Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 37,518 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Jens Wagemaker
-/
import algebra.divisibility
import algebra.group_power.lemmas
import algebra.invertible
import order.atoms
/-!
# Associated, prime, and irreducible elements.
-/
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
section prime
variables [comm_monoid_with_zero α]
/-- prime element of a `comm_monoid_with_zero` -/
def prime (p : α) : Prop :=
p ≠ 0 ∧ ¬ is_unit p ∧ (∀a b, p ∣ a * b → p ∣ a ∨ p ∣ b)
namespace prime
variables {p : α} (hp : prime p)
include hp
lemma ne_zero : p ≠ 0 :=
hp.1
lemma not_unit : ¬ is_unit p :=
hp.2.1
lemma not_dvd_one : ¬ p ∣ 1 :=
mt (is_unit_of_dvd_one _) hp.not_unit
lemma ne_one : p ≠ 1 :=
λ h, hp.2.1 (h.symm ▸ is_unit_one)
lemma dvd_or_dvd (hp : prime p) {a b : α} (h : p ∣ a * b) :
p ∣ a ∨ p ∣ b :=
hp.2.2 a b h
lemma dvd_of_dvd_pow (hp : prime p) {a : α} {n : ℕ} (h : p ∣ a^n) :
p ∣ a :=
begin
induction n with n ih,
{ rw pow_zero at h,
have := is_unit_of_dvd_one _ h,
have := not_unit hp,
contradiction },
rw pow_succ at h,
cases dvd_or_dvd hp h with dvd_a dvd_pow,
{ assumption },
exact ih dvd_pow
end
end prime
@[simp] lemma not_prime_zero : ¬ prime (0 : α) :=
λ h, h.ne_zero rfl
@[simp] lemma not_prime_one : ¬ prime (1 : α) :=
λ h, h.not_unit is_unit_one
section map
variables [comm_monoid_with_zero β] {F : Type*} {G : Type*}
[monoid_with_zero_hom_class F α β] [mul_hom_class G β α] (f : F) (g : G) {p : α}
lemma comap_prime (hinv : ∀ a, g (f a : β) = a) (hp : prime (f p)) : prime p :=
⟨ λ h, hp.1 $ by simp [h], λ h, hp.2.1 $ h.map f, λ a b h, by
{ refine (hp.2.2 (f a) (f b) $ by { convert map_dvd f h, simp }).imp _ _;
{ intro h, convert ← map_dvd g h; apply hinv } } ⟩
lemma mul_equiv.prime_iff (e : α ≃* β) : prime p ↔ prime (e p) :=
⟨ λ h, comap_prime e.symm e (λ a, by simp) $ (e.symm_apply_apply p).substr h,
comap_prime e e.symm (λ a, by simp) ⟩
end map
end prime
lemma prime.left_dvd_or_dvd_right_of_dvd_mul [cancel_comm_monoid_with_zero α] {p : α}
(hp : prime p) {a b : α} : a ∣ p * b → p ∣ a ∨ a ∣ b :=
begin
rintro ⟨c, hc⟩,
rcases hp.2.2 a c (hc ▸ dvd_mul_right _ _) with h | ⟨x, rfl⟩,
{ exact or.inl h },
{ rw [mul_left_comm, mul_right_inj' hp.ne_zero] at hc,
exact or.inr (hc.symm ▸ dvd_mul_right _ _) }
end
lemma prime.pow_dvd_of_dvd_mul_left
[cancel_comm_monoid_with_zero α]
{p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ a) (h' : p ^ n ∣ a * b) : p ^ n ∣ b :=
begin
induction n with n ih,
{ rw pow_zero, exact one_dvd b },
{ obtain ⟨c, rfl⟩ := ih (dvd_trans (pow_dvd_pow p n.le_succ) h'),
rw pow_succ',
apply mul_dvd_mul_left _ ((hp.dvd_or_dvd _).resolve_left h),
rwa [←mul_dvd_mul_iff_left (pow_ne_zero n hp.ne_zero), ←pow_succ', mul_left_comm] }
end
lemma prime.pow_dvd_of_dvd_mul_right
[cancel_comm_monoid_with_zero α]
{p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ b) (h' : p ^ n ∣ a * b) : p ^ n ∣ a :=
by { rw [mul_comm] at h', exact hp.pow_dvd_of_dvd_mul_left n h h' }
lemma prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd [cancel_comm_monoid_with_zero α]
{p a b : α} {n : ℕ} (hp : prime p) (hpow : p ^ n.succ ∣ a ^ n.succ * b ^ n)
(hb : ¬ p ^ 2 ∣ b) : p ∣ a :=
begin
-- Suppose `p ∣ b`, write `b = p * x` and `hy : a ^ n.succ * b ^ n = p ^ n.succ * y`.
cases (hp.dvd_or_dvd ((dvd_pow_self p (nat.succ_ne_zero n)).trans hpow)) with H hbdiv,
{ exact hp.dvd_of_dvd_pow H },
obtain ⟨x, rfl⟩ := hp.dvd_of_dvd_pow hbdiv,
obtain ⟨y, hy⟩ := hpow,
-- Then we can divide out a common factor of `p ^ n` from the equation `hy`.
have : a ^ n.succ * x ^ n = p * y,
{ refine mul_left_cancel₀ (pow_ne_zero n hp.ne_zero) _,
rw [← mul_assoc _ p, ← pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ),
mul_comm _ (p ^ n), mul_assoc] },
-- So `p ∣ a` (and we're done) or `p ∣ x`, which can't be the case since it implies `p^2 ∣ b`.
refine hp.dvd_of_dvd_pow ((hp.dvd_or_dvd ⟨_, this⟩).resolve_right (λ hdvdx, hb _)),
obtain ⟨z, rfl⟩ := hp.dvd_of_dvd_pow hdvdx,
rw [pow_two, ← mul_assoc],
exact dvd_mul_right _ _,
end
/-- `irreducible p` states that `p` is non-unit and only factors into units.
We explicitly avoid stating that `p` is non-zero, this would require a semiring. Assuming only a
monoid allows us to reuse irreducible for associated elements.
