Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,300 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Joey van Langen, Casper Putz
-/
import algebra.hom.iterate
import data.int.modeq
import data.nat.choose.dvd
import data.nat.choose.sum
import data.zmod.defs
import group_theory.order_of_element
import ring_theory.nilpotent
/-!
# Characteristic of semirings
-/
universes u v
variables (R : Type u)
/-- The generator of the kernel of the unique homomorphism β β R for a semiring R.
*Warning*: for a semiring `R`, `char_p R 0` and `char_zero R` need not coincide.
* `char_p R 0` asks that only `0 : β` maps to `0 : R` under the map `β β R`;
* `char_zero R` requires an injection `β βͺ R`.
For instance, endowing `{0, 1}` with addition given by `max` (i.e. `1` is absorbing), shows that
`char_zero {0, 1}` does not hold and yet `char_p {0, 1} 0` does.
This example is formalized in `counterexamples/char_p_zero_ne_char_zero`.
-/
@[mk_iff]
class char_p [add_monoid_with_one R] (p : β) : Prop :=
(cast_eq_zero_iff [] : β x:β, (x:R) = 0 β p β£ x)
theorem char_p.cast_eq_zero [add_monoid_with_one R] (p : β) [char_p R p] :
(p:R) = 0 :=
(char_p.cast_eq_zero_iff R p p).2 (dvd_refl p)
@[simp] lemma char_p.cast_card_eq_zero [add_group_with_one R] [fintype R] :
(fintype.card R : R) = 0 :=
by rw [β nsmul_one, card_nsmul_eq_zero]
lemma char_p.int_cast_eq_zero_iff [add_group_with_one R] (p : β) [char_p R p]
(a : β€) :
(a : R) = 0 β (p:β€) β£ a :=
begin
rcases lt_trichotomy a 0 with h|rfl|h,
{ rw [β neg_eq_zero, β int.cast_neg, β dvd_neg],
lift -a to β using neg_nonneg.mpr (le_of_lt h) with b,
rw [int.cast_coe_nat, char_p.cast_eq_zero_iff R p, int.coe_nat_dvd] },
{ simp only [int.cast_zero, eq_self_iff_true, dvd_zero] },
{ lift a to β using (le_of_lt h) with b,
rw [int.cast_coe_nat, char_p.cast_eq_zero_iff R p, int.coe_nat_dvd] }
end
lemma char_p.int_coe_eq_int_coe_iff [add_group_with_one R] (p : β) [char_p R p] (a b : β€) :
(a : R) = (b : R) β a β‘ b [ZMOD p] :=
by rw [eq_comm, βsub_eq_zero, βint.cast_sub,
char_p.int_cast_eq_zero_iff R p, int.modeq_iff_dvd]
theorem char_p.eq [add_monoid_with_one R] {p q : β} (c1 : char_p R p) (c2 : char_p R q) :
p = q :=
nat.dvd_antisymm
((char_p.cast_eq_zero_iff R p q).1 (char_p.cast_eq_zero _ _))
((char_p.cast_eq_zero_iff R q p).1 (char_p.cast_eq_zero _ _))
instance char_p.of_char_zero [add_monoid_with_one R] [char_zero R] : char_p R 0 :=
β¨Ξ» x, by rw [zero_dvd_iff, β nat.cast_zero, nat.cast_inj]β©
theorem char_p.exists [non_assoc_semiring R] : β p, char_p R p :=
by letI := classical.dec_eq R; exact
classical.by_cases
(assume H : β p:β, (p:R) = 0 β p = 0, β¨0,
β¨Ξ» x, by rw [zero_dvd_iff]; exact β¨H x, by rintro rfl; simpβ©β©β©)
(Ξ» H, β¨nat.find (not_forall.1 H), β¨Ξ» x,
