Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 34,820 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
(* ========================================================================= *)
(*        Miz3 interface for readable HOL Light tactics formal proofs        *)
(*                                                                           *)
(*                (c) Copyright, Bill Richter 2013                           *)
(*          Distributed under the same license as HOL Light                  *)
(*                                                                           *)
(* The primary meaning of readability is explained in the HOL Light tutorial *)
(* on page 81 after the proof of NSQRT_2 (ported below),                     *)
(* "We would like to claim that this proof can be read in isolation, without *)
(* running it in HOL.  For each step, every fact we used is clearly labelled *)
(* somewhere else in the proof, and every assumption is given explicitly."   *)
(* However readability is often improved by using tactics constructs like    *)
(* SIMP_TAC and MATCH_MP_TAC, which allow facts and assumptions to not be    *)
(* given explicitly, so as to not lose sight of the proof.  Readability is   *)
(* improved by a miz3 interface with few type annotations, back-quotes or    *)
(* double-quotes, and allowing HOL4/Isabelle math characters, e.g.           *)
(* β‡’ ⇔ ∧ ∨ Β¬ βˆ€ βˆƒ ∈ βˆ‰ Ξ± Ξ² Ξ³ Ξ» ΞΈ ΞΌ βŠ‚ ∩ βˆͺ βˆ… ━ ≑ β‰… ∑ βˆ₯ ∏ ∘ β†’  β•ͺ .                *)
(* We use ideas for readable formal proofs due to John Harrison ("Towards    *)
(* more readable proofs" of the tutorial and Examples/mizar.ml), Freek       *)
(* Wiedijk (Mizarlight/miz2a.ml, miz3/miz3.ml and arxiv.org/pdf/1201.3601    *)
(* "A Synthesis of Procedural and Declarative Styles of Interactive          *)
(* Theorem Proving"), Marco Maggesi (author of tactic constructs             *)
(* INTRO_TAC, DESTRUCT_TAC & HYP), Petros Papapanagiotou (coauthor of        *)
(* Isabelle Light), Vincent Aravantinos (author of the Q-module              *)
(* https://github.com/aravantv/HOL-Light-Q) and Mark Adams (author of HOL    *)
(* Zero and Tactician).  These readability ideas yield the miz3-type         *)
(* declarative constructs assume, consider and case_split.  The semantics of *)
(* readable.ml is clear from an obvious translation to HOL Light proofs.  An *)
(* interactive mode is useful in writing, debugging and displaying proofs.   *)
(*                                                                           *)
(* The construct "case_split" reducing the goal to various cases given by    *)
(* "suppose" clauses.  The construct "proof" [...] "qed" allows arbitrarily  *)
(* long proofs, which can be arbitrarily nested with other case_split and    *)
(* proof/qed constructs.  THENL is only implemented implicitly in case_split *)
(* (also eq_tac and conj_tac), and this requires adjustments, such as using  *)
(* MATCH_MP_TAC num_INDUCTION instead of INDUCT_TAC.                         *)
(* ========================================================================= *)

(* The Str library defines regexp functions needed to process strings.       *)

#load "str.cma";;

(* parse_qproof uses system.ml quotexpander feature designed for miz3.ml to  *)
(* turn backquoted expression `;[...]` into a string with no newline or      *)
(* backslash problems.  Note that miz3.ml defines parse_qproof differently.  *)

let parse_qproof s = (String.sub s 1 (String.length s - 1));;

(* Allows HOL4 and Isabelle style math characters.                           *)

let CleanMathFontsForHOL_Light s =
  let rec clean s loStringPairs =
    match loStringPairs with
    | [] -> s
    | hd :: tl ->
      let s = Str.global_replace (Str.regexp (fst hd)) (snd hd) s in
      clean s tl in
      clean s ["β‡’","==>"; "⇔","<=>"; "∧","/\\ "; "∨","\\/"; "Β¬","~";
      "βˆ€","!"; "βˆƒ","?"; "∈","IN"; "βˆ‰","NOTIN";
      "Ξ±","alpha"; "Ξ²","beta"; "Ξ³","gamma"; "Ξ»","\\ "; "ΞΈ","theta"; "ΞΌ","mu";
      "βŠ‚","SUBSET"; "∩","INTER"; "βˆͺ","UNION"; "βˆ…","{}"; "━","DIFF";
      "≑","==="; "β‰…","cong"; "∑","angle"; "βˆ₯","parallel";
      "∏","prod"; "∘","_o_"; "β†’","--->"; "β•ͺ","INSERT";
      "≃", "TarskiCong"; "β‰Š", "TarskiTriangleCong"; "ℬ", "TarskiBetween"];;

(* printReadExn prints uncluttered error messages via Readable_fail.  This   *)
(* is due to Mark Adams, who also explained Roland Zumkeller's exec below.   *)

exception Readable_fail of string;;

let printReadExn e =
  match e with
  | Readable_fail s
       -> print_string s
  | _  -> print_string (Printexc.to_string e);;

