Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 37,518 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Jens Wagemaker
-/
import algebra.divisibility
import algebra.group_power.lemmas
import algebra.invertible
import order.atoms

/-!
# Associated, prime, and irreducible elements.
-/

variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}

section prime
variables [comm_monoid_with_zero α]

/-- prime element of a `comm_monoid_with_zero` -/
def prime (p : α) : Prop :=
p ≠ 0 ∧ ¬ is_unit p(a b, pa * bpapb)

namespace prime
variables {p : α} (hp : prime p)
include hp

lemma ne_zero : p0 :=
hp.1

lemma not_unit : ¬ is_unit p :=
hp.2.1

lemma not_dvd_one : ¬ p1 :=
mt (is_unit_of_dvd_one _) hp.not_unit

lemma ne_one : p1 :=
λ h, hp.2.1 (h.symm ▸ is_unit_one)

lemma dvd_or_dvd (hp : prime p) {a b : α} (h : pa * b) :
  p ∣ apb :=
hp.2.2 a b h

lemma dvd_of_dvd_pow (hp : prime p) {a : α} {n :} (h : pa^n) :
  p ∣ a :=
begin
  induction n with n ih,
  { rw pow_zero at h,
    have := is_unit_of_dvd_one _ h,
    have := not_unit hp,
    contradiction },
  rw pow_succ at h,
  cases dvd_or_dvd hp h with dvd_a dvd_pow,
  { assumption },
  exact ih dvd_pow
end

end prime

@[simp] lemma not_prime_zero : ¬ prime (0 : α) :=
λ h, h.ne_zero rfl

@[simp] lemma not_prime_one : ¬ prime (1 : α) :=
λ h, h.not_unit is_unit_one

section map
variables [comm_monoid_with_zero β] {F : Type*} {G : Type*}
  [monoid_with_zero_hom_class F α β] [mul_hom_class G β α] (f : F) (g : G) {p : α}

lemma comap_prime (hinv :a, g (f a : β) = a) (hp : prime (f p)) : prime p :=
⟨ λ h, hp.1 $ by simp [h],  λ h, hp.2.1 $ h.map f,  λ a b h, by
  { refine (hp.2.2 (f a) (f b) $ by { convert map_dvd f h, simp }).imp _ _;
    { intro h, convert ← map_dvd g h; apply hinv } } ⟩

lemma mul_equiv.prime_iff (e : α ≃* β) : prime p ↔ prime (e p) :=
⟨ λ h, comap_prime e.symm e (λ a, by simp) $ (e.symm_apply_apply p).substr h,
  comap_prime e e.symm (λ a, by simp) ⟩

end map

end prime

lemma prime.left_dvd_or_dvd_right_of_dvd_mul [cancel_comm_monoid_with_zero α] {p : α}
  (hp : prime p) {a b : α} : a ∣ p * b → p ∣ a ∨ a ∣ b :=
begin
  rintro ⟨c, hc⟩,
  rcases hp.2.2 a c (hc ▸ dvd_mul_right _ _) with h | ⟨x, rfl⟩,
  { exact or.inl h },
  { rw [mul_left_comm, mul_right_inj' hp.ne_zero] at hc,
    exact or.inr (hc.symm ▸ dvd_mul_right _ _) }
end

lemma prime.pow_dvd_of_dvd_mul_left
  [cancel_comm_monoid_with_zero α]
  {p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ a) (h' : p ^ n ∣ a * b) : p ^ n ∣ b :=
begin
  induction n with n ih,
  { rw pow_zero, exact one_dvd b },
  { obtain ⟨c, rfl⟩ := ih (dvd_trans (pow_dvd_pow p n.le_succ) h'),
    rw pow_succ',
    apply mul_dvd_mul_left _ ((hp.dvd_or_dvd _).resolve_left h),
    rwa [←mul_dvd_mul_iff_left (pow_ne_zero n hp.ne_zero), ←pow_succ', mul_left_comm] }
end

lemma prime.pow_dvd_of_dvd_mul_right
  [cancel_comm_monoid_with_zero α]
  {p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ b) (h' : p ^ n ∣ a * b) : p ^ n ∣ a :=
by { rw [mul_comm] at h', exact hp.pow_dvd_of_dvd_mul_left n h h' }

lemma prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd [cancel_comm_monoid_with_zero α]
  {p a b : α} {n : ℕ} (hp : prime p) (hpow : p ^ n.succ ∣ a ^ n.succ * b ^ n)
  (hb : ¬ p ^ 2 ∣ b) : p ∣ a :=
begin
  -- Suppose `p ∣ b`, write `b = p * x` and `hy : a ^ n.succ * b ^ n = p ^ n.succ * y`.
  cases (hp.dvd_or_dvd ((dvd_pow_self p (nat.succ_ne_zero n)).trans hpow)) with H hbdiv,
  { exact hp.dvd_of_dvd_pow H },
  obtain ⟨x, rfl⟩ := hp.dvd_of_dvd_pow hbdiv,
  obtain ⟨y, hy⟩ := hpow,
  -- Then we can divide out a common factor of `p ^ n` from the equation `hy`.
  have : a ^ n.succ * x ^ n = p * y,
  { refine mul_left_cancel(pow_ne_zero n hp.ne_zero) _,
    rw [mul_assoc _ p,pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ),
      mul_comm _ (p ^ n), mul_assoc] },
  -- So `p ∣ a` (and we're done) or `px`, which can't be the case since it implies `p^2 ∣ b`.
  refine hp.dvd_of_dvd_pow ((hp.dvd_or_dvd ⟨_, this⟩).resolve_right (λ hdvdx, hb _)),
  obtain ⟨z, rfl⟩ := hp.dvd_of_dvd_pow hdvdx,
  rw [pow_two, ← mul_assoc],
  exact dvd_mul_right _ _,
end

/-- `irreducible p` states that `p` is non-unit and only factors into units.

