Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,659 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
needs "Library/prime.ml";;

let group = new_definition
  `group(g,(**),i,(e:A)) <=>
    (e IN g) /\ (!x. x IN g ==> i(x) IN g) /\
    (!x y. x IN g /\ y IN g ==> x**y IN g) /\
    (!x y z. x IN g /\ y IN g /\ z IN g ==> x**(y**z) = (x**y)**z) /\
    (!x. x IN g ==> x**e = x /\ e**x = x) /\
    (!x. x IN g ==> x**i(x) = e /\ i(x)**x = e)`;;

let subgroup = new_definition
  `subgroup h (g,(**),i,(e:A)) <=> h SUBSET g /\ group(h,(**),i,e)`;;

let bijection = new_definition
  `bijection f s t <=> ?g. (!x:A. x IN s ==> f x IN t /\ g (f x) = x) /\
                           (!y:B. y IN t ==> g y IN s /\ f (g y) = y)`;;

parse_as_infix("PARTITIONS",(12,"right"));;

let PARTITIONS = new_definition
  `X PARTITIONS s <=> UNIONS X = (s:A->bool) /\
                      !t u. t IN X /\ u IN X /\ ~(t = u) ==> t INTER u = {}`;;

parse_as_infix("**",(20,"left"));;
parse_as_infix("***",(20,"left"));;

horizon := -1;;

let LAGRANGE_SKETCH = ref None;;

LAGRANGE_SKETCH := Some `;
  let H G be A->bool; let (**) be A->A->A; let i be A->A; let e be A;
  assume FINITE H /\ group (H,(**),i,e:A) /\ subgroup G (H,(**),i,e);
  consider (***) such that !h G. h***G = {h**g | g IN G};
//
  now let a be A; assume a IN H; let b be A; assume b IN H;
    assume i(a)**b IN G;
    b***G = a**i(a)**b***G; .= a***(i(a)**b***G); thus .= a***G;
  end;
  !a b. a IN H /\ b IN H /\ ~(a***G = b***G) ==> a***G INTER b***G = {}
  proof let a be A; assume a IN H; let b be A; assume b IN H;
    now assume ~(a***G INTER b***G = {});
      consider g1 g2 such that g1 IN G /\ g2 IN G /\ a**g1 = b**g2;
      g1**i(g2) = i(a)**b;
      i(a)**b IN G;
      thus a***G = b***G;
    end;
  qed;
  !a. a IN H ==> a IN a***G
  proof let a be A; assume a IN H;
    a**e = a;
  qed;
  {a***G | a IN H} PARTITIONS H;
  !a b. a IN H /\ b IN H ==> CARD (a***G) = CARD (b***G)
  proof let a be A; assume a IN H; let b be A; assume b IN H;
    consider f such that !g. g IN G ==> f(a**g) = b**g;
    bijection f (a***G) (b***G);
  qed;
  set INDEX = CARD {a***G | a IN H};
  set N = CARD H; set n = CARD G; set j = INDEX;
  N = j*n;
  thus CARD G divides CARD H;
//
`;;

LAGRANGE_SKETCH := Some `;
  let H G be A->bool; let (**) be A->A->A; let i be A->A; let e be A;
  assume FINITE H /\ group (H,(**),i,e:A) /\ subgroup G (H,(**),i,e);
  consider (***) such that !h G. h***G = {h**g | g IN G};
::                                                      #2
:: 2: inference time-out
//
  now let a be A; assume a IN H; let b be A; assume b IN H;
    assume i(a)**b IN G;
    b***G = a**i(a)**b***G; .= a***(i(a)**b***G); thus .= a***G;
::                        #2                    #2             #2
  end;
  !a b. a IN H /\ b IN H /\ ~(a***G = b***G) ==> a***G INTER b***G = {}
  proof let a be A; assume a IN H; let b be A; assume b IN H;
    now assume ~(a***G INTER b***G = {});
      consider g1 g2 such that g1 IN G /\ g2 IN G /\ a**g1 = b**g2;
::                                                                #2
      g1**i(g2) = i(a)**b;
::                       #2
      i(a)**b IN G;
::                #2
      thus a***G = b***G;
    end;
  qed;
  !a. a IN H ==> a IN a***G
  proof let a be A; assume a IN H;
    a**e = a;
::          #1
:: 1: inference error
  qed;
::   #2
  {a***G | a IN H} PARTITIONS H;
::                             #2
  !a b. a IN H /\ b IN H ==> CARD (a***G) = CARD (b***G)
  proof let a be A; assume a IN H; let b be A; assume b IN H;
    consider f such that !g. g IN G ==> f(a**g) = b**g;
::                                                    #2
    bijection f (a***G) (b***G);
::                             #2
  qed;
::   #2
  set INDEX = CARD {a***G | a IN H};
  set N = CARD H; set n = CARD G; set j = INDEX;
  N = j*n;
::       #2
  thus CARD G divides CARD H;
::                          #2
//
`;;