-/
structure irreducible [monoid α] (p : α) : Prop :=
(not_unit : ¬ is_unit p)
(is_unit_or_is_unit' : ∀a b, p = a * b → is_unit a ∨ is_unit b)
namespace irreducible
lemma not_dvd_one [comm_monoid α] {p : α} (hp : irreducible p) : ¬ p ∣ 1 :=
mt (is_unit_of_dvd_one _) hp.not_unit
lemma is_unit_or_is_unit [monoid α] {p : α} (hp : irreducible p) {a b : α} (h : p = a * b) :
is_unit a ∨ is_unit b :=
hp.is_unit_or_is_unit' a b h
end irreducible
lemma irreducible_iff [monoid α] {p : α} :
irreducible p ↔ ¬ is_unit p ∧ ∀a b, p = a * b → is_unit a ∨ is_unit b :=
⟨λ h, ⟨h.1, h.2⟩, λ h, ⟨h.1, h.2⟩⟩
@[simp] theorem not_irreducible_one [monoid α] : ¬ irreducible (1 : α) :=
by simp [irreducible_iff]
theorem irreducible.ne_one [monoid α] : ∀ {p:α}, irreducible p → p ≠ 1
| _ hp rfl := not_irreducible_one hp
@[simp] theorem not_irreducible_zero [monoid_with_zero α] : ¬ irreducible (0 : α)
| ⟨hn0, h⟩ := have is_unit (0:α) ∨ is_unit (0:α), from h 0 0 ((mul_zero 0).symm),
this.elim hn0 hn0
theorem irreducible.ne_zero [monoid_with_zero α] : ∀ {p:α}, irreducible p → p ≠ 0
| _ hp rfl := not_irreducible_zero hp
theorem of_irreducible_mul {α} [monoid α] {x y : α} :
irreducible (x * y) → is_unit x ∨ is_unit y
| ⟨_, h⟩ := h _ _ rfl
theorem of_irreducible_pow {α} [monoid α] {x : α} {n : ℕ} (hn : n ≠ 1) :
irreducible (x ^ n) → is_unit x :=
begin
obtain hn|hn := hn.lt_or_lt,
{ simp only [nat.lt_one_iff.mp hn, is_empty.forall_iff, not_irreducible_one, pow_zero] },
intro h,
obtain ⟨k, rfl⟩ := nat.exists_eq_add_of_lt hn,
rw [pow_succ, add_comm] at h,
exact (or_iff_left_of_imp ((is_unit_pos_pow_iff (nat.succ_pos _)).mp)).mp (of_irreducible_mul h)
end
theorem irreducible_or_factor {α} [monoid α] (x : α) (h : ¬ is_unit x) :
irreducible x ∨ ∃ a b, ¬ is_unit a ∧ ¬ is_unit b ∧ a * b = x :=
begin
haveI := classical.dec,
refine or_iff_not_imp_right.2 (λ H, _),
simp [h, irreducible_iff] at H ⊢,
refine λ a b h, classical.by_contradiction $ λ o, _,
simp [not_or_distrib] at o,
exact H _ o.1 _ o.2 h.symm
end
protected lemma prime.irreducible [cancel_comm_monoid_with_zero α] {p : α} (hp : prime p) :
irreducible p :=
⟨hp.not_unit, λ a b hab,
(show a * b ∣ a ∨ a * b ∣ b, from hab ▸ hp.dvd_or_dvd (hab ▸ dvd_rfl)).elim
(λ ⟨x, hx⟩, or.inr (is_unit_iff_dvd_one.2
⟨x, mul_right_cancel₀ (show a ≠ 0, from λ h, by simp [*, prime] at *)
$ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩))
(λ ⟨x, hx⟩, or.inl (is_unit_iff_dvd_one.2
⟨x, mul_right_cancel₀ (show b ≠ 0, from λ h, by simp [*, prime] at *)
$ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩))⟩
lemma succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul [cancel_comm_monoid_with_zero α]
{p : α} (hp : prime p) {a b : α} {k l : ℕ} :
p ^ k ∣ a → p ^ l ∣ b → p ^ ((k + l) + 1) ∣ a * b → p ^ (k + 1) ∣ a ∨ p ^ (l + 1) ∣ b :=
λ ⟨x, hx⟩ ⟨y, hy⟩ ⟨z, hz⟩,
have h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z),
by simpa [mul_comm, pow_add, hx, hy, mul_assoc, mul_left_comm] using hz,
have hp0: p ^ (k + l) ≠ 0, from pow_ne_zero _ hp.ne_zero,
have hpd : p ∣ x * y, from ⟨z, by rwa [mul_right_inj' hp0] at h⟩,
(hp.dvd_or_dvd hpd).elim
(λ ⟨d, hd⟩, or.inl ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc]⟩)
(λ ⟨d, hd⟩, or.inr ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc]⟩)
/-- If `p` and `q` are irreducible, then `p ∣ q` implies `q ∣ p`. -/
lemma irreducible.dvd_symm [monoid α] {p q : α}
(hp : irreducible p) (hq : irreducible q) : p ∣ q → q ∣ p :=
begin
unfreezingI { rintros ⟨q', rfl⟩ },
rw is_unit.mul_right_dvd (or.resolve_left (of_irreducible_mul hq) hp.not_unit),
end
lemma irreducible.dvd_comm [monoid α] {p q : α}
(hp : irreducible p) (hq : irreducible q) : p ∣ q ↔ q ∣ p :=
⟨hp.dvd_symm hq, hq.dvd_symm hp⟩
section
variables [monoid α]
lemma irreducible_units_mul (a : αˣ) (b : α) : irreducible (↑a * b) ↔ irreducible b :=
begin
simp only [irreducible_iff, units.is_unit_units_mul, and.congr_right_iff],
refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩,
{ rw [←a.is_unit_units_mul],
apply h,
rw [mul_assoc, ←HAB] },
{ rw [←(a⁻¹).is_unit_units_mul],
apply h,
rw [mul_assoc, ←HAB, units.inv_mul_cancel_left] },
end
lemma irreducible_is_unit_mul {a b : α} (h : is_unit a) : irreducible (a * b) ↔ irreducible b :=
let ⟨a, ha⟩ := h in ha ▸ irreducible_units_mul a b