We explicitly avoid stating that `p` is non-zero, this would require a semiring. Assuming only a
monoid allows us to reuse irreducible for associated elements.
-/
structure irreducible [monoid α] (p : α) : Prop :=
(not_unit : ¬ is_unit p)
(is_unit_or_is_unit' :a b, p = a * bis_unit ais_unit b)

namespace irreducible

lemma not_dvd_one [comm_monoid α] {p : α} (hp : irreducible p) : ¬ p1 :=
mt (is_unit_of_dvd_one _) hp.not_unit

lemma is_unit_or_is_unit [monoid α] {p : α} (hp : irreducible p) {a b : α} (h : p = a * b) :
  is_unit ais_unit b :=
hp.is_unit_or_is_unit' a b h

end irreducible

lemma irreducible_iff [monoid α] {p : α} :
  irreducible p ↔ ¬ is_unit p ∧ ∀a b, p = a * b → is_unit a ∨ is_unit b :=
⟨λ h, ⟨h.1, h.2⟩, λ h, ⟨h.1, h.2⟩⟩

@[simp] theorem not_irreducible_one [monoid α] : ¬ irreducible (1 : α) :=
by simp [irreducible_iff]

theorem irreducible.ne_one [monoid α] : ∀ {p:α}, irreducible p → p ≠ 1
| _ hp rfl := not_irreducible_one hp

@[simp] theorem not_irreducible_zero [monoid_with_zero α] : ¬ irreducible (0 : α)
| ⟨hn0, h⟩ := have is_unit (0:α) ∨ is_unit (0:α), from h 0 0 ((mul_zero 0).symm),
  this.elim hn0 hn0

theorem irreducible.ne_zero [monoid_with_zero α] : ∀ {p:α}, irreducible p → p ≠ 0
| _ hp rfl := not_irreducible_zero hp

theorem of_irreducible_mul {α} [monoid α] {x y : α} :
  irreducible (x * y) → is_unit x ∨ is_unit y
| ⟨_, h⟩ := h _ _ rfl

theorem of_irreducible_pow {α} [monoid α] {x : α} {n : ℕ} (hn : n ≠ 1) :
  irreducible (x ^ n) → is_unit x :=
begin
  obtain hn|hn := hn.lt_or_lt,
  { simp only [nat.lt_one_iff.mp hn, is_empty.forall_iff, not_irreducible_one, pow_zero] },
  intro h,
  obtain ⟨k, rfl⟩ := nat.exists_eq_add_of_lt hn,
  rw [pow_succ, add_comm] at h,
  exact (or_iff_left_of_imp ((is_unit_pos_pow_iff (nat.succ_pos _)).mp)).mp (of_irreducible_mul h)
end

theorem irreducible_or_factor {α} [monoid α] (x : α) (h : ¬ is_unit x) :
  irreducible x ∨ ∃ a b, ¬ is_unit a ∧ ¬ is_unit b ∧ a * b = x :=
begin
  haveI := classical.dec,
  refine or_iff_not_imp_right.2 (λ H, _),
  simp [h, irreducible_iff] at H ⊢,
  refine λ a b h, classical.by_contradiction $ λ o, _,
  simp [not_or_distrib] at o,
  exact H _ o.1 _ o.2 h.symm
end

protected lemma prime.irreducible [cancel_comm_monoid_with_zero α] {p : α} (hp : prime p) :
  irreducible p :=
⟨hp.not_unit, λ a b hab,
  (show a * b ∣ a ∨ a * b ∣ b, from hab ▸ hp.dvd_or_dvd (hab ▸ dvd_rfl)).elim
    (λ ⟨x, hx⟩, or.inr (is_unit_iff_dvd_one.2
      ⟨x, mul_right_cancel₀ (show a ≠ 0, from λ h, by simp [*, prime] at *)
        $ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩))
    (λ ⟨x, hx⟩, or.inl (is_unit_iff_dvd_one.2
      ⟨x, mul_right_cancel₀ (show b ≠ 0, from λ h, by simp [*, prime] at *)
        $ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩))⟩

lemma succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul [cancel_comm_monoid_with_zero α]
  {p : α} (hp : prime p) {a b : α} {k l : ℕ} :
  p ^ k ∣ a → p ^ l ∣ b → p ^ ((k + l) + 1) ∣ a * b → p ^ (k + 1) ∣ a ∨ p ^ (l + 1) ∣ b :=
λ ⟨x, hx⟩ ⟨y, hy⟩ ⟨z, hz⟩,
have h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z),
  by simpa [mul_comm, pow_add, hx, hy, mul_assoc, mul_left_comm] using hz,
have hp0: p ^ (k + l) ≠ 0, from pow_ne_zero _ hp.ne_zero,
have hpd : p ∣ x * y, from ⟨z, by rwa [mul_right_inj' hp0] at h,
(hp.dvd_or_dvd hpd).elim
  (λ ⟨d, hd⟩, or.inl ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc])
  (λ ⟨d, hd⟩, or.inr ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc])

/-- If `p` and `q` are irreducible, then `p ∣ q` implies `q ∣ p`. -/
lemma irreducible.dvd_symm [monoid α] {p q : α}
  (hp : irreducible p) (hq : irreducible q) : pqqp :=
begin
  unfreezingI { rintrosq', rfl⟩ },
  rw is_unit.mul_right_dvd (or.resolve_left (of_irreducible_mul hq) hp.not_unit),
end

lemma irreducible.dvd_comm [monoid α] {p q : α}
  (hp : irreducible p) (hq : irreducible q) : p ∣ q ↔ q ∣ p :=
⟨hp.dvd_symm hq, hq.dvd_symm hp⟩

section
variables [monoid α]

lemma irreducible_units_mul (a : αˣ) (b : α) : irreducible (↑a * b) ↔ irreducible b :=
begin
  simp only [irreducible_iff, units.is_unit_units_mul, and.congr_right_iff],
  refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩,
  { rw [←a.is_unit_units_mul],
    apply h,
    rw [mul_assoc, ←HAB] },
  { rw [←(a⁻¹).is_unit_units_mul],
    apply h,
    rw [mul_assoc, ←HAB, units.inv_mul_cancel_left] },
end

lemma irreducible_is_unit_mul {a b : α} (h : is_unit a) : irreducible (a * b) ↔ irreducible b :=
let ⟨a, ha⟩ := h in ha ▸ irreducible_units_mul a b

