Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 33,269 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Thomas Browning
-/

import data.nat.factorization.basic
import data.set_like.fintype
import group_theory.group_action.conj_act
import group_theory.p_group
import group_theory.noncomm_pi_coprod

/-!
# Sylow theorems

The Sylow theorems are the following results for every finite group `G` and every prime number `p`.

* There exists a Sylow `p`-subgroup of `G`.
* All Sylow `p`-subgroups of `G` are conjugate to each other.
* Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow
  `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow
  `p`-subgroup in `G`.

## Main definitions

* `sylow p G` : The type of Sylow `p`-subgroups of `G`.

## Main statements

* `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem:
  For every prime power `pⁿ` dividing the cardinality of `G`,
  there exists a subgroup of `G` of order `pⁿ`.
* `is_p_group.exists_le_sylow`: A generalization of Sylow's first theorem:
  Every `p`-subgroup is contained in a Sylow `p`-subgroup.
* `sylow_conjugate`: A generalization of Sylow's second theorem:
  If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate.
* `card_sylow_modeq_one`: A generalization of Sylow's third theorem:
  If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`.
-/

open fintype mul_action subgroup

section infinite_sylow

variables (p : ℕ) (G : Type*) [group G]

/-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/
structure sylow extends subgroup G :=
(is_p_group' : is_p_group p to_subgroup)
(is_maximal' : ∀ {Q : subgroup G}, is_p_group p Q → to_subgroup ≤ Q → Q = to_subgroup)

variables {p} {G}

namespace sylow

instance : has_coe (sylow p G) (subgroup G) := ⟨sylow.to_subgroup⟩

@[simp] lemma to_subgroup_eq_coe {P : sylow p G} : P.to_subgroup = ↑P := rfl

@[ext] lemma ext {P Q : sylow p G} (h : (P : subgroup G) = Q) : P = Q :=
by cases P; cases Q; congr'

lemma ext_iff {P Q : sylow p G} : P = Q ↔ (P : subgroup G) = Q :=
⟨congr_arg coe, ext⟩

instance : set_like (sylow p G) G :=
{ coe := coe,
  coe_injective' := λ P Q h, ext (set_like.coe_injective h) }

instance : subgroup_class (sylow p G) G :=
{ mul_mem := λ s, s.mul_mem',
  one_mem := λ s, s.one_mem',
  inv_mem := λ s, s.inv_mem' }

variables (P : sylow p G)

/-- The action by a Sylow subgroup is the action by the underlying group. -/
instance mul_action_left {α : Type*} [mul_action G α] : mul_action P α :=
subgroup.mul_action ↑P

variables {K : Type*} [group K] (ϕ : K →* G) {N : subgroup G}

/-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/
def comap_of_ker_is_p_group (hϕ : is_p_group p ϕ.ker) (h : ↑P ≤ ϕ.range) : sylow p K :=
{ P.1.comap ϕ with
  is_p_group' := P.2.comap_of_ker_is_p_group ϕ hϕ,
  is_maximal' := λ Q hQ hle, by
  { rw ← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle)),
    exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm }, }

@[simp] lemma coe_comap_of_ker_is_p_group (hϕ : is_p_group p ϕ.ker) (h : ↑P ≤ ϕ.range) :
  ↑(P.comap_of_ker_is_p_group ϕ hϕ h) = subgroup.comap ϕ ↑P := rfl

/-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/
def comap_of_injective (hϕ : function.injective ϕ) (h : ↑P ≤ ϕ.range) : sylow p K :=
P.comap_of_ker_is_p_group ϕ (is_p_group.ker_is_p_group_of_injective hϕ) h

@[simp] lemma coe_comap_of_injective (hϕ : function.injective ϕ) (h : ↑P ≤ ϕ.range) :
  ↑(P.comap_of_injective ϕ hϕ h) = subgroup.comap ϕ ↑P := rfl

/-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/
def subtype (h : ↑P ≤ N) : sylow p N :=
P.comap_of_injective N.subtype subtype.coe_injective (by simp [h])

