Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 18,890 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
/-
Copyright (c) 2021 Christopher Hoskin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Christopher Hoskin
-/
import algebra.group_power.basic -- Needed for squares
import algebra.order.group
import tactic.nth_rewrite
/-!
# Lattice ordered groups
Lattice ordered groups were introduced by [Birkhoff][birkhoff1942].
They form the algebraic underpinnings of vector lattices, Banach lattices, AL-space, AM-space etc.
This file develops the basic theory, concentrating on the commutative case.
## Main statements
- `pos_div_neg`: Every element `a` of a lattice ordered commutative group has a decomposition
`a⁺-a⁻` into the difference of the positive and negative component.
- `pos_inf_neg_eq_one`: The positive and negative components are coprime.
- `abs_triangle`: The absolute value operation satisfies the triangle inequality.
It is shown that the inf and sup operations are related to the absolute value operation by a
number of equations and inequalities.
## Notations
- `a⁺ = a ⊔ 0`: The *positive component* of an element `a` of a lattice ordered commutative group
- `a⁻ = (-a) ⊔ 0`: The *negative component* of an element `a` of a lattice ordered commutative group
- `|a| = a⊔(-a)`: The *absolute value* of an element `a` of a lattice ordered commutative group
## Implementation notes
A lattice ordered commutative group is a type `α` satisfying:
* `[lattice α]`
* `[comm_group α]`
* `[covariant_class α α (*) (≤)]`
The remainder of the file establishes basic properties of lattice ordered commutative groups. A
number of these results also hold in the non-commutative case ([Birkhoff][birkhoff1942],
[Fuchs][fuchs1963]) but we have not developed that here, since we are primarily interested in vector
lattices.
## References
* [Birkhoff, Lattice-ordered Groups][birkhoff1942]
* [Bourbaki, Algebra II][bourbaki1981]
* [Fuchs, Partially Ordered Algebraic Systems][fuchs1963]
* [Zaanen, Lectures on "Riesz Spaces"][zaanen1966]
* [Banasiak, Banach Lattices in Applications][banasiak]
## Tags
lattice, ordered, group
-/
universe u
-- A linearly ordered additive commutative group is a lattice ordered commutative group
@[priority 100, to_additive] -- see Note [lower instance priority]
instance linear_ordered_comm_group.to_covariant_class (α : Type u)
[linear_ordered_comm_group α] : covariant_class α α (*) (≤) :=
{ elim := λ a b c bc, linear_ordered_comm_group.mul_le_mul_left _ _ bc a }
variables {α : Type u} [lattice α] [comm_group α]
-- Special case of Bourbaki A.VI.9 (1)