lemma irreducible_mul_units (a : αˣ) (b : α) : irreducible (b * ↑a) ↔ irreducible b :=
begin
  simp only [irreducible_iff, units.is_unit_mul_units, and.congr_right_iff],
  refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩,
  { rw [←units.is_unit_mul_units B a],
    apply h,
    rw [←mul_assoc, ←HAB] },
  { rw [←units.is_unit_mul_units B a⁻¹],
    apply h,
    rw [←mul_assoc, ←HAB, units.mul_inv_cancel_right] },
end

lemma irreducible_mul_is_unit {a b : α} (h : is_unit a) : irreducible (b * a) ↔ irreducible b :=
let ⟨a, ha⟩ := h in ha ▸ irreducible_mul_units a b

lemma irreducible_mul_iff {a b : α} :
  irreducible (a * b) ↔ (irreducible a ∧ is_unit b) ∨ (irreducible b ∧ is_unit a) :=
begin
  split,
  { refine λ h, or.imp (λ h',_, h'⟩) (λ h',_, h'⟩) (h.is_unit_or_is_unit rfl).symm,
    { rwa [irreducible_mul_is_unit h'] at h },
    { rwa [irreducible_is_unit_mul h'] at h } },
  { rintros (⟨ha, hb⟩|⟨hb, ha⟩),
    { rwa [irreducible_mul_is_unit hb] },
    { rwa [irreducible_is_unit_mul ha] } },
end

end

lemma pow_not_prime [cancel_comm_monoid_with_zero α] {x : α} {n : ℕ} (hn : n ≠ 1) :
  ¬ prime (x ^ n) :=
λ hp, hp.not_unit $ is_unit.pow _ $ of_irreducible_pow hn $ hp.irreducible

/-- Two elements of a `monoid` are `associated` if one of them is another one
multiplied by a unit on the right. -/
def associated [monoid α] (x y : α) : Prop := ∃u:αˣ, x * u = y

local infix ` ~ᵤ ` : 50 := associated

namespace associated

@[refl] protected theorem refl [monoid α] (x : α) : x ~ᵤ x := ⟨1, by simp⟩
instance [monoid α] : is_refl α associated := ⟨associated.refl⟩

@[symm] protected theorem symm [monoid α] : ∀{x y : α}, x ~ᵤ y → y ~ᵤ x
| x _ ⟨u, rfl⟩ := ⟨u⁻¹, by rw [mul_assoc, units.mul_inv, mul_one]⟩
instance [monoid α] : is_symm α associated := ⟨λ a b, associated.symm⟩

@[trans] protected theorem trans [monoid α] : ∀{x y z : α}, x ~ᵤ y → y ~ᵤ z → x ~ᵤ z
| x _ _ ⟨u, rfl⟩ ⟨v, rfl⟩ := ⟨u * v, by rw [units.coe_mul, mul_assoc]⟩
instance [monoid α] : is_trans α associated := ⟨λ a b c, associated.trans⟩

/-- The setoid of the relation `x ~ᵤ y` iff there is a unit `u` such that `x * u = y` -/
protected def setoid (α : Type*) [monoid α] : setoid α :=
{ r := associated, iseqv := ⟨associated.refl, λa b, associated.symm, λa b c, associated.trans⟩ }

end associated

local attribute [instance] associated.setoid

theorem unit_associated_one [monoid α] {u : αˣ} : (u : α) ~ᵤ 1 := ⟨u⁻¹, units.mul_inv u⟩

theorem associated_one_iff_is_unit [monoid α] {a : α} : (a : α) ~ᵤ 1 ↔ is_unit a :=
iff.intro
  (assume h, let ⟨c, h⟩ := h.symm in h ▸ ⟨c, (one_mul _).symm⟩)
  (assume ⟨c, h⟩, associated.symm ⟨c, by simp [h]⟩)

theorem associated_zero_iff_eq_zero [monoid_with_zero α] (a : α) : a ~ᵤ 0 ↔ a = 0 :=
iff.intro
  (assume h, let ⟨u, h⟩ := h.symm in by simpa using h.symm)
  (assume h, h ▸ associated.refl a)

theorem associated_one_of_mul_eq_one [comm_monoid α] {a : α} (b : α) (hab : a * b = 1) : a ~ᵤ 1 :=
show (units.mk_of_mul_eq_one a b hab : α) ~ᵤ 1, from unit_associated_one

theorem associated_one_of_associated_mul_one [comm_monoid α] {a b : α} :
  a * b ~ᵤ 1 → a ~ᵤ 1
| ⟨u, h⟩ := associated_one_of_mul_eq_one (b * u) $ by simpa [mul_assoc] using h

lemma associated_mul_unit_left {β : Type*} [monoid β] (a u : β) (hu : is_unit u) :
  associated (a * u) a :=
let ⟨u', hu:= hu inu'⁻¹, hu ▸ units.mul_inv_cancel_right _ _⟩

lemma associated_unit_mul_left {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) :
  associated (u * a) a :=
begin
  rw mul_comm,
  exact associated_mul_unit_left _ _ hu
end

lemma associated_mul_unit_right {β : Type*} [monoid β] (a u : β) (hu : is_unit u) :
  associated a (a * u) :=
(associated_mul_unit_left a u hu).symm

lemma associated_unit_mul_right {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) :
  associated a (u * a) :=
(associated_unit_mul_left a u hu).symm

lemma associated.mul_mul [comm_monoid α] {a₁ a₂ b₁ b₂ : α} :
  a₁ ~ᵤ b₁ → a₂ ~ᵤ b₂ → (a₁ * a₂) ~ᵤ (b₁ * b₂)
| ⟨c₁, h₁⟩ ⟨c₂, h₂⟩ := ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩

lemma associated.mul_left [comm_monoid α] (a : α) {b c : α} (h : b ~ᵤ c) :
  (a * b) ~ᵤ (a * c) :=
(associated.refl a).mul_mul h

lemma associated.mul_right [comm_monoid α] {a b : α} (h : a ~ᵤ b) (c : α) :
  (a * c) ~ᵤ (b * c) :=
h.mul_mul (associated.refl c)

lemma associated.pow_pow [comm_monoid α] {a b : α} {n : ℕ} (h : a ~ᵤ b) :
  a ^ n ~ᵤ b ^ n :=
begin
  induction n with n ih, { simp [h] },
  convert h.mul_mul ih;
    rw pow_succ
end

