Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 34,820 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
(* ========================================================================= *)
(* Miz3 interface for readable HOL Light tactics formal proofs *)
(* *)
(* (c) Copyright, Bill Richter 2013 *)
(* Distributed under the same license as HOL Light *)
(* *)
(* The primary meaning of readability is explained in the HOL Light tutorial *)
(* on page 81 after the proof of NSQRT_2 (ported below), *)
(* "We would like to claim that this proof can be read in isolation, without *)
(* running it in HOL. For each step, every fact we used is clearly labelled *)
(* somewhere else in the proof, and every assumption is given explicitly." *)
(* However readability is often improved by using tactics constructs like *)
(* SIMP_TAC and MATCH_MP_TAC, which allow facts and assumptions to not be *)
(* given explicitly, so as to not lose sight of the proof. Readability is *)
(* improved by a miz3 interface with few type annotations, back-quotes or *)
(* double-quotes, and allowing HOL4/Isabelle math characters, e.g. *)
(* β β β§ β¨ Β¬ β β β β Ξ± Ξ² Ξ³ Ξ» ΞΈ ΞΌ β β© βͺ β
β β‘ β
β‘ β₯ β β β βͺ . *)
(* We use ideas for readable formal proofs due to John Harrison ("Towards *)
(* more readable proofs" of the tutorial and Examples/mizar.ml), Freek *)
(* Wiedijk (Mizarlight/miz2a.ml, miz3/miz3.ml and arxiv.org/pdf/1201.3601 *)
(* "A Synthesis of Procedural and Declarative Styles of Interactive *)
(* Theorem Proving"), Marco Maggesi (author of tactic constructs *)
(* INTRO_TAC, DESTRUCT_TAC & HYP), Petros Papapanagiotou (coauthor of *)
(* Isabelle Light), Vincent Aravantinos (author of the Q-module *)
(* https://github.com/aravantv/HOL-Light-Q) and Mark Adams (author of HOL *)
(* Zero and Tactician). These readability ideas yield the miz3-type *)
(* declarative constructs assume, consider and case_split. The semantics of *)
(* readable.ml is clear from an obvious translation to HOL Light proofs. An *)
(* interactive mode is useful in writing, debugging and displaying proofs. *)
(* *)
(* The construct "case_split" reducing the goal to various cases given by *)
(* "suppose" clauses. The construct "proof" [...] "qed" allows arbitrarily *)
(* long proofs, which can be arbitrarily nested with other case_split and *)
(* proof/qed constructs. THENL is only implemented implicitly in case_split *)
(* (also eq_tac and conj_tac), and this requires adjustments, such as using *)
(* MATCH_MP_TAC num_INDUCTION instead of INDUCT_TAC. *)
(* ========================================================================= *)
(* The Str library defines regexp functions needed to process strings. *)
#load "str.cma";;
(* parse_qproof uses system.ml quotexpander feature designed for miz3.ml to *)
(* turn backquoted expression `;[...]` into a string with no newline or *)
(* backslash problems. Note that miz3.ml defines parse_qproof differently. *)
let parse_qproof s = (String.sub s 1 (String.length s - 1));;
(* Allows HOL4 and Isabelle style math characters. *)
let CleanMathFontsForHOL_Light s =
let rec clean s loStringPairs =
match loStringPairs with
| [] -> s
| hd :: tl ->
let s = Str.global_replace (Str.regexp (fst hd)) (snd hd) s in
clean s tl in
clean s ["β","==>"; "β","<=>"; "β§","/\\ "; "β¨","\\/"; "Β¬","~";
"β","!"; "β","?"; "β","IN"; "β","NOTIN";
"Ξ±","alpha"; "Ξ²","beta"; "Ξ³","gamma"; "Ξ»","\\ "; "ΞΈ","theta"; "ΞΌ","mu";
"β","SUBSET"; "β©","INTER"; "βͺ","UNION"; "β
","{}"; "β","DIFF";
"β‘","==="; "β
","cong"; "β‘","angle"; "β₯","parallel";
"β","prod"; "β","_o_"; "β","--->"; "βͺ","INSERT";
"β", "TarskiCong"; "β", "TarskiTriangleCong"; "β¬", "TarskiBetween"];;
(* printReadExn prints uncluttered error messages via Readable_fail. This *)