-- c + (a ⊔ b) = (c + a) ⊔ (c + b)
@[to_additive]
lemma mul_sup [covariant_class α α (*) (≤)] (a b c : α) : c * (a ⊔ b) = (c * a) ⊔ (c * b) :=
begin
refine le_antisymm _ (by simp),
rw [← mul_le_mul_iff_left (c⁻¹), ← mul_assoc, inv_mul_self, one_mul],
exact sup_le (by simp) (by simp),
end
@[to_additive]
lemma mul_inf [covariant_class α α (*) (≤)] (a b c : α) : c * (a ⊓ b) = (c * a) ⊓ (c * b) :=
begin
refine le_antisymm (by simp) _,
rw [← mul_le_mul_iff_left (c⁻¹), ← mul_assoc, inv_mul_self, one_mul],
exact le_inf (by simp) (by simp),
end
-- Special case of Bourbaki A.VI.9 (2)
-- -(a ⊔ b)=(-a) ⊓ (-b)
@[to_additive]
lemma inv_sup_eq_inv_inf_inv [covariant_class α α (*) (≤)] (a b : α) : (a ⊔ b)⁻¹ = a⁻¹ ⊓ b⁻¹ :=
begin
apply le_antisymm,
{ refine le_inf _ _,
{ rw inv_le_inv_iff, exact le_sup_left, },
{ rw inv_le_inv_iff, exact le_sup_right, } },
{ rw [← inv_le_inv_iff, inv_inv],
refine sup_le _ _,
{ rw ← inv_le_inv_iff, simp, },
{ rw ← inv_le_inv_iff, simp, } }
end
-- -(a ⊓ b) = -a ⊔ -b
@[to_additive]
lemma inv_inf_eq_sup_inv [covariant_class α α (*) (≤)] (a b : α) : (a ⊓ b)⁻¹ = a⁻¹ ⊔ b⁻¹ :=
by rw [← inv_inv (a⁻¹ ⊔ b⁻¹), inv_sup_eq_inv_inf_inv a⁻¹ b⁻¹, inv_inv, inv_inv]
-- Bourbaki A.VI.10 Prop 7
-- a ⊓ b + (a ⊔ b) = a + b
@[to_additive]
lemma inf_mul_sup [covariant_class α α (*) (≤)] (a b : α) : (a ⊓ b) * (a ⊔ b) = a * b :=
calc (a ⊓ b) * (a ⊔ b) = (a ⊓ b) * ((a * b) * (b⁻¹ ⊔ a⁻¹)) :
by { rw mul_sup b⁻¹ a⁻¹ (a * b), simp, }
... = (a ⊓ b) * ((a * b) * (a ⊓ b)⁻¹) : by rw [inv_inf_eq_sup_inv, sup_comm]
... = a * b : by rw [mul_comm, inv_mul_cancel_right]
namespace lattice_ordered_comm_group
/--
Let `α` be a lattice ordered commutative group with identity `1`. For an element `a` of type `α`,
the element `a ⊔ 1` is said to be the *positive component* of `a`, denoted `a⁺`.
-/
@[to_additive /-"
Let `α` be a lattice ordered commutative group with identity `0`. For an element `a` of type `α`,
the element `a ⊔ 0` is said to be the *positive component* of `a`, denoted `a⁺`.
"-/,
priority 100] -- see Note [lower instance priority]
instance has_one_lattice_has_pos_part : has_pos_part (α) := ⟨λ a, a ⊔ 1⟩
@[to_additive pos_part_def]
lemma m_pos_part_def (a : α) : a⁺ = a ⊔ 1 := rfl
/--
Let `α` be a lattice ordered commutative group with identity `1`. For an element `a` of type `α`,
the element `(-a) ⊔ 1` is said to be the *negative component* of `a`, denoted `a⁻`.
-/
@[to_additive /-"
Let `α` be a lattice ordered commutative group with identity `0`. For an element `a` of type `α`,
the element `(-a) ⊔ 0` is said to be the *negative component* of `a`, denoted `a⁻`.