#install_printer printReadExn;;

(* From update_database.ml: Execute any OCaml expression given as a string.  *)

let exec = ignore o Toploop.execute_phrase false Format.std_formatter
  o !Toploop.parse_toplevel_phrase o Lexing.from_string;;

(* Following miz3.ml, exec_thm returns the theorem representing a string, so *)
(* exec_thm "FORALL_PAIR_THM";; returns                                      *)
(* val it : thm = |- !P. (!p. P p) <=> (!p1 p2. P (p1,p2))                   *)
(* Extra error-checking is done to rule out the possibility of the theorem   *)
(* string ending with a semicolon.                                           *)

let thm_ref = ref TRUTH;;
let tactic_ref = ref ALL_TAC;;
let thmtactic_ref = ref MATCH_MP_TAC;;
let thmlist_tactic_ref = ref REWRITE_TAC;;
let termlist_thm_thm_ref = ref SPECL;;
let thm_thm_ref = ref GSYM;;
let term_thm_ref = ref ARITH_RULE;;
let thmlist_term_thm_ref = ref MESON;;

let exec_thm s =
  if Str.string_match (Str.regexp "[^;]*;") s 0 then raise Noparse
  else
    try exec ("thm_ref := (("^ s ^"): thm);;");
      !thm_ref
    with _ -> raise Noparse;;

let exec_tactic s =
  try exec ("tactic_ref := (("^ s ^"): tactic);;"); !tactic_ref
  with _ -> raise Noparse;;

let exec_thmlist_tactic s =
  try
    exec ("thmlist_tactic_ref := (("^ s ^"): thm list -> tactic);;");
    !thmlist_tactic_ref
  with _ -> raise Noparse;;

let exec_thmtactic s =
  try exec ("thmtactic_ref := (("^ s ^"): thm -> tactic);;"); !thmtactic_ref
  with _ -> raise Noparse;;

let exec_termlist_thm_thm s =
  try exec ("termlist_thm_thm_ref := (("^ s ^"): (term list -> thm -> thm));;");
    !termlist_thm_thm_ref
  with _ -> raise Noparse;;

let exec_thm_thm s =
  try exec ("thm_thm_ref := (("^ s ^"): (thm -> thm));;");
    !thm_thm_ref
  with _ -> raise Noparse;;

let exec_term_thm s =
  try exec ("term_thm_ref := (("^ s ^"): (term -> thm));;");
    !term_thm_ref
  with _ -> raise Noparse;;

let exec_thmlist_term_thm s =
  try exec ("thmlist_term_thm_ref := (("^ s ^"): (thm list ->term -> thm));;");
    !thmlist_term_thm_ref
  with _ -> raise Noparse;;

(* make_env and parse_env_string (following parse_term from parser.ml,       *)
(* Mizarlight/miz2a.ml and https://github.com/aravantv/HOL-Light-Q) turn a   *)
(* string into a term with types inferred by the goal and assumption list.   *)

let (make_env: goal -> (string * pretype) list) =
  fun (asl, w) -> map ((fun (s, ty) -> (s, pretype_of_type ty)) o dest_var)
                   (freesl (w::(map (concl o snd) asl)));;

let parse_env_string env s =
  let (ptm, l) = (parse_preterm o lex o explode) s in
  if l = [] then (term_of_preterm o retypecheck env) ptm
  else raise (Readable_fail
    ("Unparsed input  at the end of the term\n" ^ s));;

(* versions of new_constant, parse_as_infix, new_definition and new_axiom    *)

let NewConstant (x, y) = new_constant(CleanMathFontsForHOL_Light x, y);;

let ParseAsInfix (x, y) = parse_as_infix (CleanMathFontsForHOL_Light x, y);;

let NewDefinition s =
  new_definition (parse_env_string [] (CleanMathFontsForHOL_Light s));;

let NewAxiom s =
  new_axiom (parse_env_string [] (CleanMathFontsForHOL_Light s));;

(* String versions without type annotations of SUBGOAL_THEN, SUBGOAL_TAC,    *)
(* intro_TAC, EXISTS_TAC, X_GEN_TAC, and EXISTS_TAC, and also new miz3-type  *)
(* tactic constructs assume, consider and case_split.                        *)

(* subgoal_THEN stm ttac gl = (SUBGOAL_THEN t ttac) gl,                      *)
(* where stm is a string that turned into a statement t by make_env and      *)
(* parse_env_string, using the goal gl.  We call stm a string statement.     *)
(* ttac is often the thm_tactic (LABEL_TAC string) or (DESTRUCT_TAC string). *)

let subgoal_THEN stm ttac gl =
  SUBGOAL_THEN (parse_env_string (make_env gl) stm) ttac gl;;