(* is due to Mark Adams, who also explained Roland Zumkeller's exec below. *)
exception Readable_fail of string;;
let printReadExn e =
match e with
| Readable_fail s
-> print_string s
| _ -> print_string (Printexc.to_string e);;
#install_printer printReadExn;;
(* From update_database.ml: Execute any OCaml expression given as a string. *)
let exec = ignore o Toploop.execute_phrase false Format.std_formatter
o !Toploop.parse_toplevel_phrase o Lexing.from_string;;
(* Following miz3.ml, exec_thm returns the theorem representing a string, so *)
(* exec_thm "FORALL_PAIR_THM";; returns *)
(* val it : thm = |- !P. (!p. P p) <=> (!p1 p2. P (p1,p2)) *)
(* Extra error-checking is done to rule out the possibility of the theorem *)
(* string ending with a semicolon. *)
let thm_ref = ref TRUTH;;
let tactic_ref = ref ALL_TAC;;
let thmtactic_ref = ref MATCH_MP_TAC;;
let thmlist_tactic_ref = ref REWRITE_TAC;;
let termlist_thm_thm_ref = ref SPECL;;
let thm_thm_ref = ref GSYM;;
let term_thm_ref = ref ARITH_RULE;;
let thmlist_term_thm_ref = ref MESON;;
let exec_thm s =
if Str.string_match (Str.regexp "[^;]*;") s 0 then raise Noparse
else
try exec ("thm_ref := (("^ s ^"): thm);;");
!thm_ref
with _ -> raise Noparse;;
let exec_tactic s =
try exec ("tactic_ref := (("^ s ^"): tactic);;"); !tactic_ref
with _ -> raise Noparse;;
let exec_thmlist_tactic s =
try
exec ("thmlist_tactic_ref := (("^ s ^"): thm list -> tactic);;");
!thmlist_tactic_ref
with _ -> raise Noparse;;
let exec_thmtactic s =
try exec ("thmtactic_ref := (("^ s ^"): thm -> tactic);;"); !thmtactic_ref
with _ -> raise Noparse;;
let exec_termlist_thm_thm s =
try exec ("termlist_thm_thm_ref := (("^ s ^"): (term list -> thm -> thm));;");
!termlist_thm_thm_ref
with _ -> raise Noparse;;
let exec_thm_thm s =
try exec ("thm_thm_ref := (("^ s ^"): (thm -> thm));;");
!thm_thm_ref
with _ -> raise Noparse;;
let exec_term_thm s =
try exec ("term_thm_ref := (("^ s ^"): (term -> thm));;");
!term_thm_ref
with _ -> raise Noparse;;
let exec_thmlist_term_thm s =
try exec ("thmlist_term_thm_ref := (("^ s ^"): (thm list ->term -> thm));;");
!thmlist_term_thm_ref
with _ -> raise Noparse;;
(* make_env and parse_env_string (following parse_term from parser.ml, *)
(* Mizarlight/miz2a.ml and https://github.com/aravantv/HOL-Light-Q) turn a *)
(* string into a term with types inferred by the goal and assumption list. *)
let (make_env: goal -> (string * pretype) list) =
fun (asl, w) -> map ((fun (s, ty) -> (s, pretype_of_type ty)) o dest_var)
(freesl (w::(map (concl o snd) asl)));;
let parse_env_string env s =
let (ptm, l) = (parse_preterm o lex o explode) s in
if l = [] then (term_of_preterm o retypecheck env) ptm
else raise (Readable_fail
("Unparsed input at the end of the term\n" ^ s));;
(* versions of new_constant, parse_as_infix, new_definition and new_axiom *)
let NewConstant (x, y) = new_constant(CleanMathFontsForHOL_Light x, y);;
let ParseAsInfix (x, y) = parse_as_infix (CleanMathFontsForHOL_Light x, y);;
let NewDefinition s =
new_definition (parse_env_string [] (CleanMathFontsForHOL_Light s));;
let NewAxiom s =
new_axiom (parse_env_string [] (CleanMathFontsForHOL_Light s));;
(* String versions without type annotations of SUBGOAL_THEN, SUBGOAL_TAC, *)
(* intro_TAC, EXISTS_TAC, X_GEN_TAC, and EXISTS_TAC, and also new miz3-type *)
(* tactic constructs assume, consider and case_split. *)
(* subgoal_THEN stm ttac gl = (SUBGOAL_THEN t ttac) gl, *)
(* where stm is a string that turned into a statement t by make_env and *)
(* parse_env_string, using the goal gl. We call stm a string statement. *)
(* ttac is often the thm_tactic (LABEL_TAC string) or (DESTRUCT_TAC string). *)
let subgoal_THEN stm ttac gl =
SUBGOAL_THEN (parse_env_string (make_env gl) stm) ttac gl;;
(* subgoal_TAC stm lab tac gl = (SUBGOAL_TAC lab t [tac]) gl, *)