lemma irreducible_mul_units (a : αˣ) (b : α) : irreducible (b * ↑a) ↔ irreducible b :=
begin
simp only [irreducible_iff, units.is_unit_mul_units, and.congr_right_iff],
refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩,
{ rw [←units.is_unit_mul_units B a],
apply h,
rw [←mul_assoc, ←HAB] },
{ rw [←units.is_unit_mul_units B a⁻¹],
apply h,
rw [←mul_assoc, ←HAB, units.mul_inv_cancel_right] },
end
lemma irreducible_mul_is_unit {a b : α} (h : is_unit a) : irreducible (b * a) ↔ irreducible b :=
let ⟨a, ha⟩ := h in ha ▸ irreducible_mul_units a b
lemma irreducible_mul_iff {a b : α} :
irreducible (a * b) ↔ (irreducible a ∧ is_unit b) ∨ (irreducible b ∧ is_unit a) :=
begin
split,
{ refine λ h, or.imp (λ h', ⟨_, h'⟩) (λ h', ⟨_, h'⟩) (h.is_unit_or_is_unit rfl).symm,
{ rwa [irreducible_mul_is_unit h'] at h },
{ rwa [irreducible_is_unit_mul h'] at h } },
{ rintros (⟨ha, hb⟩|⟨hb, ha⟩),
{ rwa [irreducible_mul_is_unit hb] },
{ rwa [irreducible_is_unit_mul ha] } },
end
end
lemma pow_not_prime [cancel_comm_monoid_with_zero α] {x : α} {n : ℕ} (hn : n ≠ 1) :
¬ prime (x ^ n) :=
λ hp, hp.not_unit $ is_unit.pow _ $ of_irreducible_pow hn $ hp.irreducible
/-- Two elements of a `monoid` are `associated` if one of them is another one
multiplied by a unit on the right. -/
def associated [monoid α] (x y : α) : Prop := ∃u:αˣ, x * u = y
local infix ` ~ᵤ ` : 50 := associated
namespace associated
@[refl] protected theorem refl [monoid α] (x : α) : x ~ᵤ x := ⟨1, by simp⟩
instance [monoid α] : is_refl α associated := ⟨associated.refl⟩
@[symm] protected theorem symm [monoid α] : ∀{x y : α}, x ~ᵤ y → y ~ᵤ x
| x _ ⟨u, rfl⟩ := ⟨u⁻¹, by rw [mul_assoc, units.mul_inv, mul_one]⟩
instance [monoid α] : is_symm α associated := ⟨λ a b, associated.symm⟩
@[trans] protected theorem trans [monoid α] : ∀{x y z : α}, x ~ᵤ y → y ~ᵤ z → x ~ᵤ z
| x _ _ ⟨u, rfl⟩ ⟨v, rfl⟩ := ⟨u * v, by rw [units.coe_mul, mul_assoc]⟩
instance [monoid α] : is_trans α associated := ⟨λ a b c, associated.trans⟩
/-- The setoid of the relation `x ~ᵤ y` iff there is a unit `u` such that `x * u = y` -/
protected def setoid (α : Type*) [monoid α] : setoid α :=
{ r := associated, iseqv := ⟨associated.refl, λa b, associated.symm, λa b c, associated.trans⟩ }
end associated
local attribute [instance] associated.setoid
theorem unit_associated_one [monoid α] {u : αˣ} : (u : α) ~ᵤ 1 := ⟨u⁻¹, units.mul_inv u⟩
theorem associated_one_iff_is_unit [monoid α] {a : α} : (a : α) ~ᵤ 1 ↔ is_unit a :=
iff.intro
(assume h, let ⟨c, h⟩ := h.symm in h ▸ ⟨c, (one_mul _).symm⟩)
(assume ⟨c, h⟩, associated.symm ⟨c, by simp [h]⟩)
theorem associated_zero_iff_eq_zero [monoid_with_zero α] (a : α) : a ~ᵤ 0 ↔ a = 0 :=
iff.intro
(assume h, let ⟨u, h⟩ := h.symm in by simpa using h.symm)
(assume h, h ▸ associated.refl a)
theorem associated_one_of_mul_eq_one [comm_monoid α] {a : α} (b : α) (hab : a * b = 1) : a ~ᵤ 1 :=
show (units.mk_of_mul_eq_one a b hab : α) ~ᵤ 1, from unit_associated_one
theorem associated_one_of_associated_mul_one [comm_monoid α] {a b : α} :
a * b ~ᵤ 1 → a ~ᵤ 1
| ⟨u, h⟩ := associated_one_of_mul_eq_one (b * u) $ by simpa [mul_assoc] using h
lemma associated_mul_unit_left {β : Type*} [monoid β] (a u : β) (hu : is_unit u) :
associated (a * u) a :=
let ⟨u', hu⟩ := hu in ⟨u'⁻¹, hu ▸ units.mul_inv_cancel_right _ _⟩
lemma associated_unit_mul_left {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) :
associated (u * a) a :=
begin
rw mul_comm,
exact associated_mul_unit_left _ _ hu
end
lemma associated_mul_unit_right {β : Type*} [monoid β] (a u : β) (hu : is_unit u) :
associated a (a * u) :=
(associated_mul_unit_left a u hu).symm
lemma associated_unit_mul_right {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) :
associated a (u * a) :=
(associated_unit_mul_left a u hu).symm
lemma associated.mul_mul [comm_monoid α] {a₁ a₂ b₁ b₂ : α} :
a₁ ~ᵤ b₁ → a₂ ~ᵤ b₂ → (a₁ * a₂) ~ᵤ (b₁ * b₂)
| ⟨c₁, h₁⟩ ⟨c₂, h₂⟩ := ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩
lemma associated.mul_left [comm_monoid α] (a : α) {b c : α} (h : b ~ᵤ c) :
(a * b) ~ᵤ (a * c) :=
(associated.refl a).mul_mul h
lemma associated.mul_right [comm_monoid α] {a b : α} (h : a ~ᵤ b) (c : α) :
(a * c) ~ᵤ (b * c) :=
h.mul_mul (associated.refl c)
lemma associated.pow_pow [comm_monoid α] {a b : α} {n : ℕ} (h : a ~ᵤ b) :
a ^ n ~ᵤ b ^ n :=
begin
induction n with n ih, { simp [h] },