(* subgoal_TAC stm lab tac gl = (SUBGOAL_TAC lab t [tac]) gl,                *)
(* exists_TAC stm gl = (EXISTS_TAC t) gl, and                                *)
(* X_gen_TAC svar gl = (X_GEN_TAC v) gl, where                               *)
(* stm is a string statement which is turned into a statement t by make_env, *)
(* parse_env_string and the goal gl. Similarly string svar is turned into a  *)
(* variable v.                                                               *)
(* X_genl_TAC combines X_gen_TAC and GENL.  Since below in StepToTactic the  *)
(* string-term list uses whitespace as the delimiter and no braces, there is *)
(* no reason in readable.ml proofs to use X_gen_TAC instead X_genl_TAC.      *)
(* intro_TAC is INTRO_TAC with the delimiter ";" replaced with",".           *)
(* eq_tac string tac                                                         *)
(* requires the goal to be an iff statement of the form x ⇔ y and then       *)
(* performs an EQ_TAC.  If string = "Right", then the tactic tac proves the  *)
(* implication y β‡’ x, and the goal becomes the other implication x β‡’ y.      *)
(* If string = "Left", then tac proves x β‡’ y and the goal becomes y β‡’ x.     *)
(* conj_tac string tac                                                       *)
(* requires the goal to be a conjunction statement x ∧ y and then performs a *)
(* CONJ_TAC.  If string = "Left" then the tactic tac proves x, and the goal  *)
(* becomes y.  If string = "Right", tac proves y and the new goal is x.      *)
(* consider svars stm lab tac                                                *)
(* defines new variables given by the string svars = "v1 v2 ... vn" and the  *)
(* string statement stm, which subgoal_THEN turns into statement t, labeled  *)
(* by lab.  The tactic tac proves the existential statement ?v1 ... vn. t.   *)
(* case_split sDestruct tac listofDisj listofTac                             *)
(* reduces the goal to n cases which are solved separately.  listofDisj is a *)
(* list of strings [st_1;...; st_n] whose disjunction st_1 \/...\/ st_n is a *)
(* string statement proved by tactic tac.  listofTac is a list of tactics    *)
(* [tac_1;...; tac_n] which prove the statements st_1,..., st_n.  The string *)
(* sDestruct must have the form "lab_1 |...| lab_n", and lab_i is a label    *)
(* used by tac_i to prove st_i.  Each lab_i must be a nonempty string.       *)
(* assume                                                                    *)
(* is a version of ASM_CASES_TAC, and performs proofs by contradiction and   *)
(* binary case_splits where one of the forks has a short proof.  In general, *)
(* assume statement lab tac                                                  *)
(* turns the string statement into a term t, with the tactic tac a proof of  *)
(* Β¬t β‡’ w, where w is the goal. There is a new assumption t labeled lab, and *)
(* the new goal is the result of applying the tactic SIMP_TAC [t] to w.      *)
(* It's recommended to only use assume with a short proof tac.  Three uses   *)
(* of assume arise when t = ¬w or t = ¬α, with w = α ∨ β or w = β ∨ α.       *)
(* In all three cases write                                                  *)
(*      assume statement     [lab] by fol;                                   *)
(* and the new goal will be F (false) or Ξ² respectively, as a result of the  *)
(* SIMP_TAC [t].  So do not use assume if SIMP_TAC [t] is disadvantageous.   *)

let subgoal_TAC stm lab tac gl =
  SUBGOAL_TAC lab (parse_env_string (make_env gl) stm) [tac] gl;;

let exists_TAC stm gl =
  EXISTS_TAC (parse_env_string (make_env gl) stm) gl;;

let X_gen_TAC svar (asl, w as gl) =
  let vartype = (snd o dest_var o fst o dest_forall) w in
  X_GEN_TAC (mk_var (svar, vartype)) gl;;

let X_genl_TAC svarlist = MAP_EVERY X_gen_TAC svarlist;;

let intro_TAC s = INTRO_TAC (Str.global_replace (Str.regexp ",") ";" s);;

let assume statement lab tac (asl, w as gl) =
  let t = parse_env_string (make_env gl) statement in
  (DISJ_CASES_THEN (LABEL_TAC lab) (SPEC t EXCLUDED_MIDDLE) THENL
  [ALL_TAC; FIRST_ASSUM MP_TAC THEN tac] THEN HYP SIMP_TAC lab []) gl;;

let eq_tac string tac =
  if string = "Right" then CONV_TAC SYM_CONV THEN EQ_TAC THENL [tac; ALL_TAC]
  else if string = "Left" then EQ_TAC THENL [tac; ALL_TAC]
  else raise (Readable_fail
    ("eq_tac requires " ^  string ^" to be either Left or Right"));;

let conj_tac string tac =
  if string = "Right" then ONCE_REWRITE_TAC [CONJ_SYM] THEN
    CONJ_TAC THENL [tac; ALL_TAC]
  else if string = "Left" then CONJ_TAC THENL [tac; ALL_TAC]
  else raise (Readable_fail
    ("conj_tac requires " ^  string ^" to be either Left or Right"));;

let consider svars stm lab tac =
  subgoal_THEN ("?"^ svars ^ ". "^ stm)
    (DESTRUCT_TAC ("@"^ svars ^ "."^ lab)) THENL [tac; ALL_TAC];;

let case_split sDestruct tac listofDisj listofTac =
  let disjunction = itlist
    (fun s t -> if t = "" then "("^ s ^")" else "("^ s ^") \\/ "^ t)
    listofDisj "" in
  subgoal_TAC disjunction "" tac THEN
  FIRST_X_ASSUM (DESTRUCT_TAC sDestruct) THENL listofTac;;