horizon := 3;;

let UNIONS_FINITE = thm `;
  !s. FINITE (UNIONS s) <=>
      FINITE s /\ !t:A->bool. t IN s ==> FINITE t
proof
  let s be (A->bool)->bool;
  now assume FINITE (UNIONS s) [1];
    now let t be A->bool; assume t IN s;
      now let x be A; assume x IN t;
        ?t. t IN s /\ x IN t;
        thus x IN UNIONS s by ALL_TAC,UNIONS,IN_ELIM_THM;
      end;
      thus t IN {t | t SUBSET UNIONS s} by SUBSET,IN_ELIM_THM;
    end;
    s SUBSET {t | t SUBSET UNIONS s} by REWRITE_TAC,SUBSET;
    FINITE {t | t SUBSET UNIONS s} by 1,FINITE_POWERSET;
    thus FINITE s by FINITE_SUBSET;
  end;
qed by FINITE_UNIONS`;;

let CARD_UNIONS_EQUAL = thm `;
  !X s n. FINITE s /\ X PARTITIONS s /\ (!t:A->bool. t IN X ==> CARD t = n)
          ==> CARD s = (CARD X)*n
proof
  let X be (A->bool)->bool;
  let s be A->bool;
  let n be num;
  assume FINITE s;
  assume X PARTITIONS s [1];
  assume !t. t IN X ==> CARD t = n [2];
  FINITE (UNIONS X) by PARTITIONS;
  !t. t IN X ==> FINITE t [3] by UNIONS_FINITE;
  FINITE X [4] by UNIONS_FINITE;
  !t. t IN X ==> CARD t = (\t. n) t [5] by 2;
  !t u. t IN X /\ u IN X /\ ~(t = u) ==> t INTER u = {} by 1,PARTITIONS;
  CARD s = CARD (UNIONS X) by 1,PARTITIONS;
    .= nsum X CARD by 2,3,4,CARD_UNIONS;
    .= nsum X (\t. n) by 5,NSUM_EQ;
qed by 4,NSUM_CONST`;;

let BIJECTION_CARD_EQ = thm `;
  let f be A->B;
  let s be A->bool;
  let t be B->bool;
  assume FINITE s /\ bijection f s t [1];
  ?g. (!x. x IN s ==> f x IN t /\ g (f x) = x) /\
      (!y. y IN t ==> g y IN s /\ f (g y) = y)
    by REWRITE_TAC,-,GSYM bijection;
  thus CARD s = CARD t by -,1,BIJECTIONS_CARD_EQ`;;

horizon := 0;;

