s t, H1 H2;
consider X such that X = topspace Ξ± [Xdef] by fol;
fol COMPLEMENT_INTER_DIFF OPEN_IN_SUBSET - H1 H2 closed_in OPEN_IN_INTER;
qed;
`;;
let CLOSED_IN_DIFF = theorem `;
βΞ± s t. closed_in Ξ± s β§ open_in Ξ± t β closed_in Ξ± (s β t)
proof
intro_TAC βΞ± s t, H1 H2;
consider X such that X = topspace Ξ± [Xdef] by fol;
fol COMPLEMENT_INTER_DIFF H1 - OPEN_IN_SUBSET SUBSET_DIFF DIFF_REFL H2 closed_in CLOSED_IN_INTER;
qed;
`;;
let CLOSED_IN_UNIONS = theorem `;
βΞ± s. FINITE s β§ (βt. t β s β closed_in Ξ± t)
β closed_in Ξ± (UNIONS s)
proof
intro_TAC βΞ±;
rewrite IMP_CONJ;
MATCH_MP_TAC FINITE_INDUCT;
fol UNIONS_INSERT UNIONS_0 CLOSED_IN_EMPTY IN_INSERT CLOSED_IN_UNION;
qed;
`;;
let subtopology = NewDefinition `;
βΞ± u. subtopology Ξ± u = mk_topology (u, {s β© u | open_in Ξ± s})`;;
let IstopologySubtopology = theorem `;
βΞ± u:A->bool. u β topspace Ξ± β istopology (u, {s β© u | open_in Ξ± s})
proof
intro_TAC βΞ± u, H1;
β
= β
β© u β§ open_in Ξ± β
[emptysetOpen] by fol INTER_EMPTY OPEN_IN_EMPTY;
u = topspace Ξ± β© u β§ open_in Ξ± (topspace Ξ±) [uOpen] by fol OPEN_IN_TOPSPACE H1 INTER_COMM SUBSET_INTER_ABSORPTION;
βs' s. open_in Ξ± s' β§ open_in Ξ± s β open_in Ξ± (s' β© s) β§
(s' β© u) β© (s β© u) = (s' β© s) β© u [interOpen]
proof
intro_TAC βs' s, H1 H2;
set MESON [H1; H2; OPEN_IN_INTER] [open_in Ξ± (s' β© s)];
qed;
βk. k β {s | open_in Ξ± s} β open_in Ξ± (UNIONS k) β§
UNIONS (IMAGE (Ξ»s. s β© u) k) = (UNIONS k) β© u [unionsOpen]
proof
intro_TAC βk, kProp;
open_in Ξ± (UNIONS k) [] by fol kProp SUBSET IN_ELIM_THM OPEN_IN_UNIONS;
simplify - UNIONS_IMAGE UNIONS_GSPEC INTER_UNIONS;
qed;
{s β© u | open_in Ξ± s} = IMAGE (Ξ»s. s β© u) {s | open_in Ξ± s} [] by set;
simplify istopology IN_SET_FUNCTION_PREDICATE LEFT_IMP_EXISTS_THM INTER_SUBSET - FORALL_SUBSET_IMAGE;
fol emptysetOpen uOpen interOpen unionsOpen;
qed;
`;;
let OpenInSubtopology = theorem `;
βΞ± u s. u β topspace Ξ± β
(open_in (subtopology Ξ± u) s β βt. open_in Ξ± t β§ s = t β© u)
proof
intro_TAC βΞ± u s, H1;
open_in (subtopology Ξ± u) = OpenSets (u,{s β© u | open_in Ξ± s}) [] by fol subtopology H1 IstopologySubtopology topology_tybij OpenIn;
rewrite - OpenSets PAIR_EQ SND EXTENSION IN_ELIM_THM;
qed;
`;;
let TopspaceSubtopology = theorem `;
βΞ± u. u β topspace Ξ± β topspace (subtopology Ξ± u) = u
proof
intro_TAC βΞ± u , H1;
topspace (subtopology Ξ± u) = UnderlyingSpace (u,{s β© u | open_in Ξ± s}) [] by fol subtopology H1 IstopologySubtopology topology_tybij topspace;
rewrite - UnderlyingSpace PAIR_EQ FST;
fol INTER_COMM H1 SUBSET_INTER_ABSORPTION;
qed;
`;;
let OpenInRefl = theorem `;
βΞ± s. s β topspace Ξ± β open_in (subtopology Ξ± s) s
by fol TopspaceSubtopology OPEN_IN_TOPSPACE`;;
let ClosedInRefl = theorem `;
βΞ± s. s β topspace Ξ± β closed_in (subtopology Ξ± s) s
by fol TopspaceSubtopology CLOSED_IN_TOPSPACE`;;
let ClosedInSubtopology = theorem `;
βΞ± u C. u β topspace Ξ± β
(closed_in (subtopology Ξ± u) C β βD. closed_in Ξ± D β§ C = D β© u)
proof
intro_TAC βΞ± u C, H1;
consider X such that
X = topspace Ξ± β§ u β X [Xdef] by fol H1;
closed_in (subtopology Ξ± u) C β
βt. C β u β§ t β X β§ open_in Ξ± t β§ u β C = t β© u [] by fol closed_in H1 Xdef OpenInSubtopology OPEN_IN_SUBSET TopspaceSubtopology;
closed_in (subtopology Ξ± u) C β
βD. C β u β§ D β X β§ open_in Ξ± (X β D) β§ u β C = (X β D) β© u []
proof
rewrite -;
eq_tac [Left]
proof
STRIP_TAC; exists_TAC X β t;
ASM_SIMP_TAC H1 OPEN_IN_SUBSET DIFF_REFL SUBSET_DIFF;
qed;
STRIP_TAC; exists_TAC X β D;
ASM_SIMP_TAC SUBSET_DIFF;
qed;
simplify - GSYM Xdef H1 closed_in;
βD C. C β u β§ u β C = (X β D) β© u β C = D β© u [] by set Xdef DIFF_REFL INTER_SUBSET;
fol -;
qed;
`;;
let OPEN_IN_SUBTOPOLOGY_EMPTY = theorem `;
βΞ± s. open_in (subtopology Ξ± β
) s β s = β
proof
simplify EMPTY_SUBSET OpenInSubtopology INTER_EMPTY;
fol OPEN_IN_EMPTY;
qed;
`;;
let CLOSED_IN_SUBTOPOLOGY_EMPTY = theorem `;
βΞ± s. closed_in (subtopology Ξ± β
) s β s = β
proof
simplify EMPTY_SUBSET ClosedInSubtopology INTER_EMPTY;
fol CLOSED_IN_EMPTY;
qed;
`;;
let SUBTOPOLOGY_TOPSPACE = theorem `;
βΞ±. subtopology Ξ± (topspace Ξ±) = Ξ±
proof
intro_TAC βΞ±;
topspace (subtopology Ξ± (topspace Ξ±)) = topspace Ξ± [topXsub] by simplify SUBSET_REFL TopspaceSubtopology;
simplify topXsub GSYM Topology_Eq;
fol MESON [SUBSET_REFL] [topspace Ξ± β topspace Ξ±] OpenInSubtopology OPEN_IN_SUBSET SUBSET_INTER_ABSORPTION;
qed;
`;;
let OpenInImpSubset = theorem `;
βΞ± s t. s β topspace Ξ± β
open_in (subtopology Ξ± s) t β t β s
by fol OpenInSubtopology INTER_SUBSET`;;
let ClosedInImpSubset = theorem `;
βΞ± s t. s β topspace Ξ± β
closed_in (subtopology Ξ± s) t β t β s
by fol ClosedInSubtopology INTER_SUBSET`;;
let OpenInSubtopologyUnion = theorem `;
βΞ± s t u. t β topspace Ξ± β§ u β topspace Ξ± β
open_in (subtopology Ξ± t) s β§ open_in (subtopology Ξ± u) s
β open_in (subtopology Ξ± (t βͺ u)) s
proof
intro_TAC βΞ± s t u, Ht Hu;
simplify Ht Hu Ht Hu UNION_SUBSET OpenInSubtopology;
intro_TAC sOpenSub_t sOpenSub_u;
consider a b such that
open_in Ξ± a β§ s = a β© t β§
open_in Ξ± b β§ s = b β© u [abExist] by fol sOpenSub_t sOpenSub_u;
exists_TAC a β© b;
set MESON [abExist; OPEN_IN_INTER] [open_in Ξ± (a β© b)] abExist;
qed;
`;;
let ClosedInSubtopologyUnion = theorem `;
βΞ± s t u. t β topspace Ξ± β§ u β topspace Ξ± β
closed_in (subtopology Ξ± t) s β§ closed_in (subtopology Ξ± u) s
β closed_in (subtopology Ξ± (t βͺ u)) s
proof
intro_TAC βΞ± s t u, Ht Hu;
simplify Ht Hu Ht Hu UNION_SUBSET ClosedInSubtopology;
intro_TAC sClosedSub_t sClosedSub_u;
consider a b such that
closed_in Ξ± a β§ s = a β© t β§
closed_in Ξ± b β§ s = b β© u [abExist] by fol sClosedSub_t sClosedSub_u;
exists_TAC a β© b;
set MESON [abExist; CLOSED_IN_INTER] [closed_in Ξ± (a β© b)] abExist;
qed;
`;;
let OpenInSubtopologyInterOpen = theorem `;
βΞ± s t u. u β topspace Ξ± β
open_in (subtopology Ξ± u) s β§ open_in Ξ± t
β open_in (subtopology Ξ± u) (s β© t)
proof
intro_TAC βΞ± s t u, H1, sOpenSub_t tOpen;
consider a b such that
open_in Ξ± a β§ s = a β© u β§ b = a β© t [aExists] by fol sOpenSub_t H1 OpenInSubtopology;
fol - tOpen OPEN_IN_INTER INTER_ACI H1 OpenInSubtopology;
qed;
`;;
let OpenInOpenInter = theorem `;
βΞ± u s. u β topspace Ξ± β open_in Ξ± s
β open_in (subtopology Ξ± u) (u β© s)
by fol INTER_COMM OpenInSubtopology`;;
let OpenOpenInTrans = theorem `;
βΞ± s t. open_in Ξ± s β§ open_in Ξ± t β§ t β s
β open_in (subtopology Ξ± s) t
by fol OPEN_IN_SUBSET SUBSET_INTER_ABSORPTION OpenInSubtopology`;;
let ClosedClosedInTrans = theorem `;
βΞ± s t. closed_in Ξ± s β§ closed_in Ξ± t β§ t β s
β closed_in (subtopology Ξ± s) t
by fol CLOSED_IN_SUBSET SUBSET_INTER_ABSORPTION ClosedInSubtopology`;;
let OpenSubset = theorem `;
βΞ± s t. t β topspace Ξ± β
s β t β§ open_in Ξ± s β open_in (subtopology Ξ± t) s
by fol OpenInSubtopology SUBSET_INTER_ABSORPTION`;;
let ClosedSubsetEq = theorem `;
βΞ± u s. u β topspace Ξ± β
closed_in Ξ± s β (closed_in (subtopology Ξ± u) s β s β u)
by fol ClosedInSubtopology INTER_SUBSET SUBSET_INTER_ABSORPTION`;;
let ClosedInInterClosed = theorem `;
βΞ± s t u. u β topspace Ξ± β
closed_in (subtopology Ξ± u) s β§ closed_in Ξ± t
β closed_in (subtopology Ξ± u) (s β© t)
proof
intro_TAC βΞ± s t u, H1, sClosedSub_t tClosed;
consider a b such that
closed_in Ξ± a β§ s = a β© u β§ b = a β© t [aExists] by fol sClosedSub_t H1 ClosedInSubtopology;
fol - tClosed CLOSED_IN_INTER INTER_ACI H1 ClosedInSubtopology;
qed;
`;;
let ClosedInClosedInter = theorem `;
βΞ± u s. u β topspace Ξ± β
closed_in Ξ± s β closed_in (subtopology Ξ± u) (u β© s)
by fol INTER_COMM ClosedInSubtopology`;;
let ClosedSubset = theorem `;
βΞ± s t. t β topspace Ξ± β
s β t β§ closed_in Ξ± s β closed_in (subtopology Ξ± t) s
by fol ClosedInSubtopology SUBSET_INTER_ABSORPTION`;;
let OpenInSubsetTrans = theorem `;
βΞ± s t u. u β topspace Ξ± β§ t β topspace Ξ± β
open_in (subtopology Ξ± u) s β§ s β t β§ t β u
β open_in (subtopology Ξ± t) s
proof
intro_TAC βΞ± s t u, uSubset tSubset;
simplify uSubset tSubset OpenInSubtopology;
intro_TAC sOpen_u s_t t_u;
consider a such that
open_in Ξ± a β§ s = a β© u [aExists] by fol uSubset sOpen_u OpenInSubtopology;
set aExists s_t t_u;
qed;
`;;
let ClosedInSubsetTrans = theorem `;
βΞ± s t u. u β topspace Ξ± β§ t β topspace Ξ± β
closed_in (subtopology Ξ± u) s β§ s β t β§ t β u
β closed_in (subtopology Ξ± t) s
proof
intro_TAC βΞ± s t u, uSubset tSubset;
simplify uSubset tSubset ClosedInSubtopology;
intro_TAC sClosed_u s_t t_u;
consider a such that
closed_in Ξ± a β§ s = a β© u [aExists] by fol uSubset sClosed_u ClosedInSubtopology;
set aExists s_t t_u;
qed;
`;;
let OpenInTrans = theorem `;
βΞ± s t u. t β topspace Ξ± β§ u β topspace Ξ± β
open_in (subtopology Ξ± t) s β§ open_in (subtopology Ξ± u) t
β open_in (subtopology Ξ± u) s
proof
intro_TAC βΞ± s t u, H1 H2;
simplify H1 H2 OpenInSubtopology;
fol H1 H2 OpenInSubtopology OPEN_IN_INTER INTER_ASSOC;
qed;
`;;
let OpenInTransEq = theorem `;
βΞ± s t. t β topspace Ξ± β§ s β topspace Ξ± β
((βu. open_in (subtopology Ξ± t) u β open_in (subtopology Ξ± s) t)
β open_in (subtopology Ξ± s) t)
by fol OpenInTrans OpenInRefl`;;
let OpenInOpenTrans = theorem `;
βΞ± u s. u β topspace Ξ± β
open_in (subtopology Ξ± u) s β§ open_in Ξ± u β open_in Ξ± s
by fol OpenInSubtopology OPEN_IN_INTER`;;
let OpenInSubtopologyTrans = theorem `;
βΞ± s t u. t β topspace Ξ± β§ u β topspace Ξ± β
open_in (subtopology Ξ± t) s β§ open_in (subtopology Ξ± u) t
β open_in (subtopology Ξ± u) s
proof
simplify OpenInSubtopology;
fol OPEN_IN_INTER INTER_ASSOC;
qed;
`;;
let SubtopologyOpenInSubopen = theorem `;
βΞ± u s. u β topspace Ξ± β
(open_in (subtopology Ξ± u) s β
s β u β§ βx. x β s β βt. open_in Ξ± t β§ x β t β§ t β© u β s)
proof
intro_TAC βΞ± u s, H1;
rewriteL OPEN_IN_SUBOPEN;
simplify H1 OpenInSubtopology;
eq_tac [Right] by fol SUBSET IN_INTER;
intro_TAC H2;
conj_tac [Left]
proof simplify SUBSET; fol H2 IN_INTER; qed;
intro_TAC βx, xs;
consider t such that
open_in Ξ± t β§ x β t β© u β§ t β© u β s [tExists] by fol H2 xs;
fol - IN_INTER;
qed;
`;;
let ClosedInSubtopologyTrans = theorem `;
βΞ± s t u. t β topspace Ξ± β§ u β topspace Ξ± β
closed_in (subtopology Ξ± t) s β§ closed_in (subtopology Ξ± u) t
β closed_in (subtopology Ξ± u) s
proof
simplify ClosedInSubtopology;
fol CLOSED_IN_INTER INTER_ASSOC;
qed;
`;;
let ClosedInSubtopologyTransEq = theorem `;
βΞ± s t. t β topspace Ξ± β§ s β topspace Ξ± β
((βu. closed_in (subtopology Ξ± t) u β closed_in (subtopology Ξ± s) t)
β closed_in (subtopology Ξ± s) t)
proof
intro_TAC βΞ± s t, H1 H2;
fol H1 H2 ClosedInSubtopologyTrans CLOSED_IN_TOPSPACE;
qed;
`;;
let ClosedInClosedTrans = theorem `;
βΞ± s t. u β topspace Ξ± β
closed_in (subtopology Ξ± u) s β§ closed_in Ξ± u β closed_in Ξ± s
by fol ClosedInSubtopology CLOSED_IN_INTER`;;
let OpenInSubtopologyInterSubset = theorem `;
βΞ± s u v. u β topspace Ξ± β§ v β topspace Ξ± β
open_in (subtopology Ξ± u) (u β© s) β§ v β u
β open_in (subtopology Ξ± v) (v β© s)
proof
simplify OpenInSubtopology;
set;
qed;
`;;
let OpenInOpenEq = theorem `;
βΞ± s t. s β topspace Ξ± β
open_in Ξ± s β (open_in (subtopology Ξ± s) t β open_in Ξ± t β§ t β s)
by fol OpenOpenInTrans OPEN_IN_SUBSET TopspaceSubtopology OpenInOpenTrans`;;
let ClosedInClosedEq = theorem `;
βΞ± s t. s β topspace Ξ± β closed_in Ξ± s β
(closed_in (subtopology Ξ± s) t β closed_in Ξ± t β§ t β s)
by fol ClosedClosedInTrans CLOSED_IN_SUBSET TopspaceSubtopology ClosedInClosedTrans`;;
let OpenImpliesSubtopologyInterOpen = theorem `;
βΞ± u s. u β topspace Ξ± β
open_in Ξ± s β open_in (subtopology Ξ± u) (u β© s)
by fol OpenInSubtopology INTER_COMM`;;
let OPEN_IN_EXISTS_IN = theorem `;
βΞ± P Q. (βa. P a β open_in Ξ± {x | Q a x}) β
open_in Ξ± {x | βa. P a β§ Q a x}
proof
intro_TAC βΞ± P Q, H1;
consider f such that f = {{x | Q a x} | P a} [fDef] by fol;
(βa. P a β open_in Ξ± {x | Q a x}) β (βs. s β f β open_in Ξ± s) [] by simplify fDef FORALL_IN_GSPEC;
MP_TAC MESON [H1; -; OPEN_IN_UNIONS] [open_in Ξ± (UNIONS f)];
simplify fDef UNIONS_GSPEC;
set;
qed;
`;;
let Connected_DEF = NewDefinition `;
βΞ±. Connected Ξ± β
Β¬(βe1 e2. open_in Ξ± e1 β§ open_in Ξ± e2 β§ topspace Ξ± = e1 βͺ e2 β§
e1 β© e2 = β
β§ Β¬(e1 = β
) β§ Β¬(e2 = β
))`;;
let ConnectedClosedHelp = theorem `;
βΞ± e1 e2. topspace Ξ± = e1 βͺ e2 β§ e1 β© e2 = β
β
(closed_in Ξ± e1 β§ closed_in Ξ± e2 β open_in Ξ± e1 β§ open_in Ξ± e2)
proof
intro_TAC βΞ± e1 e2, H1 H2;
e1 = topspace Ξ± β e2 β§ e2 = topspace Ξ± β e1 [e12Complements] by set H1 H2;
fol H1 SUBSET_UNION e12Complements OPEN_IN_CLOSED_IN_EQ;
qed;
`;;
let ConnectedClosed = theorem `;
βΞ±. Connected Ξ± β
Β¬(βe1 e2. closed_in Ξ± e1 β§ closed_in Ξ± e2 β§
topspace Ξ± = e1 βͺ e2 β§ e1 β© e2 = β
β§ Β¬(e1 = β
) β§ Β¬(e2 = β
))
proof
rewrite Connected_DEF;
fol ConnectedClosedHelp;
qed;
`;;
let ConnectedOpenIn = theorem `;
βΞ± s. s β topspace Ξ± β
(Connected (subtopology Ξ± s) β Β¬(βe1 e2.