(* Following the HOL Light tutorial section "Towards more readable proofs."  *)

let fol = MESON_TAC;;
let rewrite = REWRITE_TAC;;
let simplify = SIMP_TAC;;
let set = SET_TAC;;
let rewriteR = GEN_REWRITE_TAC (RAND_CONV);;
let rewriteL = GEN_REWRITE_TAC (LAND_CONV);;
let rewriteI = GEN_REWRITE_TAC I;;
let rewriteRLDepth = GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o DEPTH_CONV);;
let TACtoThmTactic tac = fun  ths -> MAP_EVERY MP_TAC ths THEN tac;;
let arithmetic = TACtoThmTactic ARITH_TAC;;
let real_arithmetic = TACtoThmTactic REAL_ARITH_TAC;;
let num_ring = TACtoThmTactic (CONV_TAC NUM_RING);;
let real_ring = TACtoThmTactic (CONV_TAC REAL_RING);;

let ws = "[ \t\n]+";;
let ws0 = "[ \t\n]*";;

let StringRegexpEqual r s = Str.string_match r s 0 &&
  s = Str.matched_string s;;

(* FindMatch sleft sright s                                                  *)
(* turns strings sleft and sright into regexps, recursively searches string  *)
(* s for matched pairs of substrings matching sleft and sright, and returns  *)
(* the position after the first substring matched by sright which is not     *)
(* paired with an sleft-matching substring.  Often here sleft ends with      *)
(* whitespace (ws) while sright begins with ws.  The "degenerate" case of    *)
(* X^ws^Y where X^ws matches sleft and ws^Y matches sright is handled by     *)
(* backing up a character after an sleft match if the last character is ws.  *)

let FindMatch sleft sright s =
  let test = Str.regexp ("\("^ sleft ^"\|"^ sright ^"\)")
  and left = Str.regexp sleft in
  let rec FindMatchPosition s count =
    if count = 1 then 0
    else
      try
        ignore(Str.search_forward test s 0);
        let TestMatch = Str.matched_group 1 s
        and AfterTest = Str.match_end() in
        let LastChar = Str.last_chars (Str.string_before s AfterTest) 1 in
        let endpos =
          if Str.string_match (Str.regexp ws) LastChar 0
          then AfterTest - 1 else AfterTest in
        let rest = Str.string_after s endpos
        and increment =
          if StringRegexpEqual left TestMatch then -1 else 1 in
        endpos + (FindMatchPosition rest (count + increment))
      with Not_found -> raise (Readable_fail
        ("No matching right bracket operator "^ sright ^
        " to left bracket operator "^ sleft ^" in "^ s)) in
  FindMatchPosition s 0;;

(* FindSemicolon uses FindMatch to find the position before the next         *)
(* semicolon which is not a delimiter of a list.                             *)

let rec FindSemicolon s =
  try
    let rec FindMatchPosition s pos =
      let start = Str.search_forward (Str.regexp ";\|\[") s pos  in
      if Str.matched_string s = ";" then start
      else
        let rest = Str.string_after s (start + 1) in
        let MatchingSquareBrace = FindMatch "\[" "\]" rest in
        let newpos = start + 1 + MatchingSquareBrace in
        FindMatchPosition s newpos in
    FindMatchPosition s 0
  with Not_found -> raise (Readable_fail ("No final semicolon in "^ s));;

(* FindCases uses FindMatch to take a string                                 *)
(* "suppose" proof_1 "end;" ... "suppose" proof_n "end;"                     *)
(* and return the list [proof_1; proof_2; ... ; proof_n].                    *)

let rec FindCases s =
  let sleftCase, srightCase = ws^ "suppose"^ws, ws^ "end" ^ws0^ ";" in
  if Str.string_match (Str.regexp sleftCase) s 0 then
    let CaseEndRest = Str.string_after s (Str.match_end()) in
    let PosAfterEnd = FindMatch sleftCase srightCase CaseEndRest in
    let pos = Str.search_backward (Str.regexp srightCase)
      CaseEndRest PosAfterEnd in
    let case = Str.string_before CaseEndRest pos
    and rest = Str.string_after CaseEndRest PosAfterEnd in
    case :: (FindCases rest)
  else [];;

(* StringToList uses FindSemicolon to turns a string into the list of        *)
(* substrings delimited by the semicolons which are not captured in lists.   *)

let rec StringToList s =
  if StringRegexpEqual (Str.regexp ws0) s then [] else
  if Str.string_match (Str.regexp "[^;]*;") s 0 then
    let pos = FindSemicolon s in
    let head = Str.string_before s pos in
    head :: (StringToList (Str.string_after s (pos + 1)))
  else [s];;

