Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,047 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
(* (c) Copyright, Bill Richter 2013 *)
(* Distributed under the same license as HOL Light *)
(* *)
(* Examples showing error messages displayed by readable.ml when raising the *)
(* exception Readable_fail, with some working examples interspersed. *)
needs "RichterHilbertAxiomGeometry/readable.ml";;
let s = "abc]edf" in Str.string_before s (FindMatch "\[" "\]" s);;
let s = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!!]xyz" in
Str.string_before s (FindMatch "\[" "\]" s);;
(* val it : string = "abc]"
val it : string = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!!]" *)
let s = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!![]xyz" in Str.string_before s
(FindMatch "\[" "\]" s);;
(* Exception:
No matching right bracket operator \] to left bracket operator \[ in xyz. *)
let s = "123456[abc]lmn[op[a; b; c]pq]rs[];xyz" in
Str.string_before s (FindSemicolon s);;
let s = "123456[abc]lmn[op[a; b; c]pq]rs![]xyz" in
Str.string_before s (FindSemicolon s);;
(* val it : string = "123456[abc]lmn[op[a; b; c]pq]rs[]"
Exception: No final semicolon in 123456[abc]lmn[op[a; b; c]pq]rs![]xyz. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* 0..0..3..6..solved at 21
0..0..3..6..31..114..731..5973..solved at 6087
val MOD_MOD_REFL : thm = |- !m n. ~(n = 0) ==> m MOD n MOD n = m MOD n *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
INTRO_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception: Can't parse as a Proof:
INTRO_TAC !m n, H1. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] mod_mod;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception: Not a theorem:
mod_mod. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception: termlist->thm->thm ISPECL
not followed by term list in
MOD_MOD. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL m n 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception:
termlist->thm->thm ISPECL
not followed by term list in
m n 1] MOD_MOD. *)
interactive_goal `;∀p q. p * p = 2 * q * q ⇒ q = 0
`;;
interactive_proof `;
MATCH_MP_TAC ;
intro_TAC ∀p, A, ∀q, B;
EVEN(p * p) ⇔ EVEN(2 * q * q) [] proof qed;
`;;
(* Exception: Empty theorem:
. *)
interactive_goal `;∀p q. p * p = 2 * q * q ⇒ q = 0
`;;
interactive_proof `;
MATCH_MP_TAC num_WF num_WF ;
intro_TAC ∀p, A, ∀q, B;
EVEN(p * p) ⇔ EVEN(2 * q * q) [] proof qed;
`;;
(* Exception:
thm_tactic MATCH_MP_TAC not followed by a theorem, but instead
num_WF num_WF . *)
let EXP_2 = theorem `;
∀n:num. n EXP 2 = n * n
by REWRITE BIT0_THM BIT1_THM EXP EXP_ADD MULT_CLAUSES ADD_CLAUSES`;;
(* Exception:
Not a proof:
REWRITE BIT0_THM BIT1_THM EXP EXP_ADD MULT_CLAUSES ADD_CLAUSES.
The problem is that REWRITE should be rewrite.*)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
prooof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception:
Missing initial "proof", "by", or final "qed;" in
!m n. ~(n = 0) ==> ((m MOD n) MOD n = m MOD n)
prooof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
What me worry?
`;;
(* Exception: Trailing garbage after the proof...qed:
What me worry?
.
Two examples from the ocaml reference manual sec 1.4 to show the
handling of exceptions other than Readable_fail. *)
exception Empty_list;;
let head l =
match l with
[] -> raise Empty_list
| hd :: tl -> hd;;
head [1;2];;
head [];;
exception Unbound_variable of string;;
type expression =
Const of float
| Var of string
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression;;
let rec eval env exp =
match exp with
Const c -> c
| Var v ->
(try List.assoc v env with Not_found -> raise(Unbound_variable v))
| Sum(f, g) -> eval env f +. eval env g
| Diff(f, g) -> eval env f -. eval env g
| Prod(f, g) -> eval env f *. eval env g
| Quot(f, g) -> eval env f /. eval env g;;
eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "z", Const 2.0), Var "y"));;
(* The only difference caused by printReadExn is that
Exception: Unbound_variable "z".