"-/,
priority 100] -- see Note [lower instance priority]
instance has_one_lattice_has_neg_part : has_neg_part (α) := ⟨λ a, a⁻¹ ⊔ 1⟩
@[to_additive neg_part_def]
lemma m_neg_part_def (a : α) : a⁻ = a⁻¹ ⊔ 1 := rfl
@[simp, to_additive]
lemma pos_one : (1 : α)⁺ = 1 := sup_idem
@[simp, to_additive]
lemma neg_one : (1 : α)⁻ = 1 := by rw [m_neg_part_def, inv_one, sup_idem]
-- a⁻ = -(a ⊓ 0)
@[to_additive]
lemma neg_eq_inv_inf_one [covariant_class α α (*) (≤)] (a : α) : a⁻ = (a ⊓ 1)⁻¹ :=
by rw [m_neg_part_def, ← inv_inj, inv_sup_eq_inv_inf_inv, inv_inv, inv_inv, inv_one]
@[to_additive le_abs]
lemma le_mabs (a : α) : a ≤ |a| := le_sup_left
@[to_additive]
-- -a ≤ |a|
lemma inv_le_abs (a : α) : a⁻¹ ≤ |a| := le_sup_right
-- 0 ≤ a⁺
@[to_additive pos_nonneg]
lemma one_le_pos (a : α) : 1 ≤ a⁺ := le_sup_right
-- 0 ≤ a⁻
@[to_additive neg_nonneg]
lemma one_le_neg (a : α) : 1 ≤ a⁻ := le_sup_right
@[to_additive] -- pos_nonpos_iff
lemma pos_le_one_iff {a : α} : a⁺ ≤ 1 ↔ a ≤ 1 :=
by { rw [m_pos_part_def, sup_le_iff], simp, }
@[to_additive] -- neg_nonpos_iff
lemma neg_le_one_iff {a : α} : a⁻ ≤ 1 ↔ a⁻¹ ≤ 1 :=
by { rw [m_neg_part_def, sup_le_iff], simp, }
@[to_additive]
lemma pos_eq_one_iff {a : α} : a⁺ = 1 ↔ a ≤ 1 :=
by { rw le_antisymm_iff, simp only [one_le_pos, and_true], exact pos_le_one_iff, }
@[to_additive]
lemma neg_eq_one_iff' {a : α} : a⁻ = 1 ↔ a⁻¹ ≤ 1 :=
by { rw le_antisymm_iff, simp only [one_le_neg, and_true], rw neg_le_one_iff, }
@[to_additive]
lemma neg_eq_one_iff [covariant_class α α has_mul.mul has_le.le] {a : α} : a⁻ = 1 ↔ 1 ≤ a :=
by { rw le_antisymm_iff, simp only [one_le_neg, and_true], rw [neg_le_one_iff, inv_le_one'], }
@[to_additive le_pos]
lemma m_le_pos (a : α) : a ≤ a⁺ := le_sup_left
-- -a ≤ a⁻
@[to_additive]
lemma inv_le_neg (a : α) : a⁻¹ ≤ a⁻ := le_sup_left
-- Bourbaki A.VI.12
-- a⁻ = (-a)⁺
@[to_additive]
lemma neg_eq_pos_inv (a : α) : a⁻ = (a⁻¹)⁺ := rfl
-- a⁺ = (-a)⁻
@[to_additive]
lemma pos_eq_neg_inv (a : α) : a⁺ = (a⁻¹)⁻ := by simp [neg_eq_pos_inv]
-- We use this in Bourbaki A.VI.12 Prop 9 a)
-- c + (a ⊓ b) = (c + a) ⊓ (c + b)
@[to_additive]
lemma mul_inf_eq_mul_inf_mul [covariant_class α α (*) (≤)]
(a b c : α) : c * (a ⊓ b) = (c * a) ⊓ (c * b) :=
begin
refine le_antisymm (by simp) _,
rw [← mul_le_mul_iff_left c⁻¹, ← mul_assoc, inv_mul_self, one_mul, le_inf_iff],
simp,
end
-- Bourbaki A.VI.12 Prop 9 a)
-- a = a⁺ - a⁻
@[simp, to_additive]
lemma pos_div_neg [covariant_class α α (*) (≤)] (a : α) : a⁺ / a⁻ = a :=
begin
symmetry,
rw div_eq_mul_inv,
apply eq_mul_inv_of_mul_eq,
