Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 23,382 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
/-
Copyright (c) 2021 Thomas Browning. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning
-/
import algebra.big_operators.order
import combinatorics.hall.basic
import data.fintype.card
import set_theory.cardinal.finite
/-!
# Configurations of Points and lines
This file introduces abstract configurations of points and lines, and proves some basic properties.
## Main definitions
* `configuration.nondegenerate`: Excludes certain degenerate configurations,
and imposes uniqueness of intersection points.
* `configuration.has_points`: A nondegenerate configuration in which
every pair of lines has an intersection point.
* `configuration.has_lines`: A nondegenerate configuration in which
every pair of points has a line through them.
* `configuration.line_count`: The number of lines through a given point.
* `configuration.point_count`: The number of lines through a given line.
## Main statements
* `configuration.has_lines.card_le`: `has_lines` implies `|P| ≤ |L|`.
* `configuration.has_points.card_le`: `has_points` implies `|L| ≤ |P|`.
* `configuration.has_lines.has_points`: `has_lines` and `|P| = |L|` implies `has_points`.
* `configuration.has_points.has_lines`: `has_points` and `|P| = |L|` implies `has_lines`.
Together, these four statements say that any two of the following properties imply the third:
(a) `has_lines`, (b) `has_points`, (c) `|P| = |L|`.
-/
open_locale big_operators
namespace configuration
universe u
variables (P L : Type u) [has_mem P L]
/-- A type synonym. -/
def dual := P
instance [this : inhabited P] : inhabited (dual P) := this
instance [this : fintype P] : fintype (dual P) := this
instance : has_mem (dual L) (dual P) :=
⟨function.swap (has_mem.mem : P → L → Prop)⟩
/-- A configuration is nondegenerate if:
1) there does not exist a line that passes through all of the points,
2) there does not exist a point that is on all of the lines,
3) there is at most one line through any two points,
4) any two lines have at most one intersection point.
Conditions 3 and 4 are equivalent. -/
class nondegenerate : Prop :=
(exists_point : ∀ l : L, ∃ p, p ∉ l)
(exists_line : ∀ p, ∃ l : L, p ∉ l)
(eq_or_eq : ∀ {p₁ p₂ : P} {l₁ l₂ : L}, p₁ ∈ l₁ → p₂ ∈ l₁ → p₁ ∈ l₂ → p₂ ∈ l₂ → p₁ = p₂ ∨ l₁ = l₂)
/-- A nondegenerate configuration in which every pair of lines has an intersection point. -/
class has_points extends nondegenerate P L : Type u :=
(mk_point : ∀ {l₁ l₂ : L} (h : l₁ ≠ l₂), P)
(mk_point_ax : ∀ {l₁ l₂ : L} (h : l₁ ≠ l₂), mk_point h ∈ l₁ ∧ mk_point h ∈ l₂)
/-- A nondegenerate configuration in which every pair of points has a line through them. -/
class has_lines extends nondegenerate P L : Type u :=
(mk_line : ∀ {p₁ p₂ : P} (h : p₁ ≠ p₂), L)
(mk_line_ax : ∀ {p₁ p₂ : P} (h : p₁ ≠ p₂), p₁ ∈ mk_line h ∧ p₂ ∈ mk_line h)
open nondegenerate has_points has_lines
instance [nondegenerate P L] : nondegenerate (dual L) (dual P) :=
{ exists_point := @exists_line P L _ _,
exists_line := @exists_point P L _ _,
eq_or_eq := λ l₁ l₂ p₁ p₂ h₁ h₂ h₃ h₄, (@eq_or_eq P L _ _ p₁ p₂ l₁ l₂ h₁ h₃ h₂ h₄).symm }
instance [has_points P L] : has_lines (dual L) (dual P) :=