open_in (subtopology Ξ± s) e1 β§ open_in (subtopology Ξ± s) e2 β§
s β e1 βͺ e2 β§ e1 β© e2 = β
β§ Β¬(e1 = β
) β§ Β¬(e2 = β
)))
proof
simplify Connected_DEF TopspaceSubtopology;
fol SUBSET_REFL OpenInImpSubset UNION_SUBSET SUBSET_ANTISYM;
qed;
`;;
let ConnectedClosedIn = theorem `;
βΞ± s. s β topspace Ξ± β
(Connected (subtopology Ξ± s) β Β¬(βe1 e2.
closed_in (subtopology Ξ± s) e1 β§ closed_in (subtopology Ξ± s) e2 β§
s β e1 βͺ e2 β§ e1 β© e2 = β
β§ Β¬(e1 = β
) β§ Β¬(e2 = β
)))
proof
simplify ConnectedClosed TopspaceSubtopology;
fol SUBSET_REFL ClosedInImpSubset UNION_SUBSET SUBSET_ANTISYM;
qed;
`;;
let ConnectedSubtopology = theorem `;
βΞ± s. s β topspace Ξ± β
(Connected (subtopology Ξ± s) β
Β¬(βe1 e2. open_in Ξ± e1 β§ open_in Ξ± e2 β§ s β e1 βͺ e2 β§
e1 β© e2 β© s = β
β§ Β¬(e1 β© s = β
) β§ Β¬(e2 β© s = β
)))
proof
intro_TAC βΞ± s, H1;
simplify H1 Connected_DEF OpenInSubtopology TopspaceSubtopology;
AP_TERM_TAC;
eq_tac [Left]
proof
intro_TAC H2;
consider t1 t2 such that
open_in Ξ± t1 β§ open_in Ξ± t2 β§ s = (t1 β© s) βͺ (t2 β© s) β§
(t1 β© s) β© (t2 β© s) = β
β§ Β¬(t1 β© s = β
) β§ Β¬(t2 β© s = β
) [t12Exist] by fol H2;
s β t1 βͺ t2 β§ t1 β© t2 β© s = β
[] by set t12Exist;
fol t12Exist -;
qed;
rewrite LEFT_IMP_EXISTS_THM;
intro_TAC βe1 e2, e12Exist;
exists_TAC e1 β© s;
exists_TAC e2 β© s;
set e12Exist;
qed;
`;;
let ConnectedSubtopology_ALT = theorem `;
βΞ± s. s β topspace Ξ± β
(Connected (subtopology Ξ± s) β
βe1 e2. open_in Ξ± e1 β§ open_in Ξ± e2 β§
s β e1 βͺ e2 β§ e1 β© e2 β© s = β
β e1 β© s = β
β¨ e2 β© s = β
)
proof simplify ConnectedSubtopology; fol; qed;
`;;
let ConnectedClosedSubtopology = theorem `;
βΞ± s. s β topspace Ξ± β
(Connected (subtopology Ξ± s) β
Β¬(βe1 e2. closed_in Ξ± e1 β§ closed_in Ξ± e2 β§ s β e1 βͺ e2 β§
e1 β© e2 β© s = β
β§ Β¬(e1 β© s = β
) β§ Β¬(e2 β© s = β
)))
proof
intro_TAC βΞ± s, H1;
simplify H1 ConnectedSubtopology;
AP_TERM_TAC;
eq_tac [Left]
proof
rewrite LEFT_IMP_EXISTS_THM;
intro_TAC βe1 e2, e12Exist;
exists_TAC topspace Ξ± β e2;
exists_TAC topspace Ξ± β e1;
simplify OPEN_IN_SUBSET H1 SUBSET_DIFF DIFF_REFL closed_in e12Exist;
set H1 e12Exist;
qed;
rewrite LEFT_IMP_EXISTS_THM;
intro_TAC βe1 e2, e12Exist;
exists_TAC topspace Ξ± β e2;
exists_TAC topspace Ξ± β e1;
e1 β topspace Ξ± β§ e2 β topspace Ξ± [e12Top] by fol closed_in e12Exist;
simplify DIFF_REFL SUBSET_DIFF e12Top OPEN_IN_CLOSED_IN;
set H1 e12Exist;
qed;
`;;
let ConnectedClosedSubtopology_ALT = theorem `;
βΞ± s. s β topspace Ξ± β
(Connected (subtopology Ξ± s) β
βe1 e2. closed_in Ξ± e1 β§ closed_in Ξ± e2 β§
s β e1 βͺ e2 β§ e1 β© e2 β© s = β
β e1 β© s = β
β¨ e2 β© s = β
)
proof simplify ConnectedClosedSubtopology; fol; qed;
`;;
let ConnectedClopen = theorem `;
βΞ±. Connected Ξ± β
βt. open_in Ξ± t β§ closed_in Ξ± t β t = β
β¨ t = topspace Ξ±
proof
intro_TAC βΞ±;
simplify Connected_DEF closed_in TAUT [(Β¬a β b) β (a β Β¬b)] NOT_FORALL_THM NOT_IMP DE_MORGAN_THM;
eq_tac [Left]
proof
rewrite LEFT_IMP_EXISTS_THM; intro_TAC βe1 e2, H1 H2 H3 H4 H5 H6;
exists_TAC e1;
e1 β topspace Ξ± β§ e2 = topspace Ξ± β e1 β§ Β¬(e1 = topspace alpha) [] by set H3 H4 H6;
fol H1 - H2 H5;
qed;
rewrite LEFT_IMP_EXISTS_THM; intro_TAC βt, H1;
exists_TAC t; exists_TAC topspace Ξ± β t;
set H1;
qed;
`;;
let ConnectedClosedSet = theorem `;
βΞ± s. s β topspace Ξ± β closed_in Ξ± s β
(Connected (subtopology Ξ± s) β Β¬(βe1 e2.
closed_in Ξ± e1 β§ closed_in Ξ± e2 β§
Β¬(e1 = β
) β§ Β¬(e2 = β
) β§ e1 βͺ e2 = s β§ e1 β© e2 = β
))
proof
intro_TAC βΞ± s, H1, H2;
simplify H1 ConnectedClosedSubtopology;
AP_TERM_TAC;
eq_tac [Left]
proof
rewrite LEFT_IMP_EXISTS_THM; intro_TAC βe1 e2, H3 H4 H5 H6 H7 H8;
exists_TAC e1 β© s; exists_TAC e2 β© s;
simplify H2 H3 H4 H7 H8 CLOSED_IN_INTER;
set H5 H6;
qed;
rewrite LEFT_IMP_EXISTS_THM; intro_TAC βe1 e2, H3 H4 H5 H6 H7 H8;
exists_TAC e1; exists_TAC e2;
set H3 H4 H7 H8 H5 H6;
qed;
`;;
let ConnectedOpenSet = theorem `;
βΞ± s. open_in Ξ± s β
(Connected (subtopology Ξ± s) β
Β¬(βe1 e2. open_in Ξ± e1 β§ open_in Ξ± e2 β§
Β¬(e1 = β
) β§ Β¬(e2 = β
) β§ e1 βͺ e2 = s β§ e1 β© e2 = β
))
proof
intro_TAC βΞ± s, H1;
simplify H1 OPEN_IN_SUBSET ConnectedSubtopology;
AP_TERM_TAC;
eq_tac [Left]
proof
rewrite LEFT_IMP_EXISTS_THM; intro_TAC βe1 e2, H3 H4 H5 H6 H7 H8;
exists_TAC e1 β© s; exists_TAC e2 β© s;
e1 β topspace Ξ± β§ e2 β topspace Ξ± [e12Subsets] by fol H3 H4 OPEN_IN_SUBSET;
simplify H1 H3 H4 OPEN_IN_INTER H7 H8;
set e12Subsets H5 H6;
qed;
rewrite LEFT_IMP_EXISTS_THM; intro_TAC βe1 e2, H3 H4 H5 H6 H7 H8;
exists_TAC e1; exists_TAC e2;
set H3 H4 H7 H8 H5 H6;
qed;
`;;
let ConnectedEmpty = theorem `;
βΞ±. Connected (subtopology Ξ± β
)
proof
simplify Connected_DEF INTER_EMPTY EMPTY_SUBSET TopspaceSubtopology;
fol UNION_SUBSET SUBSET_EMPTY;
qed;
`;;
let ConnectedSing = theorem `;
βΞ± a. a β topspace Ξ± β Connected (subtopology Ξ± {a})
proof
simplify Connected_DEF SING_SUBSET TopspaceSubtopology;
set;
qed;
`;;
let ConnectedUnions = theorem `;
βΞ± P. (βs. s β P β s β topspace Ξ±) β
(βs. s β P β Connected (subtopology Ξ± s)) β§ Β¬(INTERS P = β
)
β Connected (subtopology Ξ± (UNIONS P))
proof
intro_TAC βΞ± P, H1;
simplify H1 ConnectedSubtopology UNIONS_SUBSET NOT_EXISTS_THM;
intro_TAC allConnected PnotDisjoint, β[d/e1] [e/e2];
consider a such that
βt. t β P β a β t [aInterP] by fol PnotDisjoint MEMBER_NOT_EMPTY IN_INTERS;
ONCE_REWRITE_TAC TAUT [βp. Β¬p β p β F];
intro_TAC dOpen eOpen Pde deDisjoint dNonempty eNonempty;
a β d β¨ a β e [adORae] by set aInterP Pde dNonempty;
consider s x t y such that
s β P β§ x β d β© s β§
t β P β§ y β e β© t [xdsANDyet] by set dNonempty eNonempty;
d β© e β© s = β
β§ d β© e β© t = β
[] by set - deDisjoint;
(d β© s = β
β¨ e β© s = β
) β§
(d β© t = β
β¨ e β© t = β
) [] by fol xdsANDyet allConnected dOpen eOpen Pde -;
set adORae xdsANDyet aInterP -;
qed;
`;;
let ConnectedUnion = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β§ Β¬(s β© t = β
) β§
Connected (subtopology Ξ± s) β§ Connected (subtopology Ξ± t)
β Connected (subtopology Ξ± (s βͺ t))
proof
rewrite GSYM UNIONS_2 GSYM INTERS_2;
intro_TAC βΞ± s t, H1 H2 H3 H4 H5;
βu. u β {s, t} β u β topspace Ξ± [stEuclidean] by set H1 H2;
βu. u β {s, t} β Connected (subtopology Ξ± u) [] by set H4 H5;
fol stEuclidean - H3 ConnectedUnions;
qed;
`;;
let ConnectedDiffOpenFromClosed = theorem `;
βΞ± s t u. u β topspace Ξ± β
s β t β§ t β u β§ open_in Ξ± s β§ closed_in Ξ± t β§
Connected (subtopology Ξ± u) β§ Connected (subtopology Ξ± (t β s))
β Connected (subtopology Ξ± (u β s))
proof
ONCE_REWRITE_TAC TAUT
[βa b c d e f g. (a β§ b β§ c β§ d β§ e β§ f β g) β
(a β§ b β§ c β§ d β Β¬g β f β Β¬e)];
intro_TAC βΞ± s t u, uSubset, st tu sOpen tClosed;
t β s β topspace Ξ± β§ u β s β topspace Ξ± [] by fol uSubset sOpen OPEN_IN_SUBSET tClosed closed_in SUBSET_DIFF SUBSET_TRANS;
simplify uSubset - ConnectedSubtopology;
rewrite LEFT_IMP_EXISTS_THM;
intro_TAC β[v/e1] [w/e2];
intro_TAC vOpen wOpen u_sDisconnected vwDisjoint vNonempty wNonempty;
rewrite NOT_EXISTS_THM;
intro_TAC t_sConnected;
t β s β v βͺ w β§ v β© w β© (t β s) = β
[] by set tu u_sDisconnected vwDisjoint;
v β© (t β s) = β
β¨ w β© (t β s) = β
[] by fol t_sConnected vOpen wOpen -;
case_split vEmpty | wEmpty by fol -;
suppose v β© (t β s) = β
;
exists_TAC w βͺ s; exists_TAC v β t;
simplify vOpen wOpen sOpen tClosed OPEN_IN_UNION OPEN_IN_DIFF;
set st tu u_sDisconnected vEmpty vwDisjoint wNonempty vNonempty;
end;
suppose w β© (t β s) = β
;
exists_TAC v βͺ s; exists_TAC w β t;
simplify vOpen wOpen sOpen tClosed OPEN_IN_UNION OPEN_IN_DIFF;
set st tu u_sDisconnected wEmpty vwDisjoint wNonempty vNonempty;
end;
qed;
`;;
let ConnectedDisjointUnionsOpenUniquePart1 = theorem `;
βΞ± f f' s t a. pairwise DISJOINT f β§ pairwise DISJOINT f' β§
(βs. s β f β open_in Ξ± s β§ Connected (subtopology Ξ± s) β§ Β¬(s = β
)) β§
(βs. s β f' β open_in Ξ± s β§ Connected (subtopology Ξ± s) β§ Β¬(s = β
)) β§
UNIONS f = UNIONS f' β§ s β f β§ t β f' β§ a β s β§ a β t
β s β t
proof
intro_TAC βΞ± f f' s t a, pDISJf pDISJf' fConn f'Conn Uf_Uf' sf tf' a_s a_t;
βs. s β f β s β topspace Ξ± [fTop] by fol fConn OPEN_IN_SUBSET;
βs. s β f' β s β topspace Ξ± [f'Top] by fol f'Conn OPEN_IN_SUBSET;
rewrite SUBSET;
intro_TAC β[b], bs;
assume Β¬(b β t) [Contradiction] by fol;
βe1 e2. open_in Ξ± e1 β§ open_in Ξ± e2 β§ e1 β© e2 β© s = β
β§
s β e1 βͺ e2 β§ Β¬(e1 β© s = β
) β§ Β¬(e2 β© s = β
) []
proof
exists_TAC t; exists_TAC UNIONS (f' DELETE t);
simplify tf' f'Conn IN_DELETE OPEN_IN_UNIONS;
conj_tac [Right] by set sf Uf_Uf' a_s a_t sf bs Contradiction;
MATCH_MP_TAC SET_RULE [βs t u. t β© u = β
β t β© u β© s = β
];
rewrite INTER_UNIONS EMPTY_UNIONS FORALL_IN_GSPEC;
rewrite IN_DELETE GSYM DISJOINT;
fol pDISJf' tf' pairwise;
qed;
fol - sf fTop fConn ConnectedSubtopology;
qed;
`;;
let ConnectedDisjointUnionsOpenUnique = theorem `;
βΞ± f f'. pairwise DISJOINT f β§ pairwise DISJOINT f' β§
(βs. s β f β open_in Ξ± s β§ Connected (subtopology Ξ± s) β§ Β¬(s = β
)) β§
(βs. s β f' β open_in Ξ± s β§ Connected (subtopology Ξ± s) β§ Β¬(s = β
)) β§
UNIONS f = UNIONS f'
β f = f'
proof
MATCH_MP_TAC MESON [SUBSET_ANTISYM]
[(βΞ± s t. P Ξ± s t β P Ξ± t s) β§ (βΞ± s t. P Ξ± s t β s β t)
β (βΞ± s t. P Ξ± s t β s = t)];
conj_tac [Left] by fol;
intro_TAC βΞ± f f', pDISJf pDISJf' fConn f'Conn Uf_Uf';
rewrite SUBSET;
intro_TAC β[s], sf;
consider t a such that
t β f' β§ a β s β§ a β t [taExist] by set sf fConn Uf_Uf';
MP_TAC ISPECL [Ξ±; f; f'; s; t] ConnectedDisjointUnionsOpenUniquePart1;
MP_TAC ISPECL [Ξ±; f'; f; t; s] ConnectedDisjointUnionsOpenUniquePart1;
fol pDISJf pDISJf' fConn f'Conn Uf_Uf' sf taExist SUBSET_ANTISYM taExist;
qed;
`;;
let ConnectedFromClosedUnionAndInter = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β§ closed_in Ξ± s β§ closed_in Ξ± t β§
Connected (subtopology Ξ± (s βͺ t)) β§ Connected (subtopology Ξ± (s β© t))
β Connected (subtopology Ξ± s) β§ Connected (subtopology Ξ± t)
proof
MATCH_MP_TAC MESON [] [(βΞ± s t. P Ξ± s t β P Ξ± t s) β§
(βΞ± s t. P Ξ± s t β Q Ξ± s) β βΞ± s t. P Ξ± s t β Q Ξ± s β§ Q Ξ± t];
conj_tac [Left] by fol UNION_COMM INTER_COMM;
ONCE_REWRITE_TAC TAUT
[βa b c d e f. a β§ b β§ c β§ d β§ e β f β a β§ b β§ c β§ e β§ Β¬f β Β¬d];
intro_TAC βΞ± s t, stUnionTop sClosed tClosed stInterConn NOTsConn;
s β topspace Ξ± β§ t β topspace Ξ± β§ s β© t β topspace Ξ± [stTop] by fol stUnionTop UNION_SUBSET INTER_SUBSET SUBSET_TRANS;
simplify stUnionTop ConnectedClosedSubtopology;
consider u v such that closed_in Ξ± u β§ closed_in Ξ± v β§
Β¬(u = β
) β§ Β¬(v = β
) β§ u βͺ v = s β§ u β© v = β
[sDisConn]
proof
MP_TAC ISPECL [Ξ±; s] ConnectedClosedSet;
simplify stTop sClosed NOTsConn;
qed;
s β© t β u βͺ v β§ u β© v β© (s β© t) = β
[stuvProps] by set sDisConn;
u β© (s β© t) = β
β¨ v β© (s β© t) = β
[] by fol stTop stInterConn sDisConn - ConnectedClosedSubtopology_ALT;
case_split vstEmpty | ustEmpty by fol -;
suppose v β© (s β© t) = β
;
exists_TAC t βͺ u; exists_TAC v;
simplify tClosed sDisConn CLOSED_IN_UNION;
set stuvProps sDisConn vstEmpty;
end;
suppose u β© (s β© t) = β
;
exists_TAC t βͺ v; exists_TAC u;
simplify tClosed sDisConn CLOSED_IN_UNION;
set stuvProps sDisConn ustEmpty;
end;
qed;
`;;
let ConnectedFromOpenUnionAndInter = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β§ open_in Ξ± s β§ open_in Ξ± t β§
Connected (subtopology Ξ± (s βͺ t)) β§ Connected (subtopology Ξ± (s β© t))
β Connected (subtopology Ξ± s) β§ Connected (subtopology Ξ± t)
proof
MATCH_MP_TAC MESON [] [(βΞ± s t. P Ξ± s t β P Ξ± t s) β§
(βΞ± s t. P Ξ± s t β Q Ξ± s) β βΞ± s t. P Ξ± s t β Q Ξ± s β§ Q Ξ± t];
conj_tac [Left] by fol UNION_COMM INTER_COMM;
ONCE_REWRITE_TAC TAUT
[βa b c d e f. a β§ b β§ c β§ d β§ e β f β a β§ b β§ c β§ e β§ Β¬f β Β¬d];
intro_TAC βΞ± s t, stUnionTop sOpen tOpen stInterConn NOTsConn;
s β topspace Ξ± β§ t β topspace Ξ± β§ s β© t β topspace Ξ± [stTop] by fol stUnionTop UNION_SUBSET INTER_SUBSET SUBSET_TRANS;
simplify stUnionTop ConnectedSubtopology;
consider u v such that open_in Ξ± u β§ open_in Ξ± v β§
Β¬(u = β
) β§ Β¬(v = β
) β§ u βͺ v = s β§ u β© v = β
[sDisConn]
proof
MP_TAC ISPECL [Ξ±; s] ConnectedOpenSet;
simplify stTop sOpen NOTsConn;
qed;
s β© t β u βͺ v β§ u β© v β© (s β© t) = β
[stuvProps] by set sDisConn;
u β© (s β© t) = β
β¨ v β© (s β© t) = β
[] by fol stTop stInterConn sDisConn - ConnectedSubtopology_ALT;
case_split vstEmpty | ustEmpty by fol -;
suppose v β© (s β© t) = β
;
exists_TAC t βͺ u; exists_TAC v;
simplify tOpen sDisConn OPEN_IN_UNION;
set stuvProps sDisConn vstEmpty;
end;
suppose u β© (s β© t) = β
;
exists_TAC t βͺ v; exists_TAC u;
simplify tOpen sDisConn OPEN_IN_UNION;
set stuvProps sDisConn ustEmpty;
end;
qed;
`;;
let ConnectedInduction = theorem `;
βΞ± P Q s. s β topspace Ξ± β Connected (subtopology Ξ± s) β§
(βt a. open_in (subtopology Ξ± s) t β§ a β t β βz. z β t β§ P z) β§
(βa. a β s β βt. open_in (subtopology Ξ± s) t β§ a β t β§
βx y. x β t β§ y β t β§ P x β§ P y β§ Q x β Q y)