β¨Ξ» H1, nat.dvd_of_mod_eq_zero (by_contradiction $ Ξ» H2,
nat.find_min (not_forall.1 H)
(nat.mod_lt x $ nat.pos_of_ne_zero $ not_of_not_imp $
nat.find_spec (not_forall.1 H))
(not_imp_of_and_not β¨by rwa [β nat.mod_add_div x (nat.find (not_forall.1 H)),
nat.cast_add, nat.cast_mul, of_not_not (not_not_of_not_imp $ nat.find_spec
(not_forall.1 H)),
zero_mul, add_zero] at H1, H2β©)),
Ξ» H1, by rw [β nat.mul_div_cancel' H1, nat.cast_mul,
of_not_not (not_not_of_not_imp $ nat.find_spec (not_forall.1 H)), zero_mul]β©β©β©)
theorem char_p.exists_unique [non_assoc_semiring R] : β! p, char_p R p :=
let β¨c, Hβ© := char_p.exists R in β¨c, H, Ξ» y H2, char_p.eq R H2 Hβ©
theorem char_p.congr {R : Type u} [add_monoid_with_one R] {p : β} (q : β) [hq : char_p R q]
(h : q = p) :
char_p R p :=
h βΈ hq
/-- Noncomputable function that outputs the unique characteristic of a semiring. -/
noncomputable def ring_char [non_assoc_semiring R] : β :=
classical.some (char_p.exists_unique R)
namespace ring_char
variables [non_assoc_semiring R]
theorem spec : β x:β, (x:R) = 0 β ring_char R β£ x :=
by letI := (classical.some_spec (char_p.exists_unique R)).1;
unfold ring_char; exact char_p.cast_eq_zero_iff R (ring_char R)
theorem eq (p : β) [C : char_p R p] : ring_char R = p :=
((classical.some_spec (char_p.exists_unique R)).2 p C).symm
instance char_p : char_p R (ring_char R) :=
β¨spec Rβ©
variables {R}
theorem of_eq {p : β} (h : ring_char R = p) : char_p R p :=
char_p.congr (ring_char R) h
theorem eq_iff {p : β} : ring_char R = p β char_p R p :=
β¨of_eq, @eq R _ pβ©
theorem dvd {x : β} (hx : (x : R) = 0) : ring_char R β£ x :=
(spec R x).1 hx
@[simp]
lemma eq_zero [char_zero R] : ring_char R = 0 := eq R 0
@[simp]
lemma nat.cast_ring_char : (ring_char R : R) = 0 :=
by rw ring_char.spec
end ring_char
theorem add_pow_char_of_commute [semiring R] {p : β} [fact p.prime]
[char_p R p] (x y : R) (h : commute x y) :
(x + y)^p = x^p + y^p :=
begin
rw [commute.add_pow h, finset.sum_range_succ_comm, tsub_self, pow_zero, nat.choose_self],
rw [nat.cast_one, mul_one, mul_one], congr' 1,
convert finset.sum_eq_single 0 _ _,
{ simp only [mul_one, one_mul, nat.choose_zero_right, tsub_zero, nat.cast_one, pow_zero] },
{ intros b h1 h2,
suffices : (p.choose b : R) = 0, { rw this, simp },
rw char_p.cast_eq_zero_iff R p,
refine nat.prime.dvd_choose_self (pos_iff_ne_zero.mpr h2) _ (fact.out _),
rwa β finset.mem_range },
{ intro h1,
contrapose! h1,
rw finset.mem_range,
exact nat.prime.pos (fact.out _) }
end
theorem add_pow_char_pow_of_commute [semiring R] {p : β} [fact p.prime]
[char_p R p] {n : β} (x y : R) (h : commute x y) :
(x + y) ^ (p ^ n) = x ^ (p ^ n) + y ^ (p ^ n) :=
begin
induction n, { simp, },
rw [pow_succ', pow_mul, pow_mul, pow_mul, n_ih],
apply add_pow_char_of_commute, apply commute.pow_pow h,