@[simp] lemma coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroup.comap N.subtype ↑P := rfl

end sylow

/-- A generalization of **Sylow's first theorem**.
  Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/
lemma is_p_group.exists_le_sylow {P : subgroup G} (hP : is_p_group p P) :
  ∃ Q : sylow p G, P ≤ Q :=
exists.elim (zorn_nonempty_partial_order₀ {Q : subgroup G | is_p_group p Q} (λ c hc1 hc2 Q hQ,
⟨ { carrier := ⋃ (R : c), R,
    one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩,
    inv_mem' := λ g ⟨_, ⟨R, rfl⟩, hg⟩, ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩,
    mul_mem' := λ g h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩, (hc2.total R.2 S.2).elim
      (λ T, ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) (λ T, ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩) },
  λ ⟨g, _, ⟨S, rfl⟩, hg⟩, by
  { refine exists_imp_exists (λ k hk, _) (hc1 S.2 ⟨g, hg⟩),
    rwa [subtype.ext_iff, coe_pow] at hk ⊢ },
  λ M hM g hg, ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) (λ Q ⟨hQ1, hQ2, hQ3⟩, ⟨⟨Q, hQ1, hQ3⟩, hQ2⟩)

instance sylow.nonempty : nonempty (sylow p G) :=
nonempty_of_exists is_p_group.of_bot.exists_le_sylow

noncomputable instance sylow.inhabited : inhabited (sylow p G) :=
classical.inhabited_of_nonempty sylow.nonempty

lemma sylow.exists_comap_eq_of_ker_is_p_group {H : Type*} [group H] (P : sylow p H)
  {f : H →* G} (hf : is_p_group p f.ker) : ∃ Q : sylow p G, (Q : subgroup G).comap f = P :=
exists_imp_exists (λ Q hQ, P.3 (Q.2.comap_of_ker_is_p_group f hf) (map_le_iff_le_comap.mp hQ))
  (P.2.map f).exists_le_sylow

lemma sylow.exists_comap_eq_of_injective {H : Type*} [group H] (P : sylow p H)
  {f : H →* G} (hf : function.injective f) : ∃ Q : sylow p G, (Q : subgroup G).comap f = P :=
P.exists_comap_eq_of_ker_is_p_group (is_p_group.ker_is_p_group_of_injective hf)

lemma sylow.exists_comap_subtype_eq {H : subgroup G} (P : sylow p H) :
  ∃ Q : sylow p G, (Q : subgroup G).comap H.subtype = P :=
P.exists_comap_eq_of_injective subtype.coe_injective

/-- If the kernel of `f : H →* G` is a `p`-group,
  then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/
noncomputable def sylow.fintype_of_ker_is_p_group {H : Type*} [group H]
  {f : H →* G} (hf : is_p_group p f.ker) [fintype (sylow p G)] : fintype (sylow p H) :=
let h_exists := λ P : sylow p H, P.exists_comap_eq_of_ker_is_p_group hf,
  g : sylow p H → sylow p G := λ P, classical.some (h_exists P),
  hg : ∀ P : sylow p H, (g P).1.comap f = P := λ P, classical.some_spec (h_exists P) in
fintype.of_injective g (λ P Q h, sylow.ext (by simp only [←hg, h]))

/-- If `f : H →* G` is injective, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/
noncomputable def sylow.fintype_of_injective {H : Type*} [group H]
  {f : H →* G} (hf : function.injective f) [fintype (sylow p G)] : fintype (sylow p H) :=
sylow.fintype_of_ker_is_p_group (is_p_group.ker_is_p_group_of_injective hf)

/-- If `H` is a subgroup of `G`, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/
noncomputable instance (H : subgroup G) [fintype (sylow p G)] : fintype (sylow p H) :=
sylow.fintype_of_injective (show function.injective H.subtype, from subtype.coe_injective)

open_locale pointwise

/-- `subgroup.pointwise_mul_action` preserves Sylow subgroups. -/
instance sylow.pointwise_mul_action {α : Type*} [group α] [mul_distrib_mul_action α G] :
  mul_action α (sylow p G) :=
{ smul := λ g P, ⟨g • P, P.2.map _, λ Q hQ hS, inv_smul_eq_iff.mp (P.3 (hQ.map _)
    (λ s hs, (congr_arg (∈ g⁻¹ • Q) (inv_smul_smul g s)).mp
      (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs)))))⟩,
  one_smul := λ P, sylow.ext (one_smul α P),
  mul_smul := λ g h P, sylow.ext (mul_smul g h P) }