convert h.mul_mul ih;
rw pow_succ
end
protected lemma associated.dvd [monoid α] {a b : α} : a ~ᵤ b → a ∣ b := λ ⟨u, hu⟩, ⟨u, hu.symm⟩
protected lemma associated.dvd_dvd [monoid α] {a b : α} (h : a ~ᵤ b) : a ∣ b ∧ b ∣ a :=
⟨h.dvd, h.symm.dvd⟩
theorem associated_of_dvd_dvd [cancel_monoid_with_zero α]
{a b : α} (hab : a ∣ b) (hba : b ∣ a) : a ~ᵤ b :=
begin
rcases hab with ⟨c, rfl⟩,
rcases hba with ⟨d, a_eq⟩,
by_cases ha0 : a = 0,
{ simp [*] at * },
have hac0 : a * c ≠ 0,
{ intro con, rw [con, zero_mul] at a_eq, apply ha0 a_eq, },
have : a * (c * d) = a * 1 := by rw [← mul_assoc, ← a_eq, mul_one],
have hcd : (c * d) = 1, from mul_left_cancel₀ ha0 this,
have : a * c * (d * c) = a * c * 1 := by rw [← mul_assoc, ← a_eq, mul_one],
have hdc : d * c = 1, from mul_left_cancel₀ hac0 this,
exact ⟨⟨c, d, hcd, hdc⟩, rfl⟩
end
theorem dvd_dvd_iff_associated [cancel_monoid_with_zero α] {a b : α} : a ∣ b ∧ b ∣ a ↔ a ~ᵤ b :=
⟨λ ⟨h1, h2⟩, associated_of_dvd_dvd h1 h2, associated.dvd_dvd⟩
instance [cancel_monoid_with_zero α] [decidable_rel ((∣) : α → α → Prop)] :
decidable_rel ((~ᵤ) : α → α → Prop) :=
λ a b, decidable_of_iff _ dvd_dvd_iff_associated
lemma associated.dvd_iff_dvd_left [monoid α] {a b c : α} (h : a ~ᵤ b) : a ∣ c ↔ b ∣ c :=
let ⟨u, hu⟩ := h in hu ▸ units.mul_right_dvd.symm
lemma associated.dvd_iff_dvd_right [monoid α] {a b c : α} (h : b ~ᵤ c) : a ∣ b ↔ a ∣ c :=
let ⟨u, hu⟩ := h in hu ▸ units.dvd_mul_right.symm
lemma associated.eq_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a = 0 ↔ b = 0 :=
⟨λ ha, let ⟨u, hu⟩ := h in by simp [hu.symm, ha],
λ hb, let ⟨u, hu⟩ := h.symm in by simp [hu.symm, hb]⟩
lemma associated.ne_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a ≠ 0 ↔ b ≠ 0 :=
not_congr h.eq_zero_iff
protected lemma associated.prime [comm_monoid_with_zero α] {p q : α} (h : p ~ᵤ q) (hp : prime p) :
prime q :=
⟨h.ne_zero_iff.1 hp.ne_zero,
let ⟨u, hu⟩ := h in
⟨λ ⟨v, hv⟩, hp.not_unit ⟨v * u⁻¹, by simp [hv, hu.symm]⟩,
hu ▸ by { simp [units.mul_right_dvd], intros a b, exact hp.dvd_or_dvd }⟩⟩
lemma irreducible.associated_of_dvd [cancel_monoid_with_zero α] {p q : α}
(p_irr : irreducible p) (q_irr : irreducible q) (dvd : p ∣ q) : associated p q :=
associated_of_dvd_dvd dvd (p_irr.dvd_symm q_irr dvd)
lemma irreducible.dvd_irreducible_iff_associated [cancel_monoid_with_zero α]
{p q : α} (pp : irreducible p) (qp : irreducible q) :
p ∣ q ↔ associated p q :=
⟨irreducible.associated_of_dvd pp qp, associated.dvd⟩
lemma prime.associated_of_dvd [cancel_comm_monoid_with_zero α] {p q : α}
(p_prime : prime p) (q_prime : prime q) (dvd : p ∣ q) : associated p q :=
p_prime.irreducible.associated_of_dvd q_prime.irreducible dvd
theorem prime.dvd_prime_iff_associated [cancel_comm_monoid_with_zero α]
{p q : α} (pp : prime p) (qp : prime q) :
p ∣ q ↔ associated p q :=
pp.irreducible.dvd_irreducible_iff_associated qp.irreducible
lemma associated.prime_iff [comm_monoid_with_zero α] {p q : α}
(h : p ~ᵤ q) : prime p ↔ prime q :=
⟨h.prime, h.symm.prime⟩
protected lemma associated.is_unit [monoid α] {a b : α} (h : a ~ᵤ b) : is_unit a → is_unit b :=
let ⟨u, hu⟩ := h in λ ⟨v, hv⟩, ⟨v * u, by simp [hv, hu.symm]⟩
lemma associated.is_unit_iff [monoid α] {a b : α} (h : a ~ᵤ b) : is_unit a ↔ is_unit b :=
⟨h.is_unit, h.symm.is_unit⟩
protected lemma associated.irreducible [monoid α] {p q : α} (h : p ~ᵤ q)
(hp : irreducible p) : irreducible q :=
⟨mt h.symm.is_unit hp.1,
let ⟨u, hu⟩ := h in λ a b hab,
have hpab : p = a * (b * (u⁻¹ : αˣ)),
from calc p = (p * u) * (u ⁻¹ : αˣ) : by simp
... = _ : by rw hu; simp [hab, mul_assoc],
(hp.is_unit_or_is_unit hpab).elim or.inl (λ ⟨v, hv⟩, or.inr ⟨v * u, by simp [hv]⟩)⟩
protected lemma associated.irreducible_iff [monoid α] {p q : α} (h : p ~ᵤ q) :
irreducible p ↔ irreducible q :=
⟨h.irreducible, h.symm.irreducible⟩
lemma associated.of_mul_left [cancel_comm_monoid_with_zero α] {a b c d : α}
(h : a * b ~ᵤ c * d) (h₁ : a ~ᵤ c) (ha : a ≠ 0) : b ~ᵤ d :=
let ⟨u, hu⟩ := h in let ⟨v, hv⟩ := associated.symm h₁ in
⟨u * (v : αˣ), mul_left_cancel₀ ha
begin
rw [← hv, mul_assoc c (v : α) d, mul_left_comm c, ← hu],
simp [hv.symm, mul_assoc, mul_comm, mul_left_comm]
end⟩
lemma associated.of_mul_right [cancel_comm_monoid_with_zero α] {a b c d : α} :
a * b ~ᵤ c * d → b ~ᵤ d → b ≠ 0 → a ~ᵤ c :=