end
theorem sub_pow_char_of_commute [ring R] {p : β} [fact p.prime]
[char_p R p] (x y : R) (h : commute x y) :
(x - y)^p = x^p - y^p :=
begin
rw [eq_sub_iff_add_eq, β add_pow_char_of_commute _ _ _ (commute.sub_left h rfl)],
simp, repeat {apply_instance},
end
theorem sub_pow_char_pow_of_commute [ring R] {p : β} [fact p.prime]
[char_p R p] {n : β} (x y : R) (h : commute x y) :
(x - y) ^ (p ^ n) = x ^ (p ^ n) - y ^ (p ^ n) :=
begin
induction n, { simp, },
rw [pow_succ', pow_mul, pow_mul, pow_mul, n_ih],
apply sub_pow_char_of_commute, apply commute.pow_pow h,
end
theorem add_pow_char [comm_semiring R] {p : β} [fact p.prime]
[char_p R p] (x y : R) : (x + y)^p = x^p + y^p :=
add_pow_char_of_commute _ _ _ (commute.all _ _)
theorem add_pow_char_pow [comm_semiring R] {p : β} [fact p.prime]
[char_p R p] {n : β} (x y : R) :
(x + y) ^ (p ^ n) = x ^ (p ^ n) + y ^ (p ^ n) :=
add_pow_char_pow_of_commute _ _ _ (commute.all _ _)
theorem sub_pow_char [comm_ring R] {p : β} [fact p.prime]
[char_p R p] (x y : R) : (x - y)^p = x^p - y^p :=
sub_pow_char_of_commute _ _ _ (commute.all _ _)
theorem sub_pow_char_pow [comm_ring R] {p : β} [fact p.prime]
[char_p R p] {n : β} (x y : R) :
(x - y) ^ (p ^ n) = x ^ (p ^ n) - y ^ (p ^ n) :=
sub_pow_char_pow_of_commute _ _ _ (commute.all _ _)
lemma eq_iff_modeq_int [ring R] (p : β) [char_p R p] (a b : β€) :
(a : R) = b β a β‘ b [ZMOD p] :=
by rw [eq_comm, βsub_eq_zero, βint.cast_sub,
char_p.int_cast_eq_zero_iff R p, int.modeq_iff_dvd]
lemma char_p.neg_one_ne_one [ring R] (p : β) [char_p R p] [fact (2 < p)] :
(-1 : R) β (1 : R) :=
begin
suffices : (2 : R) β 0,
{ symmetry, rw [ne.def, β sub_eq_zero, sub_neg_eq_add], exact this },
assume h,
rw [show (2 : R) = (2 : β), by norm_cast] at h,
have := (char_p.cast_eq_zero_iff R p 2).mp h,
have := nat.le_of_dvd dec_trivial this,
rw fact_iff at *, linarith,
end
lemma char_p.neg_one_pow_char [comm_ring R] (p : β) [char_p R p] [fact p.prime] :
(-1 : R) ^ p = -1 :=
begin
rw eq_neg_iff_add_eq_zero,
nth_rewrite 1 β one_pow p,
rw [β add_pow_char, add_left_neg, zero_pow (fact.out (nat.prime p)).pos],
end
lemma char_p.neg_one_pow_char_pow [comm_ring R] (p n : β) [char_p R p] [fact p.prime] :
(-1 : R) ^ p ^ n = -1 :=
begin
rw eq_neg_iff_add_eq_zero,
nth_rewrite 1 β one_pow (p ^ n),
rw [β add_pow_char_pow, add_left_neg, zero_pow (pow_pos (fact.out (nat.prime p)).pos _)],
end
lemma ring_hom.char_p_iff_char_p {K L : Type*} [division_ring K] [semiring L] [nontrivial L]
(f : K β+* L) (p : β) :
char_p K p β char_p L p :=
by simp only [char_p_iff, β f.injective.eq_iff, map_nat_cast f, f.map_zero]
section frobenius
section comm_semiring
variables [comm_semiring R] {S : Type v} [comm_semiring S] (f : R β* S) (g : R β+* S)