lemma sylow.pointwise_smul_def {α : Type*} [group α] [mul_distrib_mul_action α G]
  {g : α} {P : sylow p G} : ↑(g • P) = g • (P : subgroup G) := rfl

instance sylow.mul_action : mul_action G (sylow p G) :=
comp_hom _ mul_aut.conj

lemma sylow.smul_def {g : G} {P : sylow p G} : g • P = mul_aut.conj g • P := rfl

lemma sylow.coe_subgroup_smul {g : G} {P : sylow p G} :
  ↑(g • P) = mul_aut.conj g • (P : subgroup G) := rfl

lemma sylow.coe_smul {g : G} {P : sylow p G} :
  ↑(g • P) = mul_aut.conj g • (P : set G) := rfl

lemma sylow.smul_le {P : sylow p G} {H : subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H :=
subgroup.conj_smul_le_of_le hP h

lemma sylow.smul_subtype {P : sylow p G} {H : subgroup G} (hP : ↑P ≤ H) (h : H) :
  h • P.subtype hP = (h • P).subtype (sylow.smul_le hP h) :=
sylow.ext (subgroup.conj_smul_subgroup_of hP h)

lemma sylow.smul_eq_iff_mem_normalizer {g : G} {P : sylow p G} :
  g • P = P ↔ g ∈ (P : subgroup G).normalizer :=
begin
  rw [eq_comm, set_like.ext_iff, ←inv_mem_iff, mem_normalizer_iff, inv_inv],
  exact forall_congr (λ h, iff_congr iff.rfl ⟨λ ⟨a, b, c⟩, (congr_arg _ c).mp
    ((congr_arg (∈ P.1) (mul_aut.inv_apply_self G (mul_aut.conj g) a)).mpr b),
    λ hh, ⟨(mul_aut.conj g)⁻¹ h, hh, mul_aut.apply_inv_self G (mul_aut.conj g) h⟩⟩),
end

lemma sylow.smul_eq_of_normal {g : G} {P : sylow p G} [h : (P : subgroup G).normal] :
  g • P = P :=
by simp only [sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top]

lemma subgroup.sylow_mem_fixed_points_iff (H : subgroup G) {P : sylow p G} :
  P ∈ fixed_points H (sylow p G) ↔ H ≤ (P : subgroup G).normalizer :=
by simp_rw [set_like.le_def, ←sylow.smul_eq_iff_mem_normalizer]; exact subtype.forall

lemma is_p_group.inf_normalizer_sylow {P : subgroup G} (hP : is_p_group p P) (Q : sylow p G) :
  P ⊓ (Q : subgroup G).normalizer = P ⊓ Q :=
le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right'
  Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer)

lemma is_p_group.sylow_mem_fixed_points_iff
  {P : subgroup G} (hP : is_p_group p P) {Q : sylow p G} :
  Q ∈ fixed_points P (sylow p G) ↔ P ≤ Q :=
by rw [P.sylow_mem_fixed_points_iff, ←inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left]

/-- A generalization of **Sylow's second theorem**.
  If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/
instance [hp : fact p.prime] [fintype (sylow p G)] : is_pretransitive G (sylow p G) :=
⟨λ P Q, by
{ classical,
  have H := λ {R : sylow p G} {S : orbit G P},
  calc S ∈ fixed_points R (orbit G P)
      ↔ S.1 ∈ fixed_points R (sylow p G) : forall_congr (λ a, subtype.ext_iff)
  ... ↔ R.1 ≤ S : R.2.sylow_mem_fixed_points_iff
  ... ↔ S.1.1 = R : ⟨λ h, R.3 S.1.2 h, ge_of_eq⟩,
  suffices : set.nonempty (fixed_points Q (orbit G P)),
  { exact exists.elim this (λ R hR, (congr_arg _ (sylow.ext (H.mp hR))).mp R.2) },
  apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card,
  refine λ h, hp.out.not_dvd_one (nat.modeq_zero_iff_dvd.mp _),
  calc 1 = card (fixed_points P (orbit G P)) : _
     ... ≡ card (orbit G P) [MOD p] : (P.2.card_modeq_card_fixed_points (orbit G P)).symm
     ... ≡ 0 [MOD p] : nat.modeq_zero_iff_dvd.mpr h,
  rw ← set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P),
  refine card_congr' (congr_arg _ (eq.symm _)),
  rw set.eq_singleton_iff_unique_mem,
  exact ⟨H.mpr rfl, λ R h, subtype.ext (sylow.ext (H.mp h))⟩ }⟩