β βa b. a β s β§ b β s β§ P a β§ P b β§ Q a β Q b
proof
intro_TAC βΞ± P Q s, sTop, sConn atOpenImplies_ztPz asImplies_atOpen_xytPxPyQxasImpliesQy, βa b, aINs bINs Pa Pb Qa;
assume Β¬Q b [NotQb] by fol;
Β¬Connected (subtopology Ξ± s) []
proof
simplify sTop ConnectedOpenIn;
exists_TAC
{b | βt. open_in (subtopology Ξ± s) t β§ b β t β§ βx. x β t β§ P x β Q x};
exists_TAC
{b | βt. open_in (subtopology Ξ± s) t β§ b β t β§ βx. x β t β§ P x β Β¬(Q x)};
conj_tac [Left]
proof
ONCE_REWRITE_TAC OPEN_IN_SUBOPEN;
intro_TAC β[c];
rewrite IN_ELIM_THM;
MATCH_MP_TAC MONO_EXISTS;
set atOpenImplies_ztPz;
qed;
conj_tac [Left]
proof
ONCE_REWRITE_TAC OPEN_IN_SUBOPEN;
intro_TAC β[c];
rewrite IN_ELIM_THM;
MATCH_MP_TAC MONO_EXISTS;
set atOpenImplies_ztPz;
qed;
conj_tac [Left]
proof
rewrite SUBSET IN_ELIM_THM IN_UNION;
intro_TAC β[c], cs;
MP_TAC SPECL [c] asImplies_atOpen_xytPxPyQxasImpliesQy;
set cs;
qed;
conj_tac [Right] by set aINs bINs Qa NotQb asImplies_atOpen_xytPxPyQxasImpliesQy Pa Pb;
rewrite EXTENSION IN_INTER NOT_IN_EMPTY IN_ELIM_THM;
intro_TAC β[c];
ONCE_REWRITE_TAC TAUT [βp. Β¬p β p β F];
intro_TAC Qx NotQx;
consider t such that
open_in (subtopology Ξ± s) t β§ c β t β§ (βx. x β t β§ P x β Q x) [tExists] by fol Qx;
consider u such that
open_in (subtopology Ξ± s) u β§ c β u β§ (βx. x β u β§ P x β Β¬Q x) [uExists] by fol NotQx;
MP_TAC SPECL [t β© u; c] atOpenImplies_ztPz;
simplify tExists uExists OPEN_IN_INTER;
set tExists uExists;
qed;
fol sConn -;
qed;
`;;
let ConnectedEquivalenceRelationGen = theorem `;
βΞ± P R s. s β topspace Ξ± β Connected (subtopology Ξ± s) β§
(βx y z. R x y β§ R y z β R x z) β§
(βt a. open_in (subtopology Ξ± s) t β§ a β t
β βz. z β t β§ P z) β§
(βa. a β s
β βt. open_in (subtopology Ξ± s) t β§ a β t β§
βx y. x β t β§ y β t β§ P x β§ P y β R x y)
β βa b. a β s β§ b β s β§ P a β§ P b β R a b
proof
intro_TAC βΞ± P R s, sTop, sConn Rtrans atOpenImplies_ztPz asImplies_atOpen_xytPxPyImpliesRxy, βa b, aINs bINs Pa Pb;
βa. a β s β§ P a β βb c. b β s β§ c β s β§ P b β§ P c β§ R a b β R a c []
proof
intro_TAC β[p/a], pINs Pp;
MP_TAC ISPECL [Ξ±; P; Ξ»x. R p x; s] ConnectedInduction;
rewrite sTop sConn atOpenImplies_ztPz;
fol asImplies_atOpen_xytPxPyImpliesRxy Rtrans;
qed;
fol aINs Pa bINs Pb asImplies_atOpen_xytPxPyImpliesRxy -;
qed;
`;;
let ConnectedInductionSimple = theorem `;
βΞ± P s. s β topspace Ξ± β
Connected (subtopology Ξ± s) β§
(βa. a β s
β βt. open_in (subtopology Ξ± s) t β§ a β t β§
βx y. x β t β§ y β t β§ P x β P y)
β βa b. a β s β§ b β s β§ P a β P b
proof
intro_TAC βΞ± P s, sTop;
MP_TAC ISPECL [Ξ±; (Ξ»x. T β¨ x β s); P; s] ConnectedInduction;
fol sTop;
qed;
`;;
let ConnectedEquivalenceRelation = theorem `;
βΞ± R s. s β topspace Ξ± β Connected (subtopology Ξ± s)β§
(βx y. R x y β R y x) β§ (βx y z. R x y β§ R y z β R x z) β§
(βa. a β s β
βt. open_in (subtopology Ξ± s) t β§ a β t β§ βx. x β t β R a x)
β βa b. a β s β§ b β s β R a b
proof
intro_TAC βΞ± R s, sTop, sConn Rcomm Rtrans asImplies_atOpen_xtImpliesRax;
βa. a β s β βb c. b β s β§ c β s β§ R a b β R a c []
proof
intro_TAC β[p/a], pINs;
MP_TAC ISPECL [Ξ±; Ξ»x. R p x; s] ConnectedInductionSimple;
rewrite sTop sConn;
fol asImplies_atOpen_xtImpliesRax Rcomm Rtrans;
qed;
fol asImplies_atOpen_xtImpliesRax -;
qed;
`;;
let LimitPointOf = NewDefinition `;
βΞ± s. LimitPointOf Ξ± s = {x | s β topspace Ξ± β§ x β topspace Ξ± β§
βt. x β t β§ open_in Ξ± t β βy. Β¬(y = x) β§ y β s β§ y β t}`;;
let IN_LimitPointOf = theorem `;
βΞ± s x. s β topspace Ξ± β
(x β LimitPointOf Ξ± s β x β topspace Ξ± β§
βt. x β t β§ open_in Ξ± t β βy. Β¬(y = x) β§ y β s β§ y β t)
by simplify IN_ELIM_THM LimitPointOf`;;
let NotLimitPointOf = theorem `;
βΞ± s x. s β topspace Ξ± β§ x β topspace Ξ± β
(x β LimitPointOf Ξ± s β
βt. x β t β§ open_in Ξ± t β§ s β© (t β {x}) = β
)
proof
ONCE_REWRITE_TAC TAUT [βa b. (a β b) β (Β¬a β Β¬b)];
simplify β NOT_EXISTS_THM IN_LimitPointOf
TAUT [βa b. Β¬(a β§ b β§ c) β a β§ b β Β¬c] GSYM MEMBER_NOT_EMPTY IN_INTER IN_DIFF IN_SING;
fol;
qed;
`;;
let LimptSubset = theorem `;
βΞ± s t. t β topspace Ξ± β
s β t β LimitPointOf Ξ± s β LimitPointOf Ξ± t
proof
intro_TAC βΞ± s t, tTop, st;
s β topspace Ξ± [sTop] by fol tTop st SUBSET_TRANS;
simplify tTop sTop IN_LimitPointOf SUBSET;
fol st SUBSET;
qed;
`;;
let ClosedLimpt = theorem `;
βΞ± s. s β topspace Ξ± β
(closed_in Ξ± s β LimitPointOf Ξ± s β s)
proof
intro_TAC βΞ± s, H1;
simplify H1 closed_in;
ONCE_REWRITE_TAC OPEN_IN_SUBOPEN;
simplify H1 IN_LimitPointOf SUBSET IN_DIFF;
AP_TERM_TAC;
ABS_TAC;
fol OPEN_IN_SUBSET SUBSET;
qed;
`;;
let LimptEmpty = theorem `;
βΞ± x. x β topspace Ξ± β x β LimitPointOf Ξ± β
by fol EMPTY_SUBSET IN_LimitPointOf OPEN_IN_TOPSPACE NOT_IN_EMPTY β`;;
let NoLimitPointImpClosed = theorem `;
βΞ± s. s β topspace Ξ± β (βx. x β LimitPointOf Ξ± s) β closed_in Ξ± s
by fol ClosedLimpt SUBSET β`;;
let LimitPointUnion = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
LimitPointOf Ξ± (s βͺ t) = LimitPointOf Ξ± s βͺ LimitPointOf Ξ± t
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± [stTop] by fol H1 UNION_SUBSET;
rewrite EXTENSION IN_UNION;
intro_TAC βx;
assume x β topspace Ξ± [xTop] by fol H1 stTop IN_LimitPointOf;
ONCE_REWRITE_TAC TAUT [βa b. (a β b) β (Β¬a β Β¬b)];
simplify GSYM NOTIN DE_MORGAN_THM H1 stTop NotLimitPointOf xTop;
eq_tac [Left] by set;
MATCH_MP_TAC ExistsTensorInter;
simplify IN_INTER OPEN_IN_INTER;
set;
qed;
`;;
let Interior_DEF = NewDefinition `;
βΞ± s. Interior Ξ± s =
{x | s β topspace Ξ± β§ βt. open_in Ξ± t β§ x β t β§ t β s}`;;
let Interior_THM = theorem `;
βΞ± s. s β topspace Ξ± β Interior Ξ± s =
{x | s β topspace Ξ± β§ βt. open_in Ξ± t β§ x β t β§ t β s}
by fol Interior_DEF`;;
let IN_Interior = theorem `;
βΞ± s x. s β topspace Ξ± β
(x β Interior Ξ± s β βt. open_in Ξ± t β§ x β t β§ t β s)
by simplify Interior_THM IN_ELIM_THM`;;
let InteriorEq = theorem `;
βΞ± s. s β topspace Ξ± β
(open_in Ξ± s β s = Interior Ξ± s)
proof
intro_TAC βΞ± s, H1;
rewriteL OPEN_IN_SUBOPEN;
simplify EXTENSION H1 IN_Interior;
set;
qed;
`;;
let InteriorOpen = theorem `;
βΞ± s. open_in Ξ± s β Interior Ξ± s = s
by fol OPEN_IN_SUBSET InteriorEq`;;
let InteriorEmpty = theorem `;
βΞ±. Interior Ξ± β
= β
by fol OPEN_IN_EMPTY EMPTY_SUBSET InteriorOpen`;;
let InteriorUniv = theorem `;
βΞ±. Interior Ξ± (topspace Ξ±) = topspace Ξ±
by simplify OpenInTopspace InteriorOpen`;;
let OpenInterior = theorem `;
βΞ± s. s β topspace Ξ± β open_in Ξ± (Interior Ξ± s)
proof
ONCE_REWRITE_TAC OPEN_IN_SUBOPEN;
fol IN_Interior SUBSET;
qed;
`;;
let InteriorInterior = theorem `;
βΞ± s. s β topspace Ξ± β
Interior Ξ± (Interior Ξ± s) = Interior Ξ± s
by fol OpenInterior InteriorOpen`;;
let InteriorSubset = theorem `;
βΞ± s. s β topspace Ξ± β Interior Ξ± s β s
proof
intro_TAC βΞ± s, H1;
simplify SUBSET Interior_DEF IN_ELIM_THM;
fol H1 SUBSET;
qed;
`;;
let InteriorTopspace = theorem `;
βΞ± s. s β topspace Ξ± β Interior Ξ± s β topspace Ξ±
by fol SUBSET_TRANS InteriorSubset`;;
let SubsetInterior = theorem `;
βΞ± s t. t β topspace Ξ± β s β t β
Interior Ξ± s β Interior Ξ± t
by fol SUBSET_TRANS SUBSET IN_Interior SUBSET`;;
let InteriorMaximal = theorem `;
βΞ± s t. s β topspace Ξ± β
t β s β§ open_in Ξ± t β t β Interior Ξ± s
by fol SUBSET IN_Interior SUBSET`;;
let InteriorMaximalEq = theorem `;
βs t. t β topspace Ξ± β
open_in Ξ± s β (s β Interior Ξ± t β s β t)
by fol InteriorMaximal SUBSET_TRANS InteriorSubset`;;
let InteriorUnique = theorem `;
βΞ± s t. s β topspace Ξ± β
t β s β§ open_in Ξ± t β§ (βt'. t' β s β§ open_in Ξ± t' β t' β t)
β Interior Ξ± s = t
by fol SUBSET_ANTISYM InteriorSubset OpenInterior InteriorMaximal`;;
let OpenSubsetInterior = theorem `;
βΞ± s t. t β topspace Ξ± β
open_in Ξ± s β (s β Interior Ξ± t β s β t)
by fol InteriorMaximal InteriorSubset SUBSET_TRANS`;;
let InteriorInter = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
Interior Ξ± (s β© t) = Interior Ξ± s β© Interior Ξ± t
proof
intro_TAC βΞ± s t, sTop tTop;
rewrite GSYM SUBSET_ANTISYM_EQ SUBSET_INTER;
conj_tac [Left] by fol sTop tTop SubsetInterior INTER_SUBSET;
s β© t β topspace Ξ± [] by fol sTop INTER_SUBSET SUBSET_TRANS;
fol - sTop tTop OpenInterior OPEN_IN_INTER InteriorSubset InteriorMaximal INTER_TENSOR;
qed;
`;;
let InteriorFiniteInters = theorem `;
βΞ± s. FINITE s β Β¬(s = β
) β (βt. t β s β t β topspace Ξ±) β
Interior Ξ± (INTERS s) = INTERS (IMAGE (Interior Ξ±) s)
proof
intro_TAC βΞ±;
MATCH_MP_TAC FINITE_INDUCT;
rewrite INTERS_INSERT IMAGE_CLAUSES IN_INSERT;
intro_TAC βx s, sCase, xsNonempty, sSetOfSubsets;
assume Β¬(s = β
) [sNonempty] by simplify INTERS_0 INTER_UNIV IMAGE_CLAUSES;
simplify INTERS_SUBSET sSetOfSubsets InteriorInter sNonempty sSetOfSubsets sCase;
qed;
`;;
let InteriorIntersSubset = theorem `;
βΞ± f. Β¬(f = β
) β§ (βt. t β f β t β topspace Ξ±) β
Interior Ξ± (INTERS f) β INTERS (IMAGE (Interior Ξ±) f)
proof
intro_TAC βΞ± f, H1 H2;
INTERS f β topspace Ξ± [] by set H1 H2;
simplify SUBSET IN_INTERS FORALL_IN_IMAGE - H2 IN_Interior;
fol;
qed;
`;;
let UnionInteriorSubset = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
Interior Ξ± s βͺ Interior Ξ± t β Interior Ξ± (s βͺ t)
proof
intro_TAC βΞ± s t, sTop tTop;
s βͺ t β topspace Ξ± [] by fol sTop tTop UNION_SUBSET;
fol sTop tTop - OpenInterior OPEN_IN_UNION InteriorMaximal UNION_TENSOR InteriorSubset;
qed;
`;;
let InteriorEqEmpty = theorem `;
βΞ± s. s β topspace Ξ± β
(Interior Ξ± s = β
β βt. open_in Ξ± t β§ t β s β t = β
)
by fol InteriorMaximal SUBSET_EMPTY OpenInterior SUBSET_REFL InteriorSubset`;;
let InteriorEqEmptyAlt = theorem `;
βΞ± s. s β topspace Ξ± β
(Interior Ξ± s = β
β βt. open_in Ξ± t β§ Β¬(t = β
) β Β¬(t β s = β
))
proof
simplify InteriorEqEmpty;
set;
qed;
`;;
let InteriorUnionsOpenSubsets = theorem `;
βΞ± s. s β topspace Ξ± β UNIONS {t | open_in Ξ± t β§ t β s} = Interior Ξ± s
proof
intro_TAC βΞ± s, H1;
consider t such that
t = UNIONS {f | open_in Ξ± f β§ f β s} [tDef] by fol;
t β s β§ βf. f β s β§ open_in Ξ± f β f β t [] by set tDef;
simplify H1 tDef - OPEN_IN_UNIONS IN_ELIM_THM InteriorUnique;
qed;
`;;
let InteriorClosedUnionEmptyInterior = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
closed_in Ξ± s β§ Interior Ξ± t = β
β
Interior Ξ± (s βͺ t) = Interior Ξ± s
proof
intro_TAC βΞ± s t, H1 H2, H3 H4;
s βͺ t β topspace Ξ± [stTop] by fol H1 H2 UNION_SUBSET;
Interior Ξ± (s βͺ t) β s []
proof
simplify SUBSET stTop IN_Interior LEFT_IMP_EXISTS_THM;
intro_TAC β[y] [O], openO yO Os_t;
consider O' such that O' = (topspace Ξ± β s) β© O [O'def] by fol -;
O' β t [O't] by set O'def Os_t;
assume y β s [yNOTs] by fol β;
y β topspace Ξ± β s [] by fol openO OPEN_IN_SUBSET yO SUBSET yNOTs IN_DIFF β;
y β O' β§ open_in Ξ± O' [] by fol O'def - yO IN_INTER H3 closed_in openO OPEN_IN_INTER;
fol O'def - O't H2 IN_Interior SUBSET MEMBER_NOT_EMPTY H4;
qed;
fol SUBSET_ANTISYM H1 stTop OpenInterior - InteriorMaximal SUBSET_UNION SubsetInterior;
qed;
`;;
let InteriorUnionEqEmpty = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
closed_in Ξ± s β¨ closed_in Ξ± t
β (Interior Ξ± (s βͺ t) = β
β Interior Ξ± s = β
β§ Interior Ξ± t = β
)
proof
intro_TAC βΞ± s t, H1, H2;
s β topspace Ξ± β§ t β topspace Ξ± [] by fol H1 UNION_SUBSET;
eq_tac [Left] by fol - H1 SUBSET_UNION SubsetInterior SUBSET_EMPTY;
fol UNION_COMM - H2 InteriorClosedUnionEmptyInterior;
qed;
`;;
let Closure_DEF = NewDefinition `;
βΞ± s. Closure Ξ± s = s βͺ LimitPointOf Ξ± s`;;
let Closure_THM = theorem `;
βΞ± s. s β topspace Ξ± β Closure Ξ± s = s βͺ LimitPointOf Ξ± s
by fol Closure_DEF`;;
let IN_Closure = theorem `;
βΞ± s x. s β topspace Ξ± β
(x β Closure Ξ± s β x β topspace Ξ± β§
βt. x β t β§ open_in Ξ± t β βy. y β s β§ y β t)
proof
intro_TAC βΞ± s x, H1;
simplify H1 Closure_THM IN_UNION IN_LimitPointOf;
fol H1 SUBSET;
qed;
`;;
let ClosureSubset = theorem `;
βΞ± s. s β topspace Ξ± β s β Closure Ξ± s
by fol SUBSET IN_Closure`;;
let ClosureTopspace = theorem `;
βΞ± s. s β topspace Ξ± β Closure Ξ± s β topspace Ξ±
by fol SUBSET IN_Closure`;;
let ClosureInterior = theorem `;
βΞ± s. s β topspace Ξ± β
Closure Ξ± s = topspace Ξ± β (Interior Ξ± (topspace Ξ± β s))
proof
intro_TAC βΞ± s, H1;
simplify H1 EXTENSION IN_Closure IN_DIFF IN_Interior SUBSET;
fol OPEN_IN_SUBSET SUBSET;
qed;
`;;
let InteriorClosure = theorem `;
βΞ± s. s β topspace Ξ± β
Interior Ξ± s = topspace Ξ± β (Closure Ξ± (topspace Ξ± β s))
by fol SUBSET_DIFF InteriorTopspace DIFF_REFL ClosureInterior`;;
let ClosedClosure = theorem `;
βΞ± s. s β topspace Ξ± β closed_in Ξ± (Closure Ξ± s)
by fol closed_in ClosureInterior DIFF_REFL SUBSET_DIFF InteriorTopspace OpenInterior`;;
let SubsetClosure = theorem `;
βΞ± s t. t β topspace Ξ± β s β t β Closure Ξ± s β Closure Ξ± t
proof
intro_TAC βΞ± s t, tSubset, st;
s β topspace Ξ± [] by fol tSubset st SUBSET_TRANS;
simplify tSubset - Closure_THM st LimptSubset UNION_TENSOR;
qed;
`;;
let ClosureHull = theorem `;
βΞ± s. s β topspace Ξ± β Closure Ξ± s = (closed_in Ξ±) hull s