(p : β) [fact p.prime] [char_p R p] [char_p S p] (x y : R)
/-- The frobenius map that sends x to x^p -/
def frobenius : R β+* R :=
{ to_fun := Ξ» x, x^p,
map_one' := one_pow p,
map_mul' := Ξ» x y, mul_pow x y p,
map_zero' := zero_pow (fact.out (nat.prime p)).pos,
map_add' := add_pow_char R }
variable {R}
theorem frobenius_def : frobenius R p x = x ^ p := rfl
theorem iterate_frobenius (n : β) : (frobenius R p)^[n] x = x ^ p ^ n :=
begin
induction n, {simp},
rw [function.iterate_succ', pow_succ', pow_mul, function.comp_apply, frobenius_def, n_ih]
end
theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p y :=
(frobenius R p).map_mul x y
theorem frobenius_one : frobenius R p 1 = 1 := one_pow _
theorem monoid_hom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
f.map_pow x p
theorem ring_hom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
g.map_pow x p
theorem monoid_hom.map_iterate_frobenius (n : β) :
f (frobenius R p^[n] x) = (frobenius S p^[n] (f x)) :=
function.semiconj.iterate_right (f.map_frobenius p) n x
theorem ring_hom.map_iterate_frobenius (n : β) :
g (frobenius R p^[n] x) = (frobenius S p^[n] (g x)) :=
g.to_monoid_hom.map_iterate_frobenius p x n
theorem monoid_hom.iterate_map_frobenius (f : R β* R) (p : β) [fact p.prime] [char_p R p] (n : β) :
f^[n] (frobenius R p x) = frobenius R p (f^[n] x) :=
f.iterate_map_pow _ _ _
theorem ring_hom.iterate_map_frobenius (f : R β+* R) (p : β) [fact p.prime] [char_p R p] (n : β) :
f^[n] (frobenius R p x) = frobenius R p (f^[n] x) :=
f.iterate_map_pow _ _ _
variable (R)
theorem frobenius_zero : frobenius R p 0 = 0 := (frobenius R p).map_zero
theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p y :=
(frobenius R p).map_add x y
theorem frobenius_nat_cast (n : β) : frobenius R p n = n := map_nat_cast (frobenius R p) n
open_locale big_operators
variables {R}
lemma list_sum_pow_char (l : list R) : l.sum ^ p = (l.map (^ p)).sum :=
(frobenius R p).map_list_sum _
lemma multiset_sum_pow_char (s : multiset R) : s.sum ^ p = (s.map (^ p)).sum :=
(frobenius R p).map_multiset_sum _
lemma sum_pow_char {ΞΉ : Type*} (s : finset ΞΉ) (f : ΞΉ β R) :
(β i in s, f i) ^ p = β i in s, f i ^ p :=
(frobenius R p).map_sum _ _
end comm_semiring
section comm_ring
variables [comm_ring R] {S : Type v} [comm_ring S] (f : R β* S) (g : R β+* S)
(p : β) [fact p.prime] [char_p R p] [char_p S p] (x y : R)
theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x := (frobenius R p).map_neg x
theorem frobenius_sub : frobenius R p (x - y) = frobenius R p x - frobenius R p y :=
(frobenius R p).map_sub x y
end comm_ring
end frobenius
theorem frobenius_inj [comm_ring R] [is_reduced R]
(p : β) [fact p.prime] [char_p R p] :
function.injective (frobenius R p) :=