variables (p) (G)

/-- A generalization of **Sylow's third theorem**.
  If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/
lemma card_sylow_modeq_one [fact p.prime] [fintype (sylow p G)] : card (sylow p G) ≡ 1 [MOD p] :=
begin
  refine sylow.nonempty.elim (λ P : sylow p G, _),
  have : fixed_points P.1 (sylow p G) = {P} :=
  set.ext (λ Q : sylow p G, calc Q ∈ fixed_points P (sylow p G)
      ↔ P.1 ≤ Q : P.2.sylow_mem_fixed_points_iff
  ... ↔ Q.1 = P.1 : ⟨P.3 Q.2, ge_of_eq⟩
  ... ↔ Q ∈ {P} : sylow.ext_iff.symm.trans set.mem_singleton_iff.symm),
  haveI : fintype (fixed_points P.1 (sylow p G)), { rw this, apply_instance },
  have : card (fixed_points P.1 (sylow p G)) = 1, { simp [this] },
  exact (P.2.card_modeq_card_fixed_points (sylow p G)).trans (by rw this),
end

lemma not_dvd_card_sylow [hp : fact p.prime] [fintype (sylow p G)] : ¬ p ∣ card (sylow p G) :=
λ h, hp.1.ne_one (nat.dvd_one.mp ((nat.modeq_iff_dvd' zero_le_one).mp
  ((nat.modeq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modeq_one p G))))

variables {p} {G}

/-- Sylow subgroups are isomorphic -/
def sylow.equiv_smul (P : sylow p G) (g : G) : P ≃* (g • P : sylow p G) :=
equiv_smul (mul_aut.conj g) ↑P

/-- Sylow subgroups are isomorphic -/
noncomputable def sylow.equiv [fact p.prime] [fintype (sylow p G)] (P Q : sylow p G) :
  P ≃* Q :=
begin
  rw ← classical.some_spec (exists_smul_eq G P Q),
  exact P.equiv_smul (classical.some (exists_smul_eq G P Q)),
end

@[simp] lemma sylow.orbit_eq_top [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
  orbit G P = ⊤ :=
top_le_iff.mp (λ Q hQ, exists_smul_eq G P Q)

lemma sylow.stabilizer_eq_normalizer (P : sylow p G) :
  stabilizer G P = (P : subgroup G).normalizer :=
ext (λ g, sylow.smul_eq_iff_mem_normalizer)

/-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/
noncomputable def sylow.equiv_quotient_normalizer [fact p.prime] [fintype (sylow p G)]
  (P : sylow p G) : sylow p G ≃ G ⧸ (P : subgroup G).normalizer :=
calc sylow p G ≃ (⊤ : set (sylow p G)) : (equiv.set.univ (sylow p G)).symm
... ≃ orbit G P : by rw P.orbit_eq_top
... ≃ G ⧸ (stabilizer G P) : orbit_equiv_quotient_stabilizer G P
... ≃ G ⧸ (P : subgroup G).normalizer : by rw P.stabilizer_eq_normalizer

noncomputable instance [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
  fintype (G ⧸ (P : subgroup G).normalizer) :=
of_equiv (sylow p G) P.equiv_quotient_normalizer

lemma card_sylow_eq_card_quotient_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
  card (sylow p G) = card (G ⧸ (P : subgroup G).normalizer) :=
card_congr P.equiv_quotient_normalizer