by rw [mul_comm a, mul_comm c]; exact associated.of_mul_left
lemma associated.of_pow_associated_of_prime [cancel_comm_monoid_with_zero α] {p₁ p₂ : α}
{k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₁ : 0 < k₁) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) :
p₁ ~ᵤ p₂ :=
begin
have : p₁ ∣ p₂ ^ k₂,
{ rw ←h.dvd_iff_dvd_right,
apply dvd_pow_self _ hk₁.ne' },
rw ←hp₁.dvd_prime_iff_associated hp₂,
exact hp₁.dvd_of_dvd_pow this,
end
lemma associated.of_pow_associated_of_prime' [cancel_comm_monoid_with_zero α] {p₁ p₂ : α}
{k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₂ : 0 < k₂) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) :
p₁ ~ᵤ p₂ :=
(h.symm.of_pow_associated_of_prime hp₂ hp₁ hk₂).symm
section unique_units
variables [monoid α] [unique αˣ]
lemma units_eq_one (u : αˣ) : u = 1 := subsingleton.elim u 1
theorem associated_iff_eq {x y : α} : x ~ᵤ y ↔ x = y :=
begin
split,
{ rintro ⟨c, rfl⟩, rw [units_eq_one c, units.coe_one, mul_one] },
{ rintro rfl, refl },
end
theorem associated_eq_eq : (associated : α → α → Prop) = eq :=
by { ext, rw associated_iff_eq }
lemma prime_dvd_prime_iff_eq
{M : Type*} [cancel_comm_monoid_with_zero M] [unique Mˣ] {p q : M} (pp : prime p) (qp : prime q) :
p ∣ q ↔ p = q :=
by rw [pp.dvd_prime_iff_associated qp, ←associated_eq_eq]
end unique_units
/-- The quotient of a monoid by the `associated` relation. Two elements `x` and `y`
are associated iff there is a unit `u` such that `x * u = y`. There is a natural
monoid structure on `associates α`. -/
def associates (α : Type*) [monoid α] : Type* :=
quotient (associated.setoid α)
namespace associates
open associated
/-- The canonical quotient map from a monoid `α` into the `associates` of `α` -/
protected def mk {α : Type*} [monoid α] (a : α) : associates α :=
⟦ a ⟧
instance [monoid α] : inhabited (associates α) := ⟨⟦1⟧⟩
theorem mk_eq_mk_iff_associated [monoid α] {a b : α} :
associates.mk a = associates.mk b ↔ a ~ᵤ b :=
iff.intro quotient.exact quot.sound
theorem quotient_mk_eq_mk [monoid α] (a : α) : ⟦ a ⟧ = associates.mk a := rfl
theorem quot_mk_eq_mk [monoid α] (a : α) : quot.mk setoid.r a = associates.mk a := rfl
theorem forall_associated [monoid α] {p : associates α → Prop} :
(∀a, p a) ↔ (∀a, p (associates.mk a)) :=
iff.intro
(assume h a, h _)
(assume h a, quotient.induction_on a h)
theorem mk_surjective [monoid α] : function.surjective (@associates.mk α _) :=
forall_associated.2 (λ a, ⟨a, rfl⟩)
instance [monoid α] : has_one (associates α) := ⟨⟦ 1 ⟧⟩
@[simp] lemma mk_one [monoid α] : associates.mk (1 : α) = 1 := rfl
theorem one_eq_mk_one [monoid α] : (1 : associates α) = associates.mk 1 := rfl
instance [monoid α] : has_bot (associates α) := ⟨1⟩
lemma bot_eq_one [monoid α] : (⊥ : associates α) = 1 := rfl
lemma exists_rep [monoid α] (a : associates α) : ∃ a0 : α, associates.mk a0 = a :=
quot.exists_rep a
instance [monoid α] [subsingleton α] : unique (associates α) :=
{ default := 1,
uniq := λ a, by { apply quotient.rec_on_subsingleton₂, intros a b, congr } }
lemma mk_injective [monoid α] [unique (units α)] : function.injective (@associates.mk α _) :=
λ a b h, associated_iff_eq.mp (associates.mk_eq_mk_iff_associated.mp h)
section comm_monoid
variable [comm_monoid α]
instance : has_mul (associates α) :=
⟨λa' b', quotient.lift_on₂ a' b' (λa b, ⟦ a * b ⟧) $
assume a₁ a₂ b₁ b₂ ⟨c₁, h₁⟩ ⟨c₂, h₂⟩,
quotient.sound $ ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩⟩
theorem mk_mul_mk {x y : α} : associates.mk x * associates.mk y = associates.mk (x * y) :=
rfl
instance : comm_monoid (associates α) :=
{ one := 1,
mul := (*),
mul_one := assume a', quotient.induction_on a' $
assume a, show ⟦a * 1⟧ = ⟦ a ⟧, by simp,
one_mul := assume a', quotient.induction_on a' $
assume a, show ⟦1 * a⟧ = ⟦ a ⟧, by simp,
mul_assoc := assume a' b' c', quotient.induction_on₃ a' b' c' $
assume a b c, show ⟦a * b * c⟧ = ⟦a * (b * c)⟧, by rw [mul_assoc],
mul_comm := assume a' b', quotient.induction_on₂ a' b' $
assume a b, show ⟦a * b⟧ = ⟦b * a⟧, by rw [mul_comm] }
instance : preorder (associates α) :=
{ le := has_dvd.dvd,
le_refl := dvd_refl,
le_trans := λ a b c, dvd_trans}
/-- `associates.mk` as a `monoid_hom`. -/
protected def mk_monoid_hom : α →* (associates α) := ⟨associates.mk, mk_one, λ x y, mk_mul_mk⟩