(* exists_TAC stm gl = (EXISTS_TAC t) gl, and *)
(* X_gen_TAC svar gl = (X_GEN_TAC v) gl, where *)
(* stm is a string statement which is turned into a statement t by make_env, *)
(* parse_env_string and the goal gl. Similarly string svar is turned into a *)
(* variable v. *)
(* X_genl_TAC combines X_gen_TAC and GENL. Since below in StepToTactic the *)
(* string-term list uses whitespace as the delimiter and no braces, there is *)
(* no reason in readable.ml proofs to use X_gen_TAC instead X_genl_TAC. *)
(* intro_TAC is INTRO_TAC with the delimiter ";" replaced with",". *)
(* eq_tac string tac *)
(* requires the goal to be an iff statement of the form x β y and then *)
(* performs an EQ_TAC. If string = "Right", then the tactic tac proves the *)
(* implication y β x, and the goal becomes the other implication x β y. *)
(* If string = "Left", then tac proves x β y and the goal becomes y β x. *)
(* conj_tac string tac *)
(* requires the goal to be a conjunction statement x β§ y and then performs a *)
(* CONJ_TAC. If string = "Left" then the tactic tac proves x, and the goal *)
(* becomes y. If string = "Right", tac proves y and the new goal is x. *)
(* consider svars stm lab tac *)
(* defines new variables given by the string svars = "v1 v2 ... vn" and the *)
(* string statement stm, which subgoal_THEN turns into statement t, labeled *)
(* by lab. The tactic tac proves the existential statement ?v1 ... vn. t. *)
(* case_split sDestruct tac listofDisj listofTac *)
(* reduces the goal to n cases which are solved separately. listofDisj is a *)
(* list of strings [st_1;...; st_n] whose disjunction st_1 \/...\/ st_n is a *)
(* string statement proved by tactic tac. listofTac is a list of tactics *)
(* [tac_1;...; tac_n] which prove the statements st_1,..., st_n. The string *)
(* sDestruct must have the form "lab_1 |...| lab_n", and lab_i is a label *)
(* used by tac_i to prove st_i. Each lab_i must be a nonempty string. *)
(* assume *)
(* is a version of ASM_CASES_TAC, and performs proofs by contradiction and *)
(* binary case_splits where one of the forks has a short proof. In general, *)
(* assume statement lab tac *)
(* turns the string statement into a term t, with the tactic tac a proof of *)
(* Β¬t β w, where w is the goal. There is a new assumption t labeled lab, and *)
(* the new goal is the result of applying the tactic SIMP_TAC [t] to w. *)
(* It's recommended to only use assume with a short proof tac. Three uses *)
(* of assume arise when t = ¬w or t = ¬α, with w = α ⨠β or w = β ⨠α. *)
(* In all three cases write *)
(* assume statement [lab] by fol; *)
(* and the new goal will be F (false) or Ξ² respectively, as a result of the *)
(* SIMP_TAC [t]. So do not use assume if SIMP_TAC [t] is disadvantageous. *)
let subgoal_TAC stm lab tac gl =
SUBGOAL_TAC lab (parse_env_string (make_env gl) stm) [tac] gl;;
let exists_TAC stm gl =
EXISTS_TAC (parse_env_string (make_env gl) stm) gl;;
let X_gen_TAC svar (asl, w as gl) =
let vartype = (snd o dest_var o fst o dest_forall) w in
X_GEN_TAC (mk_var (svar, vartype)) gl;;
let X_genl_TAC svarlist = MAP_EVERY X_gen_TAC svarlist;;
let intro_TAC s = INTRO_TAC (Str.global_replace (Str.regexp ",") ";" s);;
let assume statement lab tac (asl, w as gl) =
let t = parse_env_string (make_env gl) statement in
(DISJ_CASES_THEN (LABEL_TAC lab) (SPEC t EXCLUDED_MIDDLE) THENL
[ALL_TAC; FIRST_ASSUM MP_TAC THEN tac] THEN HYP SIMP_TAC lab []) gl;;
let eq_tac string tac =
if string = "Right" then CONV_TAC SYM_CONV THEN EQ_TAC THENL [tac; ALL_TAC]
else if string = "Left" then EQ_TAC THENL [tac; ALL_TAC]
else raise (Readable_fail
("eq_tac requires " ^ string ^" to be either Left or Right"));;
let conj_tac string tac =
if string = "Right" then ONCE_REWRITE_TAC [CONJ_SYM] THEN
CONJ_TAC THENL [tac; ALL_TAC]