protected lemma associated.dvd [monoid α] {a b : α} : a ~ᵤ b → a ∣ b := λ ⟨u, hu⟩, ⟨u, hu.symm⟩

protected lemma associated.dvd_dvd [monoid α] {a b : α} (h : a ~ᵤ b) : a ∣ b ∧ b ∣ a :=
⟨h.dvd, h.symm.dvd⟩

theorem associated_of_dvd_dvd [cancel_monoid_with_zero α]
  {a b : α} (hab : a ∣ b) (hba : b ∣ a) : a ~ᵤ b :=
begin
  rcases hab with ⟨c, rfl⟩,
  rcases hba with ⟨d, a_eq⟩,
  by_cases ha0 : a = 0,
  { simp [*] at * },
  have hac0 : a * c ≠ 0,
  { intro con, rw [con, zero_mul] at a_eq, apply ha0 a_eq, },
  have : a * (c * d) =  a * 1 := by rw [← mul_assoc, ← a_eq, mul_one],
  have hcd : (c * d) = 1, from mul_left_cancel₀ ha0 this,
  have : a * c * (d * c) = a * c * 1 := by rw [← mul_assoc, ← a_eq, mul_one],
  have hdc : d * c = 1, from mul_left_cancel₀ hac0 this,
  exact ⟨⟨c, d, hcd, hdc⟩, rfl⟩
end

theorem dvd_dvd_iff_associated [cancel_monoid_with_zero α] {a b : α} : a ∣ b ∧ b ∣ a ↔ a ~ᵤ b :=
⟨λ ⟨h1, h2⟩, associated_of_dvd_dvd h1 h2, associated.dvd_dvd⟩

instance [cancel_monoid_with_zero α] [decidable_rel ((∣) : α → α → Prop)] :
  decidable_rel ((~ᵤ) : α → α → Prop) :=
λ a b, decidable_of_iff _ dvd_dvd_iff_associated

lemma associated.dvd_iff_dvd_left [monoid α] {a b c : α} (h : a ~ᵤ b) : a ∣ c ↔ b ∣ c :=
let ⟨u, hu⟩ := h in hu ▸ units.mul_right_dvd.symm

lemma associated.dvd_iff_dvd_right [monoid α] {a b c : α} (h : b ~ᵤ c) : a ∣ b ↔ a ∣ c :=
let ⟨u, hu⟩ := h in hu ▸ units.dvd_mul_right.symm

lemma associated.eq_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a = 0 ↔ b = 0 :=
⟨λ ha, let ⟨u, hu⟩ := h in by simp [hu.symm, ha],
  λ hb, let ⟨u, hu⟩ := h.symm in by simp [hu.symm, hb]⟩

lemma associated.ne_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a ≠ 0 ↔ b ≠ 0 :=
not_congr h.eq_zero_iff

protected lemma associated.prime [comm_monoid_with_zero α] {p q : α} (h : p ~ᵤ q) (hp : prime p) :
  prime q :=
⟨h.ne_zero_iff.1 hp.ne_zero,
  let ⟨u, hu⟩ := h in
    ⟨λ ⟨v, hv⟩, hp.not_unit ⟨v * u⁻¹, by simp [hv, hu.symm]⟩,
      hu ▸ by { simp [units.mul_right_dvd], intros a b, exact hp.dvd_or_dvd }⟩⟩

lemma irreducible.associated_of_dvd [cancel_monoid_with_zero α] {p q : α}
  (p_irr : irreducible p) (q_irr : irreducible q) (dvd : p ∣ q) : associated p q :=
associated_of_dvd_dvd dvd (p_irr.dvd_symm q_irr dvd)

lemma irreducible.dvd_irreducible_iff_associated [cancel_monoid_with_zero α]
  {p q : α} (pp : irreducible p) (qp : irreducible q) :
  p ∣ q ↔ associated p q :=
⟨irreducible.associated_of_dvd pp qp, associated.dvd⟩

lemma prime.associated_of_dvd [cancel_comm_monoid_with_zero α] {p q : α}
  (p_prime : prime p) (q_prime : prime q) (dvd : p ∣ q) : associated p q :=
p_prime.irreducible.associated_of_dvd q_prime.irreducible dvd

theorem prime.dvd_prime_iff_associated [cancel_comm_monoid_with_zero α]
  {p q : α} (pp : prime p) (qp : prime q) :
  p ∣ q ↔ associated p q :=
pp.irreducible.dvd_irreducible_iff_associated qp.irreducible
lemma associated.prime_iff [comm_monoid_with_zero α] {p q : α}
  (h : p ~ᵤ q) : prime p ↔ prime q :=
⟨h.prime, h.symm.prime⟩

protected lemma associated.is_unit [monoid α] {a b : α} (h :  a ~ᵤ b) : is_unit a → is_unit b :=
let ⟨u, hu⟩ := h in λ ⟨v, hv⟩, ⟨v * u, by simp [hv, hu.symm]⟩

lemma associated.is_unit_iff [monoid α] {a b : α} (h :  a ~ᵤ b) : is_unit a ↔ is_unit b :=
⟨h.is_unit, h.symm.is_unit⟩

protected lemma associated.irreducible [monoid α] {p q : α} (h : p ~ᵤ q)
  (hp : irreducible p) : irreducible q :=
⟨mt h.symm.is_unit hp.1,
  let ⟨u, hu⟩ := h in λ a b hab,
  have hpab : p = a * (b * (u⁻¹ : αˣ)),
    from calc p = (p * u) * (u ⁻¹ : αˣ) : by simp
      ... = _ : by rw hu; simp [hab, mul_assoc],
  (hp.is_unit_or_is_unit hpab).elim or.inl (λ ⟨v, hv⟩, or.inr ⟨v * u, by simp [hv]⟩)⟩

protected lemma associated.irreducible_iff [monoid α] {p q : α} (h : p ~ᵤ q) :
  irreducible p ↔ irreducible q :=
⟨h.irreducible, h.symm.irreducible⟩

lemma associated.of_mul_left [cancel_comm_monoid_with_zero α] {a b c d : α}
  (h : a * b ~ᵤ c * d) (h₁ : a ~ᵤ c) (ha : a ≠ 0) : b ~ᵤ d :=
let ⟨u, hu⟩ := h in let ⟨v, hv⟩ := associated.symm h₁ in
⟨u * (v : αˣ), mul_left_cancel₀ ha
  begin
    rw [← hv, mul_assoc c (v : α) d, mul_left_comm c, ← hu],
    simp [hv.symm, mul_assoc, mul_comm, mul_left_comm]
  end⟩