lemma card_sylow_eq_index_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
  card (sylow p G) = (P : subgroup G).normalizer.index :=
(card_sylow_eq_card_quotient_normalizer P).trans (P : subgroup G).normalizer.index_eq_card.symm

lemma card_sylow_dvd_index [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
  card (sylow p G) ∣ (P : subgroup G).index :=
((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer)

lemma not_dvd_index_sylow' [hp : fact p.prime] (P : sylow p G) [(P : subgroup G).normal]
  (hP : (P : subgroup G).index ≠ 0) : ¬ p ∣ (P : subgroup G).index :=
begin
  intro h,
  haveI : fintype (G ⧸ (P : subgroup G)) := fintype_of_index_ne_zero hP,
  rw index_eq_card at h,
  obtain ⟨x, hx⟩ := exists_prime_order_of_dvd_card p h,
  have h := is_p_group.of_card ((order_eq_card_zpowers.symm.trans hx).trans (pow_one p).symm),
  let Q := (zpowers x).comap (quotient_group.mk' (P : subgroup G)),
  have hQ : is_p_group p Q,
  { apply h.comap_of_ker_is_p_group,
    rw [quotient_group.ker_mk],
    exact P.2 },
  replace hp := mt order_of_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one),
  rw [←zpowers_eq_bot, ←ne, ←bot_lt_iff_ne_bot, ←comap_lt_comap_of_surjective
    (quotient_group.mk'_surjective _), monoid_hom.comap_bot, quotient_group.ker_mk] at hp,
  exact hp.ne' (P.3 hQ hp.le),
end

lemma not_dvd_index_sylow [hp : fact p.prime] [fintype (sylow p G)] (P : sylow p G)
  (hP : relindex ↑P (P : subgroup G).normalizer ≠ 0) : ¬ p ∣ (P : subgroup G).index :=
begin
  rw [←relindex_mul_index le_normalizer, ←card_sylow_eq_index_normalizer],
  haveI : (P.subtype le_normalizer : subgroup (P : subgroup G).normalizer).normal :=
  subgroup.normal_in_normalizer,
  replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) hP,
  exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G),
end

/-- Frattini's Argument: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup
  of `N`, then `N_G(P) ⊔ N = G`. -/
lemma sylow.normalizer_sup_eq_top {p : ℕ} [fact p.prime] {N : subgroup G} [N.normal]
  [fintype (sylow p N)] (P : sylow p N) : ((↑P : subgroup N).map N.subtype).normalizer ⊔ N = ⊤ :=
begin
  refine top_le_iff.mp (λ g hg, _),
  obtain ⟨n, hn⟩ := exists_smul_eq N ((mul_aut.conj_normal g : mul_aut N) • P) P,
  rw [←inv_mul_cancel_left ↑n g, sup_comm],
  apply mul_mem_sup (N.inv_mem n.2),
  rw [sylow.smul_def, ←mul_smul, ←mul_aut.conj_normal_coe, ←mul_aut.conj_normal.map_mul,
      sylow.ext_iff, sylow.pointwise_smul_def, pointwise_smul_def] at hn,
  refine λ x, (mem_map_iff_mem (show function.injective (mul_aut.conj (↑n * g)).to_monoid_hom,
    from (mul_aut.conj (↑n * g)).injective)).symm.trans _,
  rw [map_map, ←(congr_arg (map N.subtype) hn), map_map],
  refl,
end

end infinite_sylow

open equiv equiv.perm finset function list quotient_group
open_locale big_operators
universes u v w
variables {G : Type u} {α : Type v} {β : Type w} [group G]

local attribute [instance, priority 10] subtype.fintype set_fintype classical.prop_decidable

lemma quotient_group.card_preimage_mk [fintype G] (s : subgroup G)
  (t : set (G ⧸ s)) : fintype.card (quotient_group.mk ⁻¹' t) =
  fintype.card s * fintype.card t :=
by rw [← fintype.card_prod, fintype.card_congr
  (preimage_mk_equiv_subgroup_times_set _ _)]