Ξ» x h H, by { rw β sub_eq_zero at H β’, rw β frobenius_sub at H, exact is_reduced.eq_zero _ β¨_,Hβ© }
/-- If `ring_char R = 2`, where `R` is a finite reduced commutative ring,
then every `a : R` is a square. -/
lemma is_square_of_char_two' {R : Type*} [fintype R] [comm_ring R] [is_reduced R] [char_p R 2]
(a : R) : is_square a :=
exists_imp_exists (Ξ» b h, pow_two b βΈ eq.symm h) $
((fintype.bijective_iff_injective_and_card _).mpr β¨frobenius_inj R 2, rflβ©).surjective a
namespace char_p
section
variables [non_assoc_ring R]
lemma char_p_to_char_zero (R : Type*) [add_group_with_one R] [char_p R 0] :
char_zero R :=
char_zero_of_inj_zero $
Ξ» n h0, eq_zero_of_zero_dvd ((cast_eq_zero_iff R 0 n).mp h0)
lemma cast_eq_mod (p : β) [char_p R p] (k : β) : (k : R) = (k % p : β) :=
calc (k : R) = β(k % p + p * (k / p)) : by rw [nat.mod_add_div]
... = β(k % p) : by simp [cast_eq_zero]
/-- The characteristic of a finite ring cannot be zero. -/
theorem char_ne_zero_of_fintype (p : β) [hc : char_p R p] [fintype R] : p β 0 :=
assume h : p = 0,
have char_zero R := @char_p_to_char_zero R _ (h βΈ hc),
absurd (@nat.cast_injective R _ this) (not_injective_infinite_fintype coe)
lemma ring_char_ne_zero_of_fintype [fintype R] : ring_char R β 0 :=
char_ne_zero_of_fintype R (ring_char R)
end
section comm_ring
variables [comm_ring R] [is_reduced R] {R}
@[simp]
lemma pow_prime_pow_mul_eq_one_iff (p k m : β) [fact p.prime]
[char_p R p] (x : R) :
x ^ (p ^ k * m) = 1 β x ^ m = 1 :=
begin
induction k with k hk,
{ rw [pow_zero, one_mul] },
{ refine β¨Ξ» h, _, Ξ» h, _β©,
{ rw [pow_succ, mul_assoc, pow_mul', β frobenius_def, β frobenius_one p] at h,
exact hk.1 (frobenius_inj R p h) },
{ rw [pow_mul', h, one_pow] } }
end
end comm_ring
section semiring
open nat
variables [non_assoc_semiring R]
theorem char_ne_one [nontrivial R] (p : β) [hc : char_p R p] : p β 1 :=
assume hp : p = 1,
have ( 1 : R) = 0, by simpa using (cast_eq_zero_iff R p 1).mpr (hp βΈ dvd_refl p),
absurd this one_ne_zero
section no_zero_divisors
variable [no_zero_divisors R]
theorem char_is_prime_of_two_le (p : β) [hc : char_p R p] (hp : 2 β€ p) : nat.prime p :=
suffices βd β£ p, d = 1 β¨ d = p, from nat.prime_def_lt''.mpr β¨hp, thisβ©,
assume (d : β) (hdvd : β e, p = d * e),
let β¨e, hmulβ© := hdvd in
have (p : R) = 0, from (cast_eq_zero_iff R p p).mpr (dvd_refl p),
have (d : R) * e = 0, from (@cast_mul R _ d e) βΈ (hmul βΈ this),
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero this)
(assume hd : (d : R) = 0,
have p β£ d, from (cast_eq_zero_iff R p d).mp hd,
show d = 1 β¨ d = p, from or.inr (dvd_antisymm β¨e, hmulβ© this))
(assume he : (e : R) = 0,
have p β£ e, from (cast_eq_zero_iff R p e).mp he,
have e β£ p, from dvd_of_mul_left_eq d (eq.symm hmul),
have e = p, from dvd_antisymm βΉe β£ pβΊ βΉp β£ eβΊ,