is now
Exception: Unbound_variable("z"). *)
let binom = define
`(!n. binom(n,0) = 1) /\
(!k. binom(0,SUC(k)) = 0) /\
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;;
let BINOM_LT = theorem `;
∀n k. n < k ⇒ binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE [n < k ==> n < SUC(k)] ARITH;
qed;
`;;
let BINOM_REFL = theorem `;
∀n. binom(n,n) = 1
proof
INDUCT_TAC;
ASM_SIMP_TAC binom BINOM_LT LT ARITH;
qed;
`;;
let BINOMIAL_THEOREM = theorem `;
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))
proof
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET;
MATCH_MP_TAC num_INDUCTION;
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES;
intro_TAC ∀n, nThm;
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC;
rewriteR ADD_SYM;
rewriteRLDepth SUB_SUC EXP;
rewrite MULT_AC EQ_ADD_LCANCEL MESON [binom] [1 = binom(n, 0)] GSYM Nsum0SUC;
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1;
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC;
qed;
`;;
(* val binom : thm =
|- (!n. binom (n,0) = 1) /\
(!k. binom (0,SUC k) = 0) /\
(!n k. binom (SUC n,SUC k) = binom (n,SUC k) + binom (n,k))
val BINOM_LT : thm = |- !n k. n < k ==> binom (n,k) = 0
val BINOM_REFL : thm = |- !n. binom (n,n) = 1
0..0..1..2..solved at 6
val BINOMIAL_THEOREM : thm =
|- !n. (x + y) EXP n =
nsum (0..n) (\k. binom (n,k) * x EXP k * y EXP (n - k)) *)
let BINOM_LT = theorem `;
∀n k. n < k ⇒ binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE n < k ==> n < SUC(k)] ARITH;
qed;
`;;
(* Exception:
term->thm ARITH_RULE not followed by term list, but instead
n < k ==> n < SUC(k)] ARITH. *)
let BINOM_LT = theorem `;
∀n k. n < k ⇒ binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE [n < k; n < SUC(k)] ARITH;
qed;
`;;
(* Exception:
term->thm ARITH_RULE not followed by length 1 term list, but instead the list
[n < k; n < SUC(k)]. *)
let BINOM_LT = theorem `;
∀n k. n < k ⇒ binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE [ ] ARITH;
qed;
`;;
(* Exception:
term->thm ARITH_RULE not followed by length 1 term list, but instead the list
[]. *)
let BINOMIAL_THEOREM = theorem `;
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))
proof
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET;
MATCH_MP_TAC num_INDUCTION;
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES;
intro_TAC ∀n, nThm;
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC;
rewriteR ADD_SYM;
rewriteRLDepth SUB_SUC EXP;
rewrite MULT_AC EQ_ADD_LCANCEL MESON binom] [1 = binom(n, 0)] GSYM Nsum0SUC;
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1;
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC;
qed;
`;;
(* Exception:
thmlist->term->thm MESON not followed by thm list in
binom] [1 = binom(n, 0)] GSYM Nsum0SUC. *)
let BINOMIAL_THEOREM = theorem `;
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))
proof
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET;
MATCH_MP_TAC num_INDUCTION;
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES;
intro_TAC ∀n, nThm;
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC;
rewriteR ADD_SYM;
rewriteRLDepth SUB_SUC EXP;
rewrite MULT_AC EQ_ADD_LCANCEL MESON [binom] 1 = binom(n, 0)] GSYM Nsum0SUC;
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1;
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC;
qed;
`;;
(* Exception:
thmlist->term->thm MESON followed by list of theorems [binom]
not followed by term in
1 = binom(n, 0)] GSYM Nsum0SUC. *)
|