let LAGRANGE = thm `;
  let H G be A->bool;
  let (**) be A->A->A;
  let i be A->A;
  let e be A;
  assume FINITE H /\ group (H,(**),i,e) /\ subgroup G (H,(**),i,e) [1];
  (e IN H) /\ (!x. x IN H ==> i(x) IN H) /\
    (!x y. x IN H /\ y IN H ==> x**y IN H) /\
    (!x y z. x IN H /\ y IN H /\ z IN H ==> x**(y**z) = (x**y)**z) /\
    (!x. x IN H ==> x**e = x /\ e**x = x) /\
    (!x. x IN H ==> x**i(x) = e /\ i(x)**x = e) [2]
      by REWRITE_TAC,1,GSYM group;
  (G SUBSET H) /\ group (G,(**),i,e) [3] by 1,subgroup;
  !x. x IN G ==> x IN H [4] by -,SUBSET;
  FINITE G [5] by 3,1,FINITE_SUBSET;
  (e IN G) /\ (!x. x IN G ==> i(x) IN G) /\
    (!x y. x IN G /\ y IN G ==> x**y IN G) /\
    (!x y z. x IN G /\ y IN G /\ z IN G ==> x**(y**z) = (x**y)**z) /\
    (!x. x IN G ==> x**e = x /\ e**x = x) /\
    (!x. x IN G ==> x**i(x) = e /\ i(x)**x = e) [6]
      by REWRITE_TAC,3,GSYM group;
  set (***) = \h G. {h**g | g IN G} [7];
  !x h G. x IN h***G <=> ?g. g IN G /\ x = h**g [8] by ALL_TAC,-,IN_ELIM_THM;
  !h1 h2. h1 IN H /\ h2 IN H ==> (h1**h2)***G = h1***(h2***G) [9]
  proof
    let h1 h2 be A;
    assume h1 IN H /\ h2 IN H [10];
    now [11]
      let x be A;
      assume x IN (h1**h2)***G;
      consider g such that g IN G /\ x = (h1**h2)**g [12] by -,8;
      g IN H by -,4;
      x = h1**(h2**g) [13] by -,2,10,12;
      h2**g IN h2***G by 8,12;
      thus x IN h1***(h2***G) by -,13,8;
    end;
    now
      let x be A;
      assume x IN h1***(h2***G);
      consider y such that y IN h2***G /\ x = h1**y [14] by -,8;
      consider g such that g IN G /\ y = h2**g [15] by -,8;
      g IN H [16] by -,4;
      x = h1**(h2**g) by 14,15;
        .= (h1**h2)**g by -,2,10,14,16;
      thus x IN (h1**h2)***G by -,8,15;
    end;
  qed by -,11,EXTENSION;
  !g. g IN G ==> g***G = G [17]
  proof
    let g be A;
    assume g IN G [18];
    now [19]
      let x be A;
      assume x IN g***G;
      consider g' such that g' IN G /\ x = g**g' by -,8;
      thus x IN G by -,6,18;
    end;
    now
      let x be A;
      assume x IN G [20];
      x = g**i(g)**x by -,6,18;
        .= g**(i(g)**x) [21] by -,6,18,20;
      i(g)**x IN G by 6,18,20;
      thus x IN g***G by -,21,8;
    end;
  qed by -,19,EXTENSION;
//
  now [22]
    let a be A; assume a IN H [23];
    let b be A; assume b IN H [24];
    i(a)**b IN H [25] by 2,23,24;
    assume i(a)**b IN G [26];
    b***G = e**b***G by 2,24;
      .= a**i(a)**b***G by -,2,23;
      .= a**(i(a)**b)***G by -,2,23,24;
      .= a***(i(a)**b***G) by -,9,23,25;
    thus .= a***G by -,17,26;
  end;
  !a b. a IN H /\ b IN H /\ ~(a***G = b***G) ==> a***G INTER b***G = {} [27]
  proof
    let a be A; assume a IN H [28];
    let b be A; assume b IN H [29];
    now assume ~(a***G INTER b***G = {});
      consider x such that x IN a***G INTER b***G by -,MEMBER_NOT_EMPTY;
      x IN a***G /\ x IN b***G [30] by -,IN_INTER;
      consider g1 such that g1 IN G /\ x = a**g1 [31] by 8,30;
      consider g2 such that g2 IN G /\ x = b**g2 [32] by 8,30;
      g1 IN H /\ g2 IN H [33] by 4,31,32;
      a**g1 = b**g2 [34] by 31,32;
      g1**i(g2) = e**g1**i(g2) by 2,33;