(* ExtractWsStringList string = (["l1"; "l2"; ...; "ln"], rest),             *)
(* if string = ws ^ "[l1; l2; ...; ln]" ^ rest.  Raises Not_found otherwise. *)

let ExtractWsStringList string =
  if Str.string_match (Str.regexp (ws^ "\[")) string 0 then
    let listRest = Str.string_after string (Str.match_end()) in
    let RightBrace = FindMatch "\[" "\]" listRest in
    let rest = Str.string_after listRest RightBrace
    and list = Str.string_before listRest (RightBrace - 1) in
    (StringToList list, rest)
  else raise Not_found;;

(* theoremify string goal returns a pair  (thm, rest),                       *)
(* where thm is the first theorem found on string, using goal if needed, and *)
(* rest is the remainder of string.  Theoremify uses 3 helping functions:    *)
(* 1) CombTermThm_Term, which produces a combination of a term->thm          *)
(*      (e.g. ARITH_RULE) with a term,                                       *)
(* 2) CombThmlistTermThm_Thmlist_Term, which combines a thmlist->term->thm   *)
(*      (e.g. MESON) with a thmlist and a term, and                          *)
(* 3) CombTermlistThmThm_Termlist, which combines a termlist->thm->thm       *)
(*      (e.g. SPECL) with a termlist and a thm produced by theoremify.       *)
(* Similar functions CombThmtactic_Thm and CombThmlisttactic_Thmlist are     *)
(* used below, along with theoremify, by StringToTactic.                     *)

let CombTermThm_Term word rest gl =
  let TermThm = exec_term_thm word in
  try
    let (stermlist, wsRest) = ExtractWsStringList rest in
    if length stermlist = 1 then
      let term = (parse_env_string (make_env gl)) (hd stermlist) in
      (TermThm term,  wsRest)
    else raise (Readable_fail ("term->thm "^ word
    ^" not followed by length 1 term list, but instead the list \n["^
    String.concat ";" stermlist ^"]"))
  with Not_found -> raise (Readable_fail ("term->thm "^ word
  ^" not followed by term list, but instead \n"^ rest));;

let rec theoremify string gl =
  if Str.string_match (Str.regexp (ws^ "\([^][ \t\n]+\)")) string 0 then
    let word = Str.matched_group 1 string
    and rest = Str.string_after string (Str.match_end()) in
    if word = "-" then (snd (hd (fst gl)), rest) else
    try (exec_thm word, rest)
    with _ ->
    try (assoc word (fst gl), rest)
    with _ ->
    try firstPairMult (exec_thm_thm word) (theoremify rest gl)
    with _ ->
    try CombTermThm_Term word rest gl
    with Noparse ->
    try CombThmlistTermThm_Thmlist_Term word rest gl
    with Noparse ->
    try CombTermlistThmThm_Termlist word rest gl
    with Noparse -> raise (Readable_fail ("Not a theorem:\n"^ string))
  else raise (Readable_fail ("Empty theorem:\n"^ string))
and
firstPairMult f (a, b) = (f a, b)
and
CombTermlistThmThm_Termlist word rest gl =
  let TermlistThmThm = exec_termlist_thm_thm word in
  try
    let (stermlist, WsThm) = ExtractWsStringList rest in
    let termlist = map (parse_env_string (make_env gl)) stermlist in
    firstPairMult (TermlistThmThm termlist) (theoremify WsThm gl)
  with Not_found -> raise (Readable_fail ("termlist->thm->thm "^ word
  ^"\n not followed by term list in\n"^ rest))
and
CombThmlistTermThm_Thmlist_Term word rest gl =
  let thm_create sthm =
    let (thm, rest) = theoremify (" "^ sthm) gl in
    if rest = "" then thm
    else raise (Readable_fail ("an argument of thmlist->term->thm "^ word ^
    "\n is not a theorem, but instead \n"^ sthm)) in
  let ThmlistTermThm = exec_thmlist_term_thm word in
  try
    let (stermlist, wsTermRest) = ExtractWsStringList rest in
    let thmlist = map thm_create stermlist in
    if Str.string_match (Str.regexp (ws^ "\[")) wsTermRest 0 then
      let termRest = Str.string_after wsTermRest (Str.match_end()) in
      let RightBrace = FindMatch "\[" "\]" termRest in
      let rest = Str.string_after termRest RightBrace
      and sterm = Str.string_before termRest (RightBrace - 1) in
      let term = parse_env_string (make_env gl) sterm in
      (ThmlistTermThm thmlist term, rest)
    else raise (Readable_fail ("thmlist->term->thm "^ word
      ^" followed by list of theorems ["^ String.concat ";" stermlist ^"]
      not followed by term in\n"^ wsTermRest))
  with Not_found -> raise (Readable_fail ("thmlist->term->thm "^ word
  ^" not followed by thm list in\n"^ rest));;