{ mk_line := @mk_point P L _ _,
mk_line_ax := λ _ _, mk_point_ax }
instance [has_lines P L] : has_points (dual L) (dual P) :=
{ mk_point := @mk_line P L _ _,
mk_point_ax := λ _ _, mk_line_ax }
lemma has_points.exists_unique_point [has_points P L] (l₁ l₂ : L) (hl : l₁ ≠ l₂) :
∃! p, p ∈ l₁ ∧ p ∈ l₂ :=
⟨mk_point hl, mk_point_ax hl,
λ p hp, (eq_or_eq hp.1 (mk_point_ax hl).1 hp.2 (mk_point_ax hl).2).resolve_right hl⟩
lemma has_lines.exists_unique_line [has_lines P L] (p₁ p₂ : P) (hp : p₁ ≠ p₂) :
∃! l : L, p₁ ∈ l ∧ p₂ ∈ l :=
has_points.exists_unique_point (dual L) (dual P) p₁ p₂ hp
variables {P L}
/-- If a nondegenerate configuration has at least as many points as lines, then there exists
an injective function `f` from lines to points, such that `f l` does not lie on `l`. -/
lemma nondegenerate.exists_injective_of_card_le [nondegenerate P L]
[fintype P] [fintype L] (h : fintype.card L ≤ fintype.card P) :
∃ f : L → P, function.injective f ∧ ∀ l, (f l) ∉ l :=
begin
classical,
let t : L → finset P := λ l, (set.to_finset {p | p ∉ l}),
suffices : ∀ s : finset L, s.card ≤ (s.bUnion t).card, -- Hall's marriage theorem
{ obtain ⟨f, hf1, hf2⟩ := (finset.all_card_le_bUnion_card_iff_exists_injective t).mp this,
exact ⟨f, hf1, λ l, set.mem_to_finset.mp (hf2 l)⟩ },
intro s,
by_cases hs₀ : s.card = 0, -- If `s = ∅`, then `s.card = 0 ≤ (s.bUnion t).card`
{ simp_rw [hs₀, zero_le] },
by_cases hs₁ : s.card = 1, -- If `s = {l}`, then pick a point `p ∉ l`
{ obtain ⟨l, rfl⟩ := finset.card_eq_one.mp hs₁,
obtain ⟨p, hl⟩ := exists_point l,
rw [finset.card_singleton, finset.singleton_bUnion, nat.one_le_iff_ne_zero],
exact finset.card_ne_zero_of_mem (set.mem_to_finset.mpr hl) },
suffices : (s.bUnion t)ᶜ.card ≤ sᶜ.card, -- Rephrase in terms of complements (uses `h`)
{ rw [finset.card_compl, finset.card_compl, tsub_le_iff_left] at this,
replace := h.trans this,
rwa [←add_tsub_assoc_of_le s.card_le_univ, le_tsub_iff_left
(le_add_left s.card_le_univ), add_le_add_iff_right] at this },
have hs₂ : (s.bUnion t)ᶜ.card ≤ 1, -- At most one line through two points of `s`
{ refine finset.card_le_one_iff.mpr (λ p₁ p₂ hp₁ hp₂, _),
simp_rw [finset.mem_compl, finset.mem_bUnion, exists_prop, not_exists, not_and,
set.mem_to_finset, set.mem_set_of_eq, not_not] at hp₁ hp₂,
obtain ⟨l₁, l₂, hl₁, hl₂, hl₃⟩ :=
finset.one_lt_card_iff.mp (nat.one_lt_iff_ne_zero_and_ne_one.mpr ⟨hs₀, hs₁⟩),
exact (eq_or_eq (hp₁ l₁ hl₁) (hp₂ l₁ hl₁) (hp₁ l₂ hl₂) (hp₂ l₂ hl₂)).resolve_right hl₃ },
by_cases hs₃ : sᶜ.card = 0,
{ rw [hs₃, nat.le_zero_iff],
rw [finset.card_compl, tsub_eq_zero_iff_le, has_le.le.le_iff_eq (finset.card_le_univ _),
eq_comm, finset.card_eq_iff_eq_univ] at hs₃ ⊢,
rw hs₃,
rw finset.eq_univ_iff_forall at hs₃ ⊢,
exact λ p, exists.elim (exists_line p) -- If `s = univ`, then show `s.bUnion t = univ`
(λ l hl, finset.mem_bUnion.mpr ⟨l, finset.mem_univ l, set.mem_to_finset.mpr hl⟩) },
{ exact hs₂.trans (nat.one_le_iff_ne_zero.mpr hs₃) }, -- If `s < univ`, then consequence of `hs₂`
end
variables {P} (L)
/-- Number of points on a given line. -/
noncomputable def line_count (p : P) : ℕ := nat.card {l : L // p ∈ l}
variables (P) {L}
/-- Number of lines through a given point. -/
noncomputable def point_count (l : L) : ℕ := nat.card {p : P // p ∈ l}