lemma associated.of_mul_right [cancel_comm_monoid_with_zero α] {a b c d : α} :
  a * b ~ᵤ c * d → b ~ᵤ d → b ≠ 0 → a ~ᵤ c :=
by rw [mul_comm a, mul_comm c]; exact associated.of_mul_left

lemma associated.of_pow_associated_of_prime [cancel_comm_monoid_with_zero α] {p₁ p₂ : α}
  {k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₁ : 0 < k₁) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) :
  p₁ ~ᵤ p₂ :=
begin
  have : p₁ ∣ p₂ ^ k₂,
  { rw ←h.dvd_iff_dvd_right,
    apply dvd_pow_self _ hk₁.ne' },
  rw ←hp.dvd_prime_iff_associated hp,
  exact hp.dvd_of_dvd_pow this,
end

lemma associated.of_pow_associated_of_prime' [cancel_comm_monoid_with_zero α] {p₁ p₂ : α}
  {k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₂ : 0 < k₂) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) :
  p₁ ~ᵤ p₂ :=
(h.symm.of_pow_associated_of_prime hp₂ hp₁ hk₂).symm


section unique_units
variables [monoid α] [unique αˣ]

lemma units_eq_one (u : αˣ) : u = 1 := subsingleton.elim u 1

theorem associated_iff_eq {x y : α} : x ~ᵤ y ↔ x = y :=
begin
  split,
  { rintro ⟨c, rfl⟩, rw [units_eq_one c, units.coe_one, mul_one] },
  { rintro rfl, refl },
end

theorem associated_eq_eq : (associated : α → α → Prop) = eq :=
by { ext, rw associated_iff_eq }

lemma prime_dvd_prime_iff_eq
  {M : Type*} [cancel_comm_monoid_with_zero M] [unique Mˣ] {p q : M} (pp : prime p) (qp : prime q) :
  p ∣ q ↔ p = q :=
by rw [pp.dvd_prime_iff_associated qp, ←associated_eq_eq]

end unique_units

/-- The quotient of a monoid by the `associated` relation. Two elements `x` and `y`
  are associated iff there is a unit `u` such that `x * u = y`. There is a natural
  monoid structure on `associates α`. -/
def associates (α : Type*) [monoid α] : Type* :=
quotient (associated.setoid α)

namespace associates
open associated

/-- The canonical quotient map from a monoid `α` into the `associates` of `α` -/
protected def mk {α : Type*} [monoid α] (a : α) : associates α :=
⟦ a ⟧

instance [monoid α] : inhabited (associates α) := ⟨⟦1⟧⟩

theorem mk_eq_mk_iff_associated [monoid α] {a b : α} :
  associates.mk a = associates.mk b ↔ a ~ᵤ b :=
iff.intro quotient.exact quot.sound

theorem quotient_mk_eq_mk [monoid α] (a : α) : ⟦ a ⟧ = associates.mk a := rfl

theorem quot_mk_eq_mk [monoid α] (a : α) : quot.mk setoid.r a = associates.mk a := rfl

theorem forall_associated [monoid α] {p : associates α → Prop} :
  (∀a, p a) ↔ (∀a, p (associates.mk a)) :=
iff.intro
  (assume h a, h _)
  (assume h a, quotient.induction_on a h)

theorem mk_surjective [monoid α] : function.surjective (@associates.mk α _) :=
forall_associated.2 (λ a, ⟨a, rfl⟩)

instance [monoid α] : has_one (associates α) := ⟨⟦ 1 ⟧⟩

@[simp] lemma mk_one [monoid α] : associates.mk (1 : α) = 1 := rfl

theorem one_eq_mk_one [monoid α] : (1 : associates α) = associates.mk 1 := rfl

instance [monoid α] : has_bot (associates α) := ⟨1⟩

lemma bot_eq_one [monoid α] : (⊥ : associates α) = 1 := rfl

lemma exists_rep [monoid α] (a : associates α) : ∃ a0 : α, associates.mk a0 = a :=
quot.exists_rep a

instance [monoid α] [subsingleton α] : unique (associates α) :=
{ default := 1,
  uniq := λ a, by { apply quotient.rec_on_subsingleton₂, intros a b, congr } }

lemma mk_injective [monoid α] [unique (units α)] : function.injective (@associates.mk α _) :=
λ a b h, associated_iff_eq.mp (associates.mk_eq_mk_iff_associated.mp h)

section comm_monoid
variable [comm_monoid α]

instance : has_mul (associates α) :=
⟨λa' b', quotient.lift_on₂ a' b' (λa b, ⟦ a * b ⟧) $
  assume a₁ a₂ b₁ b₂ ⟨c₁, h₁⟩ ⟨c₂, h₂⟩,
  quotient.sound $ ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩⟩

theorem mk_mul_mk {x y : α} : associates.mk x * associates.mk y = associates.mk (x * y) :=
rfl

instance : comm_monoid (associates α) :=
{ one       := 1,
  mul       := (*),
  mul_one   := assume a', quotient.induction_on a' $
    assume a, show ⟦a * 1⟧ = ⟦ a ⟧, by simp,
  one_mul   := assume a', quotient.induction_on a' $
    assume a, show ⟦1 * a⟧ = ⟦ a ⟧, by simp,
  mul_assoc := assume a' b' c', quotient.induction_ona' b' c' $
    assume a b c, show ⟦a * b * c⟧ = ⟦a * (b * c)⟧, by rw [mul_assoc],
  mul_comm  := assume a' b', quotient.induction_on₂ a' b' $
    assume a b, show ⟦a * b⟧ = ⟦b * a⟧, by rw [mul_comm] }

instance : preorder (associates α) :=
{ le := has_dvd.dvd,
  le_refl := dvd_refl,
  le_trans := λ a b c, dvd_trans}

/-- `associates.mk` as a `monoid_hom`. -/
protected def mk_monoid_hom : α →* (associates α) := ⟨associates.mk, mk_one, λ x y, mk_mul_mk⟩