else if string = "Left" then CONJ_TAC THENL [tac; ALL_TAC]
else raise (Readable_fail
("conj_tac requires " ^ string ^" to be either Left or Right"));;
let consider svars stm lab tac =
subgoal_THEN ("?"^ svars ^ ". "^ stm)
(DESTRUCT_TAC ("@"^ svars ^ "."^ lab)) THENL [tac; ALL_TAC];;
let case_split sDestruct tac listofDisj listofTac =
let disjunction = itlist
(fun s t -> if t = "" then "("^ s ^")" else "("^ s ^") \\/ "^ t)
listofDisj "" in
subgoal_TAC disjunction "" tac THEN
FIRST_X_ASSUM (DESTRUCT_TAC sDestruct) THENL listofTac;;
(* Following the HOL Light tutorial section "Towards more readable proofs." *)
let fol = MESON_TAC;;
let rewrite = REWRITE_TAC;;
let simplify = SIMP_TAC;;
let set = SET_TAC;;
let rewriteR = GEN_REWRITE_TAC (RAND_CONV);;
let rewriteL = GEN_REWRITE_TAC (LAND_CONV);;
let rewriteI = GEN_REWRITE_TAC I;;
let rewriteRLDepth = GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o DEPTH_CONV);;
let TACtoThmTactic tac = fun ths -> MAP_EVERY MP_TAC ths THEN tac;;
let arithmetic = TACtoThmTactic ARITH_TAC;;
let real_arithmetic = TACtoThmTactic REAL_ARITH_TAC;;
let num_ring = TACtoThmTactic (CONV_TAC NUM_RING);;
let real_ring = TACtoThmTactic (CONV_TAC REAL_RING);;
let ws = "[ \t\n]+";;
let ws0 = "[ \t\n]*";;
let StringRegexpEqual r s = Str.string_match r s 0 &&
s = Str.matched_string s;;
(* FindMatch sleft sright s *)
(* turns strings sleft and sright into regexps, recursively searches string *)
(* s for matched pairs of substrings matching sleft and sright, and returns *)
(* the position after the first substring matched by sright which is not *)
(* paired with an sleft-matching substring. Often here sleft ends with *)
(* whitespace (ws) while sright begins with ws. The "degenerate" case of *)
(* X^ws^Y where X^ws matches sleft and ws^Y matches sright is handled by *)
(* backing up a character after an sleft match if the last character is ws. *)
let FindMatch sleft sright s =
let test = Str.regexp ("\("^ sleft ^"\|"^ sright ^"\)")
and left = Str.regexp sleft in
let rec FindMatchPosition s count =
if count = 1 then 0
else
try
ignore(Str.search_forward test s 0);
let TestMatch = Str.matched_group 1 s
and AfterTest = Str.match_end() in
let LastChar = Str.last_chars (Str.string_before s AfterTest) 1 in
let endpos =
if Str.string_match (Str.regexp ws) LastChar 0
then AfterTest - 1 else AfterTest in
let rest = Str.string_after s endpos
and increment =
if StringRegexpEqual left TestMatch then -1 else 1 in
endpos + (FindMatchPosition rest (count + increment))
with Not_found -> raise (Readable_fail
("No matching right bracket operator "^ sright ^
" to left bracket operator "^ sleft ^" in "^ s)) in
FindMatchPosition s 0;;
(* FindSemicolon uses FindMatch to find the position before the next *)
(* semicolon which is not a delimiter of a list. *)
let rec FindSemicolon s =
try
let rec FindMatchPosition s pos =
let start = Str.search_forward (Str.regexp ";\|\[") s pos in
if Str.matched_string s = ";" then start
else
let rest = Str.string_after s (start + 1) in
let MatchingSquareBrace = FindMatch "\[" "\]" rest in
let newpos = start + 1 + MatchingSquareBrace in
FindMatchPosition s newpos in
FindMatchPosition s 0
with Not_found -> raise (Readable_fail ("No final semicolon in "^ s));;
(* FindCases uses FindMatch to take a string *)
(* "suppose" proof_1 "end;" ... "suppose" proof_n "end;" *)
(* and return the list [proof_1; proof_2; ... ; proof_n]. *)
let rec FindCases s =
let sleftCase, srightCase = ws^ "suppose"^ws, ws^ "end" ^ws0^ ";" in
if Str.string_match (Str.regexp sleftCase) s 0 then
let CaseEndRest = Str.string_after s (Str.match_end()) in
let PosAfterEnd = FindMatch sleftCase srightCase CaseEndRest in
let pos = Str.search_backward (Str.regexp srightCase)
CaseEndRest PosAfterEnd in
let case = Str.string_before CaseEndRest pos