variables (P L)
lemma sum_line_count_eq_sum_point_count [fintype P] [fintype L] :
∑ p : P, line_count L p = ∑ l : L, point_count P l :=
begin
classical,
simp only [line_count, point_count, nat.card_eq_fintype_card, ←fintype.card_sigma],
apply fintype.card_congr,
calc (Σ p, {l : L // p ∈ l}) ≃ {x : P × L // x.1 ∈ x.2} :
(equiv.subtype_prod_equiv_sigma_subtype (∈)).symm
... ≃ {x : L × P // x.2 ∈ x.1} : (equiv.prod_comm P L).subtype_equiv (λ x, iff.rfl)
... ≃ (Σ l, {p // p ∈ l}) : equiv.subtype_prod_equiv_sigma_subtype (λ (l : L) (p : P), p ∈ l),
end
variables {P L}
lemma has_lines.point_count_le_line_count [has_lines P L] {p : P} {l : L} (h : p ∉ l)
[fintype {l : L // p ∈ l}] : point_count P l ≤ line_count L p :=
begin
by_cases hf : infinite {p : P // p ∈ l},
{ exactI (le_of_eq nat.card_eq_zero_of_infinite).trans (zero_le (line_count L p)) },
haveI := fintype_of_not_infinite hf,
rw [line_count, point_count, nat.card_eq_fintype_card, nat.card_eq_fintype_card],
have : ∀ p' : {p // p ∈ l}, p ≠ p' := λ p' hp', h ((congr_arg (∈ l) hp').mpr p'.2),
exact fintype.card_le_of_injective (λ p', ⟨mk_line (this p'), (mk_line_ax (this p')).1⟩)
(λ p₁ p₂ hp, subtype.ext ((eq_or_eq p₁.2 p₂.2 (mk_line_ax (this p₁)).2
((congr_arg _ (subtype.ext_iff.mp hp)).mpr (mk_line_ax (this p₂)).2)).resolve_right
(λ h', (congr_arg _ h').mp h (mk_line_ax (this p₁)).1))),
end
lemma has_points.line_count_le_point_count [has_points P L] {p : P} {l : L} (h : p ∉ l)
[hf : fintype {p : P // p ∈ l}] : line_count L p ≤ point_count P l :=
@has_lines.point_count_le_line_count (dual L) (dual P) _ _ l p h hf
variables (P L)
/-- If a nondegenerate configuration has a unique line through any two points, then `|P| ≤ |L|`. -/
lemma has_lines.card_le [has_lines P L] [fintype P] [fintype L] :
fintype.card P ≤ fintype.card L :=
begin
classical,
by_contradiction hc₂,
obtain ⟨f, hf₁, hf₂⟩ := nondegenerate.exists_injective_of_card_le (le_of_not_le hc₂),
have := calc ∑ p, line_count L p = ∑ l, point_count P l : sum_line_count_eq_sum_point_count P L
... ≤ ∑ l, line_count L (f l) :
finset.sum_le_sum (λ l hl, has_lines.point_count_le_line_count (hf₂ l))
... = ∑ p in finset.univ.image f, line_count L p :
finset.sum_bij (λ l hl, f l) (λ l hl, finset.mem_image_of_mem f hl) (λ l hl, rfl)
(λ l₁ l₂ hl₁ hl₂ hl₃, hf₁ hl₃) (λ p, by simp_rw [finset.mem_image, eq_comm, imp_self])
... < ∑ p, line_count L p : _,
{ exact lt_irrefl _ this },
{ obtain ⟨p, hp⟩ := not_forall.mp (mt (fintype.card_le_of_surjective f) hc₂),
refine finset.sum_lt_sum_of_subset ((finset.univ.image f).subset_univ) (finset.mem_univ p)
_ _ (λ p hp₁ hp₂, zero_le (line_count L p)),
{ simpa only [finset.mem_image, exists_prop, finset.mem_univ, true_and] },
{ rw [line_count, nat.card_eq_fintype_card, fintype.card_pos_iff],
obtain ⟨l, hl⟩ := @exists_line P L _ _ p,
exact let this := not_exists.mp hp l in ⟨⟨mk_line this, (mk_line_ax this).2⟩⟩ } },
end
/-- If a nondegenerate configuration has a unique point on any two lines, then `|L| ≤ |P|`. -/
lemma has_points.card_le [has_points P L] [fintype P] [fintype L] :
fintype.card L ≤ fintype.card P :=
@has_lines.card_le (dual L) (dual P) _ _ _ _
variables {P L}
lemma has_lines.exists_bijective_of_card_eq [has_lines P L]
