Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,638 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
(* ====================================================================== *)
(* Signs *)
(* ====================================================================== *)
(* ---------------------------------------------------------------------- *)
(* Datatype *)
(* ---------------------------------------------------------------------- *)
let sign_INDUCT,sign_RECURSION = define_type
"sign = Zero | Pos | Neg | Nonzero | Unknown";;
let SIGN_CASES = prove_by_refinement(
`!s. (s = Pos) \/ (s = Neg) \/ (s = Zero) \/ (s = Nonzero) \/ (s = Unknown)`,
(* {{{ Proof *)
[
MATCH_MP_TAC sign_INDUCT;
REWRITE_TAC[];
]);;
(* }}} *)
let szero_tm,spos_tm,sneg_tm,snonz_tm,sunk_tm = `Zero`,`Pos`,`Neg`,`Nonzero`,`Unknown`;;
(* ------------------------------------------------------------------------- *)
(* Intepretation of signs. *)
(* ------------------------------------------------------------------------- *)
(* An interpretation of the sign of a polynomial over a set. *)
let interpsign = new_recursive_definition sign_RECURSION
`(interpsign set ply Zero = (!x:real. set x ==> (ply x = &0))) /\
(interpsign set ply Pos = (!x. set x ==> (ply x > &0))) /\
(interpsign set ply Neg = (!x. set x ==> (ply x < &0))) /\
(interpsign set ply Nonzero = (!x. set x ==> (ply x <> &0))) /\
(interpsign set ply Unknown = (!x. set x ==> (ply x = ply x)))`;;
let interpsign_tm = `interpsign`;;
let dest_interpsign interpthm =
let int,[set;poly;sign] = strip_ncomb 3 (concl interpthm) in
if not (int = interpsign_tm) then
failwith "not an interpsign"
else
set,poly,sign;;
(*
let k0 = prove_by_refinement(
`interpsign (\x. x = &10) (\x. -- &10 + x * &1) Zero`,[
REWRITE_TAC[interpsign;poly];
REPEAT STRIP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC
]);;
*)
(* A version for one set but multiple polynomials *)
let interpsigns = new_definition
`interpsigns polyl set signl = ALL2 (interpsign set) polyl signl`;;
let t0 = TAUT `a /\ T <=> a`;;
let interpsigns_thms interpthm =
let ret = map BETA_RULE(
CONJUNCTS (PURE_REWRITE_RULE[interpsign;interpsigns;ALL2;t0] interpthm)) in
ret;;
(* keep interpsign *)
let interpsigns_thms2 interpthm =
CONJUNCTS (PURE_REWRITE_RULE[interpsigns;ALL2;t0] interpthm);;
let interpsigns_tm = `interpsigns`;;
let dest_interpsigns interpthm =
let int,[polys;set;signs] = strip_ncomb 3 (concl interpthm) in
if not (int = interpsigns_tm) then
failwith "not an interpsigns"
else
polys,set,signs;;
let interp_sing = prove(
`interpsign set p s = interpsigns [p] set [s]`,
REWRITE_TAC[interpsigns;ALL2]);;
let interp_doub = prove(
`interpsigns [p1] set [s1] ==> interpsigns pl set sl ==>
interpsigns (CONS p1 pl) set (CONS s1 sl)`,
ASM_MESON_TAC[interpsigns;ALL2]);;
let mk_interpsigns thms =
let thms' = map (PURE_REWRITE_RULE[interp_sing]) thms in
end_itlist (fun t1 t2 -> MATCH_MPL [interp_doub;t1;t2]) thms';;
(*
let t0 = ASSUME `interpsign s1 p1 Zero`;;
let t1 = ASSUME `interpsign s1 p2 Pos`;;
let t2 = ASSUME `interpsign s1 p3 Neg`;;
mk_interpsigns [t0;t1;t2];;
map (PURE_REWRITE_RULE[interp_sing]) [t0;t1;t2];;
*)
(*
let k0 = prove_by_refinement(
`interpsigns [(\x. &1 + x * &1); (\x. &2 + x * &3)] (\x. x = (-- &1)) [Zero; Neg]`,
[
REWRITE_TAC[interpsigns;ALL2;interpsign;poly];
REAL_ARITH_TAC
]);;
*)
(* ---------------------------------------------------------------------- *)
(* Partition line *)
(* ---------------------------------------------------------------------- *)
let partition_line = new_recursive_definition list_RECURSION
`(partition_line [] = [(\x. T)]) /\
(partition_line (CONS h t) =
if t = [] then [(\x. x < h); (\x. x = h); (\x. h < x)] else
APPEND [(\x. x < h); (\x. x = h); (\x. h < x /\ x < HD t)]
(TL (partition_line t)))`;;
(*
let ex0 = prove(
`partition_line [&1] = [(\x. x < &1); (\x. x = &1); (\x. &1 < x)]`,
REWRITE_TAC[partition_line])
let ex1 = prove(
`partition_line [&1; &2] =
[(\x. x < &1); (\x. x = &1); (\x. &1 < x /\ x < &2); (\x. x = &2); (\x. &2 < x)]`,
REWRITE_TAC[partition_line;APPEND;COND_CLAUSES;NOT_CONS_NIL;TL;HD]);;
*)
let make_partition_list =
let lxt = `\x:real. T`
and htm = `h:real`
and h1tm = `h1:real`
and h2tm = `h2:real`
and x_lt_h = `(\x. x < h)`
and x_eq_h = `(\x:real. x = h)`
and h_lt_x = `(\x. h < x)`
and x_lt_h1 = `(\x. x < h1)`
and x_eq_h1 = `(\x:real. x = h1)`
and x_h1_h2 = `(\x. h1 < x /\ x < h2)` in
let rec make_partition_list ps =
match ps with
[] -> [lxt]
| [h] -> map (subst [h,htm]) [x_lt_h; x_eq_h;h_lt_x]
| h1::h2::t -> (map (subst [(h1,h1tm);(h2,h2tm)])
[x_lt_h1; x_eq_h1;x_h1_h2]) @ tl (make_partition_list (h2::t)) in
make_partition_list;;
(*
make_partition_list [`&1`;`&2`]
*)
(* partition a line based on a list of points
this is just a compact representation of a list of terms
*)
let part_line_tm = `partition_line`;;
let real_bool_ty = `:real->bool`;;
let PARTITION_LINE_CONV pts =
let ptm = mk_comb (part_line_tm,pts) in
let ltm = mk_list ((make_partition_list (dest_list pts)),real_bool_ty) in
let tm = mk_eq (ptm,ltm) in
prove(tm,REWRITE_TAC [partition_line;APPEND;COND_CLAUSES;NOT_CONS_NIL;TL;HD]);;
(*
PARTITION_LINE_CONV `[]:real list`
PARTITION_LINE_CONV `[&1; &2]`
PARTITION_LINE_CONV `[&2; &1]`
PARTITION_LINE_CONV `[a:real; b]`
*)
(* an interpretation of a sign matrix
arguments are a list of points, a list of polynomials, and a sign matrix
the points form an ordered list (smallest first),
each zero of each polynomial must appear among the list of points
and finally, the sign matrix corresponds to the correct sign for the polynomial
in the region represented by the set.