@[simp] lemma mk_monoid_hom_apply (a : α) : associates.mk_monoid_hom a = associates.mk a := rfl
lemma associated_map_mk {f : associates α →* α}
(hinv : function.right_inverse f associates.mk) (a : α) :
a ~ᵤ f (associates.mk a) :=
associates.mk_eq_mk_iff_associated.1 (hinv (associates.mk a)).symm
lemma mk_pow (a : α) (n : ℕ) : associates.mk (a ^ n) = (associates.mk a) ^ n :=
by induction n; simp [*, pow_succ, associates.mk_mul_mk.symm]
lemma dvd_eq_le : ((∣) : associates α → associates α → Prop) = (≤) := rfl
theorem mul_eq_one_iff {x y : associates α} : x * y = 1 ↔ (x = 1 ∧ y = 1) :=
iff.intro
(quotient.induction_on₂ x y $ assume a b h,
have a * b ~ᵤ 1, from quotient.exact h,
⟨quotient.sound $ associated_one_of_associated_mul_one this,
quotient.sound $ associated_one_of_associated_mul_one $ by rwa [mul_comm] at this⟩)
(by simp {contextual := tt})
theorem units_eq_one (u : (associates α)ˣ) : u = 1 :=
units.ext (mul_eq_one_iff.1 u.val_inv).1
instance unique_units : unique ((associates α)ˣ) :=
{ default := 1, uniq := associates.units_eq_one }
theorem coe_unit_eq_one (u : (associates α)ˣ): (u : associates α) = 1 :=
by simp
theorem is_unit_iff_eq_one (a : associates α) : is_unit a ↔ a = 1 :=
iff.intro
(assume ⟨u, h⟩, h ▸ coe_unit_eq_one _)
(assume h, h.symm ▸ is_unit_one)
lemma is_unit_iff_eq_bot {a : associates α} : is_unit a ↔ a = ⊥ :=
by rw [associates.is_unit_iff_eq_one, bot_eq_one]
theorem is_unit_mk {a : α} : is_unit (associates.mk a) ↔ is_unit a :=
calc is_unit (associates.mk a) ↔ a ~ᵤ 1 :
by rw [is_unit_iff_eq_one, one_eq_mk_one, mk_eq_mk_iff_associated]
... ↔ is_unit a : associated_one_iff_is_unit
section order
theorem mul_mono {a b c d : associates α} (h₁ : a ≤ b) (h₂ : c ≤ d) :
a * c ≤ b * d :=
let ⟨x, hx⟩ := h₁, ⟨y, hy⟩ := h₂ in
⟨x * y, by simp [hx, hy, mul_comm, mul_assoc, mul_left_comm]⟩
theorem one_le {a : associates α} : 1 ≤ a :=
dvd.intro _ (one_mul a)
theorem le_mul_right {a b : associates α} : a ≤ a * b := ⟨b, rfl⟩
theorem le_mul_left {a b : associates α} : a ≤ b * a :=
by rw [mul_comm]; exact le_mul_right
instance : order_bot (associates α) :=
{ bot := 1,
bot_le := assume a, one_le }
end order
theorem dvd_of_mk_le_mk {a b : α} : associates.mk a ≤ associates.mk b → a ∣ b
| ⟨c', hc'⟩ := (quotient.induction_on c' $ assume c hc,
let ⟨d, hd⟩ := (quotient.exact hc).symm in
⟨(↑d) * c,
calc b = (a * c) * ↑d : hd.symm
... = a * (↑d * c) : by ac_refl⟩) hc'
theorem mk_le_mk_of_dvd {a b : α} : a ∣ b → associates.mk a ≤ associates.mk b :=
assume ⟨c, hc⟩, ⟨associates.mk c, by simp [hc]; refl⟩
theorem mk_le_mk_iff_dvd_iff {a b : α} : associates.mk a ≤ associates.mk b ↔ a ∣ b :=
iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd
theorem mk_dvd_mk {a b : α} : associates.mk a ∣ associates.mk b ↔ a ∣ b :=
iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd
end comm_monoid
instance [has_zero α] [monoid α] : has_zero (associates α) := ⟨⟦ 0 ⟧⟩
instance [has_zero α] [monoid α] : has_top (associates α) := ⟨0⟩
section monoid_with_zero
variables [monoid_with_zero α]
@[simp] theorem mk_eq_zero {a : α} : associates.mk a = 0 ↔ a = 0 :=
⟨assume h, (associated_zero_iff_eq_zero a).1 $ quotient.exact h, assume h, h.symm ▸ rfl⟩
theorem mk_ne_zero {a : α} : associates.mk a ≠ 0 ↔ a ≠ 0 :=
not_congr mk_eq_zero
instance [nontrivial α] : nontrivial (associates α) :=
⟨⟨0, 1,
assume h,
have (0 : α) ~ᵤ 1, from quotient.exact h,
have (0 : α) = 1, from ((associated_zero_iff_eq_zero 1).1 this.symm).symm,
zero_ne_one this⟩⟩
lemma exists_non_zero_rep {a : associates α} : a ≠ 0 → ∃ a0 : α, a0 ≠ 0 ∧ associates.mk a0 = a :=
quotient.induction_on a (λ b nz, ⟨b, mt (congr_arg quotient.mk) nz, rfl⟩)
end monoid_with_zero
section comm_monoid_with_zero
variables [comm_monoid_with_zero α]
instance : comm_monoid_with_zero (associates α) :=
{ zero_mul := by { rintro ⟨a⟩, show associates.mk (0 * a) = associates.mk 0, rw [zero_mul] },
mul_zero := by { rintro ⟨a⟩, show associates.mk (a * 0) = associates.mk 0, rw [mul_zero] },
.. associates.comm_monoid, .. associates.has_zero }
instance : order_top (associates α) :=
{ top := 0,
le_top := assume a, ⟨0, (mul_zero a).symm⟩ }
instance : bounded_order (associates α) :=
{ .. associates.order_top,
.. associates.order_bot }
instance [decidable_rel ((∣) : α → α → Prop)] :
decidable_rel ((∣) : associates α → associates α → Prop) :=