[fintype P] [fintype L] (h : fintype.card P = fintype.card L) :
∃ f : L → P, function.bijective f ∧ ∀ l, point_count P l = line_count L (f l) :=
begin
classical,
obtain ⟨f, hf1, hf2⟩ := nondegenerate.exists_injective_of_card_le (ge_of_eq h),
have hf3 := (fintype.bijective_iff_injective_and_card f).mpr ⟨hf1, h.symm⟩,
refine ⟨f, hf3, λ l, (finset.sum_eq_sum_iff_of_le
(by exact λ l hl, has_lines.point_count_le_line_count (hf2 l))).mp
((sum_line_count_eq_sum_point_count P L).symm.trans ((finset.sum_bij (λ l hl, f l)
(λ l hl, finset.mem_univ (f l)) (λ l hl, refl (line_count L (f l)))
(λ l₁ l₂ hl₁ hl₂ hl, hf1 hl) (λ p hp, _)).symm)) l (finset.mem_univ l)⟩,
obtain ⟨l, rfl⟩ := hf3.2 p,
exact ⟨l, finset.mem_univ l, rfl⟩,
end
lemma has_lines.line_count_eq_point_count [has_lines P L] [fintype P] [fintype L]
(hPL : fintype.card P = fintype.card L) {p : P} {l : L} (hpl : p ∉ l) :
line_count L p = point_count P l :=
begin
classical,
obtain ⟨f, hf1, hf2⟩ := has_lines.exists_bijective_of_card_eq hPL,
let s : finset (P × L) := set.to_finset {i | i.1 ∈ i.2},
have step1 : ∑ i : P × L, line_count L i.1 = ∑ i : P × L, point_count P i.2,
{ rw [←finset.univ_product_univ, finset.sum_product_right, finset.sum_product],
simp_rw [finset.sum_const, finset.card_univ, hPL, sum_line_count_eq_sum_point_count] },
have step2 : ∑ i in s, line_count L i.1 = ∑ i in s, point_count P i.2,
{ rw [s.sum_finset_product finset.univ (λ p, set.to_finset {l | p ∈ l})],
rw [s.sum_finset_product_right finset.univ (λ l, set.to_finset {p | p ∈ l})],
refine (finset.sum_bij (λ l hl, f l) (λ l hl, finset.mem_univ (f l)) (λ l hl, _)
(λ _ _ _ _ h, hf1.1 h) (λ p hp, _)).symm,
{ simp_rw [finset.sum_const, set.to_finset_card, ←nat.card_eq_fintype_card],
change (point_count P l) • (point_count P l) = (line_count L (f l)) • (line_count L (f l)),
rw hf2 },
{ obtain ⟨l, hl⟩ := hf1.2 p,
exact ⟨l, finset.mem_univ l, hl.symm⟩ },
all_goals { simp_rw [finset.mem_univ, true_and, set.mem_to_finset], exact λ p, iff.rfl } },
have step3 : ∑ i in sᶜ, line_count L i.1 = ∑ i in sᶜ, point_count P i.2,
{ rwa [←s.sum_add_sum_compl, ←s.sum_add_sum_compl, step2, add_left_cancel_iff] at step1 },
rw ← set.to_finset_compl at step3,
exact ((finset.sum_eq_sum_iff_of_le (by exact λ i hi, has_lines.point_count_le_line_count
(set.mem_to_finset.mp hi))).mp step3.symm (p, l) (set.mem_to_finset.mpr hpl)).symm,
end
lemma has_points.line_count_eq_point_count [has_points P L] [fintype P] [fintype L]
(hPL : fintype.card P = fintype.card L) {p : P} {l : L} (hpl : p ∉ l) :
line_count L p = point_count P l :=
(@has_lines.line_count_eq_point_count (dual L) (dual P) _ _ _ _ hPL.symm l p hpl).symm
/-- If a nondegenerate configuration has a unique line through any two points, and if `|P| = |L|`,
then there is a unique point on any two lines. -/
noncomputable def has_lines.has_points [has_lines P L] [fintype P] [fintype L]
(h : fintype.card P = fintype.card L) : has_points P L :=
let this : ∀ l₁ l₂ : L, l₁ ≠ l₂ → ∃ p : P, p ∈ l₁ ∧ p ∈ l₂ := λ l₁ l₂ hl, begin
classical,
obtain ⟨f, hf1, hf2⟩ := has_lines.exists_bijective_of_card_eq h,
haveI : nontrivial L := ⟨⟨l₁, l₂, hl⟩⟩,
haveI := fintype.one_lt_card_iff_nontrivial.mp ((congr_arg _ h).mpr fintype.one_lt_card),