rw [m_neg_part_def, mul_sup, mul_one, mul_right_inv, sup_comm, m_pos_part_def],
end
-- Bourbaki A.VI.12 Prop 9 a)
-- a⁺ ⊓ a⁻ = 0 (`a⁺` and `a⁻` are co-prime, and, since they are positive, disjoint)
@[to_additive]
lemma pos_inf_neg_eq_one [covariant_class α α (*) (≤)] (a : α) : a⁺ ⊓ a⁻ = 1 :=
by rw [←mul_right_inj (a⁻)⁻¹, mul_inf_eq_mul_inf_mul, mul_one, mul_left_inv, mul_comm,
← div_eq_mul_inv, pos_div_neg, neg_eq_inv_inf_one, inv_inv]
-- Bourbaki A.VI.12 (with a and b swapped)
-- a⊔b = b + (a - b)⁺
@[to_additive]
lemma sup_eq_mul_pos_div [covariant_class α α (*) (≤)] (a b : α) : a ⊔ b = b * (a / b)⁺ :=
calc a ⊔ b = (b * (a / b)) ⊔ (b * 1) : by rw [mul_one b, div_eq_mul_inv, mul_comm a,
mul_inv_cancel_left]
... = b * ((a / b) ⊔ 1) : by rw ← mul_sup (a / b) 1 b
-- Bourbaki A.VI.12 (with a and b swapped)
-- a⊓b = a - (a - b)⁺
@[to_additive]
lemma inf_eq_div_pos_div [covariant_class α α (*) (≤)] (a b : α) : a ⊓ b = a / (a / b)⁺ :=
calc a ⊓ b = (a * 1) ⊓ (a * (b / a)) : by { rw [mul_one a, div_eq_mul_inv, mul_comm b,
mul_inv_cancel_left], }
... = a * (1 ⊓ (b / a)) : by rw ← mul_inf_eq_mul_inf_mul 1 (b / a) a
... = a * ((b / a) ⊓ 1) : by rw inf_comm
... = a * ((a / b)⁻¹ ⊓ 1) : by { rw div_eq_mul_inv, nth_rewrite 0 ← inv_inv b,
rw [← mul_inv, mul_comm b⁻¹, ← div_eq_mul_inv], }
... = a * ((a / b)⁻¹ ⊓ 1⁻¹) : by rw inv_one
... = a / ((a / b) ⊔ 1) : by rw [← inv_sup_eq_inv_inf_inv, ← div_eq_mul_inv]
-- Bourbaki A.VI.12 Prop 9 c)
@[to_additive le_iff_pos_le_neg_ge]
lemma m_le_iff_pos_le_neg_ge [covariant_class α α (*) (≤)] (a b : α) : a ≤ b ↔ a⁺ ≤ b⁺ ∧ b⁻ ≤ a⁻ :=
begin
split; intro h,
{ split,
{ exact sup_le (h.trans (m_le_pos b)) (one_le_pos b), },
{ rw ← inv_le_inv_iff at h,
exact sup_le (h.trans (inv_le_neg a)) (one_le_neg a), } },
{ rw [← pos_div_neg a, ← pos_div_neg b],
exact div_le_div'' h.1 h.2, }
end
@[to_additive neg_abs]
lemma m_neg_abs [covariant_class α α (*) (≤)] (a : α) : |a|⁻ = 1 :=
begin
refine le_antisymm _ _,
{ rw ← pos_inf_neg_eq_one a,
apply le_inf,
{ rw pos_eq_neg_inv,
exact ((m_le_iff_pos_le_neg_ge _ _).mp (inv_le_abs a)).right, },
{ exact and.right (iff.elim_left (m_le_iff_pos_le_neg_ge _ _) (le_mabs a)), } },
{ exact one_le_neg _, }
end
@[to_additive pos_abs]
lemma m_pos_abs [covariant_class α α (*) (≤)] (a : α) : |a|⁺ = |a| :=
begin
nth_rewrite 1 ← pos_div_neg (|a|),
rw div_eq_mul_inv,
symmetry,
rw [mul_right_eq_self, inv_eq_one],
exact m_neg_abs a,
end
@[to_additive abs_nonneg]
lemma one_le_abs [covariant_class α α (*) (≤)] (a : α) : 1 ≤ |a| :=
by { rw ← m_pos_abs, exact one_le_pos _, }
-- The proof from Bourbaki A.VI.12 Prop 9 d)