λ a b, quotient.rec_on_subsingleton₂ a b (λ a b, decidable_of_iff' _ mk_dvd_mk)
lemma prime.le_or_le {p : associates α} (hp : prime p) {a b : associates α} (h : p ≤ a * b) :
p ≤ a ∨ p ≤ b :=
hp.2.2 a b h
lemma prime_mk (p : α) : prime (associates.mk p) ↔ _root_.prime p :=
begin
rw [prime, _root_.prime, forall_associated],
transitivity,
{ apply and_congr, refl,
apply and_congr, refl,
apply forall_congr, assume a,
exact forall_associated },
apply and_congr mk_ne_zero,
apply and_congr,
{ rw [is_unit_mk], },
refine forall₂_congr (λ a b, _),
rw [mk_mul_mk, mk_dvd_mk, mk_dvd_mk, mk_dvd_mk],
end
theorem irreducible_mk (a : α) : irreducible (associates.mk a) ↔ irreducible a :=
begin
simp only [irreducible_iff, is_unit_mk],
apply and_congr iff.rfl,
split,
{ rintro h x y rfl,
simpa [is_unit_mk] using h (associates.mk x) (associates.mk y) rfl },
{ intros h x y,
refine quotient.induction_on₂ x y (assume x y a_eq, _),
rcases quotient.exact a_eq.symm with ⟨u, a_eq⟩,
rw mul_assoc at a_eq,
show is_unit (associates.mk x) ∨ is_unit (associates.mk y),
simpa [is_unit_mk] using h _ _ a_eq.symm }
end
theorem mk_dvd_not_unit_mk_iff {a b : α} :
dvd_not_unit (associates.mk a) (associates.mk b) ↔
dvd_not_unit a b :=
begin
rw [dvd_not_unit, dvd_not_unit, mk_ne_zero],
apply and_congr_right, intro ane0,
split,
{ contrapose!, rw forall_associated,
intros h x hx hbax,
rw [mk_mul_mk, mk_eq_mk_iff_associated] at hbax,
cases hbax with u hu,
apply h (x * ↑u⁻¹),
{ rw is_unit_mk at hx,
rw associated.is_unit_iff,
apply hx,
use u,
simp, },
simp [← mul_assoc, ← hu] },
{ rintro ⟨x, ⟨hx, rfl⟩⟩,
use associates.mk x,
simp [is_unit_mk, mk_mul_mk, hx], }
end
theorem dvd_not_unit_of_lt {a b : associates α} (hlt : a < b) :
dvd_not_unit a b :=
begin
split, { rintro rfl, apply not_lt_of_le _ hlt, apply dvd_zero },
rcases hlt with ⟨⟨x, rfl⟩, ndvd⟩,
refine ⟨x, _, rfl⟩,
contrapose! ndvd,
rcases ndvd with ⟨u, rfl⟩,
simp,
end
theorem irreducible_iff_prime_iff :
(∀ a : α, irreducible a ↔ prime a) ↔ (∀ a : (associates α), irreducible a ↔ prime a) :=
by simp_rw [forall_associated, irreducible_mk, prime_mk]
end comm_monoid_with_zero
section cancel_comm_monoid_with_zero
variable [cancel_comm_monoid_with_zero α]
instance : partial_order (associates α) :=
{ le_antisymm := λ a' b', quotient.induction_on₂ a' b' (λ a b hab hba,
quot.sound $ associated_of_dvd_dvd (dvd_of_mk_le_mk hab) (dvd_of_mk_le_mk hba))
.. associates.preorder }
instance : ordered_comm_monoid (associates α) :=
{ mul_le_mul_left := λ a b ⟨d, hd⟩ c, hd.symm ▸ mul_assoc c a d ▸ le_mul_right,
..associates.comm_monoid,
..associates.partial_order}
instance : no_zero_divisors (associates α) :=
⟨λ x y,
(quotient.induction_on₂ x y $ assume a b h,
have a * b = 0, from (associated_zero_iff_eq_zero _).1 (quotient.exact h),
have a = 0 ∨ b = 0, from mul_eq_zero.1 this,
this.imp (assume h, h.symm ▸ rfl) (assume h, h.symm ▸ rfl))⟩
lemma eq_of_mul_eq_mul_left :
∀(a b c : associates α), a ≠ 0 → a * b = a * c → b = c :=
begin
rintros ⟨a⟩ ⟨b⟩ ⟨c⟩ ha h,
rcases quotient.exact' h with ⟨u, hu⟩,
have hu : a * (b * ↑u) = a * c, { rwa [← mul_assoc] },
exact quotient.sound' ⟨u, mul_left_cancel₀ (mk_ne_zero.1 ha) hu⟩
end
lemma eq_of_mul_eq_mul_right :
∀(a b c : associates α), b ≠ 0 → a * b = c * b → a = c :=
λ a b c bne0, (mul_comm b a) ▸ (mul_comm b c) ▸ (eq_of_mul_eq_mul_left b a c bne0)
lemma le_of_mul_le_mul_left (a b c : associates α) (ha : a ≠ 0) :
a * b ≤ a * c → b ≤ c
| ⟨d, hd⟩ := ⟨d, eq_of_mul_eq_mul_left a _ _ ha $ by rwa ← mul_assoc⟩
lemma one_or_eq_of_le_of_prime :
∀(p m : associates α), prime p → m ≤ p → (m = 1 ∨ m = p)
| _ m ⟨hp0, hp1, h⟩ ⟨d, rfl⟩ :=
match h m d dvd_rfl with
| or.inl h := classical.by_cases (assume : m = 0, by simp [this]) $
assume : m ≠ 0,
have m * d ≤ m * 1, by simpa using h,
have d ≤ 1, from associates.le_of_mul_le_mul_left m d 1 ‹m ≠ 0› this,
have d = 1, from bot_unique this,
by simp [this]
| or.inr h := classical.by_cases (assume : d = 0, by simp [this] at hp0; contradiction) $
assume : d ≠ 0,
have d * m ≤ d * 1, by simpa [mul_comm] using h,
or.inl $ bot_unique $ associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this
end
instance : cancel_comm_monoid_with_zero (associates α) :=
{ mul_left_cancel_of_ne_zero := eq_of_mul_eq_mul_left,
mul_right_cancel_of_ne_zero := eq_of_mul_eq_mul_right,