have h₁ : ∀ p : P, 0 < line_count L p := λ p, exists.elim (exists_ne p) (λ q hq, (congr_arg _
nat.card_eq_fintype_card).mpr (fintype.card_pos_iff.mpr ⟨⟨mk_line hq, (mk_line_ax hq).2⟩⟩)),
have h₂ : ∀ l : L, 0 < point_count P l := λ l, (congr_arg _ (hf2 l)).mpr (h₁ (f l)),
obtain ⟨p, hl₁⟩ := fintype.card_pos_iff.mp ((congr_arg _ nat.card_eq_fintype_card).mp (h₂ l₁)),
by_cases hl₂ : p ∈ l₂, exact ⟨p, hl₁, hl₂⟩,
have key' : fintype.card {q : P // q ∈ l₂} = fintype.card {l : L // p ∈ l},
{ exact ((has_lines.line_count_eq_point_count h hl₂).trans nat.card_eq_fintype_card).symm.trans
nat.card_eq_fintype_card, },
have : ∀ q : {q // q ∈ l₂}, p ≠ q := λ q hq, hl₂ ((congr_arg (∈ l₂) hq).mpr q.2),
let f : {q : P // q ∈ l₂} → {l : L // p ∈ l} := λ q, ⟨mk_line (this q), (mk_line_ax (this q)).1⟩,
have hf : function.injective f := λ q₁ q₂ hq, subtype.ext ((eq_or_eq q₁.2 q₂.2
(mk_line_ax (this q₁)).2 ((congr_arg _ (subtype.ext_iff.mp hq)).mpr (mk_line_ax
(this q₂)).2)).resolve_right (λ h, (congr_arg _ h).mp hl₂ (mk_line_ax (this q₁)).1)),
have key' := ((fintype.bijective_iff_injective_and_card f).mpr ⟨hf, key'⟩).2,
obtain ⟨q, hq⟩ := key' ⟨l₁, hl₁⟩,
exact ⟨q, (congr_arg _ (subtype.ext_iff.mp hq)).mp (mk_line_ax (this q)).2, q.2⟩,
end in
{ mk_point := λ l₁ l₂ hl, classical.some (this l₁ l₂ hl),
mk_point_ax := λ l₁ l₂ hl, classical.some_spec (this l₁ l₂ hl) }
/-- If a nondegenerate configuration has a unique point on any two lines, and if `|P| = |L|`,
then there is a unique line through any two points. -/
noncomputable def has_points.has_lines [has_points P L] [fintype P] [fintype L]
(h : fintype.card P = fintype.card L) : has_lines P L :=
let this := @has_lines.has_points (dual L) (dual P) _ _ _ _ h.symm in
{ mk_line := this.mk_point,
mk_line_ax := this.mk_point_ax }
variables (P L)
/-- A projective plane is a nondegenerate configuration in which every pair of lines has
an intersection point, every pair of points has a line through them,
and which has three points in general position. -/
class projective_plane extends nondegenerate P L : Type u :=
(mk_point : ∀ {l₁ l₂ : L} (h : l₁ ≠ l₂), P)
(mk_point_ax : ∀ {l₁ l₂ : L} (h : l₁ ≠ l₂), mk_point h ∈ l₁ ∧ mk_point h ∈ l₂)
(mk_line : ∀ {p₁ p₂ : P} (h : p₁ ≠ p₂), L)
(mk_line_ax : ∀ {p₁ p₂ : P} (h : p₁ ≠ p₂), p₁ ∈ mk_line h ∧ p₂ ∈ mk_line h)
(exists_config : ∃ (p₁ p₂ p₃ : P) (l₁ l₂ l₃ : L), p₁ ∉ l₂ ∧ p₁ ∉ l₃ ∧
p₂ ∉ l₁ ∧ p₂ ∈ l₂ ∧ p₂ ∈ l₃ ∧ p₃ ∉ l₁ ∧ p₃ ∈ l₂ ∧ p₃ ∉ l₃)
namespace projective_plane
@[priority 100] -- see Note [lower instance priority]
instance has_points [h : projective_plane P L] : has_points P L := { .. h }
@[priority 100] -- see Note [lower instance priority]
instance has_lines [h : projective_plane P L] : has_lines P L := { .. h }
instance [projective_plane P L] : projective_plane (dual L) (dual P) :=
{ mk_line := @mk_point P L _ _,
mk_line_ax := λ _ _, mk_point_ax,
mk_point := @mk_line P L _ _,
mk_point_ax := λ _ _, mk_line_ax,
exists_config := by
{ obtain ⟨p₁, p₂, p₃, l₁, l₂, l₃, h₁₂, h₁₃, h₂₁, h₂₂, h₂₃, h₃₁, h₃₂, h₃₃⟩ :=
@exists_config P L _ _,
exact ⟨l₁, l₂, l₃, p₁, p₂, p₃, h₂₁, h₃₁, h₁₂, h₂₂, h₃₂, h₁₃, h₂₃, h₃₃⟩ },
.. dual.nondegenerate P L }
/-- The order of a projective plane is one less than the number of lines through an arbitrary point.