-- |a| = a⁺ - a⁻
@[to_additive]
lemma pos_mul_neg [covariant_class α α (*) (≤)] (a : α) : |a| = a⁺ * a⁻ :=
begin
refine le_antisymm _ _,
{ refine sup_le _ _,
{ nth_rewrite 0 ← mul_one a,
exact mul_le_mul' (m_le_pos a) (one_le_neg a) },
{ nth_rewrite 0 ← one_mul (a⁻¹),
exact mul_le_mul' (one_le_pos a) (inv_le_neg a) } },
{ rw [← inf_mul_sup, pos_inf_neg_eq_one, one_mul, ← m_pos_abs a],
apply sup_le,
{ exact ((m_le_iff_pos_le_neg_ge _ _).mp (le_mabs a)).left, },
{ rw neg_eq_pos_inv,
exact ((m_le_iff_pos_le_neg_ge _ _).mp (inv_le_abs a)).left, }, }
end
-- a ⊔ b - (a ⊓ b) = |b - a|
@[to_additive]
lemma sup_div_inf_eq_abs_div [covariant_class α α (*) (≤)] (a b : α) :
(a ⊔ b) / (a ⊓ b) = |b / a| :=
begin
rw [sup_eq_mul_pos_div, inf_comm, inf_eq_div_pos_div, div_eq_mul_inv],
nth_rewrite 1 div_eq_mul_inv,
rw [mul_inv_rev, inv_inv, mul_comm, ← mul_assoc, inv_mul_cancel_right, pos_eq_neg_inv (a / b)],
nth_rewrite 1 div_eq_mul_inv,
rw [mul_inv_rev, ← div_eq_mul_inv, inv_inv, ← pos_mul_neg],
end
-- 2•(a ⊔ b) = a + b + |b - a|
@[to_additive two_sup_eq_add_add_abs_sub]
lemma sup_sq_eq_mul_mul_abs_div [covariant_class α α (*) (≤)] (a b : α) :
(a ⊔ b)^2 = a * b * |b / a| :=
by rw [← inf_mul_sup a b, ← sup_div_inf_eq_abs_div, div_eq_mul_inv, ← mul_assoc, mul_comm,
mul_assoc, ← pow_two, inv_mul_cancel_left]
-- 2•(a ⊓ b) = a + b - |b - a|
@[to_additive two_inf_eq_add_sub_abs_sub]
lemma inf_sq_eq_mul_div_abs_div [covariant_class α α (*) (≤)] (a b : α) :
(a ⊓ b)^2 = a * b / |b / a| :=
by rw [← inf_mul_sup a b, ← sup_div_inf_eq_abs_div, div_eq_mul_inv, div_eq_mul_inv,
mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_comm_assoc, ← pow_two]
/--
Every lattice ordered commutative group is a distributive lattice
-/
@[to_additive
"Every lattice ordered commutative additive group is a distributive lattice"
]
def lattice_ordered_comm_group_to_distrib_lattice (α : Type u)
[s: lattice α] [comm_group α] [covariant_class α α (*) (≤)] : distrib_lattice α :=
{ le_sup_inf :=
begin
intros,
rw [← mul_le_mul_iff_left (x ⊓ (y ⊓ z)), inf_mul_sup x (y ⊓ z),
← inv_mul_le_iff_le_mul, le_inf_iff],
split,
{ rw [inv_mul_le_iff_le_mul, ← inf_mul_sup x y],
apply mul_le_mul',
{ apply inf_le_inf_left, apply inf_le_left, },
{ apply inf_le_left, } },
{ rw [inv_mul_le_iff_le_mul, ← inf_mul_sup x z],
apply mul_le_mul',
{ apply inf_le_inf_left, apply inf_le_right, },
{ apply inf_le_right, }, }
end,
..s }
-- See, e.g. Zaanen, Lectures on Riesz Spaces
-- 3rd lecture
-- |a ⊔ c - (b ⊔ c)| + |a ⊓ c-b ⊓ c| = |a - b|
@[to_additive]