and rest = Str.string_after CaseEndRest PosAfterEnd in
case :: (FindCases rest)
else [];;
(* StringToList uses FindSemicolon to turns a string into the list of *)
(* substrings delimited by the semicolons which are not captured in lists. *)
let rec StringToList s =
if StringRegexpEqual (Str.regexp ws0) s then [] else
if Str.string_match (Str.regexp "[^;]*;") s 0 then
let pos = FindSemicolon s in
let head = Str.string_before s pos in
head :: (StringToList (Str.string_after s (pos + 1)))
else [s];;
(* ExtractWsStringList string = (["l1"; "l2"; ...; "ln"], rest), *)
(* if string = ws ^ "[l1; l2; ...; ln]" ^ rest. Raises Not_found otherwise. *)
let ExtractWsStringList string =
if Str.string_match (Str.regexp (ws^ "\[")) string 0 then
let listRest = Str.string_after string (Str.match_end()) in
let RightBrace = FindMatch "\[" "\]" listRest in
let rest = Str.string_after listRest RightBrace
and list = Str.string_before listRest (RightBrace - 1) in
(StringToList list, rest)
else raise Not_found;;
(* theoremify string goal returns a pair (thm, rest), *)
(* where thm is the first theorem found on string, using goal if needed, and *)
(* rest is the remainder of string. Theoremify uses 3 helping functions: *)
(* 1) CombTermThm_Term, which produces a combination of a term->thm *)
(* (e.g. ARITH_RULE) with a term, *)
(* 2) CombThmlistTermThm_Thmlist_Term, which combines a thmlist->term->thm *)
(* (e.g. MESON) with a thmlist and a term, and *)
(* 3) CombTermlistThmThm_Termlist, which combines a termlist->thm->thm *)
(* (e.g. SPECL) with a termlist and a thm produced by theoremify. *)
(* Similar functions CombThmtactic_Thm and CombThmlisttactic_Thmlist are *)
(* used below, along with theoremify, by StringToTactic. *)
let CombTermThm_Term word rest gl =
let TermThm = exec_term_thm word in
try
let (stermlist, wsRest) = ExtractWsStringList rest in
if length stermlist = 1 then
let term = (parse_env_string (make_env gl)) (hd stermlist) in
(TermThm term, wsRest)
else raise (Readable_fail ("term->thm "^ word
^" not followed by length 1 term list, but instead the list \n["^
String.concat ";" stermlist ^"]"))
with Not_found -> raise (Readable_fail ("term->thm "^ word
^" not followed by term list, but instead \n"^ rest));;
let rec theoremify string gl =
if Str.string_match (Str.regexp (ws^ "\([^][ \t\n]+\)")) string 0 then
let word = Str.matched_group 1 string
and rest = Str.string_after string (Str.match_end()) in
if word = "-" then (snd (hd (fst gl)), rest) else
try (exec_thm word, rest)
with _ ->
try (assoc word (fst gl), rest)
with _ ->
try firstPairMult (exec_thm_thm word) (theoremify rest gl)
with _ ->
try CombTermThm_Term word rest gl
with Noparse ->
try CombThmlistTermThm_Thmlist_Term word rest gl
with Noparse ->
try CombTermlistThmThm_Termlist word rest gl
with Noparse -> raise (Readable_fail ("Not a theorem:\n"^ string))
else raise (Readable_fail ("Empty theorem:\n"^ string))
and
firstPairMult f (a, b) = (f a, b)
and
CombTermlistThmThm_Termlist word rest gl =
let TermlistThmThm = exec_termlist_thm_thm word in
try
let (stermlist, WsThm) = ExtractWsStringList rest in
let termlist = map (parse_env_string (make_env gl)) stermlist in
firstPairMult (TermlistThmThm termlist) (theoremify WsThm gl)
with Not_found -> raise (Readable_fail ("termlist->thm->thm "^ word
^"\n not followed by term list in\n"^ rest))
and
CombThmlistTermThm_Thmlist_Term word rest gl =
let thm_create sthm =
let (thm, rest) = theoremify (" "^ sthm) gl in
if rest = "" then thm
else raise (Readable_fail ("an argument of thmlist->term->thm "^ word ^
"\n is not a theorem, but instead \n"^ sthm)) in
let ThmlistTermThm = exec_thmlist_term_thm word in
try
let (stermlist, wsTermRest) = ExtractWsStringList rest in
let thmlist = map thm_create stermlist in