namespace sylow

open subgroup submonoid mul_action

lemma mem_fixed_points_mul_left_cosets_iff_mem_normalizer {H : subgroup G}
  [fintype ((H : set G) : Type u)] {x : G} :
  (x : G ⧸ H) ∈ fixed_points H (G ⧸ H) ↔ x ∈ normalizer H :=
⟨λ hx, have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x,
  from λ _, ((mem_fixed_points' _).1 hx _),
  inv_mem_iff.1 (@mem_normalizer_fintype _ _ _ _inst_2 _ (λ n (hn : n ∈ H),
    have (n⁻¹ * x)⁻¹ * x ∈ H := quotient_group.eq.1 (ha (mem_orbit _ ⟨n⁻¹, H.inv_mem hn⟩)),
    show _ ∈ H, by {rw [mul_inv_rev, inv_inv] at this, convert this, rw inv_inv}
    )),
λ (hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H),
(mem_fixed_points' _).2 $ λ y, quotient.induction_on' y $ λ y hy, quotient_group.eq.2
  (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy in
  have hb₂ : (b * x)⁻¹ * y ∈ H := quotient_group.eq.1 hb₂,
  inv_mem_iff.1 $ (hx _).2 $ (mul_mem_cancel_left (inv_mem hb₁)).1
  $ by rw hx at hb₂;
    simpa [mul_inv_rev, mul_assoc] using hb₂)⟩

def fixed_points_mul_left_cosets_equiv_quotient (H : subgroup G) [fintype (H : set G)] :
  mul_action.fixed_points H (G ⧸ H) ≃
  normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) :=
@subtype_quotient_equiv_quotient_subtype G (normalizer H : set G) (id _) (id _) (fixed_points _ _)
  (λ a, (@mem_fixed_points_mul_left_cosets_iff_mem_normalizer _ _ _ _inst_2 _).symm)
  (by { intros, rw setoid_has_equiv, simp only [left_rel_apply], refl })

/-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent
  mod `p` to the index of `H`.  -/
lemma card_quotient_normalizer_modeq_card_quotient [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
  {H : subgroup G} (hH : fintype.card H = p ^ n) :
  card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H))
  ≡ card (G ⧸ H) [MOD p] :=
begin
  rw [← fintype.card_congr (fixed_points_mul_left_cosets_equiv_quotient H)],
  exact ((is_p_group.of_card hH).card_modeq_card_fixed_points _).symm
end

/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the
  normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`.  -/
lemma card_normalizer_modeq_card [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
  {H : subgroup G} (hH : fintype.card H = p ^ n) :
  card (normalizer H) ≡ card G [MOD p ^ (n + 1)] :=
have subgroup.comap ((normalizer H).subtype : normalizer H →* G) H ≃ H,
  from set.bij_on.equiv (normalizer H).subtype
    ⟨λ _, id, λ _ _ _ _ h, subtype.val_injective h,
      λ x hx, ⟨⟨x, le_normalizer hx⟩, hx, rfl⟩⟩,
begin
  rw [card_eq_card_quotient_mul_card_subgroup H,
      card_eq_card_quotient_mul_card_subgroup
        (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H),
      fintype.card_congr this, hH, pow_succ],
  exact (card_quotient_normalizer_modeq_card_quotient hH).mul_right' _
end

/-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the
  index of `H` inside its normalizer. -/
lemma prime_dvd_card_quotient_normalizer [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
  (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) :
  p ∣ card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) :=
let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd in
have hcard : card (G ⧸ H) = s * p :=
  (nat.mul_left_inj (show card H > 0, from fintype.card_pos_iff.2
      ⟨⟨1, H.one_mem⟩⟩)).1
    (by rwa [← card_eq_card_quotient_mul_card_subgroup H, hH, hs,
      pow_succ', mul_assoc, mul_comm p]),
have hm : s * p % p =
  card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) % p :=
  hcard ▸ (card_quotient_normalizer_modeq_card_quotient hH).symm,
nat.dvd_of_mod_eq_zero
  (by rwa [nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm)

/-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`,
  then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/
lemma prime_pow_dvd_card_normalizer [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
  (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) :
  p ^ (n + 1) ∣ card (normalizer H) :=
nat.modeq_zero_iff_dvd.1 ((card_normalizer_modeq_card hH).trans
  hdvd.modeq_zero_nat)