proof
intro_TAC βΞ± s, H1;
MATCH_MP_TAC GSYM HULL_UNIQUE;
simplify H1 ClosureSubset ClosedClosure Closure_THM UNION_SUBSET;
fol LimptSubset CLOSED_IN_SUBSET ClosedLimpt SUBSET_TRANS;
qed;
`;;
let ClosureEq = theorem `;
βΞ± s. s β topspace Ξ± β (Closure Ξ± s = s β closed_in Ξ± s)
by fol ClosedClosure ClosedLimpt Closure_THM SUBSET_UNION_ABSORPTION UNION_COMM`;;
let ClosureClosed = theorem `;
βΞ± s. closed_in Ξ± s β Closure Ξ± s = s
by fol closed_in ClosureEq`;;
let ClosureClosure = theorem `;
βΞ± s. s β topspace Ξ± β Closure Ξ± (Closure Ξ± s) = Closure Ξ± s
by fol ClosureTopspace ClosureHull HULL_HULL`;;
let ClosureUnion = theorem `;
βΞ± s t. s βͺ t β topspace Ξ±
β Closure Ξ± (s βͺ t) = Closure Ξ± s βͺ Closure Ξ± t
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± [stTop] by fol H1 UNION_SUBSET;
simplify H1 stTop Closure_THM LimitPointUnion;
set;
qed;
`;;
let ClosureInterSubset = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
Closure Ξ± (s β© t) β Closure Ξ± s β© Closure Ξ± t
by fol SUBSET_INTER INTER_SUBSET SubsetClosure`;;
let ClosureIntersSubset = theorem `;
βΞ± f. (βs. s β f β s β topspace Ξ±) β
Closure Ξ± (INTERS f) β INTERS (IMAGE (Closure Ξ±) f)
proof
intro_TAC βΞ± f, H1;
rewrite SET_RULE [s β INTERS f β βt. t β f β s β t] FORALL_IN_IMAGE;
intro_TAC β[s], sf;
s β topspace Ξ± β§ INTERS f β s β§ INTERS f β topspace Ξ± [] by set H1 sf;
fol SubsetClosure -;
qed;
`;;
let ClosureMinimal = theorem `;
βΞ± s t. s β t β§ closed_in Ξ± t β Closure Ξ± s β t
by fol closed_in SubsetClosure ClosureClosed`;;
let ClosureMinimalEq = theorem `;
βΞ± s t. s β topspace Ξ± β
closed_in Ξ± t β (Closure Ξ± s β t β s β t)
by fol closed_in SUBSET_TRANS ClosureSubset ClosureMinimal`;;
let ClosureUnique = theorem `;
βΞ± s t. s β t β§ closed_in Ξ± t β§ (βu. s β u β§ closed_in Ξ± u β t β u)
β Closure Ξ± s = t
by fol closed_in SUBSET_ANTISYM_EQ ClosureMinimal SUBSET_TRANS ClosureSubset ClosedClosure`;;
let ClosureUniv = theorem `;
βΞ±. Closure Ξ± (topspace Ξ±) = topspace Ξ±
by simplify SUBSET_REFL CLOSED_IN_TOPSPACE ClosureEq`;;
let ClosureEmpty = theorem `;
Closure Ξ± β
= β
by fol EMPTY_SUBSET CLOSED_IN_EMPTY ClosureClosed`;;
let ClosureUnions = theorem `;
βΞ± f. FINITE f β (β t. t β f β t β topspace Ξ±) β
Closure Ξ± (UNIONS f) = UNIONS {Closure Ξ± t | t β f}
proof
intro_TAC βΞ±;
MATCH_MP_TAC FINITE_INDUCT;
rewrite UNIONS_0 SET_RULE [{f x | x β β
} = β
] ClosureEmpty UNIONS_INSERT
SET_RULE [{f x | x β a INSERT t} = (f a) INSERT {f x | x β t}] IN_INSERT;
fol UNION_SUBSET UNIONS_SUBSET IN_UNIONS ClosureUnion;
qed;
`;;
let ClosureEqEmpty = theorem `;
βΞ± s. s β topspace Ξ± β (Closure Ξ± s = β
β s = β
)
by fol ClosureEmpty ClosureSubset SUBSET_EMPTY`;;
let ClosureSubsetEq = theorem `;
βΞ± s. s β topspace Ξ± β (Closure Ξ± s β s β closed_in Ξ± s)
by fol ClosureEq ClosureSubset SUBSET_ANTISYM`;;
let OpenInterClosureEqEmpty = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
open_in Ξ± s β (s β© Closure Ξ± t = β
β s β© t = β
)
proof
intro_TAC βΞ± s t, H1 H2, H3;
eq_tac [Left] by fol H2 ClosureSubset INTER_TENSOR SUBSET_REFL SUBSET_EMPTY;
intro_TAC stDisjoint;
s β Interior Ξ± (topspace Ξ± β t) [] by fol H2 SUBSET_DIFF H3 H1 H2 stDisjoint SUBSET_COMPLEMENT OpenSubsetInterior;
fol H1 H2 InteriorTopspace - COMPLEMENT_DISJOINT H2 ClosureInterior;
qed;
`;;
let OpenInterClosureSubset = theorem `;
βΞ± s t. t β topspace Ξ± β
open_in Ξ± s β s β© Closure Ξ± t β Closure Ξ± (s β© t)
proof
intro_TAC βΞ± s t, tTop, sOpen;
s β topspace Ξ± [sTop] by fol OPEN_IN_SUBSET sOpen;
s β© t β topspace Ξ± [stTop] by fol sTop sTop INTER_SUBSET SUBSET_TRANS;
simplify tTop - Closure_THM UNION_OVER_INTER SUBSET_UNION SUBSET_UNION;
s β© LimitPointOf Ξ± t β LimitPointOf Ξ± (s β© t) []
proof
simplify SUBSET IN_INTER tTop stTop IN_LimitPointOf;
intro_TAC β[x], xs xTop xLIMt, β[O], xO Oopen;
x β O β© s β§ open_in Ξ± (O β© s) [xOsOpen] by fol xs xO IN_INTER Oopen sOpen OPEN_IN_INTER;
fol xOsOpen xLIMt IN_INTER;
qed;
simplify - UNION_TENSOR SUBSET_REFL;
qed;
`;;
let ClosureOpenInterSuperset = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
open_in Ξ± s β§ s β Closure Ξ± t β Closure Ξ± (s β© t) = Closure Ξ± s
proof
intro_TAC βΞ± s t, sTop tTop, sOpen sSUBtC;
s β© t β topspace Ξ± [stTop] by fol INTER_SUBSET sTop SUBSET_TRANS;
MATCH_MP_TAC SUBSET_ANTISYM;
conj_tac [Left] by fol sTop INTER_SUBSET SubsetClosure;
s β Closure Ξ± (s β© t) [] by fol tTop sOpen OpenInterClosureSubset SUBSET_REFL sSUBtC SUBSET_INTER SUBSET_TRANS;
fol stTop - ClosedClosure ClosureMinimal;
qed;
`;;
let ClosureComplement = theorem `;
βΞ± s. s β topspace Ξ± β
Closure Ξ± (topspace Ξ± β s) = topspace Ξ± β Interior Ξ± s
by fol InteriorClosure SUBSET_DIFF ClosureTopspace DIFF_REFL`;;
let InteriorComplement = theorem `;
βΞ± s. s β topspace Ξ± β
Interior Ξ± (topspace Ξ± β s) = topspace Ξ± β Closure Ξ± s
by fol SUBSET_DIFF InteriorTopspace DIFF_REFL ClosureInterior DIFF_REFL`;;
let ClosureInteriorComplement = theorem `;
βΞ± s. s β topspace Ξ± β
topspace Ξ± β Closure Ξ± (Interior Ξ± s)
= Interior Ξ± (Closure Ξ± (topspace Ξ± β s))
by fol InteriorTopspace InteriorComplement ClosureComplement`;;
let InteriorClosureComplement = theorem `;
βΞ± s. s β topspace Ξ± β
topspace Ξ± β Interior Ξ± (Closure Ξ± s)
= Closure Ξ± (Interior Ξ± (topspace Ξ± β s))
by fol ClosureTopspace SUBSET_TRANS InteriorComplement ClosureComplement`;;
let ConnectedIntermediateClosure = theorem `;
βΞ± s t. s β topspace Ξ± β
Connected (subtopology Ξ± s) β§ s β t β§ t β Closure Ξ± s
β Connected (subtopology Ξ± t)
proof
intro_TAC βΞ± s t, sTop, sCon st tCs;
t β topspace Ξ± [tTop] by fol tCs sTop ClosureTopspace SUBSET_TRANS;
simplify tTop ConnectedSubtopology_ALT;
intro_TAC β[u] [v], uOpen vOpen t_uv uvtEmpty;
u β topspace Ξ± β§ v β topspace Ξ± [uvTop] by fol uOpen vOpen OPEN_IN_SUBSET;
u β© s = β
β¨ v β© s = β
[] by fol sTop uvTop uOpen vOpen st t_uv uvtEmpty SUBSET_TRANS SUBSET_REFL INTER_TENSOR SUBSET_EMPTY sCon ConnectedSubtopology_ALT;
s β topspace Ξ± β u β¨ s β topspace Ξ± β v [] by fol - sTop uvTop INTER_COMM SUBSET_COMPLEMENT;
t β topspace Ξ± β u β¨ t β topspace Ξ± β v [] by fol SUBSET_DIFF - uvTop uOpen vOpen OPEN_IN_CLOSED_IN ClosureMinimal tCs SUBSET_TRANS;
fol tTop uvTop - SUBSET_COMPLEMENT INTER_COMM;
qed;
`;;
let ConnectedClosure = theorem `;
βΞ± s. s β topspace Ξ± β Connected (subtopology Ξ± s) β
Connected (subtopology Ξ± (Closure Ξ± s))
by fol ClosureTopspace ClosureSubset SUBSET_REFL ConnectedIntermediateClosure`;;
let ConnectedUnionStrong = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
Connected (subtopology Ξ± s) β§ Connected (subtopology Ξ± t) β§
Β¬(Closure Ξ± s β© t = β
)
β Connected (subtopology Ξ± (s βͺ t))
proof
intro_TAC βΞ± s t, sTop tTop, H2 H3 H4;
consider p s' such that
p β Closure Ξ± s β§ p β t β§ s' = p βͺ s [pCst] by fol H4 MEMBER_NOT_EMPTY IN_INTER;
s β s' β§ s' β Closure Ξ± s [s_ps_Cs] by fol IN_INSERT SUBSET pCst sTop ClosureSubset INSERT_SUBSET;
Connected (subtopology Ξ± (s')) [s'Con] by fol sTop H2 s_ps_Cs ConnectedIntermediateClosure;
s βͺ t = s' βͺ t β§ Β¬(s' β© t = β
) [] by fol pCst INSERT_UNION IN_INSERT IN_INTER MEMBER_NOT_EMPTY;
fol s_ps_Cs sTop ClosureTopspace SUBSET_TRANS tTop - s'Con H3 ConnectedUnion;
qed;
`;;
let InteriorDiff = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
Interior Ξ± (s β t) = Interior Ξ± s β Closure Ξ± t
by fol ClosureTopspace InteriorTopspace COMPLEMENT_INTER_DIFF InteriorComplement SUBSET_DIFF InteriorInter`;;
let ClosedInLimpt = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
(closed_in (subtopology Ξ± t) s β
s β t β§ LimitPointOf Ξ± s β© t β s)
proof
intro_TAC βΞ± s t, H1 H2;
simplify H2 ClosedInSubtopology;
eq_tac [Right]
proof
intro_TAC sSUBt LIMstSUBs;
exists_TAC Closure Ξ± s;
simplify H1 ClosedClosure Closure_THM INTER_COMM UNION_OVER_INTER;
set sSUBt LIMstSUBs;
qed;
rewrite LEFT_IMP_EXISTS_THM;
intro_TAC β[D], Dexists;
LimitPointOf Ξ± (D β© t) β D [] by fol Dexists CLOSED_IN_SUBSET INTER_SUBSET LimptSubset ClosedLimpt SUBSET_TRANS;
fol Dexists INTER_SUBSET - SUBSET_REFL INTER_TENSOR;
qed;
`;;
let ClosedInLimpt_ALT = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
(closed_in (subtopology Ξ± t) s β
s β t β§ βx. x β LimitPointOf Ξ± s β§ x β t β x β s)
by simplify SUBSET IN_INTER ClosedInLimpt`;;
let ClosedInInterClosure = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
(closed_in (subtopology Ξ± s) t β s β© Closure Ξ± t = t)
proof simplify Closure_THM ClosedInLimpt; set; qed;
`;;
let InteriorClosureIdemp = theorem `;
βΞ± s. s β topspace Ξ± β
Interior Ξ± (Closure Ξ± (Interior Ξ± (Closure Ξ± s)))
= Interior Ξ± (Closure Ξ± s)
proof
intro_TAC βΞ± s, H1;
consider IC CIC such that
IC = Interior Ξ± (Closure Ξ± s) β§ CIC = Closure Ξ± IC [CICdef] by fol;
Closure Ξ± s β topspace Ξ± [Ctop] by fol H1 ClosureTopspace;
IC β topspace Ξ± [ICtop] by fol CICdef - H1 InteriorTopspace;
CIC β topspace Ξ± [CICtop] by fol CICdef - ClosureTopspace;
IC β CIC [ICsubCIC] by fol CICdef ICtop ClosureSubset;
βu. u β CIC β§ open_in Ξ± u β u β IC [] by fol CICdef Ctop InteriorSubset SubsetClosure H1 ClosureClosure SUBSET_TRANS OpenSubsetInterior;
fol CICdef CICtop ICsubCIC Ctop OpenInterior - InteriorUnique;
qed;
`;;
let InteriorClosureIdemp = theorem `;
βΞ± s. s β topspace Ξ± β
Interior Ξ± (Closure Ξ± (Interior Ξ± (Closure Ξ± s)))
= Interior Ξ± (Closure Ξ± s)
proof
intro_TAC βΞ± s, H1;
Closure Ξ± s β topspace Ξ± [Ctop] by fol H1 ClosureTopspace;
consider IC CIC such that
IC = Interior Ξ± (Closure Ξ± s) β§ CIC = Closure Ξ± IC [ICdefs] by fol;
IC β topspace Ξ± [] by fol - Ctop H1 InteriorTopspace;
CIC β topspace Ξ± β§ IC β CIC β§ βu. u β CIC β§ open_in Ξ± u β u β IC [] by fol ICdefs Ctop - ClosureTopspace ClosureSubset InteriorSubset SubsetClosure H1 ClosureClosure SUBSET_TRANS OpenSubsetInterior;
fol ICdefs - Ctop OpenInterior InteriorUnique;
qed;
`;;
let ClosureInteriorIdemp = theorem `;
βΞ± s. s β topspace Ξ± β
Closure Ξ± (Interior Ξ± (Closure Ξ± (Interior Ξ± s)))
= Closure Ξ± (Interior Ξ± s)
proof
intro_TAC βΞ± s, H1;
consider t such that t = topspace Ξ± β s [tDef] by fol;
t β topspace Ξ± β§ s = topspace Ξ± β t [tProps] by fol - H1 SUBSET_DIFF DIFF_REFL;
Interior Ξ± (Closure Ξ± t) β topspace Ξ± [] by fol - ClosureTopspace InteriorTopspace;
simplify tProps - GSYM InteriorClosureComplement InteriorClosureIdemp;
qed;
`;;
let InteriorClosureDiffSpaceEmpty = theorem `;
βΞ± s. s β topspace Ξ± β Interior Ξ± (Closure Ξ± s β s) = β
proof
intro_TAC βΞ± s, H1;
Closure Ξ± s β s β topspace Ξ± [Cs_sTop] by fol H1 ClosureTopspace SUBSET_DIFF SUBSET_TRANS;
assume Β¬(Interior Ξ± (Closure Ξ± s β s) = β
) [Contradiction] by fol;
consider x such that
x β (Interior Ξ± (Closure Ξ± s β s)) [xExists] by fol - MEMBER_NOT_EMPTY;
consider t such that
open_in Ξ± t β§ x β t β§ t β (s βͺ LimitPointOf Ξ± s) β s [tProps] by fol - Cs_sTop IN_Interior Closure_DEF;
t β LimitPointOf Ξ± s β§ s β© (t β {x}) = β
[tSubLIMs] by set -;
x β LimitPointOf Ξ± s β§ x β s [xLims] by fol tProps - SUBSET IN_DIFF β;
fol H1 xLims IN_LimitPointOf tProps tSubLIMs NotLimitPointOf β;
qed;
`;;
let NowhereDenseUnion = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
(Interior Ξ± (Closure Ξ± (s βͺ t)) = β
β
Interior Ξ± (Closure Ξ± s) = β
β§ Interior Ξ± (Closure Ξ± t) = β
)
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± [] by fol H1 UNION_SUBSET;
simplify H1 - ClosureUnion ClosureTopspace UNION_SUBSET ClosedClosure InteriorUnionEqEmpty;
qed;
`;;
let NowhereDense = theorem `;
βΞ± s. s β topspace Ξ± β
(Interior Ξ± (Closure Ξ± s) = β
β
βt. open_in Ξ± t β§ Β¬(t = β
) β
βu. open_in Ξ± u β§ Β¬(u = β
) β§ u β t β§ u β© s = β
)
proof
intro_TAC βΞ± s, H1;
simplify H1 ClosureTopspace InteriorEqEmptyAlt;
eq_tac [Left]
proof
intro_TAC H2, β[t], tOpen tNonempty;
exists_TAC t β Closure Ξ± s;
fol tOpen H1 ClosedClosure OPEN_IN_DIFF tOpen tNonempty H2 SUBSET_DIFF H1 ClosureSubset
SET_RULE [βs t A. s β t β (A β t) β© s = β
];
qed;
intro_TAC H2, β[t], tOpen tNonempty;
consider u such that
open_in Ξ± u β§ Β¬(u = β
) β§ u β t β§ u β© s = β
[uExists] by simplify tOpen tNonempty H2;
MP_TAC ISPECL [Ξ±; u; s] OpenInterClosureEqEmpty;
simplify uExists OPEN_IN_SUBSET H1;
set uExists;
qed;
`;;
let InteriorClosureInterOpen = theorem `;
βΞ± s t. open_in Ξ± s β§ open_in Ξ± t β
Interior Ξ± (Closure Ξ± (s β© t)) =
Interior Ξ± (Closure Ξ± s) β© Interior Ξ± (Closure Ξ± t)
proof
intro_TAC βΞ± s t, sOpen tOpen;
s β topspace Ξ± [sTop] by fol sOpen OPEN_IN_SUBSET;
t β topspace Ξ± [tTop] by fol tOpen OPEN_IN_SUBSET;
rewrite SET_RULE [βs t u. u = s β© t β s β© t β u β§ u β s β§ u β t];
simplify sTop tTop INTER_SUBSET SubsetClosure ClosureTopspace SubsetInterior;
s β© t β topspace Ξ± [stTop] by fol INTER_SUBSET sTop SUBSET_TRANS;
Closure Ξ± s β topspace Ξ± β§ Closure Ξ± t β topspace Ξ± [CsCtTop] by fol sTop tTop ClosureTopspace;