@[simp] lemma mk_monoid_hom_apply (a : α) : associates.mk_monoid_hom a = associates.mk a := rfl

lemma associated_map_mk {f : associates α →* α}
  (hinv : function.right_inverse f associates.mk) (a : α) :
  a ~ᵤ f (associates.mk a) :=
associates.mk_eq_mk_iff_associated.1 (hinv (associates.mk a)).symm

lemma mk_pow (a : α) (n : ℕ) : associates.mk (a ^ n) = (associates.mk a) ^ n :=
by induction n; simp [*, pow_succ, associates.mk_mul_mk.symm]

lemma dvd_eq_le : ((∣) : associates α → associates α → Prop) = (≤) := rfl

theorem mul_eq_one_iff {x y : associates α} : x * y = 1 ↔ (x = 1 ∧ y = 1) :=
iff.intro
  (quotient.induction_on₂ x y $ assume a b h,
    have a * b ~ᵤ 1, from quotient.exact h,
    ⟨quotient.sound $ associated_one_of_associated_mul_one this,
      quotient.sound $ associated_one_of_associated_mul_one $ by rwa [mul_comm] at this⟩)
  (by simp {contextual := tt})

theorem units_eq_one (u : (associates α)ˣ) : u = 1 :=
units.ext (mul_eq_one_iff.1 u.val_inv).1

instance unique_units : unique ((associates α)ˣ) :=
{ default := 1, uniq := associates.units_eq_one }

theorem coe_unit_eq_one (u : (associates α)ˣ): (u : associates α) = 1 :=
by simp

theorem is_unit_iff_eq_one (a : associates α) : is_unit a ↔ a = 1 :=
iff.intro
  (assume ⟨u, h⟩, h ▸ coe_unit_eq_one _)
  (assume h, h.symm ▸ is_unit_one)

lemma is_unit_iff_eq_bot {a : associates α} : is_unit a ↔ a = ⊥ :=
by rw [associates.is_unit_iff_eq_one, bot_eq_one]

theorem is_unit_mk {a : α} : is_unit (associates.mk a) ↔ is_unit a :=
calc is_unit (associates.mk a) ↔ a ~ᵤ 1 :
    by rw [is_unit_iff_eq_one, one_eq_mk_one, mk_eq_mk_iff_associated]
  ... ↔ is_unit a : associated_one_iff_is_unit

section order

theorem mul_mono {a b c d : associates α} (h₁ : a ≤ b) (h₂ : c ≤ d) :
  a * c ≤ b * d :=
let ⟨x, hx⟩ := h₁, ⟨y, hy⟩ := h₂ in
⟨x * y, by simp [hx, hy, mul_comm, mul_assoc, mul_left_comm]⟩

theorem one_le {a : associates α} : 1 ≤ a :=
dvd.intro _ (one_mul a)

theorem le_mul_right {a b : associates α} : a ≤ a * b := ⟨b, rfl⟩

theorem le_mul_left {a b : associates α} : a ≤ b * a :=
by rw [mul_comm]; exact le_mul_right

instance : order_bot (associates α) :=
{ bot := 1,
  bot_le := assume a, one_le }

end order

theorem dvd_of_mk_le_mk {a b : α} : associates.mk a ≤ associates.mk b → a ∣ b
| ⟨c', hc'⟩ := (quotient.induction_on c' $ assume c hc,
    let ⟨d, hd:= (quotient.exact hc).symm in
    ⟨(↑d) * c,
      calc b = (a * c) *d : hd.symm
        ... = a * (d * c) : by ac_refl) hc'

theorem mk_le_mk_of_dvd {a b : α} : a ∣ b → associates.mk a ≤ associates.mk b :=
assume ⟨c, hc⟩, ⟨associates.mk c, by simp [hc]; refl⟩

theorem mk_le_mk_iff_dvd_iff {a b : α} : associates.mk a ≤ associates.mk b ↔ a ∣ b :=
iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd

theorem mk_dvd_mk {a b : α} : associates.mk a ∣ associates.mk b ↔ a ∣ b :=
iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd

end comm_monoid

instance [has_zero α] [monoid α] : has_zero (associates α) := ⟨⟦ 0 ⟧⟩
instance [has_zero α] [monoid α] : has_top (associates α) := ⟨0⟩

section monoid_with_zero
variables [monoid_with_zero α]

@[simp] theorem mk_eq_zero {a : α} : associates.mk a = 0 ↔ a = 0 :=
⟨assume h, (associated_zero_iff_eq_zero a).1 $ quotient.exact h, assume h, h.symm ▸ rfl⟩

theorem mk_ne_zero {a : α} : associates.mk a ≠ 0 ↔ a ≠ 0 :=
not_congr mk_eq_zero

instance [nontrivial α] : nontrivial (associates α) :=
⟨⟨0, 1,
assume h,
have (0 : α) ~ᵤ 1, from quotient.exact h,
have (0 : α) = 1, from ((associated_zero_iff_eq_zero 1).1 this.symm).symm,
zero_ne_one this⟩⟩

lemma exists_non_zero_rep {a : associates α} : a ≠ 0 → ∃ a0 : α, a0 ≠ 0 ∧ associates.mk a0 = a :=
quotient.induction_on a (λ b nz, ⟨b, mt (congr_arg quotient.mk) nz, rfl⟩)

end monoid_with_zero

section comm_monoid_with_zero

variables [comm_monoid_with_zero α]

instance : comm_monoid_with_zero (associates α) :=
{ zero_mul := by { rintro ⟨a⟩, show associates.mk (0 * a) = associates.mk 0, rw [zero_mul] },
  mul_zero := by { rintro ⟨a⟩, show associates.mk (a * 0) = associates.mk 0, rw [mul_zero] },
  .. associates.comm_monoid, .. associates.has_zero }

instance : order_top (associates α) :=
{ top := 0,
  le_top := assume a, ⟨0, (mul_zero a).symm⟩ }

instance : bounded_order (associates α) :=
{ .. associates.order_top,
  .. associates.order_bot }

instance [decidable_rel ((∣) : α → α → Prop)] :
  decidable_rel ((∣) : associates α → associates α → Prop) :=
λ a b, quotient.rec_on_subsingleton₂ a b (λ a b, decidable_of_iff' _ mk_dvd_mk)