let CombThmtactic_Thm step =
  if Str.string_match (Str.regexp (ws^ "\([a-zA-Z0-9_]+\)")) step 0 then
    let sthm_tactic = Str.matched_group 1 step
    and sthm = Str.string_after step (Str.match_end()) in
    let thm_tactic = exec_thmtactic sthm_tactic in
    fun gl ->
      let (thm, rest) = theoremify sthm gl in
      if rest = "" then thm_tactic thm gl
      else raise (Readable_fail ("thm_tactic "^ sthm_tactic
      ^" not followed by a theorem, but instead\n"^ sthm))
  else raise Not_found;;

let CombThmlisttactic_Thmlist step =
  let rec makeThmListAccum string list gl =
    if StringRegexpEqual (Str.regexp ws0) string then list else
    let (thm, rest) = theoremify string gl in
    makeThmListAccum rest (thm :: list) gl in
  if Str.string_match (Str.regexp (ws^ "\([a-zA-Z0-9_]+\)")) step 0 then
    let ttac = exec_thmlist_tactic (Str.matched_group 1 step)
    and LabThmString = Str.string_after step (Str.match_end()) in
    fun gl ->
      let LabThmList =  List.rev (makeThmListAccum LabThmString [] gl) in
      ttac LabThmList gl
  else raise Not_found;;

(* StringToTactic uses regexp functions from the Str library to transform a  *)
(* string into a tactic.  The allowable tactics are written in BNF form as   *)
(*                                                                           *)
(* Tactic := ALL_TAC | Tactic THEN Tactic | thm->tactic Thm |                *)
(*   one-word-tactic (e.g. ARITH_TAC) | thmlist->tactic Thm-list |           *)
(*   intro_TAC string | exists_TAC term | X_genl_TAC term-list |             *)
(*   case_split string Tactic statement-list Tactic-list |                   *)
(*   consider variable-list statement label Tactic |                         *)
(*   eq_tac (Right | Left) Tactic | conj_tac (Right | Left) Tactic |         *)
(*   (assume | subgoal_TAC) statement label Tactic                           *)
(*                                                                           *)
(* Thm := theorem-name | label | - [i.e. last assumption] | thm->thm Thm |   *)
(*   term->thm term | thmlist->term->thm Thm-list term |                     *)
(*   termlist->thm->thm term-list Thm                                        *)
(*                                                                           *)
(* The string proofs allowed by StringToTactic are written in BNF form as    *)
(*                                                                           *)
(* Proof := Proof THEN Proof | case_split destruct_string ByProofQed         *)
(*   suppose statement; Proof end; ... suppose statement; Proof end; |       *)
(*   OneStepProof; | consider variable-list statement [label] ByProofQed |   *)
(*   eq_tac [Right|Left] ByProofQed | conj_tac [Right|Left] ByProofQed |     *)
(*   (assume | ) statement [label] ByProofQed                                *)
(*                                                                           *)
(* OneStepProof := one-word-tactic | thm->tactic Thm | intro_TAC string |    *)
(*   exists_TAC term-string | X_genl_TAC variable-string-list |              *)
(*   thmlist->tactic Thm-list                                                *)
(*                                                                           *)
(* ByProofQed := by OneStepProof; | proof Proof Proof ...  Proof qed;        *)
(*                                                                           *)
(* theorem is a version of prove based on the miz3.ml thm, with argument     *)
(* statement ByProofQed                                                      *)
(*                                                                           *)
(* Miz3-style comments are supported.  If a line contains ::, then the       *)
(* substring of the line beginning with :: is ignored by StringToTactic.     *)