if Str.string_match (Str.regexp (ws^ "\[")) wsTermRest 0 then
let termRest = Str.string_after wsTermRest (Str.match_end()) in
let RightBrace = FindMatch "\[" "\]" termRest in
let rest = Str.string_after termRest RightBrace
and sterm = Str.string_before termRest (RightBrace - 1) in
let term = parse_env_string (make_env gl) sterm in
(ThmlistTermThm thmlist term, rest)
else raise (Readable_fail ("thmlist->term->thm "^ word
^" followed by list of theorems ["^ String.concat ";" stermlist ^"]
not followed by term in\n"^ wsTermRest))
with Not_found -> raise (Readable_fail ("thmlist->term->thm "^ word
^" not followed by thm list in\n"^ rest));;
let CombThmtactic_Thm step =
if Str.string_match (Str.regexp (ws^ "\([a-zA-Z0-9_]+\)")) step 0 then
let sthm_tactic = Str.matched_group 1 step
and sthm = Str.string_after step (Str.match_end()) in
let thm_tactic = exec_thmtactic sthm_tactic in
fun gl ->
let (thm, rest) = theoremify sthm gl in
if rest = "" then thm_tactic thm gl
else raise (Readable_fail ("thm_tactic "^ sthm_tactic
^" not followed by a theorem, but instead\n"^ sthm))
else raise Not_found;;
let CombThmlisttactic_Thmlist step =
let rec makeThmListAccum string list gl =
if StringRegexpEqual (Str.regexp ws0) string then list else
let (thm, rest) = theoremify string gl in
makeThmListAccum rest (thm :: list) gl in
if Str.string_match (Str.regexp (ws^ "\([a-zA-Z0-9_]+\)")) step 0 then
let ttac = exec_thmlist_tactic (Str.matched_group 1 step)
and LabThmString = Str.string_after step (Str.match_end()) in
fun gl ->
let LabThmList = List.rev (makeThmListAccum LabThmString [] gl) in
ttac LabThmList gl
else raise Not_found;;
(* StringToTactic uses regexp functions from the Str library to transform a *)
(* string into a tactic. The allowable tactics are written in BNF form as *)
(* *)
(* Tactic := ALL_TAC | Tactic THEN Tactic | thm->tactic Thm | *)
(* one-word-tactic (e.g. ARITH_TAC) | thmlist->tactic Thm-list | *)
(* intro_TAC string | exists_TAC term | X_genl_TAC term-list | *)
(* case_split string Tactic statement-list Tactic-list | *)
(* consider variable-list statement label Tactic | *)
(* eq_tac (Right | Left) Tactic | conj_tac (Right | Left) Tactic | *)
(* (assume | subgoal_TAC) statement label Tactic *)
(* *)
(* Thm := theorem-name | label | - [i.e. last assumption] | thm->thm Thm | *)
(* term->thm term | thmlist->term->thm Thm-list term | *)
(* termlist->thm->thm term-list Thm *)
(* *)
(* The string proofs allowed by StringToTactic are written in BNF form as *)
(* *)
(* Proof := Proof THEN Proof | case_split destruct_string ByProofQed *)
(* suppose statement; Proof end; ... suppose statement; Proof end; | *)
(* OneStepProof; | consider variable-list statement [label] ByProofQed | *)
(* eq_tac [Right|Left] ByProofQed | conj_tac [Right|Left] ByProofQed | *)
(* (assume | ) statement [label] ByProofQed *)
(* *)
(* OneStepProof := one-word-tactic | thm->tactic Thm | intro_TAC string | *)
(* exists_TAC term-string | X_genl_TAC variable-string-list | *)
(* thmlist->tactic Thm-list *)
(* *)
(* ByProofQed := by OneStepProof; | proof Proof Proof ... Proof qed; *)
(* *)
(* theorem is a version of prove based on the miz3.ml thm, with argument *)
(* statement ByProofQed *)
(* *)
(* Miz3-style comments are supported. If a line contains ::, then the *)
(* substring of the line beginning with :: is ignored by StringToTactic. *)
let rec StringToTactic s =
let s = Str.global_replace (Str.regexp "::[^\n]*") "" s in
if StringRegexpEqual (Str.regexp ws0) s then ALL_TAC
else
try makeCaseSplit s
with _ ->
let pos = FindSemicolon s in
let step, rest = Str.string_before s pos, Str.string_after s (pos + 1) in
try
let tactic = StepToTactic step in
tactic THEN StringToTactic rest
with Not_found ->
let (tactic, rest) = BigStepToTactic s step in
tactic THEN StringToTactic rest