Equivalently, it is one less than the number of points on an arbitrary line. -/
noncomputable def order [projective_plane P L] : ℕ :=
line_count L (classical.some (@exists_config P L _ _)) - 1
variables [fintype P] [fintype L]
lemma card_points_eq_card_lines [projective_plane P L] : fintype.card P = fintype.card L :=
le_antisymm (has_lines.card_le P L) (has_points.card_le P L)
variables {P} (L)
lemma line_count_eq_line_count [projective_plane P L] (p q : P) :
line_count L p = line_count L q :=
begin
obtain ⟨p₁, p₂, p₃, l₁, l₂, l₃, h₁₂, h₁₃, h₂₁, h₂₂, h₂₃, h₃₁, h₃₂, h₃₃⟩ := exists_config,
have h := card_points_eq_card_lines P L,
let n := line_count L p₂,
have hp₂ : line_count L p₂ = n := rfl,
have hl₁ : point_count P l₁ = n := (has_lines.line_count_eq_point_count h h₂₁).symm.trans hp₂,
have hp₃ : line_count L p₃ = n := (has_lines.line_count_eq_point_count h h₃₁).trans hl₁,
have hl₃ : point_count P l₃ = n := (has_lines.line_count_eq_point_count h h₃₃).symm.trans hp₃,
have hp₁ : line_count L p₁ = n := (has_lines.line_count_eq_point_count h h₁₃).trans hl₃,
have hl₂ : point_count P l₂ = n := (has_lines.line_count_eq_point_count h h₁₂).symm.trans hp₁,
suffices : ∀ p : P, line_count L p = n, { exact (this p).trans (this q).symm },
refine λ p, or_not.elim (λ h₂, _) (λ h₂, (has_lines.line_count_eq_point_count h h₂).trans hl₂),
refine or_not.elim (λ h₃, _) (λ h₃, (has_lines.line_count_eq_point_count h h₃).trans hl₃),
rwa (eq_or_eq h₂ h₂₂ h₃ h₂₃).resolve_right (λ h, h₃₃ ((congr_arg (has_mem.mem p₃) h).mp h₃₂)),
end
variables (P) {L}
lemma point_count_eq_point_count [projective_plane P L] (l m : L) :
point_count P l = point_count P m :=
line_count_eq_line_count (dual P) l m
variables {P L}
lemma line_count_eq_point_count [projective_plane P L] (p : P) (l : L) :
line_count L p = point_count P l :=
exists.elim (exists_point l) (λ q hq, (line_count_eq_line_count L p q).trans
(has_lines.line_count_eq_point_count (card_points_eq_card_lines P L) hq))
variables (P L)
lemma dual.order [projective_plane P L] : order (dual L) (dual P) = order P L :=
congr_arg (λ n, n - 1) (line_count_eq_point_count _ _)
variables {P} (L)
lemma line_count_eq [projective_plane P L] (p : P) : line_count L p = order P L + 1 :=
begin
classical,
obtain ⟨q, -, -, l, -, -, -, -, h, -⟩ := classical.some_spec (@exists_config P L _ _),
rw [order, line_count_eq_line_count L p q, line_count_eq_line_count L (classical.some _) q,
line_count, nat.card_eq_fintype_card, nat.sub_add_cancel],
exact fintype.card_pos_iff.mpr ⟨⟨l, h⟩⟩,
end
variables (P) {L}
lemma point_count_eq [projective_plane P L] (l : L) : point_count P l = order P L + 1 :=