.. (infer_instance : comm_monoid_with_zero (associates α)) }
instance : canonically_ordered_monoid (associates α) :=
{ exists_mul_of_le := λ a b, id,
le_self_mul := λ a b, ⟨b, rfl⟩,
..associates.cancel_comm_monoid_with_zero,
..associates.bounded_order,
..associates.ordered_comm_monoid}
theorem dvd_not_unit_iff_lt {a b : associates α} :
dvd_not_unit a b ↔ a < b :=
dvd_and_not_dvd_iff.symm
lemma le_one_iff {p : associates α} : p ≤ 1 ↔ p = 1 :=
by rw [← associates.bot_eq_one, le_bot_iff]
end cancel_comm_monoid_with_zero
end associates
section comm_monoid_with_zero
lemma dvd_not_unit.is_unit_of_irreducible_right [comm_monoid_with_zero α] {p q : α}
(h : dvd_not_unit p q) (hq : irreducible q) : is_unit p :=
begin
obtain ⟨hp', x, hx, hx'⟩ := h,
exact or.resolve_right ((irreducible_iff.1 hq).right p x hx') hx
end
lemma not_irreducible_of_not_unit_dvd_not_unit [comm_monoid_with_zero α] {p q : α}
(hp : ¬is_unit p) (h : dvd_not_unit p q) : ¬ irreducible q :=
mt h.is_unit_of_irreducible_right hp
lemma dvd_not_unit.not_unit [comm_monoid_with_zero α] {p q : α}
(hp : dvd_not_unit p q) : ¬ is_unit q :=
begin
obtain ⟨-, x, hx, rfl⟩ := hp,
exact λ hc, hx (is_unit_iff_dvd_one.mpr (dvd_of_mul_left_dvd (is_unit_iff_dvd_one.mp hc))),
end
lemma dvd_not_unit_of_dvd_not_unit_associated [comm_monoid_with_zero α]
[nontrivial α] {p q r : α} (h : dvd_not_unit p q) (h' : associated q r) : dvd_not_unit p r :=
begin
obtain ⟨u, rfl⟩ := associated.symm h',
obtain ⟨hp, x, hx⟩ := h,
refine ⟨hp, x * ↑(u⁻¹), dvd_not_unit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, _⟩,
rw [← mul_assoc, ← hx.right, mul_assoc, units.mul_inv, mul_one]
end
end comm_monoid_with_zero
section cancel_comm_monoid_with_zero
lemma is_unit_of_associated_mul [cancel_comm_monoid_with_zero α]
{p b : α} (h : associated (p * b) p) (hp : p ≠ 0) : is_unit b :=
begin
cases h with a ha,
refine is_unit_of_mul_eq_one b a ((mul_right_inj' hp).mp _),
rwa [← mul_assoc, mul_one],
end
lemma associates.is_atom_iff [cancel_comm_monoid_with_zero α] {p : associates α} (h₁ : p ≠ 0) :
is_atom p ↔ irreducible p :=
⟨λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one] using hp.1,
λ a b h, (hp.le_iff.mp ⟨_, h⟩).cases_on
(λ ha, or.inl (a.is_unit_iff_eq_one.mpr ha))
(λ ha, or.inr (show is_unit b, by {rw ha at h, apply is_unit_of_associated_mul
(show associated (p * b) p, by conv_rhs {rw h}) h₁ }))⟩,
λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one, associates.bot_eq_one] using hp.1,
λ b ⟨⟨a, hab⟩, hb⟩, (hp.is_unit_or_is_unit hab).cases_on
(λ hb, show b = ⊥, by rwa [associates.is_unit_iff_eq_one, ← associates.bot_eq_one] at hb)
(λ ha, absurd (show p ∣ b, from ⟨(ha.unit⁻¹ : units _), by simp [hab]; rw mul_assoc;
rw is_unit.mul_coe_inv ha; rw mul_one⟩) hb)⟩⟩
lemma dvd_not_unit.not_associated [cancel_comm_monoid_with_zero α] {p q : α}
(h : dvd_not_unit p q) : ¬ associated p q :=
begin
rintro ⟨a, rfl⟩,
obtain ⟨hp, x, hx, hx'⟩ := h,
rcases (mul_right_inj' hp).mp hx' with rfl,
exact hx a.is_unit,
end
lemma dvd_not_unit.ne [cancel_comm_monoid_with_zero α] {p q : α}
(h : dvd_not_unit p q) : p ≠ q :=
begin
by_contra hcontra,
obtain ⟨hp, x, hx', hx''⟩ := h,
conv_lhs at hx'' {rw [← hcontra, ← mul_one p]},
rw (mul_left_cancel₀ hp hx'').symm at hx',
exact hx' is_unit_one,
end
lemma pow_injective_of_not_unit [cancel_comm_monoid_with_zero α] {q : α}
(hq : ¬ is_unit q) (hq' : q ≠ 0): function.injective (λ (n : ℕ), q^n) :=
begin
refine injective_of_lt_imp_ne (λ n m h, dvd_not_unit.ne ⟨pow_ne_zero n hq', q^(m - n), _, _⟩),
{ exact not_is_unit_of_not_is_unit_dvd hq (dvd_pow (dvd_refl _) (nat.sub_pos_of_lt h).ne') },
{ exact (pow_mul_pow_sub q h.le).symm }
end
lemma dvd_prime_pow [cancel_comm_monoid_with_zero α] {p q : α} (hp : prime p) (n : ℕ) :
q ∣ p^n ↔ ∃ i ≤ n, associated q (p ^ i) :=
begin
induction n with n ih generalizing q,
{ simp [← is_unit_iff_dvd_one, associated_one_iff_is_unit] },
refine ⟨λ h, _, λ ⟨i, hi, hq⟩, hq.dvd.trans (pow_dvd_pow p hi)⟩,
rw pow_succ at h,
rcases hp.left_dvd_or_dvd_right_of_dvd_mul h with (⟨q, rfl⟩ | hno),
{ rw [mul_dvd_mul_iff_left hp.ne_zero, ih] at h,
rcases h with ⟨i, hi, hq⟩,
refine ⟨i + 1, nat.succ_le_succ hi, (hq.mul_left p).trans _⟩,
rw pow_succ },
{ obtain ⟨i, hi, hq⟩ := ih.mp hno,
exact ⟨i, hi.trans n.le_succ, hq⟩ }
end
end cancel_comm_monoid_with_zero
|