and
GetProof ByProof s =
if ByProof = "by" then
let pos = FindSemicolon s in
let step, rest = Str.string_before s pos, Str.string_after s (pos + 1) in
(StepToTactic step, rest)
else
let pos_after_qed = FindMatch (ws^"proof"^ws) (ws^"qed"^ws0^";") s in
let pos = Str.search_backward (Str.regexp "qed") s pos_after_qed in
let proof = StringToTactic (Str.string_before s pos) in
(proof, Str.string_after s pos_after_qed)
and
makeCaseSplit s =
if Str.string_match (Str.regexp (ws^ "case_split" ^ws^ "\([^;]+\)" ^ws^
"\(by\|proof\)" ^ws)) s 0 then
let sDestruct = Str.matched_group 1 s
and (proof, rest) = GetProof (Str.matched_group 2 s)
(Str.string_after s (Str.group_end 2))
and SplitAtSemicolon case =
let pos = FindSemicolon case in
[Str.string_before case pos; Str.string_after case (pos + 1)] in
let list2Case = map SplitAtSemicolon (FindCases rest) in
let listofDisj = map hd list2Case
and listofTac = map (StringToTactic o hd o tl) list2Case in
case_split sDestruct proof listofDisj listofTac
else raise Not_found
and
StepToTactic step =
try
if StringRegexpEqual (Str.regexp (ws^ "\([^ \t\n]+\)" ^ws0)) step then
exec_tactic (Str.matched_group 1 step)
else raise Not_found
with _ ->
try CombThmtactic_Thm step
with _ ->
try CombThmlisttactic_Thmlist step
with _ ->
if Str.string_match (Str.regexp (ws^ "intro_TAC" ^ws)) step 0 then
let intro_string = Str.string_after step (Str.match_end()) in
intro_TAC intro_string
else if Str.string_match (Str.regexp (ws^ "exists_TAC" ^ws)) step 0 then
let exists_string = Str.string_after step (Str.match_end()) in
exists_TAC exists_string
else if Str.string_match (Str.regexp (ws^ "X_genl_TAC" ^ws)) step 0 then
let genl_string = Str.string_after step (Str.match_end()) in
let svarlist = Str.split (Str.regexp ws) genl_string in
X_genl_TAC svarlist
else raise Not_found
and
BigStepToTactic s step =
if Str.string_match (Str.regexp (ws^ "consider" ^ws^ "\(\(.\|\n\)+\)" ^ws^
"such" ^ws^ "that" ^ws^ "\(\(.\|\n\)+\)" ^ws^ "\[\(\(.\|\n\)*\)\]" ^ws^
"\(by\|proof\)" ^ws)) step 0 then
let vars, t = Str.matched_group 1 step, Str.matched_group 3 step
and lab = Str.matched_group 5 step
and KeyWord, endKeyWord = Str.matched_group 7 step, (Str.group_end 7) in
let (proof, rest) = GetProof KeyWord (Str.string_after s endKeyWord) in
(consider vars t lab proof, rest)
else
try
let start = Str.search_forward (Str.regexp
(ws^ "\[\([^]]*\)\]" ^ws^ "\(by\|proof\)" ^ws)) step 0 in
let statement = Str.string_before step start
and lab = Str.matched_group 1 step
and KeyWord = Str.matched_group 2 step
and AfterWord = Str.string_after s (Str.group_end 2) in
let (proof, rest) = GetProof KeyWord AfterWord in
if StringRegexpEqual (Str.regexp (ws^ "eq_tac")) statement
then (eq_tac lab proof, rest)
else if StringRegexpEqual (Str.regexp (ws^ "conj_tac")) statement
then (conj_tac lab proof, rest)
else if
Str.string_match (Str.regexp (ws^ "\(assume\)" ^ws)) statement 0
then
let statement = Str.string_after statement (Str.match_end()) in
(assume statement lab proof, rest)
else (subgoal_TAC statement lab proof, rest)
with Not_found -> raise (Readable_fail
("Can't parse as a Proof:\n"^ step));;
let theorem s =
let s = CleanMathFontsForHOL_Light s in
try
let start = Str.search_forward (Str.regexp
(ws^ "proof\(" ^ws^ "\(.\|\n\)*\)" ^ws ^ "qed" ^ws0^ ";" ^ws0)) s 0 in
let thm = Str.string_before s start
and proof = Str.matched_group 1 s
and rest = Str.string_after s (Str.match_end()) in
if rest = "" then prove (parse_env_string [] thm, StringToTactic proof)
else raise (Readable_fail
("Trailing garbage after the proof...qed:\n" ^ rest))
with Not_found ->
try
let start = Str.search_forward (Str.regexp (ws^ "by")) s 0 in
let thm = Str.string_before s start
and proof = Str.string_after s (Str.match_end()) in
try