let rec StringToTactic s =
  let s = Str.global_replace (Str.regexp "::[^\n]*") "" s in
  if StringRegexpEqual (Str.regexp ws0) s then ALL_TAC
  else
    try makeCaseSplit s
    with _ ->
    let pos = FindSemicolon s in
    let step, rest = Str.string_before s pos, Str.string_after s (pos + 1) in
    try
      let tactic = StepToTactic step in
      tactic THEN StringToTactic rest
    with Not_found ->
    let (tactic, rest) = BigStepToTactic s step in
    tactic THEN StringToTactic rest
and
GetProof ByProof s =
  if ByProof = "by" then
    let pos = FindSemicolon s in
    let step, rest = Str.string_before s pos, Str.string_after s (pos + 1) in
    (StepToTactic step, rest)
  else
    let pos_after_qed = FindMatch (ws^"proof"^ws) (ws^"qed"^ws0^";") s in
    let pos = Str.search_backward (Str.regexp "qed") s pos_after_qed in
    let proof = StringToTactic (Str.string_before s pos) in
    (proof, Str.string_after s pos_after_qed)
and
makeCaseSplit s =
  if Str.string_match (Str.regexp (ws^ "case_split" ^ws^ "\([^;]+\)" ^ws^
    "\(by\|proof\)" ^ws)) s 0 then
    let sDestruct = Str.matched_group 1 s
    and (proof, rest) = GetProof (Str.matched_group 2 s)
      (Str.string_after s (Str.group_end 2))
    and SplitAtSemicolon case =
      let pos = FindSemicolon case in
      [Str.string_before case pos; Str.string_after case (pos + 1)] in
    let list2Case = map SplitAtSemicolon (FindCases rest) in
    let listofDisj = map hd list2Case
    and listofTac = map (StringToTactic o hd o tl) list2Case in
    case_split sDestruct proof listofDisj listofTac
  else raise Not_found
and
StepToTactic step =
  try
    if StringRegexpEqual (Str.regexp (ws^ "\([^ \t\n]+\)" ^ws0)) step then
      exec_tactic (Str.matched_group 1 step)
    else raise Not_found
  with _ ->
  try CombThmtactic_Thm step
  with _ ->
  try CombThmlisttactic_Thmlist step
  with _ ->
  if Str.string_match (Str.regexp (ws^ "intro_TAC" ^ws)) step 0 then
    let intro_string = Str.string_after step (Str.match_end()) in
    intro_TAC intro_string
  else if Str.string_match (Str.regexp (ws^ "exists_TAC" ^ws)) step 0 then
    let exists_string = Str.string_after step (Str.match_end()) in
    exists_TAC exists_string
  else if Str.string_match (Str.regexp (ws^ "X_genl_TAC" ^ws)) step 0 then
    let genl_string = Str.string_after step (Str.match_end()) in
    let svarlist = Str.split (Str.regexp ws) genl_string in
    X_genl_TAC svarlist
  else raise Not_found
and
BigStepToTactic s step =
  if Str.string_match (Str.regexp (ws^ "consider" ^ws^ "\(\(.\|\n\)+\)" ^ws^
    "such" ^ws^ "that" ^ws^ "\(\(.\|\n\)+\)" ^ws^ "\[\(\(.\|\n\)*\)\]" ^ws^
    "\(by\|proof\)" ^ws)) step 0 then
    let vars, t = Str.matched_group 1 step, Str.matched_group 3 step
    and lab = Str.matched_group 5 step
    and KeyWord, endKeyWord = Str.matched_group 7 step, (Str.group_end 7) in
    let (proof, rest) = GetProof KeyWord (Str.string_after s endKeyWord) in
    (consider vars t lab proof, rest)
  else
    try
      let start = Str.search_forward (Str.regexp
        (ws^ "\[\([^]]*\)\]" ^ws^ "\(by\|proof\)" ^ws)) step 0 in
      let statement = Str.string_before step start
      and lab = Str.matched_group 1 step
      and KeyWord = Str.matched_group 2 step
      and AfterWord = Str.string_after s (Str.group_end 2) in
      let (proof, rest) = GetProof KeyWord AfterWord in
      if StringRegexpEqual (Str.regexp (ws^ "eq_tac")) statement
      then (eq_tac lab proof, rest)
      else if StringRegexpEqual (Str.regexp (ws^ "conj_tac")) statement
      then (conj_tac lab proof, rest)
      else if
        Str.string_match (Str.regexp (ws^ "\(assume\)" ^ws)) statement 0
      then
        let statement = Str.string_after statement (Str.match_end()) in
        (assume statement lab proof, rest)
      else (subgoal_TAC statement lab proof, rest)
    with Not_found -> raise (Readable_fail
    ("Can't parse as a Proof:\n"^ step));;

let theorem s =
  let s = CleanMathFontsForHOL_Light s in
  try
    let start = Str.search_forward (Str.regexp
      (ws^ "proof\(" ^ws^ "\(.\|\n\)*\)" ^ws ^ "qed" ^ws0^ ";" ^ws0)) s 0 in
    let thm = Str.string_before s start
    and proof = Str.matched_group 1 s
    and rest = Str.string_after s (Str.match_end()) in
    if rest = "" then prove (parse_env_string [] thm, StringToTactic proof)
    else raise (Readable_fail
      ("Trailing garbage after the proof...qed:\n" ^ rest))
  with Not_found ->
  try
    let start = Str.search_forward (Str.regexp (ws^ "by")) s 0 in
    let thm = Str.string_before s start
    and proof = Str.string_after s (Str.match_end()) in
    try
      prove (parse_env_string [] thm, StepToTactic proof)
    with Not_found -> raise (Readable_fail ("Not a proof:\n" ^ proof))
  with Not_found -> raise (Readable_fail
    ("Missing initial \"proof\", \"by\", or final \"qed;\" in\n" ^ s));;

let interactive_goal s =
  let thm = CleanMathFontsForHOL_Light s in
  g (parse_env_string [] thm);;

let interactive_proof s =
  let proof = CleanMathFontsForHOL_Light s in
  e (StringToTactic proof);;