Closure Ξ± s β© Closure Ξ± t β topspace Ξ± [CsIntCtTop] by fol - INTER_SUBSET SUBSET_TRANS;
Closure Ξ± s β s βͺ Closure Ξ± t β t β topspace Ξ± [Cs_sUNIONCt_tTop] by fol CsCtTop SUBSET_DIFF UNION_SUBSET SUBSET_TRANS;
simplify CsCtTop GSYM InteriorInter;
Interior Ξ± (Closure Ξ± s β© Closure Ξ± t) β Closure Ξ± (s β© t) []
proof
simplify CsIntCtTop InteriorTopspace ISPECL [topspace Ξ±] COMPLEMENT_DISJOINT stTop ClosureTopspace GSYM ClosureComplement GSYM InteriorComplement CsIntCtTop SUBSET_DIFF GSYM InteriorInter;
closed_in Ξ± (Closure Ξ± s β s) β§ closed_in Ξ± (Closure Ξ± t β t) [] by fol sTop tTop ClosedClosure sOpen tOpen CLOSED_IN_DIFF;
Interior Ξ± (Closure Ξ± s β s βͺ Closure Ξ± t β t) = β
[IntEmpty] by fol Cs_sUNIONCt_tTop - sTop tTop InteriorClosureDiffSpaceEmpty InteriorUnionEqEmpty;
Closure Ξ± s β© Closure Ξ± t β© (topspace Ξ± β (s β© t)) β
Closure Ξ± s β s βͺ Closure Ξ± t β t [] by set;
fol Cs_sUNIONCt_tTop - SubsetInterior IntEmpty INTER_ACI SUBSET_EMPTY;
qed;
fol stTop ClosureTopspace - CsIntCtTop OpenInterior InteriorMaximal;
qed;
`;;
let ClosureInteriorUnionClosed = theorem `;
βΞ± s t. closed_in Ξ± s β§ closed_in Ξ± t β
Closure Ξ± (Interior Ξ± (s βͺ t)) =
Closure Ξ± (Interior Ξ± s) βͺ Closure Ξ± (Interior Ξ± t)
proof
rewrite closed_in;
intro_TAC βΞ± s t, sClosed tClosed;
simplify sClosed tClosed ClosureTopspace UNION_SUBSET InteriorTopspace ISPECL [topspace Ξ±] COMPLEMENT_DUALITY_UNION;
simplify sClosed tClosed UNION_SUBSET ClosureTopspace InteriorTopspace ClosureInteriorComplement DIFF_UNION SUBSET_DIFF InteriorClosureInterOpen;
qed;
`;;
let RegularOpenInter = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
Interior Ξ± (Closure Ξ± s) = s β§ Interior Ξ± (Closure Ξ± t) = t
β Interior Ξ± (Closure Ξ± (s β© t)) = s β© t
by fol ClosureTopspace OpenInterior InteriorClosureInterOpen`;;
let RegularClosedUnion = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
Closure Ξ± (Interior Ξ± s) = s β§ Closure Ξ± (Interior Ξ± t) = t
β Closure Ξ± (Interior Ξ± (s βͺ t)) = s βͺ t
by fol InteriorTopspace ClosureInteriorUnionClosed ClosedClosure`;;
let DiffClosureSubset = theorem `;
βΞ± s t. s β topspace Ξ± β§ t β topspace Ξ± β
Closure Ξ± s β Closure Ξ± t β Closure Ξ± (s β t)
proof
intro_TAC βΞ± s t, sTop tTop;
Closure Ξ± s β Closure Ξ± t β Closure Ξ± (s β Closure Ξ± t) [] by fol sTop ClosureTopspace tTop ClosedClosure tTop closed_in OpenInterClosureSubset INTER_COMM COMPLEMENT_INTER_DIFF;
fol - tTop ClosureSubset SUBSET_DUALITY sTop SUBSET_DIFF SUBSET_TRANS SubsetClosure;
qed;
`;;
let Frontier_DEF = NewDefinition `;
βΞ± s. Frontier Ξ± s = Closure Ξ± s β Interior Ξ± s`;;
let Frontier_THM = theorem `;
βΞ± s. s β topspace Ξ± β Frontier Ξ± s = Closure Ξ± s β Interior Ξ± s
by fol Frontier_DEF`;;
let FrontierTopspace = theorem `;
βΞ± s. s β topspace Ξ± β Frontier Ξ± s β topspace Ξ±
by fol Frontier_THM SUBSET_DIFF ClosureTopspace SUBSET_TRANS`;;
let FrontierClosed = theorem `;
βΞ± s. s β topspace Ξ± β closed_in Ξ± (Frontier Ξ± s)
by simplify Frontier_THM ClosedClosure OpenInterior CLOSED_IN_DIFF`;;
let FrontierClosures = theorem `;
βs. s β topspace Ξ± β
Frontier Ξ± s = (Closure Ξ± s) β© (Closure Ξ± (topspace Ξ± β s))
by simplify SET_RULE [βA s t. s β A β§ t β A β s β (A β t) = s β© t] Frontier_THM InteriorClosure ClosureTopspace SUBSET_DIFF`;;
let FrontierStraddle = theorem `;
βΞ± a s. s β topspace Ξ± β (a β Frontier Ξ± s β
a β topspace Ξ± β§ βt. open_in Ξ± t β§ a β t β
(βx. x β s β§ x β t) β§ (βx. Β¬(x β s) β§ x β t))
proof
simplify SUBSET_DIFF FrontierClosures IN_INTER SUBSET_DIFF IN_Closure IN_DIFF;
fol OPEN_IN_SUBSET SUBSET;
qed;
`;;
let FrontierSubsetClosed = theorem `;
βΞ± s. closed_in Ξ± s β (Frontier Ξ± s) β s
by fol closed_in Frontier_THM ClosureClosed SUBSET_DIFF`;;
let FrontierEmpty = theorem `;
βΞ±. Frontier Ξ± β
= β
by fol Frontier_THM EMPTY_SUBSET ClosureEmpty EMPTY_DIFF`;;
let FrontierUniv = theorem `;
βΞ±. Frontier Ξ± (topspace Ξ±) = β
by fol Frontier_DEF ClosureUniv InteriorUniv DIFF_EQ_EMPTY`;;
let FrontierSubsetEq = theorem `;
βΞ± s. s β topspace Ξ± β ((Frontier Ξ± s) β s β closed_in Ξ± s)
proof
intro_TAC βΞ± s, sTop;
eq_tac [Right] by fol FrontierSubsetClosed;
simplify sTop Frontier_THM ;
fol sTop InteriorSubset SET_RULE [βs t u. s β t β u β§ t β u β s β u] ClosureSubsetEq;
qed;
`;;
let FrontierComplement = theorem `;
βΞ± s. s β topspace Ξ± β Frontier Ξ± (topspace Ξ± β s) = Frontier Ξ± s
proof
intro_TAC βΞ± s, sTop;
simplify sTop SUBSET_DIFF Frontier_THM ClosureComplement InteriorComplement;
fol sTop InteriorTopspace ClosureTopspace SET_RULE [β Top Int Clo.
Int β Top β§ Clo β Top β Top β Int β (Top β Clo) = Clo β Int];
qed;
`;;
let FrontierComplement = theorem `;
βΞ± s. s β topspace Ξ± β Frontier Ξ± (topspace Ξ± β s) = Frontier Ξ± s
proof
intro_TAC βΞ± s, sTop;
simplify sTop SUBSET_DIFF Frontier_THM ClosureComplement InteriorComplement;
fol sTop InteriorTopspace ClosureTopspace SET_RULE [β Top Int Clo.
Int β Top β§ Clo β Top β Top β Int β (Top β Clo) = Clo β Int];
qed;
`;;
let FrontierDisjointEq = theorem `;
βΞ± s. s β topspace Ξ± β ((Frontier Ξ± s) β© s = β
β open_in Ξ± s)
proof
intro_TAC βΞ± s, sTop;
topspace Ξ± β s β topspace Ξ± [COMPsTop] by fol sTop SUBSET_DIFF;
simplify sTop GSYM FrontierComplement OPEN_IN_CLOSED_IN;
fol COMPsTop GSYM FrontierSubsetEq FrontierTopspace SUBSET_COMPLEMENT;
qed;
`;;
let FrontierInterSubset = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β Frontier Ξ± (s β© t) β Frontier Ξ± s βͺ Frontier Ξ± t
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± β§ s β© t β topspace Ξ± [] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS;
simplify - Frontier_THM InteriorInter DIFF_INTER INTER_SUBSET SubsetClosure DIFF_SUBSET UNION_TENSOR;
qed;
`;;
let FrontierUnionSubset = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
Frontier Ξ± (s βͺ t) β Frontier Ξ± s βͺ Frontier Ξ± t
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± [stTop] by fol H1 SUBSET_UNION SUBSET_TRANS;
simplify H1 - GSYM FrontierComplement DIFF_UNION;
topspace Ξ± β s βͺ topspace Ξ± β t β topspace Ξ± [] by fol SUBSET_DIFF UNION_SUBSET SUBSET_TRANS;
fol - FrontierInterSubset;
qed;
`;;
let FrontierInteriors = theorem `;
βΞ± s. s β topspace Ξ± β
Frontier Ξ± s = topspace Ξ± β Interior Ξ± s β Interior Ξ± (topspace Ξ± β s)
by simplify Frontier_THM ClosureInterior DOUBLE_DIFF_UNION UNION_COMM`;;
let FrontierFrontierSubset = theorem `;
βΞ± s. s β topspace Ξ± β Frontier Ξ± (Frontier Ξ± s) β Frontier Ξ± s
by fol FrontierTopspace Frontier_THM FrontierClosed ClosureClosed SUBSET_DIFF`;;
let InteriorFrontier = theorem `;
βΞ± s. s β topspace Ξ± β Interior Ξ± (Frontier Ξ± s) =
Interior Ξ± (Closure Ξ± s) β Closure Ξ± (Interior Ξ± s)
proof
intro_TAC βΞ± s, sTop;
Frontier Ξ± s = Closure Ξ± s β© (topspace Ξ± β Interior Ξ± s) [] by fol sTop Frontier_THM ClosureTopspace COMPLEMENT_INTER_DIFF;
Interior Ξ± (Frontier Ξ± s) =
Interior Ξ± (Closure Ξ± s) β© (topspace Ξ± β Closure Ξ± (Interior Ξ± s)) [] by fol - sTop ClosureTopspace InteriorTopspace SUBSET_DIFF InteriorInter InteriorComplement;
fol - sTop ClosureTopspace InteriorTopspace COMPLEMENT_INTER_DIFF;
qed;
`;;
let InteriorFrontierEmpty = theorem `;
βΞ± s. open_in Ξ± s β¨ closed_in Ξ± s β Interior Ξ± (Frontier Ξ± s) = β
by fol InteriorFrontier SET_RULE [βs t. s β t = β
β s β t] OPEN_IN_SUBSET closed_in
InteriorOpen ClosureTopspace InteriorSubset
ClosureClosed InteriorTopspace ClosureSubset`;;
let FrontierFrontier = theorem `;
βΞ± s. open_in Ξ± s β¨ closed_in Ξ± s β
Frontier Ξ± (Frontier Ξ± s) = Frontier Ξ± s
proof
intro_TAC βΞ± s, openORclosed;
s β topspace Ξ± [sTop] by fol openORclosed OPEN_IN_SUBSET closed_in;
Frontier Ξ± (Frontier Ξ± s) = Closure Ξ± (Frontier Ξ± s) [] by fol sTop FrontierTopspace Frontier_THM openORclosed InteriorFrontierEmpty DIFF_EMPTY;
fol - sTop FrontierClosed ClosureClosed;
qed;
`;;
let UnionFrontierPart1 = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
Frontier Ξ± s β© Interior Ξ± t β Frontier Ξ± (s β© t)
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± β§ s β© t β topspace Ξ± [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS;
rewrite SUBSET IN_INTER;
intro_TAC β[a], aFs aIt;
consider O such that
open_in Ξ± O β§ a β O β§ O β t [aOs] by fol aIt stTop IN_Interior;
a β topspace Ξ± [] by fol stTop aFs FrontierTopspace SUBSET;
simplify stTop FrontierStraddle -;
intro_TAC β[P], Popen aP;
a β O β© P β§ open_in Ξ± (O β© P) [aOPopen] by fol aOs aP IN_INTER Popen OPEN_IN_INTER;
consider x y such that
x β s β§ x β O β© P β§ Β¬(y β s) β§ y β O β© P [xExists] by fol aOs Popen OPEN_IN_INTER aOPopen stTop aFs FrontierStraddle;
fol xExists aOs IN_INTER SUBSET;
qed;
`;;
let UnionFrontierPart2 = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
Frontier Ξ± s β Frontier Ξ± t β
Frontier Ξ± (s β© t) βͺ Frontier Ξ± (s βͺ t)
proof
intro_TAC βΞ± s t, stTop;
s β topspace Ξ± β§ t β topspace Ξ± [] by fol stTop SUBSET_UNION INTER_SUBSET SUBSET_TRANS;
Frontier Ξ± s β Frontier Ξ± t = Frontier Ξ± s β© Interior Ξ± t βͺ
Frontier Ξ± (topspace Ξ± β s) β© Interior Ξ± (topspace Ξ± β t) [] by fol - FrontierTopspace FrontierInteriors FrontierComplement
SET_RULE [βA s t u. s β A β s β (A β t β u) = s β© t βͺ s β© u];
Frontier Ξ± s β Frontier Ξ± t β
Frontier Ξ± (s β© t) βͺ Frontier Ξ± (topspace Ξ± β (s βͺ t)) [] by simplify - stTop UnionFrontierPart1 UNION_TENSOR SUBSET_DIFF UNION_SUBSET DIFF_UNION;
fol - stTop FrontierComplement;
qed;
`;;
let UnionFrontierPart3 = theorem `;
βΞ± s t a. s βͺ t β topspace Ξ± β
a β Frontier Ξ± s β§ a β Frontier Ξ± t β
a β Frontier Ξ± (s β© t) β¨ a β Frontier Ξ± (s βͺ t)
proof
intro_TAC βΞ± s t a, H1;
rewrite β GSYM IN_INTER GSYM IN_DIFF GSYM IN_UNION;
fol H1 UnionFrontierPart2 SUBSET;
qed;
`;;
let UnionFrontier = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
Frontier Ξ± s βͺ Frontier Ξ± t =
Frontier Ξ± (s βͺ t) βͺ Frontier Ξ± (s β© t) βͺ Frontier Ξ± s β© Frontier Ξ± t
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS;
rewrite GSYM SUBSET_ANTISYM_EQ;
conj_tac [Right] by fol SET_RULE [βs t. s β© t β s βͺ t] stTop FrontierUnionSubset UNION_SUBSET FrontierInterSubset;
rewrite SUBSET IN_INTER IN_UNION;
fol H1 UnionFrontierPart3 INTER_COMM UNION_COMM β;
qed;
`;;
let ConnectedInterFrontier = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
Connected (subtopology Ξ± s) β§ Β¬(s β© t = β
) β§ Β¬(s β t = β
)
β Β¬(s β© Frontier Ξ± t = β
)
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± [stTop] by fol H1 SUBSET_UNION SUBSET_TRANS;
ONCE_REWRITE_TAC TAUT [βa b c d. a β§ b β§ c β Β¬d β b β§ c β§ d β Β¬a];
intro_TAC sINTERtNonempty sDIFFtNonempty sInterFtEmpty;
simplify stTop ConnectedOpenIn;
exists_TAC s β© Interior Ξ± t;
exists_TAC s β© Interior Ξ± (topspace Ξ± β t);
simplify stTop SUBSET_DIFF OpenInterior OpenInOpenInter;
Interior Ξ± t β t β§ Interior Ξ± (topspace Ξ± β t) β topspace Ξ± β t [IntSubs] by fol stTop SUBSET_DIFF InteriorSubset;
s β Interior Ξ± t βͺ Interior Ξ± (topspace Ξ± β t) [] by fol stTop sInterFtEmpty FrontierInteriors DOUBLE_DIFF_UNION COMPLEMENT_DISJOINT;
set sDIFFtNonempty sINTERtNonempty IntSubs -;
qed;
`;;
let InteriorClosedEqEmptyAsFrontier = theorem `;
βΞ± s. s β topspace Ξ± β
(closed_in Ξ± s β§ Interior Ξ± s = β
β βt. open_in Ξ± t β§ s = Frontier Ξ± t)
proof
intro_TAC βΞ± s, sTop;
eq_tac [Right] by fol OPEN_IN_SUBSET FrontierClosed InteriorFrontierEmpty;
intro_TAC sClosed sEmptyInt;
exists_TAC topspace Ξ± β s;
fol sClosed closed_in sTop FrontierComplement Frontier_THM sEmptyInt DIFF_EMPTY ClosureClosed;
qed;
`;;
let ClosureUnionFrontier = theorem `;
βΞ± s. s β topspace Ξ± β Closure Ξ± s = s βͺ Frontier Ξ± s
proof
intro_TAC βΞ± s, sTop;
simplify sTop Frontier_THM;
s β Closure Ξ± s β§ Interior Ξ± s β s [] by fol sTop ClosureSubset InteriorSubset;
set -;
qed;
`;;
let FrontierInteriorSubset = theorem `;
βΞ± s. s β topspace Ξ± β Frontier Ξ± (Interior Ξ± s) β Frontier Ξ± s
by simplify InteriorTopspace Frontier_THM InteriorInterior InteriorSubset SubsetClosure DIFF_SUBSET`;;
let FrontierClosureSubset = theorem `;
βΞ± s. s β topspace Ξ± β Frontier Ξ± (Closure Ξ± s) β Frontier Ξ± s
by simplify ClosureTopspace Frontier_THM ClosureClosure ClosureTopspace ClosureSubset SubsetInterior SUBSET_DUALITY`;;
let SetDiffFrontier = theorem `;
βΞ± s. s β topspace Ξ± β s β Frontier Ξ± s = Interior Ξ± s
proof
intro_TAC βΞ± s, sTop;
simplify sTop Frontier_THM;
s β Closure Ξ± s β§ Interior Ξ± s β s [] by fol sTop ClosureSubset InteriorSubset;
set -;
qed;
`;;
let FrontierInterSubsetInter = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β
Frontier Ξ± (s β© t) β
Closure Ξ± s β© Frontier Ξ± t βͺ Frontier Ξ± s β© Closure Ξ± t
proof
intro_TAC βΞ± s t, H1;
s β topspace Ξ± β§ t β topspace Ξ± β§ s β© t β topspace Ξ± [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS;
simplify H1 stTop Frontier_THM InteriorInter;
Closure Ξ± (s β© t) β Closure Ξ± s β© Closure Ξ± t [] by fol stTop ClosureInterSubset;