theorem abs_div_sup_mul_abs_div_inf [covariant_class α α (*) (≤)] (a b c : α) :
|(a ⊔ c) / (b ⊔ c)| * |(a ⊓ c) / (b ⊓ c)| = |a / b| :=
begin
letI : distrib_lattice α := lattice_ordered_comm_group_to_distrib_lattice α,
calc |(a ⊔ c) / (b ⊔ c)| * |(a ⊓ c) / (b ⊓ c)| =
((b ⊔ c ⊔ (a ⊔ c)) / ((b ⊔ c) ⊓ (a ⊔ c))) * |(a ⊓ c) / (b ⊓ c)| : by rw sup_div_inf_eq_abs_div
... = (b ⊔ c ⊔ (a ⊔ c)) / ((b ⊔ c) ⊓ (a ⊔ c)) * (((b ⊓ c) ⊔ (a ⊓ c)) / ((b ⊓ c) ⊓ (a ⊓ c))) :
by rw sup_div_inf_eq_abs_div (b ⊓ c) (a ⊓ c)
... = (b ⊔ a ⊔ c) / ((b ⊓ a) ⊔ c) * (((b ⊔ a) ⊓ c) / (b ⊓ a ⊓ c)) : by
{ rw [← sup_inf_right, ← inf_sup_right, sup_assoc],
nth_rewrite 1 sup_comm,
rw [sup_right_idem, sup_assoc, inf_assoc],
nth_rewrite 3 inf_comm,
rw [inf_right_idem, inf_assoc], }
... = (b ⊔ a ⊔ c) * ((b ⊔ a) ⊓ c) /(((b ⊓ a) ⊔ c) * (b ⊓ a ⊓ c)) : by rw div_mul_div_comm
... = (b ⊔ a) * c / ((b ⊓ a) * c) :
by rw [mul_comm, inf_mul_sup, mul_comm (b ⊓ a ⊔ c), inf_mul_sup]
... = (b ⊔ a) / (b ⊓ a) : by rw [div_eq_mul_inv, mul_inv_rev, mul_assoc, mul_inv_cancel_left,
← div_eq_mul_inv]
... = |a / b| : by rw sup_div_inf_eq_abs_div
end
/-- If `a` is positive, then it is equal to its positive component `a⁺`. -/ -- pos_of_nonneg
@[to_additive "If `a` is positive, then it is equal to its positive component `a⁺`."]
lemma pos_of_one_le (a : α) (h : 1 ≤ a) : a⁺ = a :=
by { rw m_pos_part_def, exact sup_of_le_left h, }
-- 0 ≤ a implies a⁺ = a
@[to_additive] -- pos_of_nonpos
lemma pos_of_le_one (a : α) (h : a ≤ 1) : a⁺ = 1 :=
pos_eq_one_iff.mpr h
@[to_additive neg_of_inv_nonneg]
lemma neg_of_one_le_inv (a : α) (h : 1 ≤ a⁻¹) : a⁻ = a⁻¹ :=
by { rw neg_eq_pos_inv, exact pos_of_one_le _ h, }
@[to_additive] -- neg_of_neg_nonpos
lemma neg_of_inv_le_one (a : α) (h : a⁻¹ ≤ 1) : a⁻ = 1 :=
neg_eq_one_iff'.mpr h
@[to_additive] -- neg_of_nonpos
lemma neg_of_le_one [covariant_class α α (*) (≤)] (a : α) (h : a ≤ 1) : a⁻ = a⁻¹ :=
by { refine neg_of_one_le_inv _ _, rw one_le_inv', exact h, }
@[to_additive] -- neg_of_nonneg'
lemma neg_of_one_le [covariant_class α α (*) (≤)] (a : α) (h : 1 ≤ a) : a⁻ = 1 :=
neg_eq_one_iff.mpr h
-- 0 ≤ a implies |a| = a
@[to_additive abs_of_nonneg]
lemma mabs_of_one_le [covariant_class α α (*) (≤)] (a : α) (h : 1 ≤ a) : |a| = a :=
begin
unfold has_abs.abs,
rw [sup_eq_mul_pos_div, div_eq_mul_inv, inv_inv, ← pow_two, inv_mul_eq_iff_eq_mul,
← pow_two, pos_of_one_le],
rw pow_two,
apply one_le_mul h h,
end
/-- The unary operation of taking the absolute value is idempotent. -/
@[simp, to_additive abs_abs "The unary operation of taking the absolute value is idempotent."]