(line_count_eq (dual P) l).trans (congr_arg (λ n, n + 1) (dual.order P L))
variables (P L)
lemma one_lt_order [projective_plane P L] : 1 < order P L :=
begin
obtain ⟨p₁, p₂, p₃, l₁, l₂, l₃, -, -, h₂₁, h₂₂, h₂₃, h₃₁, h₃₂, h₃₃⟩ := @exists_config P L _ _,
classical,
rw [←add_lt_add_iff_right, ←point_count_eq, point_count, nat.card_eq_fintype_card],
simp_rw [fintype.two_lt_card_iff, ne, subtype.ext_iff],
have h := mk_point_ax (λ h, h₂₁ ((congr_arg _ h).mpr h₂₂)),
exact ⟨⟨mk_point _, h.2⟩, ⟨p₂, h₂₂⟩, ⟨p₃, h₃₂⟩,
ne_of_mem_of_not_mem h.1 h₂₁, ne_of_mem_of_not_mem h.1 h₃₁, ne_of_mem_of_not_mem h₂₃ h₃₃⟩,
end
variables {P} (L)
lemma two_lt_line_count [projective_plane P L] (p : P) : 2 < line_count L p :=
by simpa only [line_count_eq L p, nat.succ_lt_succ_iff] using one_lt_order P L
variables (P) {L}
lemma two_lt_point_count [projective_plane P L] (l : L) : 2 < point_count P l :=
by simpa only [point_count_eq P l, nat.succ_lt_succ_iff] using one_lt_order P L
variables (P) (L)
lemma card_points [projective_plane P L] : fintype.card P = order P L ^ 2 + order P L + 1 :=
begin
obtain ⟨p, -⟩ := @exists_config P L _ _,
let ϕ : {q // q ≠ p} ≃ Σ (l : {l : L // p ∈ l}), {q // q ∈ l.1 ∧ q ≠ p} :=
{ to_fun := λ q, ⟨⟨mk_line q.2, (mk_line_ax q.2).2⟩, q, (mk_line_ax q.2).1, q.2⟩,
inv_fun := λ lq, ⟨lq.2, lq.2.2.2⟩,
left_inv := λ q, subtype.ext rfl,
right_inv := λ lq, sigma.subtype_ext (subtype.ext ((eq_or_eq (mk_line_ax lq.2.2.2).1
(mk_line_ax lq.2.2.2).2 lq.2.2.1 lq.1.2).resolve_left lq.2.2.2)) rfl },
classical,
have h1 : fintype.card {q // q ≠ p} + 1 = fintype.card P,
{ apply (eq_tsub_iff_add_eq_of_le (nat.succ_le_of_lt (fintype.card_pos_iff.mpr ⟨p⟩))).mp,
convert (fintype.card_subtype_compl _).trans (congr_arg _ (fintype.card_subtype_eq p)) },
have h2 : ∀ l : {l : L // p ∈ l}, fintype.card {q // q ∈ l.1 ∧ q ≠ p} = order P L,
{ intro l,
rw [←fintype.card_congr (equiv.subtype_subtype_equiv_subtype_inter _ _),
fintype.card_subtype_compl (λ (x : subtype (∈ l.val)), x.val = p), ←nat.card_eq_fintype_card],
refine tsub_eq_of_eq_add ((point_count_eq P l.1).trans _),
rw ← fintype.card_subtype_eq (⟨p, l.2⟩ : {q : P // q ∈ l.1}),
simp_rw subtype.ext_iff_val },
simp_rw [←h1, fintype.card_congr ϕ, fintype.card_sigma, h2, finset.sum_const, finset.card_univ],
rw [←nat.card_eq_fintype_card, ←line_count, line_count_eq, smul_eq_mul, nat.succ_mul, sq],
end
lemma card_lines [projective_plane P L] : fintype.card L = order P L ^ 2 + order P L + 1 :=
(card_points (dual L) (dual P)).trans (congr_arg (λ n, n ^ 2 + n + 1) (dual.order P L))
end projective_plane
end configuration
|