(* Two examples illustrating intro_TAC, eq_tac, exists_TAC MP_TAC and SPECL, *)
(* then a port of the HOL Light tutorial proof that sqrt 2 is irrational.    *)

let SKOLEM_THM_GEN = theorem `;
  βˆ€P R. (βˆ€x. P x β‡’ βˆƒy. R x y)  ⇔  βˆƒf. βˆ€x. P x β‡’ R x (f x)

  proof
    intro_TAC βˆ€P R;
    eq_tac     [Right] by fol;
    intro_TAC H1;
    exists_TAC Ξ»x. @y. R x y;
    fol H1;
  qed;
`;;

let MOD_MOD_REFL' = theorem `;
  βˆ€m n. Β¬(n = 0)  β‡’  ((m MOD n) MOD n = m MOD n)

  proof
    intro_TAC !m n, H1;
    MP_TAC SPECL [m; n; 1] MOD_MOD;
    fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
  qed;
`;;

let NSQRT_2 = theorem `;
  βˆ€p q. p * p = 2 * q * q  β‡’  q = 0

  proof
    MATCH_MP_TAC num_WF;
    intro_TAC βˆ€p, A, βˆ€q, B;
    EVEN(p * p) ⇔ EVEN(2 * q * q)     [] by fol B;
    EVEN(p)     [] by fol - EVEN_DOUBLE EVEN_MULT;
    consider m such that p = 2 * m     [C] by fol - EVEN_EXISTS;
    case_split qp | pq by arithmetic;
    suppose q < p;
      q * q = 2 * m * m β‡’ m = 0     [] by fol qp A;
      num_ring - B C;
    end;
    suppose p <= q;
      p * p <= q * q     [] by fol - LE_MULT2;
      q * q = 0     [] by arithmetic - B;
    num_ring -;
    end;
  qed;
`;;

(* The following interactive version of the above proof shows a feature of   *)
(* proof/qed and case_split/suppose.  You can evaluate an incomplete proof   *)
(* of a statement in an interactive_proof and complete the proof afterward,  *)
(* as indicated below.  The "suppose" clauses of a case_split can also be    *)
(* incomplete.  Do not include code below the incomplete proof or case_split *)
(* in an interactive_proof body, for the usual THEN vs THENL reason.         *)

interactive_goal `;βˆ€p q. p * p = 2 * q * q  β‡’  q = 0
`;;
interactive_proof `;
    MATCH_MP_TAC num_WF;
    intro_TAC βˆ€p, A, βˆ€q, B;
    EVEN(p * p) ⇔ EVEN(2 * q * q)     [] proof  qed;
`;;
interactive_proof `;
      fol B;
`;;
interactive_proof `;
    EVEN(p)     [] by fol - EVEN_DOUBLE EVEN_MULT;
    consider m such that p = 2 * m     [C] proof fol - EVEN_EXISTS; qed;
`;;
interactive_proof `;
    case_split qp | pq by arithmetic;
    suppose q < p;
    end;
    suppose p <= q;
    end;
`;;
interactive_proof `;
      q * q = 2 * m * m β‡’ m = 0     [] by fol qp A;
      num_ring - B C;
`;;
interactive_proof `;
      p * p <= q * q     [] by fol - LE_MULT2;
      q * q = 0     [] by arithmetic - B;
      num_ring -;
`;;
let NSQRT_2 = top_thm();;

(* An port from arith.ml uses by instead of proof...qed; in a short proof:   *)

let EXP_2 = theorem `;
  βˆ€n:num. n EXP 2 = n * n
  by rewrite BIT0_THM BIT1_THM EXP EXP_ADD MULT_CLAUSES ADD_CLAUSES`;;

(* An example using GSYM, ARITH_RULE, MESON and GEN_REWRITE_TAC, reproving   *)
(* the binomial theorem from sec 13.1--2 of the HOL Light tutorial.          *)

let binom = define
 `(!n. binom(n,0) = 1) /\
  (!k. binom(0,SUC(k)) = 0) /\
  (!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;;

let BINOM_LT = theorem `;
  βˆ€n k. n < k  β‡’  binom(n,k) = 0

  proof
    INDUCT_TAC; INDUCT_TAC;
    rewrite binom ARITH LT_SUC LT;
    ASM_SIMP_TAC ARITH_RULE [n < k ==> n < SUC(k)] ARITH;
  qed;
`;;

let BINOMIAL_THEOREM = theorem `;
  βˆ€n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))

  proof
    βˆ€f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (Ξ»i. f (SUC i))     [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET;
    MATCH_MP_TAC num_INDUCTION;
    simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES;
    intro_TAC βˆ€n, nThm;
    rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC;
    rewriteR ADD_SYM;
    rewriteRLDepth SUB_SUC EXP;
    rewrite MULT_AC EQ_ADD_LCANCEL MESON [binom] [1 = binom(n, 0)] GSYM Nsum0SUC;
    simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n  ∧  0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1;
    simplify ARITH_RULE [k <= n  β‡’  SUC n - k = SUC(n - k)] EXP MULT_AC;
  qed;
`;;