have hβ : p > 0, from gt_of_ge_of_gt hp (nat.zero_lt_succ 1),
have d * p = 1 * p, by rw βΉe = pβΊ at hmul; rw [one_mul]; exact eq.symm hmul,
show d = 1 β¨ d = p, from or.inl (eq_of_mul_eq_mul_right hβ this))
section nontrivial
variables [nontrivial R]
theorem char_is_prime_or_zero (p : β) [hc : char_p R p] : nat.prime p β¨ p = 0 :=
match p, hc with
| 0, _ := or.inr rfl
| 1, hc := absurd (eq.refl (1 : β)) (@char_ne_one R _ _ (1 : β) hc)
| (m+2), hc := or.inl (@char_is_prime_of_two_le R _ _ (m+2) hc (nat.le_add_left 2 m))
end
lemma char_is_prime_of_pos (p : β) [h : fact (0 < p)] [char_p R p] : fact p.prime :=
β¨(char_p.char_is_prime_or_zero R _).resolve_right (pos_iff_ne_zero.1 h.1)β©
end nontrivial
end no_zero_divisors
end semiring
section ring
variables (R) [ring R] [no_zero_divisors R] [nontrivial R] [fintype R]
theorem char_is_prime (p : β) [char_p R p] :
p.prime :=
or.resolve_right (char_is_prime_or_zero R p) (char_ne_zero_of_fintype R p)
end ring
section char_one
variables {R} [non_assoc_semiring R]
@[priority 100] -- see Note [lower instance priority]
instance [char_p R 1] : subsingleton R :=
subsingleton.intro $
suffices β (r : R), r = 0,
from assume a b, show a = b, by rw [this a, this b],
assume r,
calc r = 1 * r : by rw one_mul
... = (1 : β) * r : by rw nat.cast_one
... = 0 * r : by rw char_p.cast_eq_zero
... = 0 : by rw zero_mul
lemma false_of_nontrivial_of_char_one [nontrivial R] [char_p R 1] : false :=
false_of_nontrivial_of_subsingleton R
lemma ring_char_ne_one [nontrivial R] : ring_char R β 1 :=
by { intros h, apply @zero_ne_one R, symmetry, rw [βnat.cast_one, ring_char.spec, h], }
lemma nontrivial_of_char_ne_one {v : β} (hv : v β 1) [hr : char_p R v] :
nontrivial R :=
β¨β¨(1 : β), 0, Ξ» h, hv $ by rwa [char_p.cast_eq_zero_iff _ v, nat.dvd_one] at h; assumption β©β©
lemma ring_char_of_prime_eq_zero [nontrivial R] {p : β}
(hprime : nat.prime p) (hp0 : (p : R) = 0) : ring_char R = p :=
or.resolve_left ((nat.dvd_prime hprime).1 (ring_char.dvd hp0)) ring_char_ne_one
end char_one
end char_p
section
/-- We have `2 β 0` in a nontrivial ring whose characteristic is not `2`. -/
-- Note: there is `two_ne_zero` (assuming `[ordered_semiring]`)
-- and `two_ne_zero'`(assuming `[char_zero]`), which both don't fit the needs here.
@[protected]
lemma ring.two_ne_zero {R : Type*} [non_assoc_semiring R] [nontrivial R] (hR : ring_char R β 2) :
(2 : R) β 0 :=
begin
rw [ne.def, (by norm_cast : (2 : R) = (2 : β)), ring_char.spec, nat.dvd_prime nat.prime_two],
exact mt (or_iff_left hR).mp char_p.ring_char_ne_one,
end
/-- Characteristic `β 2` and nontrivial implies that `-1 β 1`. -/
-- We have `char_p.neg_one_ne_one`, which assumes `[ring R] (p : β) [char_p R p] [fact (2 < p)]`.
-- This is a version using `ring_char` instead.