        .= (i(a)**a)**g1**i(g2) by -,2,28;
        .= i(a)**(a**g1)**i(g2) by -,2,28,33;
        .= i(a)**(b**g2)**i(g2) by -,34;
        .= i(a)**(b**g2**i(g2)) by -,2,28,29,33;
        .= i(a)**(b**(g2**i(g2))) by -,2,29,33;
        .= i(a)**(b**e) by -,2,33;
        .= i(a)**b by -,2,29;
      i(a)**b IN G by -,6,31,32;
      thus a***G = b***G by -,22,28,29;
    end;
  qed by -,28,29;
  !a. a IN H ==> a IN a***G [35]
  proof
    let a be A; assume a IN H;
    a**e = a by -,2;
  qed by -,6,8;
  now
    now [36]
      let x be A;
      assume x IN UNIONS {a***G | a IN H};
      consider s such that s IN {a***G | a IN H} /\ x IN s [37]
        by -,IN_UNIONS;
      consider a such that a IN H /\ s = a***G [38] by -;
      consider g such that g IN G /\ x = a**g by -,8,37;
      thus x IN H by -,2,4,38;
    end;
    now
      let x be A;
      assume x IN H;
      x IN x***G /\ x***G IN {a***G | a IN H} by -,35;
      thus x IN UNIONS {a***G | a IN H} by -,IN_UNIONS;
    end;
    thus UNIONS {a***G | a IN H} = H by -,36,EXTENSION;
    let t u be A->bool;
    assume t IN {a***G | a IN H} /\ u IN {a***G | a IN H} /\ ~(t = u) [39];
    consider a b such that a IN H /\ t = a***G /\ b IN H /\ t = b***G by -;
    thus t INTER u = {} by -,27,39;
  end;
  {a***G | a IN H} PARTITIONS H [40] by REWRITE_TAC,-,PARTITIONS;
  !a b. a IN H /\ b IN H ==> CARD (a***G) = CARD (b***G) [41]
  proof
    let a be A; assume a IN H [42];
    let b be A; assume b IN H [43];
    set f = \x. b**(i(a)**x);
    set f' = \x. a**(i(b)**x);
    !g. g IN G ==> f(a**g) = b**g /\ f'(b**g) = a**g [44]
    proof
      let g be A; assume g IN G;
      g IN H [45] by -,4;
      f(a**g) = b**(i(a)**(a**g));
        .= b**(i(a)**a**g) by -,2,42,45;
        .= b**(e**g) by -,2,42;
        .= b**g [46] by -,2,45;
      f'(b**g) = a**(i(b)**(b**g));
        .= a**(i(b)**b**g) by -,2,43,45;
        .= a**(e**g) by -,2,43;
        .= a**g by -,2,45;
    qed by -,46;
    now
      take f';
      thus !x. x IN a***G ==> f x IN b***G /\ f' (f x) = x
      proof
        let x be A; assume x IN a***G;
        consider g such that g IN G /\ x = a**g [47] by -,8;
        f x = b**g by -,44;
      qed by -,8,44,47;
      thus !y. y IN b***G ==> f' y IN a***G /\ f (f' y) = y
      proof
        let y be A; assume y IN b***G;
        consider g such that g IN G /\ y = b**g [48] by -,8;
        f' y = a**g by -,44;
      qed by -,8,44,48;
    end;
    bijection f (a***G) (b***G) [49] by ALL_TAC,-,bijection;
    FINITE {a**g | g IN G} by SIMP_TAC,5,SIMPLE_IMAGE,FINITE_IMAGE;
  qed by -,7,49,BIJECTION_CARD_EQ;
  set INDEX = CARD {a***G | a IN H};
  now
    let t be A->bool;
    assume t IN {a***G | a IN H};
    consider a such that a IN H /\ t = a***G [50] by -;
    CARD t = CARD (a***G) by -;
      .= CARD (e***G) by -,2,41,50;
    thus .= CARD G by -,6,17;
  end;
  set N = CARD H;
  set n = CARD G;
  set j = INDEX;
  N = (CARD {a***G | a IN H})*(CARD G) by -,1,40,CARD_UNIONS_EQUAL;
    .= j*n by -;
  thus CARD G divides CARD H by -,divides,MULT_SYM;
//
`;;

parse_as_infix("**",(20,"right"));;