*)
let interpmat = new_definition
`interpmat ptl polyl signll <=>
real_ordered_list ptl /\
ALL2 (interpsigns polyl) (partition_line ptl) signll`;;
let interpmat_tm = `interpmat`;;
let dest_interpmat =
let imat_tm = interpmat_tm in
fun tm ->
let sc,args = strip_comb tm in
if not (sc = imat_tm) then failwith "dest_interpmat: not an interpmat term" else
let [ptl;polyl;signll] = args in
ptl,polyl,signll;;
let interpmat_thms thm =
let [rol_thm;interpsigns_thm] = CONJUNCTS (PURE_REWRITE_RULE[interpmat] thm) in
rol_thm,interpsigns_thm;;
let mk_interpmat_thm rol_thm =
fun all_thm ->
let ret = REWRITE_RULE[GSYM interpmat] (CONJ rol_thm all_thm) in
let l,_ = strip_comb (concl ret) in
if not (l = interpmat_tm) then failwith "mk_interpmat" else ret;;
(*
let rol_thm = rol_thm'''
let all_thm = all_thm''
*)
(* {{{ Doc *)
(*
mk_all2_interpsigns
|- partition_line [x1; x2; x3; x4; x5] =
[(\x. x < x1); (\x. x = x1); (\x. x1 < x /\ x < x2); (\x. x = x2);
(\x. x2 < x /\ x < x3); (\x. x = x3); (\x. x3 < x /\ x < x4); (\x. x = x4);
(\x. x4 < x /\ x < x5); (\x. x = x5); (\x. x5 < x)]
[
|- interpsigns
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]
(\x. x < x1)
[Unknown; Pos; Pos; Pos]
.
.
.
.
|- interpsigns
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]
(\x. x = x5)
[Pos; Pos; Zero; Zero]
|- interpsigns
[[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]
(\x. x5 < x)
[Unknown; Pos; Pos; Pos]
]
-->
|- ALL2 (interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]])
(partition_line [x1;x2;x3;x4;x5])
[[Unknown; Pos; Pos; Pos];...; [Pos; Pos; Zero; Zero]; [Unknown; Pos; Pos; Pos]]
*)
(* }}} *)
let all2_thm0 = GEN_ALL(EQT_ELIM(hd (CONJUNCTS ALL2)));;
let all2_thm = GEN_ALL (REWRITE_RULE[AND_IMP_THM] (fst (EQ_IMP_RULE (GSYM (last (CONJUNCTS ALL2))))));;
let mk_all2_interpsigns part_thm is_thms =
let is_tm = fst(dest_comb(fst (dest_comb (concl (hd is_thms))))) in
let all2_thm0' = ISPEC is_tm all2_thm0 in (* it`s having trouble matching *)
let ret = itlist (fun x -> fun y -> MATCH_MPL[all2_thm;x;y]) is_thms all2_thm0' in
REWRITE_RULE[GSYM part_thm] ret;;
let dest_all2 tm =
let a2,l = strip_comb tm in
if fst(dest_const a2) = "ALL2" then
let [a1;a2;a3] = l in
a1,a2,a3
else
failwith "dest_all2: not an ALL2";;
(* ---------------------------------------------------------------------- *)
(* Sets *)
(* ---------------------------------------------------------------------- *)
let is_interval set =
try
let x,bod = dest_abs set in
if is_conj bod then
let l,r = dest_conj bod in
can (dest_binop rlt) l && can (dest_binop rlt) r
else can (dest_binop rlt) bod
with _ -> false;;
(*
is_interval `\x. &4 < x /\ x < &5`;;
is_interval `\x. x = &4`;;
*)
let is_point set =
try
let x,bod = dest_abs set in
if is_eq bod then true else false
with _ -> false;;
(*
is_point `\x. x = &5`
is_point `\x. x = y:real`
*)
(* ---------------------------------------------------------------------- *)
(* We generate new var names *)
(* ---------------------------------------------------------------------- *)
let new_var,reset_vars =
let id = ref 0 in
let pre = "x_" in
let new_var ty =
id := !id + 1;
mk_var (pre ^ (string_of_int !id),ty) in
let reset_vars () =
id := 0 in
new_var,reset_vars;;
|