set -;
qed;
`;;
let FrontierUnionPart1 = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β Closure Ξ± s β© Closure Ξ± t = β
β Frontier Ξ± s β© Interior Ξ± (s βͺ t) = β
proof
intro_TAC βΞ± s t, H1, CsCtDisjoint;
s β topspace Ξ± β§ t β topspace Ξ± β§ s β© t β topspace Ξ± [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS;
Frontier Ξ± s β© Interior Ξ± (s βͺ t) β topspace Ξ± [FIstTop] by fol stTop FrontierTopspace INTER_SUBSET SUBSET_TRANS;
Frontier Ξ± s β© Interior Ξ± (s βͺ t) β© (topspace Ξ± β Closure Ξ± t) = β
[]
proof
simplify stTop GSYM InteriorComplement H1 SUBSET_DIFF InteriorInter Frontier_THM;
Interior Ξ± (s βͺ t) β© Interior Ξ± (topspace Ξ± β t) β Interior Ξ± s [] by
fol SET_RULE [βA s t. s β A β (s βͺ t) β© (A β t) = s β t] H1 SUBSET_DIFF InteriorInter stTop SubsetInterior;
set -;
qed;
Frontier Ξ± s β© Interior Ξ± (s βͺ t) β Closure Ξ± t [] by fol H1 CsCtDisjoint - FIstTop COMPLEMENT_DISJOINT INTER_ACI;
fol SET_RULE [β s t F I. s β© t = β
β§ F β s β§ F β© I β t β F β© I = β
] CsCtDisjoint stTop Frontier_THM SUBSET_DIFF -;
qed;
`;;
let FrontierUnion = theorem `;
βΞ± s t. s βͺ t β topspace Ξ± β Closure Ξ± s β© Closure Ξ± t = β
β Frontier Ξ± (s βͺ t) = Frontier Ξ± s βͺ Frontier Ξ± t
proof
intro_TAC βΞ± s t, H1, CsCtDisjoint;
s β topspace Ξ± β§ t β topspace Ξ± β§ s β© t β topspace Ξ± [stTop] by fol H1 SUBSET_UNION INTER_SUBSET SUBSET_TRANS;
MATCH_MP_TAC SUBSET_ANTISYM;
simplify H1 FrontierUnionSubset Frontier_THM;
Frontier Ξ± s β© Interior Ξ± (s βͺ t) = β
β§
Frontier Ξ± t β© Interior Ξ± (s βͺ t) = β
[usePart1] by fol H1 CsCtDisjoint FrontierUnionPart1 INTER_COMM UNION_COMM;
Frontier Ξ± s β Closure Ξ± (s βͺ t) β§ Frontier Ξ± t β Closure Ξ± (s βͺ t) [] by fol stTop Frontier_THM SUBSET_DIFF H1 SUBSET_UNION SubsetClosure SUBSET_TRANS;
set usePart1 -;
qed;
`;;
(* ------------------------------------------------------------------------- *)
(* The universal Euclidean versions are what we use most of the time. *)
(* ------------------------------------------------------------------------- *)
let open_def = NewDefinition `;
open s β βx. x β s β βe. &0 < e β§ βx'. dist(x',x) < e β x' β s`;;
let closed = NewDefinition `;
closed s β open (UNIV β s)`;;
let euclidean = new_definition
`euclidean = mk_topology (UNIV, open)`;;
let OPEN_EMPTY = theorem `;
open β
by rewrite open_def NOT_IN_EMPTY`;;
let OPEN_UNIV = theorem `;
open UNIV
by fol open_def IN_UNIV REAL_LT_01`;;
let OPEN_INTER = theorem `;
βs t. open s β§ open t β open (s β© t)
proof
intro_TAC βs t, sOpen tOpen;
rewrite open_def IN_INTER;
intro_TAC βx, xs xt;
consider d1 such that
&0 < d1 β§ βx'. dist (x',x) < d1 β x' β s [d1Exists] by fol sOpen xs open_def;
consider d2 such that
&0 < d2 β§ βx'. dist (x',x) < d2 β x' β t [d2Exists] by fol tOpen xt open_def;
consider e such that &0 < e /\ e < d1 /\ e < d2 [eExists] by fol d1Exists d2Exists REAL_DOWN2;
fol - d1Exists d2Exists REAL_LT_TRANS;
qed;
`;;
let OPEN_UNIONS = theorem `;
(βs. s β f β open s) β open (UNIONS f)
by fol open_def IN_UNIONS`;;
let IstopologyEuclidean = theorem `;
istopology (UNIV, open)
by simplify istopology IN IN_UNIV SUBSET OPEN_EMPTY OPEN_UNIV OPEN_INTER OPEN_UNIONS`;;
let OPEN_IN = theorem `;
open = open_in euclidean
by fol euclidean topology_tybij IstopologyEuclidean TopologyPAIR PAIR_EQ`;;
let TOPSPACE_EUCLIDEAN = theorem `;
topspace euclidean = UNIV
by fol euclidean IstopologyEuclidean topology_tybij TopologyPAIR PAIR_EQ`;;
let OPEN_EXISTS_IN = theorem `;
βP Q. (βa. P a β open {x | Q a x}) β open {x | βa. P a β§ Q a x}
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OPEN_IN_EXISTS_IN`;;
let OPEN_EXISTS = theorem `;
βQ. (βa. open {x | Q a x}) β open {x | βa. Q a x}
proof
intro_TAC βQ;
(βa. T β open {x | Q a x}) β open {x | βa. T β§ Q a x} [] by simplify OPEN_EXISTS_IN;
MP_TAC -;
fol;
qed;
`;;
let TOPSPACE_EUCLIDEAN_SUBTOPOLOGY = theorem `;
βs. topspace (subtopology euclidean s) = s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN TopspaceSubtopology`;;
let OPEN_IN_REFL = theorem `;
βs. open_in (subtopology euclidean s) s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInRefl`;;
let CLOSED_IN_REFL = theorem `;
βs. closed_in (subtopology euclidean s) s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInRefl`;;
let CLOSED_IN = theorem `;
βs. closed = closed_in euclidean
by fol closed closed_in TOPSPACE_EUCLIDEAN OPEN_IN SUBSET_UNIV EXTENSION IN`;;
let OPEN_UNION = theorem `;
βs t. open s β§ open t β open(s βͺ t)
by fol OPEN_IN OPEN_IN_UNION`;;
let OPEN_SUBOPEN = theorem `;
βs. open s β βx. x β s β βt. open t β§ x β t β§ t β s
by fol OPEN_IN OPEN_IN_SUBOPEN`;;
let CLOSED_EMPTY = theorem `;
closed β
by fol CLOSED_IN CLOSED_IN_EMPTY`;;
let CLOSED_UNIV = theorem `;
closed UNIV
by fol CLOSED_IN TOPSPACE_EUCLIDEAN CLOSED_IN_TOPSPACE`;;
let CLOSED_UNION = theorem `;
βs t. closed s β§ closed t β closed(s βͺ t)
by fol CLOSED_IN CLOSED_IN_UNION`;;
let CLOSED_INTER = theorem `;
βs t. closed s β§ closed t β closed(s β© t)
by fol CLOSED_IN CLOSED_IN_INTER`;;
let CLOSED_INTERS = theorem `;
βf. (βs. s β f β closed s) β closed (INTERS f)
by fol CLOSED_IN CLOSED_IN_INTERS INTERS_0 CLOSED_UNIV`;;
let CLOSED_FORALL_IN = theorem `;
βP Q. (βa. P a β closed {x | Q a x})
β closed {x | βa. P a β Q a x}
proof
intro_TAC βP Q;
case_split Pnonempty | Pempty by fol;
suppose Β¬(P = β
);
simplify CLOSED_IN Pnonempty CLOSED_IN_FORALL_IN;
end;
suppose P = β
;
{x | βa. P a β Q a x} = UNIV [] by set Pempty;
simplify - CLOSED_UNIV;
end;
qed;
`;;
let CLOSED_FORALL = theorem `;
βQ. (βa. closed {x | Q a x}) β closed {x | βa. Q a x}
proof
intro_TAC βQ;
(βa. T β closed {x | Q a x}) β closed {x | βa. T β Q a x} [] by simplify CLOSED_FORALL_IN;
MP_TAC -;
fol;
qed;
`;;
let OPEN_CLOSED = theorem `;
βs. open s β closed(UNIV β s)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN CLOSED_IN OPEN_IN_CLOSED_IN`;;
let OPEN_DIFF = theorem `;
βs t. open s β§ closed t β open(s β t)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN CLOSED_IN OPEN_IN_DIFF`;;
let CLOSED_DIFF = theorem `;
βs t. closed s β§ open t β closed (s β t)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN CLOSED_IN CLOSED_IN_DIFF`;;
let OPEN_INTERS = theorem `;
βs. FINITE s β§ (βt. t β s β open t) β open (INTERS s)
by fol OPEN_IN OPEN_IN_INTERS INTERS_0 OPEN_UNIV`;;
let CLOSED_UNIONS = theorem `;
βs. FINITE s β§ (βt. t β s β closed t) β closed (UNIONS s)
by fol CLOSED_IN CLOSED_IN_UNIONS`;;
(* ------------------------------------------------------------------------- *)
(* Open and closed balls and spheres. *)
(* ------------------------------------------------------------------------- *)
let ball = new_definition
`ball(x,e) = {y | dist(x,y) < e}`;;
let cball = new_definition
`cball(x,e) = {y | dist(x,y) <= e}`;;
let IN_BALL = theorem `;
βx y e. y β ball(x,e) β dist(x,y) < e
by rewrite ball IN_ELIM_THM`;;
let IN_CBALL = theorem `;
βx y e. y β cball(x, e) β dist(x, y) <= e
by rewrite cball IN_ELIM_THM`;;
let BALL_SUBSET_CBALL = theorem `;
βx e. ball (x,e) β cball (x, e)
proof
rewrite IN_BALL IN_CBALL SUBSET;
real_arithmetic;
qed;
`;;
let OPEN_BALL = theorem `;
βx e. open (ball (x,e))
proof
rewrite open_def ball IN_ELIM_THM;
fol DIST_SYM REAL_SUB_LT REAL_LT_SUB_LADD REAL_ADD_SYM REAL_LET_TRANS DIST_TRIANGLE;
qed;
`;;
let CENTRE_IN_BALL = theorem `;
βx e. x β ball(x,e) β &0 < e
by fol IN_BALL DIST_REFL`;;
let OPEN_CONTAINS_BALL = theorem `;
βs. open s β βx. x β s β βe. &0 < e β§ ball(x,e) β s
by rewrite open_def SUBSET IN_BALL DIST_SYM`;;
let HALF_CBALL_IN_BALL = theorem `;
βe. &0 < e β &0 < e/ &2 β§ e / &2 < e β§ cball (x, e/ &2) β ball (x, e)
proof
intro_TAC βe, H1;
&0 < e/ &2 β§ e / &2 < e [] by real_arithmetic H1;
fol - SUBSET IN_CBALL IN_BALL REAL_LET_TRANS;
qed;
`;;
let OPEN_IN_CONTAINS_CBALL_LEMMA = theorem `;
βt s x. x β s β
((βe. &0 < e β§ ball (x, e) β© t β s) β
(βe. &0 < e β§ cball (x, e) β© t β s))
by fol BALL_SUBSET_CBALL HALF_CBALL_IN_BALL INTER_TENSOR SUBSET_REFL SUBSET_TRANS`;;
(* ------------------------------------------------------------------------- *)
(* Basic "localization" results are handy for connectedness. *)
(* ------------------------------------------------------------------------- *)
let OPEN_IN_OPEN = theorem `;
βs u. open_in (subtopology euclidean u) s β βt. open t β§ (s = u β© t)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OpenInSubtopology INTER_COMM`;;
let OPEN_IN_INTER_OPEN = theorem `;
βs t u. open_in (subtopology euclidean u) s β§ open t
β open_in (subtopology euclidean u) (s β© t)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OpenInSubtopologyInterOpen`;;
let OPEN_IN_OPEN_INTER = theorem `;
βu s. open s β open_in (subtopology euclidean u) (u β© s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OpenInOpenInter`;;
let OPEN_OPEN_IN_TRANS = theorem `;
βs t. open s β§ open t β§ t β s
β open_in (subtopology euclidean s) t
by fol OPEN_IN OpenOpenInTrans`;;
let OPEN_SUBSET = theorem `;
βs t. s β t β§ open s β open_in (subtopology euclidean t) s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN OpenSubset`;;
let CLOSED_IN_CLOSED = theorem `;
βs u.
closed_in (subtopology euclidean u) s β βt. closed t β§ (s = u β© t)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedInSubtopology INTER_COMM`;;
let CLOSED_SUBSET_EQ = theorem `;
βu s. closed s β (closed_in (subtopology euclidean u) s β s β u)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedSubsetEq`;;
let CLOSED_IN_INTER_CLOSED = theorem `;
βs t u. closed_in (subtopology euclidean u) s β§ closed t
β closed_in (subtopology euclidean u) (s β© t)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedInInterClosed`;;
let CLOSED_IN_CLOSED_INTER = theorem `;
βu s. closed s β closed_in (subtopology euclidean u) (u β© s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedInClosedInter`;;
let CLOSED_SUBSET = theorem `;
βs t. s β t β§ closed s β closed_in (subtopology euclidean t) s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedSubset`;;
let OPEN_IN_SUBSET_TRANS = theorem `;
βs t u. open_in (subtopology euclidean u) s β§ s β t β§ t β u
β open_in (subtopology euclidean t) s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN OpenInSubsetTrans`;;
let CLOSED_IN_SUBSET_TRANS = theorem `;
βs t u. closed_in (subtopology euclidean u) s β§ s β t β§ t β u
β closed_in (subtopology euclidean t) s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN ClosedInSubsetTrans`;;
let OPEN_IN_CONTAINS_BALL_LEMMA = theorem `;
βt s x. x β s β
((βE. open E β§ x β E β§ E β© t β s) β
(βe. &0 < e β§ ball (x,e) β© t β s))
proof
intro_TAC β t s x, xs;
eq_tac [Right] by fol CENTRE_IN_BALL OPEN_BALL;
intro_TAC H2;
consider a such that
open a β§ x β a β§ a β© t β s [aExists] by fol H2;
consider e such that
&0 < e β§ ball(x,e) β a [eExists] by fol - OPEN_CONTAINS_BALL;
fol aExists - INTER_SUBSET GSYM SUBSET_INTER SUBSET_TRANS;
qed;
`;;
let OPEN_IN_CONTAINS_BALL = theorem `;
βs t. open_in (subtopology euclidean t) s β
s β t β§ βx. x β s β βe. &0 < e β§ ball(x,e) β© t β s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN SubtopologyOpenInSubopen GSYM OPEN_IN GSYM OPEN_IN_CONTAINS_BALL_LEMMA`;;
let OPEN_IN_CONTAINS_CBALL = theorem `;
βs t. open_in (subtopology euclidean t) s β
s β t β§ βx. x β s β βe. &0 < e β§ cball(x,e) β© t β s
by fol OPEN_IN_CONTAINS_BALL OPEN_IN_CONTAINS_CBALL_LEMMA`;;
let open_in = theorem `;
βu s. open_in (subtopology euclidean u) s β
s β u β§
βx. x β s β βe. &0 < e β§
βx'. x' β u β§ dist(x',x) < e β x' β s
by rewrite OPEN_IN_CONTAINS_BALL IN_INTER SUBSET IN_BALL CONJ_SYM DIST_SYM`;;
(* ------------------------------------------------------------------------- *)
(* These "transitivity" results are handy too. *)
(* ------------------------------------------------------------------------- *)
let OPEN_IN_TRANS = theorem `;
βs t u. open_in (subtopology euclidean t) s β§
open_in (subtopology euclidean u) t
β open_in (subtopology euclidean u) s
proof
intro_TAC βs t u;
t β topspace euclidean β§ u β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - OPEN_IN OpenInTrans;
qed;
`;;
let OPEN_IN_TRANS_EQ = theorem `;
βs t. (βu. open_in (subtopology euclidean t) u
β open_in (subtopology euclidean s) t)
β open_in (subtopology euclidean s) t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInTransEq`;;
let OPEN_IN_OPEN_TRANS = theorem `;
βu s. open_in (subtopology euclidean u) s β§ open u β open s
proof
intro_TAC βu s, H1;
u β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - H1 OPEN_IN OpenInOpenTrans;
qed;
`;;
let CLOSED_IN_TRANS = theorem `;
βs t u. closed_in (subtopology euclidean t) s β§
closed_in (subtopology euclidean u) t
β closed_in (subtopology euclidean u) s
proof
intro_TAC βs t u;
t β topspace euclidean β§ u β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - ClosedInSubtopologyTrans;
qed;
`;;
let CLOSED_IN_TRANS_EQ = theorem `;
βs t.