lemma mabs_mabs [covariant_class α α (*) (≤)] (a : α) : | |a| | = |a| :=
mabs_of_one_le _ (one_le_abs _)
@[to_additive abs_sup_sub_sup_le_abs]
lemma mabs_sup_div_sup_le_mabs [covariant_class α α (*) (≤)] (a b c : α) :
|(a ⊔ c) / (b ⊔ c)| ≤ |a / b| :=
begin
apply le_of_mul_le_of_one_le_left,
{ rw abs_div_sup_mul_abs_div_inf, },
{ exact one_le_abs _, },
end
@[to_additive abs_inf_sub_inf_le_abs]
lemma mabs_inf_div_inf_le_mabs [covariant_class α α (*) (≤)] (a b c : α) :
|(a ⊓ c) / (b ⊓ c)| ≤ |a / b| :=
begin
apply le_of_mul_le_of_one_le_right,
{ rw abs_div_sup_mul_abs_div_inf, },
{ exact one_le_abs _, },
end
-- Commutative case, Zaanen, 3rd lecture
-- For the non-commutative case, see Birkhoff Theorem 19 (27)
-- |(a ⊔ c) - (b ⊔ c)| ⊔ |(a ⊓ c) - (b ⊓ c)| ≤ |a - b|
@[to_additive Birkhoff_inequalities]
theorem m_Birkhoff_inequalities [covariant_class α α (*) (≤)] (a b c : α) :
|(a ⊔ c) / (b ⊔ c)| ⊔ |(a ⊓ c) / (b ⊓ c)| ≤ |a / b| :=
sup_le (mabs_sup_div_sup_le_mabs a b c) (mabs_inf_div_inf_le_mabs a b c)
-- Banasiak Proposition 2.12, Zaanen 2nd lecture
/--
The absolute value satisfies the triangle inequality.
-/
@[to_additive abs_add_le]
lemma mabs_mul_le [covariant_class α α (*) (≤)] (a b : α) : |a * b| ≤ |a| * |b| :=
begin
apply sup_le,
{ exact mul_le_mul' (le_mabs a) (le_mabs b), },
{ rw mul_inv,
exact mul_le_mul' (inv_le_abs _) (inv_le_abs _), }
end
-- |a - b| = |b - a|
@[to_additive]
lemma abs_inv_comm (a b : α) : |a/b| = |b/a| :=
begin
unfold has_abs.abs,
rw [inv_div a b, ← inv_inv (a / b), inv_div, sup_comm],
end
-- | |a| - |b| | ≤ |a - b|
@[to_additive]
lemma abs_abs_div_abs_le [covariant_class α α (*) (≤)] (a b : α) : | |a| / |b| | ≤ |a / b| :=
begin
unfold has_abs.abs,
rw sup_le_iff,
split,
{ apply div_le_iff_le_mul.2,
convert mabs_mul_le (a/b) b,
{ rw div_mul_cancel', },
{ rw div_mul_cancel', },
{ exact covariant_swap_mul_le_of_covariant_mul_le α, } },
{ rw [div_eq_mul_inv, mul_inv_rev, inv_inv, mul_inv_le_iff_le_mul, ← abs_eq_sup_inv (a / b),
abs_inv_comm],
convert mabs_mul_le (b/a) a,
{ rw div_mul_cancel', },
{rw div_mul_cancel', } },
end
end lattice_ordered_comm_group
|