lemma prime.le_or_le {p : associates α} (hp : prime p) {a b : associates α} (h : pa * b) :
  p ≤ apb :=
hp.2.2 a b h

lemma prime_mk (p : α) : prime (associates.mk p)_root_.prime p :=
begin
  rw [prime, _root_.prime, forall_associated],
  transitivity,
  { apply and_congr, refl,
    apply and_congr, refl,
    apply forall_congr, assume a,
    exact forall_associated },
  apply and_congr mk_ne_zero,
  apply and_congr,
  { rw [is_unit_mk], },
  refine forall_congr (λ a b, _),
  rw [mk_mul_mk, mk_dvd_mk, mk_dvd_mk, mk_dvd_mk],
end

theorem irreducible_mk (a : α) : irreducible (associates.mk a)irreducible a :=
begin
  simp only [irreducible_iff, is_unit_mk],
  apply and_congr iff.rfl,
  split,
  { rintro h x y rfl,
    simpa [is_unit_mk] using h (associates.mk x) (associates.mk y) rfl },
  { intros h x y,
    refine quotient.induction_onx y (assume x y a_eq, _),
    rcases quotient.exact a_eq.symm withu, a_eq,
    rw mul_assoc at a_eq,
    show is_unit (associates.mk x)is_unit (associates.mk y),
    simpa [is_unit_mk] using h _ _ a_eq.symm }
end

theorem mk_dvd_not_unit_mk_iff {a b : α} :
  dvd_not_unit (associates.mk a) (associates.mk b) ↔
  dvd_not_unit a b :=
begin
  rw [dvd_not_unit, dvd_not_unit, mk_ne_zero],
  apply and_congr_right, intro ane0,
  split,
  { contrapose!, rw forall_associated,
    intros h x hx hbax,
    rw [mk_mul_mk, mk_eq_mk_iff_associated] at hbax,
    cases hbax with u hu,
    apply h (x *u⁻¹),
    { rw is_unit_mk at hx,
      rw associated.is_unit_iff,
      apply hx,
      use u,
      simp, },
    simp [mul_assoc,hu] },
  { rintro ⟨x,hx, rfl⟩⟩,
    use associates.mk x,
    simp [is_unit_mk, mk_mul_mk, hx], }
end

theorem dvd_not_unit_of_lt {a b : associates α} (hlt : a < b) :
  dvd_not_unit a b :=
begin
  split, { rintro rfl, apply not_lt_of_le _ hlt, apply dvd_zero },
  rcases hlt with ⟨⟨x, rfl, ndvd,
  refine ⟨x, _, rfl,
  contrapose! ndvd,
  rcases ndvd withu, rfl,
  simp,
end

theorem irreducible_iff_prime_iff :
  (∀ a : α, irreducible aprime a)(a : (associates α), irreducible aprime a) :=
by simp_rw [forall_associated, irreducible_mk, prime_mk]

end comm_monoid_with_zero

section cancel_comm_monoid_with_zero
variable [cancel_comm_monoid_with_zero α]

instance : partial_order (associates α) :=
{ le_antisymm := λ a' b', quotient.induction_ona' b' (λ a b hab hba,
  quot.sound $ associated_of_dvd_dvd (dvd_of_mk_le_mk hab) (dvd_of_mk_le_mk hba))
  .. associates.preorder }

instance : ordered_comm_monoid (associates α) :=
{ mul_le_mul_left := λ a bd, hdc, hd.symmmul_assoc c a dle_mul_right,
  ..associates.comm_monoid,
  ..associates.partial_order}

instance : no_zero_divisors (associates α) :=
⟨λ x y,
  (quotient.induction_on₂ x y $ assume a b h,
    have a * b = 0, from (associated_zero_iff_eq_zero _).1 (quotient.exact h),
    have a = 0b = 0, from mul_eq_zero.1 this,
    this.imp (assume h, h.symmrfl) (assume h, h.symmrfl))⟩

lemma eq_of_mul_eq_mul_left :
  ∀(a b c : associates α), a0a * b = a * cb = c :=
begin
  rintros ⟨a⟩ ⟨b⟩ ⟨cha h,
  rcases quotient.exact' h with ⟨u, hu⟩,
  have hu : a * (b * ↑u) = a * c, { rwa [← mul_assoc] },
  exact quotient.sound'u, mul_left_cancel(mk_ne_zero.1 ha) hu⟩
end

lemma eq_of_mul_eq_mul_right :
  ∀(a b c : associates α), b0a * b = c * ba = c :=
λ a b c bne0, (mul_comm b a)(mul_comm b c)(eq_of_mul_eq_mul_left b a c bne0)

lemma le_of_mul_le_mul_left (a b c : associates α) (ha : a0) :
  a * ba * cbc
| ⟨d, hd⟩ := ⟨d, eq_of_mul_eq_mul_left a _ _ ha $ by rwamul_assoc⟩

lemma one_or_eq_of_le_of_prime :
  ∀(p m : associates α), prime pmp(m = 1m = p)
| _ m ⟨hp0, hp1, h⟩ ⟨d, rfl:=
match h m d dvd_rfl with
| or.inl h := classical.by_cases (assume : m = 0, by simp [this]) $
  assume : m0,
  have m * dm * 1, by simpa using h,
  have d1, from associates.le_of_mul_le_mul_left m d 1m0this,
  have d = 1, from bot_unique this,
  by simp [this]
| or.inr h := classical.by_cases (assume : d = 0, by simp [this] at hp0; contradiction) $
  assume : d ≠ 0,
  have d * m ≤ d * 1, by simpa [mul_comm] using h,
  or.inl $ bot_unique $ associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this
end

instance : cancel_comm_monoid_with_zero (associates α) :=
{ mul_left_cancel_of_ne_zero := eq_of_mul_eq_mul_left,
  mul_right_cancel_of_ne_zero := eq_of_mul_eq_mul_right,
  .. (infer_instance : comm_monoid_with_zero (associates α)) }

instance : canonically_ordered_monoid (associates α) :=
{ exists_mul_of_le := λ a b, id,
  le_self_mul := λ a b, ⟨b, rfl⟩,
  ..associates.cancel_comm_monoid_with_zero,
  ..associates.bounded_order,
  ..associates.ordered_comm_monoid}