(βu. closed_in (subtopology euclidean t) u β closed_in (subtopology euclidean s) t)
β closed_in (subtopology euclidean s) t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInSubtopologyTransEq`;;
let CLOSED_IN_CLOSED_TRANS = theorem `;
βs u. closed_in (subtopology euclidean u) s β§ closed u β closed s
proof
intro_TAC βu s;
u β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - CLOSED_IN ClosedInClosedTrans;
qed;
`;;
let OPEN_IN_SUBTOPOLOGY_INTER_SUBSET = theorem `;
βs u v. open_in (subtopology euclidean u) (u β© s) β§ v β u
β open_in (subtopology euclidean v) (v β© s)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInSubtopologyInterSubset`;;
let OPEN_IN_OPEN_EQ = theorem `;
βs t. open s β (open_in (subtopology euclidean s) t β open t β§ t β s)
by fol OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInOpenEq`;;
let CLOSED_IN_CLOSED_EQ = theorem `;
βs t. closed s β
(closed_in (subtopology euclidean s) t β closed t β§ t β s)
by fol CLOSED_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInClosedEq`;;
(* ------------------------------------------------------------------------- *)
(* Also some invariance theorems for relative topology. *)
(* ------------------------------------------------------------------------- *)
let OPEN_IN_INJECTIVE_LINEAR_IMAGE = theorem `;
βf s t. linear f β§ (βx y. f x = f y β x = y) β
(open_in (subtopology euclidean (IMAGE f t)) (IMAGE f s) β
open_in (subtopology euclidean t) s)
proof
rewrite open_in FORALL_IN_IMAGE IMP_CONJ SUBSET;
intro_TAC βf s t, H1, H2;
βx s. f x β IMAGE f s β x β s [fInjMap] by set H2;
rewrite -;
βx y. f x - f y = f (x - y) [fSubLinear] by fol H1 LINEAR_SUB;
consider B1 such that
&0 < B1 β§ βx. norm (f x) <= B1 * norm x [B1exists] by fol H1 LINEAR_BOUNDED_POS;
consider B2 such that
&0 < B2 β§ βx. norm x * B2 <= norm (f x) [B2exists] by fol H1 H2 LINEAR_INJECTIVE_BOUNDED_BELOW_POS;
AP_TERM_TAC;
eq_tac [Left]
proof
intro_TAC H3, βx, xs;
consider e such that
&0 < e β§ βx'. x' β t β dist (f x',f x) < e β x' β s [eExists] by fol H3 xs;
exists_TAC e / B1;
simplify REAL_LT_DIV eExists B1exists;
intro_TAC βx', x't;
βx. norm(f x) <= B1 * norm(x) β§ norm(x) * B1 < e β norm(f x) < e [normB1] by real_arithmetic;
simplify fSubLinear B1exists H3 eExists x't normB1 dist REAL_LT_RDIV_EQ;
qed;
intro_TAC H3, βx, xs;
consider e such that
&0 < e β§ βx'. x' β t β dist (x',x) < e β x' β s [eExists] by fol H3 xs;
exists_TAC e * B2;
simplify REAL_LT_MUL eExists B2exists;
intro_TAC βx', x't;
βx. norm x <= norm (f x) / B2 β§ norm(f x) / B2 < e β norm x < e [normB2] by real_arithmetic;
simplify fSubLinear B2exists H3 eExists x't normB2 dist REAL_LE_RDIV_EQ REAL_LT_LDIV_EQ;
qed;
`;;
add_linear_invariants [OPEN_IN_INJECTIVE_LINEAR_IMAGE];;
let CLOSED_IN_INJECTIVE_LINEAR_IMAGE = theorem `;
βf s t. linear f β§ (βx y. f x = f y β x = y) β
(closed_in (subtopology euclidean (IMAGE f t)) (IMAGE f s) β
closed_in (subtopology euclidean t) s)
proof
rewrite closed_in TOPSPACE_EUCLIDEAN_SUBTOPOLOGY;
GEOM_TRANSFORM_TAC[];
qed;
`;;
add_linear_invariants [CLOSED_IN_INJECTIVE_LINEAR_IMAGE];;
(* ------------------------------------------------------------------------- *)
(* Subspace topology results only proved for Euclidean space. *)
(* ------------------------------------------------------------------------- *)
(* ISTOPLOGY_SUBTOPOLOGY can not be proved, as the definition of topology *)
(* there is different from the one here. *)
let OPEN_IN_SUBTOPOLOGY = theorem `;
βu s. open_in (subtopology euclidean u) s β
βt. open_in euclidean t β§ s = t β© u
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInSubtopology`;;
let TOPSPACE_SUBTOPOLOGY = theorem `;
βu. topspace(subtopology euclidean u) = topspace euclidean β© u
proof
intro_TAC βu;
u β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - TopspaceSubtopology INTER_COMM SUBSET_INTER_ABSORPTION;
qed;
`;;
let CLOSED_IN_SUBTOPOLOGY = theorem `;
βu s. closed_in (subtopology euclidean u) s β
βt. closed_in euclidean t β§ s = t β© u
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closed_in ClosedInSubtopology`;;
let OPEN_IN_SUBTOPOLOGY_REFL = theorem `;
βu. open_in (subtopology euclidean u) u β u β topspace euclidean
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OPEN_IN_REFL`;;
let CLOSED_IN_SUBTOPOLOGY_REFL = theorem `;
βu. closed_in (subtopology euclidean u) u β u β topspace euclidean
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN_REFL`;;
let SUBTOPOLOGY_UNIV = theorem `;
subtopology euclidean UNIV = euclidean
proof
rewrite GSYM Topology_Eq;
conj_tac [Left] by fol TOPSPACE_EUCLIDEAN TOPSPACE_EUCLIDEAN_SUBTOPOLOGY;
rewrite GSYM OPEN_IN OPEN_IN_OPEN INTER_UNIV;
fol;
qed;
`;;
let SUBTOPOLOGY_SUPERSET = theorem `;
βs. topspace euclidean β s β subtopology euclidean s = euclidean
by simplify TOPSPACE_EUCLIDEAN UNIV_SUBSET SUBTOPOLOGY_UNIV`;;
let OPEN_IN_IMP_SUBSET = theorem `;
βs t. open_in (subtopology euclidean s) t β t β s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInImpSubset`;;
let CLOSED_IN_IMP_SUBSET = theorem `;
βs t. closed_in (subtopology euclidean s) t β t β s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInImpSubset`;;
let OPEN_IN_SUBTOPOLOGY_UNION = theorem `;
βs t u. open_in (subtopology euclidean t) s β§
open_in (subtopology euclidean u) s
β open_in (subtopology euclidean (t βͺ u)) s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInSubtopologyUnion`;;
let CLOSED_IN_SUBTOPOLOGY_UNION = theorem `;
βs t u. closed_in (subtopology euclidean t) s β§
closed_in (subtopology euclidean u) s
β closed_in (subtopology euclidean (t βͺ u)) s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosedInSubtopologyUnion`;;
(* ------------------------------------------------------------------------- *)
(* Connectedness. *)
(* ------------------------------------------------------------------------- *)
let connected_DEF = NewDefinition `;
connected s β Connected (subtopology euclidean s)`;;
let connected = theorem `;
βs. connected s β Β¬(βe1 e2.
open e1 β§ open e2 β§ s β e1 βͺ e2 β§
e1 β© e2 β© s = β
β§ Β¬(e1 β© s = β
) β§ Β¬(e2 β© s = β
))
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF OPEN_IN ConnectedSubtopology`;;
let CONNECTED_CLOSED = theorem `;
βs. connected s β
Β¬(βe1 e2. closed e1 β§ closed e2 β§ s β e1 βͺ e2 β§
e1 β© e2 β© s = β
β§ Β¬(e1 β© s = β
) β§ Β¬(e2 β© s = β
))
by simplify connected_DEF CLOSED_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF CLOSED_IN ConnectedClosedSubtopology`;;
let CONNECTED_OPEN_IN = theorem `;
βs. connected s β Β¬(βe1 e2.
open_in (subtopology euclidean s) e1 β§
open_in (subtopology euclidean s) e2 β§
s β e1 βͺ e2 β§ e1 β© e2 = β
β§ Β¬(e1 = β
) β§ Β¬(e2 = β
))
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF OPEN_IN ConnectedOpenIn`;;
let CONNECTED_OPEN_IN_EQ = theorem `;
βs. connected s β Β¬(βe1 e2.
open_in (subtopology euclidean s) e1 β§
open_in (subtopology euclidean s) e2 β§
e1 βͺ e2 = s β§ e1 β© e2 = β
β§
Β¬(e1 = β
) β§ Β¬(e2 = β
))
by simplify connected_DEF Connected_DEF SUBSET_UNIV TOPSPACE_EUCLIDEAN TopspaceSubtopology EQ_SYM_EQ`;;
let CONNECTED_CLOSED_IN = theorem `;
βs. connected s β Β¬(βe1 e2.
closed_in (subtopology euclidean s) e1 β§
closed_in (subtopology euclidean s) e2 β§
s β e1 βͺ e2 β§ e1 β© e2 = β
β§ Β¬(e1 = β
) β§ Β¬(e2 = β
))
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF CLOSED_IN ConnectedClosedIn`;;
let CONNECTED_CLOSED_IN_EQ = theorem `;
βs. connected s β Β¬(βe1 e2.
closed_in (subtopology euclidean s) e1 β§
closed_in (subtopology euclidean s) e2 β§
e1 βͺ e2 = s β§ e1 β© e2 = β
β§ Β¬(e1 = β
) β§ Β¬(e2 = β
))
by simplify connected_DEF ConnectedClosed SUBSET_UNIV TOPSPACE_EUCLIDEAN TopspaceSubtopology EQ_SYM_EQ`;;
let CONNECTED_CLOPEN = theorem `;
βs. connected s β
βt. open_in (subtopology euclidean s) t β§
closed_in (subtopology euclidean s) t β t = β
β¨ t = s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF ConnectedClopen TopspaceSubtopology`;;
let CONNECTED_CLOSED_SET = theorem `;
βs. closed s β
(connected s β
Β¬(βe1 e2. closed e1 β§ closed e2 β§
Β¬(e1 = β
) β§ Β¬(e2 = β
) β§ e1 βͺ e2 = s β§ e1 β© e2 = β
))
by simplify connected_DEF CLOSED_IN closed_in ConnectedClosedSet`;;
let CONNECTED_OPEN_SET = theorem `;
βs. open s β
(connected s β
Β¬(βe1 e2. open e1 β§ open e2 β§
Β¬(e1 = β
) β§ Β¬(e2 = β
) β§ e1 βͺ e2 = s β§ e1 β© e2 = β
))
by simplify connected_DEF OPEN_IN ConnectedOpenSet`;;
let CONNECTED_EMPTY = theorem `;
connected β
by rewrite connected_DEF ConnectedEmpty`;;
let CONNECTED_SING = theorem `;
βa. connected {a}
proof
intro_TAC βa;
a β topspace euclidean [] by fol IN_UNIV TOPSPACE_EUCLIDEAN;
fol - ConnectedSing connected_DEF;
qed;
`;;
let CONNECTED_UNIONS = theorem `;
βP. (βs. s β P β connected s) β§ Β¬(INTERS P = β
)
β connected(UNIONS P)
proof
intro_TAC βP;
βs. s β P β s β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - connected_DEF ConnectedUnions;
qed;
`;;
let CONNECTED_UNION = theorem `;
βs t. connected s β§ connected t β§ Β¬(s β© t = β
)
β connected (s βͺ t)
proof
intro_TAC βs t;
s β topspace euclidean β§ t β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - connected_DEF ConnectedUnion;
qed;
`;;
let CONNECTED_DIFF_OPEN_FROM_CLOSED = theorem `;
βs t u. s β t β§ t β u β§ open s β§ closed t β§
connected u β§ connected(t β s)
β connected(u β s)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF OPEN_IN CLOSED_IN ConnectedDiffOpenFromClosed`;;
let CONNECTED_DISJOINT_UNIONS_OPEN_UNIQUE = theorem `;
βf f'. pairwise DISJOINT f β§ pairwise DISJOINT f' β§
(βs. s β f β open s β§ connected s β§ Β¬(s = β
)) β§
(βs. s β f' β open s β§ connected s β§ Β¬(s = β
)) β§
UNIONS f = UNIONS f'
β f = f'
by rewrite connected_DEF OPEN_IN ConnectedDisjointUnionsOpenUnique`;;
let CONNECTED_FROM_CLOSED_UNION_AND_INTER = theorem `;
βs t. closed s β§ closed t β§ connected (s βͺ t) β§ connected (s β© t)
β connected s β§ connected t
proof
intro_TAC βs t;
s βͺ t β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - connected_DEF CLOSED_IN ConnectedFromClosedUnionAndInter;
qed;
`;;
let CONNECTED_FROM_OPEN_UNION_AND_INTER = theorem `;
βs t. open s β§ open t β§ connected (s βͺ t) β§ connected (s β© t)
β connected s β§ connected t
proof
intro_TAC βs t;
s βͺ t β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
fol - connected_DEF OPEN_IN ConnectedFromOpenUnionAndInter;
qed;
`;;
(* ------------------------------------------------------------------------- *)
(* Sort of induction principle for connected sets. *)
(* ------------------------------------------------------------------------- *)
let CONNECTED_INDUCTION = theorem `;
βP Q s. connected s β§
(βt a. open_in (subtopology euclidean s) t β§ a β t β βz. z β t β§ P z) β§
(βa. a β s β βt. open_in (subtopology euclidean s) t β§ a β t β§
βx y. x β t β§ y β t β§ P x β§ P y β§ Q x β Q y)
β βa b. a β s β§ b β s β§ P a β§ P b β§ Q a β Q b
proof
intro_TAC βP Q s;
s β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
MP_TAC -;
rewrite connected_DEF ConnectedInduction;
qed;
`;;
let CONNECTED_EQUIVALENCE_RELATION_GEN_LEMMA = theorem `;
βP R s.
connected s β§
(βx y z. R x y β§ R y z β R x z) β§
(βt a. open_in (subtopology euclidean s) t β§ a β t
β βz. z β t β§ P z) β§
(βa. a β s
β βt. open_in (subtopology euclidean s) t β§ a β t β§
βx y. x β t β§ y β t β§ P x β§ P y β R x y)
β βa b. a β s β§ b β s β§ P a β§ P b β R a b
proof
intro_TAC βP R s;
s β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
MP_TAC -;
rewrite connected_DEF ConnectedEquivalenceRelationGen;
qed;
`;;
let CONNECTED_EQUIVALENCE_RELATION_GEN = theorem `;
βP R s.