lemma ring.neg_one_ne_one_of_char_ne_two {R : Type*} [non_assoc_ring R] [nontrivial R]
(hR : ring_char R β 2) :
(-1 : R) β 1 :=
Ξ» h, ring.two_ne_zero hR (neg_eq_iff_add_eq_zero.mp h)
/-- Characteristic `β 2` in a domain implies that `-a = a` iff `a = 0`. -/
lemma ring.eq_self_iff_eq_zero_of_char_ne_two {R : Type*} [non_assoc_ring R] [nontrivial R]
[no_zero_divisors R] (hR : ring_char R β 2) {a : R} :
-a = a β a = 0 :=
β¨Ξ» h, (mul_eq_zero.mp $ (two_mul a).trans $ neg_eq_iff_add_eq_zero.mp h).resolve_left
(ring.two_ne_zero hR),
Ξ» h, ((congr_arg (Ξ» x, - x) h).trans neg_zero).trans h.symmβ©
end
section
variables (R) [non_assoc_ring R] [fintype R] (n : β)
lemma char_p_of_ne_zero (hn : fintype.card R = n) (hR : β i < n, (i : R) = 0 β i = 0) :
char_p R n :=
{ cast_eq_zero_iff :=
begin
have H : (n : R) = 0, by { rw [β hn, char_p.cast_card_eq_zero] },
intro k,
split,
{ intro h,
rw [β nat.mod_add_div k n, nat.cast_add, nat.cast_mul, H, zero_mul, add_zero] at h,
rw nat.dvd_iff_mod_eq_zero,
apply hR _ (nat.mod_lt _ _) h,
rw [β hn, fintype.card_pos_iff],
exact β¨0β©, },
{ rintro β¨k, rflβ©, rw [nat.cast_mul, H, zero_mul] }
end }
lemma char_p_of_prime_pow_injective (R) [ring R] [fintype R] (p : β) [hp : fact p.prime] (n : β)
(hn : fintype.card R = p ^ n) (hR : β i β€ n, (p ^ i : R) = 0 β i = n) :
char_p R (p ^ n) :=
begin
obtain β¨c, hcβ© := char_p.exists R, resetI,
have hcpn : c β£ p ^ n,
{ rw [β char_p.cast_eq_zero_iff R c, β hn, char_p.cast_card_eq_zero], },
obtain β¨i, hi, hcβ© : β i β€ n, c = p ^ i, by rwa nat.dvd_prime_pow hp.1 at hcpn,
obtain rfl : i = n,
{ apply hR i hi, rw [β nat.cast_pow, β hc, char_p.cast_eq_zero] },
rwa β hc
end
end
section prod
variables (S : Type v) [semiring R] [semiring S] (p q : β) [char_p R p]
/-- The characteristic of the product of rings is the least common multiple of the
characteristics of the two rings. -/
instance [char_p S q] : char_p (R Γ S) (nat.lcm p q) :=
{ cast_eq_zero_iff :=
by simp [prod.ext_iff, char_p.cast_eq_zero_iff R p,
char_p.cast_eq_zero_iff S q, nat.lcm_dvd_iff] }
/-- The characteristic of the product of two rings of the same characteristic
is the same as the characteristic of the rings -/
instance prod.char_p [char_p S p] : char_p (R Γ S) p :=
by convert nat.lcm.char_p R S p p; simp
end prod
section
/-- If two integers from `{0, 1, -1}` result in equal elements in a ring `R`
that is nontrivial and of characteristic not `2`, then they are equal. -/
lemma int.cast_inj_on_of_ring_char_ne_two {R : Type*} [non_assoc_ring R] [nontrivial R]
(hR : ring_char R β 2) :
({0, 1, -1} : set β€).inj_on (coe : β€ β R) :=
begin
intros a ha b hb h,
apply eq_of_sub_eq_zero,
by_contra hf,
change a = 0 β¨ a = 1 β¨ a = -1 at ha,
change b = 0 β¨ b = 1 β¨ b = -1 at hb,
have hh : a - b = 1 β¨ b - a = 1 β¨ a - b = 2 β¨ b - a = 2 := by
{ rcases ha with ha | ha | ha; rcases hb with hb | hb | hb,
swap 5, swap 9, -- move goals with `a = b` to the front
iterate 3 { rw [ha, hb, sub_self] at hf, tauto, }, -- 6 goals remain
all_goals { rw [ha, hb], norm_num, }, },
have h' : ((a - b : β€) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h,
have h'' : ((b - a : β€) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h.symm,
rcases hh with hh | hh | hh | hh,
{ rw [hh, (by norm_cast : ((1 : β€) : R) = 1)] at h', exact one_ne_zero h', },
{ rw [hh, (by norm_cast : ((1 : β€) : R) = 1)] at h'', exact one_ne_zero h'', },
{ rw [hh, (by norm_cast : ((2 : β€) : R) = 2)] at h', exact ring.two_ne_zero hR h', },
{ rw [hh, (by norm_cast : ((2 : β€) : R) = 2)] at h'', exact ring.two_ne_zero hR h'', },
end
end
|