prove (parse_env_string [] thm, StepToTactic proof)
with Not_found -> raise (Readable_fail ("Not a proof:\n" ^ proof))
with Not_found -> raise (Readable_fail
("Missing initial \"proof\", \"by\", or final \"qed;\" in\n" ^ s));;
let interactive_goal s =
let thm = CleanMathFontsForHOL_Light s in
g (parse_env_string [] thm);;
let interactive_proof s =
let proof = CleanMathFontsForHOL_Light s in
e (StringToTactic proof);;
(* Two examples illustrating intro_TAC, eq_tac, exists_TAC MP_TAC and SPECL, *)
(* then a port of the HOL Light tutorial proof that sqrt 2 is irrational. *)
let SKOLEM_THM_GEN = theorem `;
βP R. (βx. P x β βy. R x y) β βf. βx. P x β R x (f x)
proof
intro_TAC βP R;
eq_tac [Right] by fol;
intro_TAC H1;
exists_TAC Ξ»x. @y. R x y;
fol H1;
qed;
`;;
let MOD_MOD_REFL' = theorem `;
βm n. Β¬(n = 0) β ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC SPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
let NSQRT_2 = theorem `;
βp q. p * p = 2 * q * q β q = 0
proof
MATCH_MP_TAC num_WF;
intro_TAC βp, A, βq, B;
EVEN(p * p) β EVEN(2 * q * q) [] by fol B;
EVEN(p) [] by fol - EVEN_DOUBLE EVEN_MULT;
consider m such that p = 2 * m [C] by fol - EVEN_EXISTS;
case_split qp | pq by arithmetic;
suppose q < p;
q * q = 2 * m * m β m = 0 [] by fol qp A;
num_ring - B C;
end;
suppose p <= q;
p * p <= q * q [] by fol - LE_MULT2;
q * q = 0 [] by arithmetic - B;
num_ring -;
end;
qed;
`;;
(* The following interactive version of the above proof shows a feature of *)
(* proof/qed and case_split/suppose. You can evaluate an incomplete proof *)
(* of a statement in an interactive_proof and complete the proof afterward, *)
(* as indicated below. The "suppose" clauses of a case_split can also be *)
(* incomplete. Do not include code below the incomplete proof or case_split *)
(* in an interactive_proof body, for the usual THEN vs THENL reason. *)
interactive_goal `;βp q. p * p = 2 * q * q β q = 0
`;;
interactive_proof `;
MATCH_MP_TAC num_WF;
intro_TAC βp, A, βq, B;
EVEN(p * p) β EVEN(2 * q * q) [] proof qed;
`;;
interactive_proof `;
fol B;
`;;
interactive_proof `;
EVEN(p) [] by fol - EVEN_DOUBLE EVEN_MULT;
consider m such that p = 2 * m [C] proof fol - EVEN_EXISTS; qed;
`;;
interactive_proof `;
case_split qp | pq by arithmetic;
suppose q < p;
end;
suppose p <= q;
end;
`;;
interactive_proof `;
q * q = 2 * m * m β m = 0 [] by fol qp A;
num_ring - B C;
`;;
interactive_proof `;
p * p <= q * q [] by fol - LE_MULT2;
q * q = 0 [] by arithmetic - B;
num_ring -;
`;;
let NSQRT_2 = top_thm();;
(* An port from arith.ml uses by instead of proof...qed; in a short proof: *)
let EXP_2 = theorem `;
βn:num. n EXP 2 = n * n
by rewrite BIT0_THM BIT1_THM EXP EXP_ADD MULT_CLAUSES ADD_CLAUSES`;;
(* An example using GSYM, ARITH_RULE, MESON and GEN_REWRITE_TAC, reproving *)
(* the binomial theorem from sec 13.1--2 of the HOL Light tutorial. *)
let binom = define
`(!n. binom(n,0) = 1) /\
(!k. binom(0,SUC(k)) = 0) /\
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;;
let BINOM_LT = theorem `;
βn k. n < k β binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE [n < k ==> n < SUC(k)] ARITH;
qed;
`;;
let BINOMIAL_THEOREM = theorem `;
βn. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))
proof
βf n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (Ξ»i. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET;
MATCH_MP_TAC num_INDUCTION;
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES;
intro_TAC βn, nThm;
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC;
rewriteR ADD_SYM;
rewriteRLDepth SUB_SUC EXP;
rewrite MULT_AC EQ_ADD_LCANCEL MESON [binom] [1 = binom(n, 0)] GSYM Nsum0SUC;
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n β§ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1;
simplify ARITH_RULE [k <= n β SUC n - k = SUC(n - k)] EXP MULT_AC;
qed;
`;;
|