theorem dvd_not_unit_iff_lt {a b : associates α} :
  dvd_not_unit a b ↔ a < b :=
dvd_and_not_dvd_iff.symm

lemma le_one_iff {p : associates α} : p ≤ 1 ↔ p = 1 :=
by rw [← associates.bot_eq_one, le_bot_iff]

end cancel_comm_monoid_with_zero

end associates

section comm_monoid_with_zero

lemma dvd_not_unit.is_unit_of_irreducible_right [comm_monoid_with_zero α] {p q : α}
  (h : dvd_not_unit p q) (hq : irreducible q) : is_unit p :=
begin
  obtain ⟨hp', x, hx, hx'⟩ := h,
  exact or.resolve_right ((irreducible_iff.1 hq).right p x hx') hx
end

lemma not_irreducible_of_not_unit_dvd_not_unit [comm_monoid_with_zero α] {p q : α}
  (hp : ¬is_unit p) (h : dvd_not_unit p q) : ¬ irreducible q :=
mt h.is_unit_of_irreducible_right hp

lemma dvd_not_unit.not_unit [comm_monoid_with_zero α] {p q : α}
  (hp : dvd_not_unit p q) : ¬ is_unit q :=
begin
  obtain ⟨-, x, hx, rfl⟩ := hp,
  exact λ hc, hx (is_unit_iff_dvd_one.mpr (dvd_of_mul_left_dvd (is_unit_iff_dvd_one.mp hc))),
end

lemma dvd_not_unit_of_dvd_not_unit_associated [comm_monoid_with_zero α]
  [nontrivial α] {p q r : α} (h : dvd_not_unit p q) (h' : associated q r) : dvd_not_unit p r :=
begin
  obtain ⟨u, rfl⟩ := associated.symm h',
  obtain ⟨hp, x, hx⟩ := h,
  refine ⟨hp, x * ↑(u⁻¹), dvd_not_unit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, _⟩,
  rw [← mul_assoc, ← hx.right, mul_assoc, units.mul_inv, mul_one]
end

end comm_monoid_with_zero

section cancel_comm_monoid_with_zero

lemma is_unit_of_associated_mul [cancel_comm_monoid_with_zero α]
  {p b : α} (h : associated (p * b) p) (hp : p ≠ 0) : is_unit b :=
begin
  cases h with a ha,
  refine is_unit_of_mul_eq_one b a ((mul_right_inj' hp).mp _),
  rwa [← mul_assoc, mul_one],
end

lemma associates.is_atom_iff [cancel_comm_monoid_with_zero α] {p : associates α} (h₁ : p ≠ 0) :
  is_atom p ↔ irreducible p :=
⟨λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one] using hp.1,
        λ a b h, (hp.le_iff.mp ⟨_, h⟩).cases_on
          (λ ha, or.inl (a.is_unit_iff_eq_one.mpr ha))
          (λ ha, or.inr (show is_unit b, by {rw ha at h, apply is_unit_of_associated_mul
          (show associated (p * b) p, by conv_rhs {rw h}) h₁ }))⟩,
 λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one, associates.bot_eq_one] using hp.1,
        λ b ⟨⟨a, hab⟩, hb⟩, (hp.is_unit_or_is_unit hab).cases_on
          (λ hb, show b = ⊥, by rwa [associates.is_unit_iff_eq_one, ← associates.bot_eq_one] at hb)
          (λ ha, absurd (show p ∣ b, from ⟨(ha.unit⁻¹ : units _), by simp [hab]; rw mul_assoc;
            rw is_unit.mul_coe_inv ha; rw mul_one⟩) hb)⟩⟩

lemma dvd_not_unit.not_associated [cancel_comm_monoid_with_zero α] {p q : α}
  (h : dvd_not_unit p q) : ¬ associated p q :=
begin
  rintro ⟨a, rfl⟩,
  obtain ⟨hp, x, hx, hx'⟩ := h,
  rcases (mul_right_inj' hp).mp hx' with rfl,
  exact hx a.is_unit,
end

lemma dvd_not_unit.ne [cancel_comm_monoid_with_zero α] {p q : α}
  (h : dvd_not_unit p q) : p ≠ q :=
begin
  by_contra hcontra,
  obtain ⟨hp, x, hx', hx''⟩ := h,
  conv_lhs at hx'' {rw [← hcontra, ← mul_one p]},
  rw (mul_left_cancel₀ hp hx'').symm at hx',
  exact hx' is_unit_one,
end

lemma pow_injective_of_not_unit [cancel_comm_monoid_with_zero α] {q : α}
  (hq : ¬ is_unit q) (hq' : q ≠ 0): function.injective (λ (n : ℕ), q^n) :=
begin
  refine injective_of_lt_imp_ne (λ n m h, dvd_not_unit.ne ⟨pow_ne_zero n hq', q^(m - n), _, _⟩),
  { exact not_is_unit_of_not_is_unit_dvd hq (dvd_pow (dvd_refl _) (nat.sub_pos_of_lt h).ne') },
  { exact (pow_mul_pow_sub q h.le).symm  }
end

lemma dvd_prime_pow [cancel_comm_monoid_with_zero α] {p q : α} (hp : prime p) (n : ℕ) :
  q ∣ p^n ↔ ∃ i ≤ n, associated q (p ^ i) :=
begin
  induction n with n ih generalizing q,
  { simp [← is_unit_iff_dvd_one, associated_one_iff_is_unit] },
  refine ⟨λ h, _, λ ⟨i, hi, hq⟩, hq.dvd.trans (pow_dvd_pow p hi)⟩,
  rw pow_succ at h,
  rcases hp.left_dvd_or_dvd_right_of_dvd_mul h with (⟨q, rfl⟩ | hno),
  { rw [mul_dvd_mul_iff_left hp.ne_zero, ih] at h,
    rcases h with ⟨i, hi, hq⟩,
    refine ⟨i + 1, nat.succ_le_succ hi, (hq.mul_left p).trans _⟩,
    rw pow_succ },
  { obtain ⟨i, hi, hq⟩ := ih.mp hno,
    exact ⟨i, hi.trans n.le_succ, hq⟩ }
end

end cancel_comm_monoid_with_zero