connected s β§
(βx y. R x y β R y x) β§
(βx y z. R x y β§ R y z β R x z) β§
(βt a. open_in (subtopology euclidean s) t β§ a β t
β βz. z β t β§ P z) β§
(βa. a β s
β βt. open_in (subtopology euclidean s) t β§ a β t β§
βx y. x β t β§ y β t β§ P x β§ P y β R x y)
β βa b. a β s β§ b β s β§ P a β§ P b β R a b
proof
intro_TAC βP R s;
MP_TAC ISPECL [P; R; s] CONNECTED_EQUIVALENCE_RELATION_GEN_LEMMA;
fol;
qed;
`;;
let CONNECTED_INDUCTION_SIMPLE = theorem `;
βP s. connected s β§ (βa. a β s
β βt. open_in (subtopology euclidean s) t β§ a β t β§
βx y. x β t β§ y β t β§ P x β P y)
β βa b. a β s β§ b β s β§ P a β P b
proof
intro_TAC βP s;
s β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
MP_TAC -;
rewrite connected_DEF ConnectedInductionSimple;
qed;
`;;
let CONNECTED_EQUIVALENCE_RELATION = theorem `;
βR s. connected s β§
(βx y. R x y β R y x) β§ (βx y z. R x y β§ R y z β R x z) β§
(βa. a β s
β βt. open_in (subtopology euclidean s) t β§ a β t β§ βx. x β t β R a x)
β βa b. a β s β§ b β s β R a b
proof
intro_TAC βR s;
s β topspace euclidean [] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN;
MP_TAC -;
rewrite connected_DEF ConnectedEquivalenceRelation;
qed;
`;;
(* ------------------------------------------------------------------------- *)
(* Limit points. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("limit_point_of",(12,"right"));;
let limit_point_of_DEF = NewDefinition `;
x limit_point_of s β x β LimitPointOf euclidean s`;;
let limit_point_of = theorem `;
x limit_point_of s β
βt. x β t β§ open t β βy. Β¬(y = x) β§ y β s β§ y β t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV IN_LimitPointOf limit_point_of_DEF OPEN_IN`;;
let LIMPT_SUBSET = theorem `;
βx s t. x limit_point_of s β§ s β t β x limit_point_of t
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN limit_point_of_DEF LimptSubset SUBSET`;;
let CLOSED_LIMPT = theorem `;
βs. closed s β βx. x limit_point_of s β x β s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF CLOSED_IN ClosedLimpt SUBSET`;;
let LIMPT_EMPTY = theorem `;
βx. Β¬(x limit_point_of β
)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF GSYM β LimptEmpty`;;
let NO_LIMIT_POINT_IMP_CLOSED = theorem `;
βs. Β¬(βx. x limit_point_of s) β closed s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF CLOSED_IN NoLimitPointImpClosed NOT_EXISTS_THM β`;;
let LIMIT_POINT_UNION = theorem `;
βs t x. x limit_point_of (s βͺ t) β
x limit_point_of s β¨ x limit_point_of t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF LimitPointUnion EXTENSION IN_UNION`;;
let LimitPointOf_euclidean = theorem `;
βs. LimitPointOf euclidean s = {x | x limit_point_of s}
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN IN_UNIV limit_point_of_DEF LimitPointOf IN_ELIM_THM EXTENSION`;;
(* ------------------------------------------------------------------------- *)
(* Interior of a set. *)
(* ------------------------------------------------------------------------- *)
let interior_DEF = NewDefinition `;
interior = Interior euclidean`;;
let interior = theorem `;
βs. interior s = {x | βt. open t β§ x β t β§ t β s}
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF Interior_DEF OPEN_IN`;;
let INTERIOR_EQ = theorem `;
βs. interior s = s β open s
by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorEq EQ_SYM_EQ`;;
let INTERIOR_OPEN = theorem `;
βs. open s β interior s = s
by fol interior_DEF OPEN_IN InteriorOpen`;;
let INTERIOR_EMPTY = theorem `;
interior β
= β
by fol interior_DEF OPEN_IN InteriorEmpty`;;
let INTERIOR_UNIV = theorem `;
interior UNIV = UNIV
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF InteriorUniv`;;
let OPEN_INTERIOR = theorem `;
βs. open (interior s)
by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenInterior`;;
let INTERIOR_INTERIOR = theorem `;
βs. interior (interior s) = interior s
by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorInterior`;;
let INTERIOR_SUBSET = theorem `;
βs. interior s β s
by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorSubset`;;
let SUBSET_INTERIOR = theorem `;
βs t. s β t β interior s β interior t
by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN SubsetInterior`;;
let INTERIOR_MAXIMAL = theorem `;
βs t. t β s β§ open t β t β interior s
by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorMaximal`;;
let INTERIOR_MAXIMAL_EQ = theorem `;
βs t. open s β (s β interior t β s β t)
by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorMaximalEq`;;
let INTERIOR_UNIQUE = theorem `;
βs t. t β s β§ open t β§ (βt'. t' β s β§ open t' β t' β t)
β interior s = t
by simplify interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorUnique`;;
let IN_INTERIOR = theorem `;
βx s. x β interior s β βe. &0 < e β§ ball(x,e) β s
proof
simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF IN_Interior GSYM OPEN_IN;
fol OPEN_CONTAINS_BALL SUBSET_TRANS CENTRE_IN_BALL OPEN_BALL;
qed;
`;;
let OPEN_SUBSET_INTERIOR = theorem `;
βs t. open s β (s β interior t β s β t)
by fol interior_DEF OPEN_IN SUBSET_UNIV TOPSPACE_EUCLIDEAN OpenSubsetInterior`;;
let INTERIOR_INTER = theorem `;
βs t. interior (s β© t) = interior s β© interior t
by simplify interior_DEF SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorInter`;;
let INTERIOR_FINITE_INTERS = theorem `;
βs. FINITE s β interior (INTERS s) = INTERS (IMAGE interior s)
proof
intro_TAC βs, H1;
assume Β¬(s = β
) [sNonempty] by simplify INTERS_0 IMAGE_CLAUSES INTERIOR_UNIV;
simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN H1 sNonempty interior_DEF InteriorFiniteInters;
qed;
`;;
let INTERIOR_FINITE_INTERS = theorem `;
βs. FINITE s β interior (INTERS s) = INTERS (IMAGE interior s)
proof
intro_TAC βs, H1;
assume s = β
[sEmpty] by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN H1 interior_DEF InteriorFiniteInters;
rewrite INTERS_0 IMAGE_CLAUSES sEmpty INTERIOR_UNIV;
qed;
`;;
let INTERIOR_INTERS_SUBSET = theorem `;
βf. interior (INTERS f) β INTERS (IMAGE interior f)
proof
intro_TAC βf;
assume f = β
[fEmpty] by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF InteriorIntersSubset;
rewrite INTERS_0 IMAGE_CLAUSES - INTERIOR_UNIV SUBSET_REFL;
qed;
`;;
let UNION_INTERIOR_SUBSET = theorem `;
βs t. interior s βͺ interior t β interior(s βͺ t)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF UnionInteriorSubset`;;
let INTERIOR_EQ_EMPTY = theorem `;
βs. interior s = β
β βt. open t β§ t β s β t = β
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF OPEN_IN InteriorEqEmpty`;;
let INTERIOR_EQ_EMPTY_ALT = theorem `;
βs. interior s = β
β βt. open t β§ Β¬(t = β
) β Β¬(t β s = β
)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF OPEN_IN InteriorEqEmptyAlt`;;
let INTERIOR_UNIONS_OPEN_SUBSETS = theorem `;
βs. UNIONS {t | open t β§ t β s} = interior s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF OPEN_IN InteriorUnionsOpenSubsets`;;
(* ------------------------------------------------------------------------- *)
(* Closure of a set. *)
(* ------------------------------------------------------------------------- *)
let closure_DEF = NewDefinition `;
closure = Closure euclidean`;;
let closure = theorem `;
βs. closure s = s UNION {x | x limit_point_of s}
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF LimitPointOf_euclidean Closure_THM`;;
let CLOSURE_INTERIOR = theorem `;
βs. closure s = UNIV β interior (UNIV β s)
proof
rewrite closure_DEF GSYM TOPSPACE_EUCLIDEAN interior_DEF;
simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosureInterior;
qed;
`;;
let INTERIOR_CLOSURE = theorem `;
βs. interior s = UNIV β (closure (UNIV β s))
proof
rewrite closure_DEF GSYM TOPSPACE_EUCLIDEAN interior_DEF;
simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorClosure;
qed;
`;;
let CLOSED_CLOSURE = theorem `;
βs. closed (closure s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosedClosure`;;
let CLOSURE_SUBSET = theorem `;
βs. s β closure s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureSubset`;;
let SUBSET_CLOSURE = theorem `;
βs t. s β t β closure s β closure t
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF SubsetClosure`;;
let CLOSURE_HULL = theorem `;
βs. closure s = closed hull s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureHull`;;
let CLOSURE_EQ = theorem `;
βs. closure s = s β closed s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureEq`;;
let CLOSURE_CLOSED = theorem `;
βs. closed s β closure s = s
by fol CLOSED_IN closure_DEF ClosureClosed`;;
let CLOSURE_CLOSURE = theorem `;
βs. closure (closure s) = closure s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureClosure`;;
let CLOSURE_UNION = theorem `;
βs t. closure (s βͺ t) = closure s βͺ closure t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureUnion`;;
let CLOSURE_INTER_SUBSET = theorem `;
βs t. closure (s β© t) β closure s β© closure t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureInterSubset`;;
let CLOSURE_INTERS_SUBSET = theorem `;
βf. closure (INTERS f) β INTERS (IMAGE closure f)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureIntersSubset`;;
let CLOSURE_MINIMAL = theorem `;
βs t. s β t β§ closed t β closure s β t
by fol CLOSED_IN closure_DEF ClosureMinimal`;;
let CLOSURE_MINIMAL_EQ = theorem `;
βs t. closed t β (closure s β t β s β t)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN closure_DEF ClosureMinimalEq`;;
let CLOSURE_UNIQUE = theorem `;
βs t. s β t β§ closed t β§ (βt'. s β t' β§ closed t' β t β t')
β closure s = t
by fol CLOSED_IN closure_DEF ClosureUnique`;;
let CLOSURE_EMPTY = theorem `;
closure β
= β
by fol closure_DEF ClosureEmpty`;;
let CLOSURE_UNIV = theorem `;
closure UNIV = UNIV
by fol TOPSPACE_EUCLIDEAN closure_DEF ClosureUniv`;;
let CLOSURE_UNIONS = theorem `;
βf. FINITE f β closure (UNIONS f) = UNIONS {closure s | s β f}
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF ClosureUnions`;;
let CLOSURE_EQ_EMPTY = theorem `;
βs. closure s = β
β s = β
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF ClosureEqEmpty`;;
let CLOSURE_SUBSET_EQ = theorem `;
βs. closure s β s β closed s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF CLOSED_IN ClosureSubsetEq`;;
let OPEN_INTER_CLOSURE_EQ_EMPTY = theorem `;
βs t. open s β (s β© closure t = β
β s β© t = β
)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF OPEN_IN OpenInterClosureEqEmpty`;;
let OPEN_INTER_CLOSURE_SUBSET = theorem `;
βs t. open s β s β© closure t β closure (s β© t)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF OPEN_IN OpenInterClosureSubset`;;
let CLOSURE_OPEN_INTER_SUPERSET = theorem `;
βs t. open s β§ s β closure t β closure (s β© t) = closure s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF OPEN_IN ClosureOpenInterSuperset`;;
let CLOSURE_COMPLEMENT = theorem `;
βs. closure (UNIV β s) = UNIV β interior s
proof
rewrite closure_DEF GSYM TOPSPACE_EUCLIDEAN interior_DEF;
simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN ClosureComplement;
qed;
`;;
let INTERIOR_COMPLEMENT = theorem `;
βs. interior (UNIV β s) = UNIV β closure s
proof
rewrite closure_DEF GSYM TOPSPACE_EUCLIDEAN interior_DEF;
simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN InteriorComplement;
qed;
`;;
let CONNECTED_INTERMEDIATE_CLOSURE = theorem `;
βs t. connected s β§ s β t β§ t β closure s β connected t
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF connected_DEF ConnectedIntermediateClosure`;;
let CONNECTED_CLOSURE = theorem `;
βs. connected s β connected (closure s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF connected_DEF ConnectedClosure`;;
let CONNECTED_UNION_STRONG = theorem `;
βs t. connected s β§ connected t β§ Β¬(closure s β© t = β
)
β connected (s βͺ t)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF connected_DEF ConnectedUnionStrong`;;
let INTERIOR_DIFF = theorem `;
βs t. interior (s β t) = interior s β closure t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF interior_DEF InteriorDiff`;;
let CLOSED_IN_LIMPT = theorem `;
βs t. closed_in (subtopology euclidean t) s β
s β t β§ βx. x limit_point_of s β§ x β t β x β s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF limit_point_of_DEF ClosedInLimpt_ALT`;;
let CLOSED_IN_INTER_CLOSURE = theorem `;
βs t. closed_in (subtopology euclidean s) t β s β© closure t = t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF limit_point_of_DEF ClosedInInterClosure`;;
let INTERIOR_CLOSURE_IDEMP = theorem `;
βs. interior (closure (interior (closure s))) = interior (closure s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF interior_DEF InteriorClosureIdemp`;;
let CLOSURE_INTERIOR_IDEMP = theorem `;
βs. closure (interior (closure (interior s))) = closure (interior s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF interior_DEF ClosureInteriorIdemp`;;
let INTERIOR_CLOSED_UNION_EMPTY_INTERIOR = theorem `;
βs t. closed s β§ interior t = β
β interior (s βͺ t) = interior s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN interior_DEF InteriorClosedUnionEmptyInterior`;;
let INTERIOR_UNION_EQ_EMPTY = theorem `;
βs t. closed s β¨ closed t
β (interior (s βͺ t) = β
β interior s = β
β§ interior t = β
)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN interior_DEF InteriorUnionEqEmpty`;;
let NOWHERE_DENSE_UNION = theorem `;
βs t. interior (closure (s βͺ t)) = β
β
interior (closure s) = β
β§ interior (closure t) = β
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF interior_DEF NowhereDenseUnion`;;
let NOWHERE_DENSE = theorem `;
βs. interior (closure s) = β
β
βt. open t β§ Β¬(t = β
) β βu. open u β§ Β¬(u = β
) β§ u β t β§ u β© s = β
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF closure_DEF OPEN_IN NowhereDense`;;
let INTERIOR_CLOSURE_INTER_OPEN = theorem `;
βs t. open s β§ open t β
interior (closure (s β© t)) = interior(closure s) β© interior (closure t)
by simplify interior_DEF closure_DEF OPEN_IN InteriorClosureInterOpen`;;
let CLOSURE_INTERIOR_UNION_CLOSED = theorem `;
βs t. closed s β§ closed t β
closure (interior (s βͺ t)) = closure (interior s) βͺ closure (interior t)
by simplify interior_DEF closure_DEF CLOSED_IN ClosureInteriorUnionClosed`;;
let REGULAR_OPEN_INTER = theorem `;
βs t. interior (closure s) = s β§ interior (closure t) = t
β interior (closure (s β© t)) = s β© t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF closure_DEF RegularOpenInter`;;
let REGULAR_CLOSED_UNION = theorem `;
βs t. closure (interior s) = s β§ closure (interior t) = t
β closure (interior (s βͺ t)) = s βͺ t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF closure_DEF RegularClosedUnion`;;
let DIFF_CLOSURE_SUBSET = theorem `;
βs t. closure s β closure t β closure (s β t)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF DiffClosureSubset`;;
(* ------------------------------------------------------------------------- *)
(* Frontier (aka boundary). *)
(* ------------------------------------------------------------------------- *)
let frontier_DEF = NewDefinition `;
frontier = Frontier euclidean`;;
let frontier = theorem `;
βs. frontier s = (closure s) DIFF (interior s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF interior_DEF Frontier_THM`;;
let FRONTIER_CLOSED = theorem `;
βs. closed (frontier s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF CLOSED_IN FrontierClosed`;;
let FRONTIER_CLOSURES = theorem `;
βs. frontier s = (closure s) β© (closure (UNIV β s))
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierClosures`;;
let FRONTIER_STRADDLE = theorem `;
βa s. a β frontier s β βe. &0 < e β
(βx. x β s β§ dist(a,x) < e) β§ (βx. Β¬(x β s) β§ dist(a,x) < e)
proof
simplify SUBSET_UNIV IN_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierStraddle GSYM OPEN_IN;
fol IN_BALL SUBSET OPEN_CONTAINS_BALL CENTRE_IN_BALL OPEN_BALL;
qed;
`;;
let FRONTIER_SUBSET_CLOSED = theorem `;
βs. closed s β (frontier s) β s
by fol frontier_DEF CLOSED_IN FrontierSubsetClosed`;;
let FRONTIER_EMPTY = theorem `;
frontier β
= β
by fol frontier_DEF FrontierEmpty`;;
let FRONTIER_UNIV = theorem `;
frontier UNIV = β
by fol frontier_DEF TOPSPACE_EUCLIDEAN FrontierUniv`;;
let FRONTIER_SUBSET_EQ = theorem `;
βs. (frontier s) β s β closed s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF CLOSED_IN FrontierSubsetEq`;;
let FRONTIER_COMPLEMENT = theorem `;
βs. frontier (UNIV β s) = frontier s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF FrontierComplement`;;
let FRONTIER_DISJOINT_EQ = theorem `;
βs. (frontier s) β© s = β
β open s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF OPEN_IN FrontierDisjointEq`;;
let FRONTIER_INTER_SUBSET = theorem `;
βs t. frontier (s β© t) β frontier s βͺ frontier t
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF FrontierInterSubset`;;
let FRONTIER_UNION_SUBSET = theorem `;
βs t. frontier (s βͺ t) β frontier s βͺ frontier t
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF FrontierUnionSubset`;;
let FRONTIER_INTERIORS = theorem `;
frontier s = UNIV β interior(s) β interior(UNIV β s)
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF interior_DEF FrontierInteriors`;;
let FRONTIER_FRONTIER_SUBSET = theorem `;
βs. frontier (frontier s) β frontier s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF FrontierFrontierSubset`;;
let INTERIOR_FRONTIER = theorem `;
βs. interior (frontier s) = interior (closure s) β closure (interior s)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN interior_DEF frontier_DEF closure_DEF InteriorFrontier`;;
let INTERIOR_FRONTIER_EMPTY = theorem `;
βs. open s β¨ closed s β interior (frontier s) = β
by fol OPEN_IN CLOSED_IN interior_DEF frontier_DEF InteriorFrontierEmpty`;;
let UNION_FRONTIER = theorem `;
βs t. frontier s βͺ frontier t =
frontier (s βͺ t) βͺ frontier (s β© t) βͺ frontier s β© frontier t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF UnionFrontier`;;
let CONNECTED_INTER_FRONTIER = theorem `;
βs t. connected s β§ Β¬(s β© t = β
) β§ Β¬(s β t = β
)
β Β¬(s β© frontier t = β
)
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN connected_DEF frontier_DEF ConnectedInterFrontier`;;
let INTERIOR_CLOSED_EQ_EMPTY_AS_FRONTIER = theorem `;
βs. closed s β§ interior s = β
β βt. open t β§ s = frontier t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN CLOSED_IN interior_DEF OPEN_IN frontier_DEF InteriorClosedEqEmptyAsFrontier`;;
let FRONTIER_UNION = theorem `;
βs t. closure s β© closure t = β
β frontier (s βͺ t) = frontier s βͺ frontier t
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierUnion`;;
let CLOSURE_UNION_FRONTIER = theorem `;
βs. closure s = s βͺ frontier s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN closure_DEF frontier_DEF ClosureUnionFrontier`;;
let FRONTIER_INTERIOR_SUBSET = theorem `;
βs. frontier (interior s) β frontier s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF interior_DEF FrontierInteriorSubset`;;
let FRONTIER_CLOSURE_SUBSET = theorem `;
βs. frontier (closure s) β frontier s
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierClosureSubset`;;
let SET_DIFF_FRONTIER = theorem `;
βs. s β frontier s = interior s
by simplify SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF interior_DEF SetDiffFrontier`;;
let FRONTIER_INTER_SUBSET_INTER = theorem `;
βs t. frontier (s β© t) β closure s β© frontier t βͺ frontier s β© closure t
by fol SUBSET_UNIV TOPSPACE_EUCLIDEAN frontier_DEF closure_DEF FrontierInterSubsetInter`;;
|