/-- If `H` is a subgroup of `G` of cardinality `p ^ n`,
  then `H` is contained in a subgroup of cardinality `p ^ (n + 1)`
  if `p ^ (n + 1)` divides the cardinality of `G` -/
theorem exists_subgroup_card_pow_succ [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
  (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) :
  ∃ K : subgroup G, fintype.card K = p ^ (n + 1) ∧ H ≤ K :=
let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd in
have hcard : card (G ⧸ H) = s * p :=
  (nat.mul_left_inj (show card H > 0, from fintype.card_pos_iff.2
      ⟨⟨1, H.one_mem⟩⟩)).1
    (by rwa [← card_eq_card_quotient_mul_card_subgroup H, hH, hs,
      pow_succ', mul_assoc, mul_comm p]),
have hm : s * p % p =
  card (normalizer H ⧸ (subgroup.comap (normalizer H).subtype H)) % p :=
  card_congr (fixed_points_mul_left_cosets_equiv_quotient H) ▸ hcard ▸
    (is_p_group.of_card hH).card_modeq_card_fixed_points _,
have hm' : p ∣ card (normalizer H ⧸ (subgroup.comap (normalizer H).subtype H)) :=
  nat.dvd_of_mod_eq_zero
    (by rwa [nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm),
let ⟨x, hx⟩ := @exists_prime_order_of_dvd_card _ (quotient_group.quotient.group _) _ _ hp hm' in
have hequiv : H ≃ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) :=
  ⟨λ a, ⟨⟨a.1, le_normalizer a.2⟩, a.2⟩, λ a, ⟨a.1.1, a.2⟩,
    λ ⟨_, _⟩, rfl, λ ⟨⟨_, _⟩, _⟩, rfl⟩,
⟨subgroup.map ((normalizer H).subtype) (subgroup.comap
  (quotient_group.mk' (comap H.normalizer.subtype H)) (zpowers x)),
begin
  show card ↥(map H.normalizer.subtype
    (comap (mk' (comap H.normalizer.subtype H)) (subgroup.zpowers x))) = p ^ (n + 1),
  suffices : card ↥(subtype.val '' ((subgroup.comap (mk' (comap H.normalizer.subtype H))
    (zpowers x)) : set (↥(H.normalizer)))) = p^(n+1),
  { convert this using 2 },
  rw [set.card_image_of_injective
        (subgroup.comap (mk' (comap H.normalizer.subtype H)) (zpowers x) : set (H.normalizer))
        subtype.val_injective,
      pow_succ', ← hH, fintype.card_congr hequiv, ← hx, order_eq_card_zpowers,
      ← fintype.card_prod],
  exact @fintype.card_congr _ _ (id _) (id _) (preimage_mk_equiv_subgroup_times_set _ _)
end,
begin
  assume y hy,
  simp only [exists_prop, subgroup.coe_subtype, mk'_apply, subgroup.mem_map, subgroup.mem_comap],
  refine ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩,
  rw [zpow_zero, eq_comm, quotient_group.eq_one_iff],
  simpa using hy
end⟩

/-- If `H` is a subgroup of `G` of cardinality `p ^ n`,
  then `H` is contained in a subgroup of cardinality `p ^ m`
  if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/
theorem exists_subgroup_card_pow_prime_le [fintype G] (p : ℕ) : ∀ {n m : ℕ} [hp : fact p.prime]
  (hdvd : p ^ m ∣ card G) (H : subgroup G) (hH : card H = p ^ n) (hnm : n ≤ m),
  ∃ K : subgroup G, card K = p ^ m ∧ H ≤ K
| n m := λ hp hdvd H hH hnm,
  (lt_or_eq_of_le hnm).elim
    (λ hnm : n < m,
      have h0m : 0 < m, from (lt_of_le_of_lt n.zero_le hnm),
      have wf : m - 1 < m,  from nat.sub_lt h0m zero_lt_one,
      have hnm1 : n ≤ m - 1, from le_tsub_of_add_le_right hnm,
      let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le n (m - 1) hp
        (nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 in
      have hdvd' : p ^ ((m - 1) + 1) ∣ card G, by rwa [tsub_add_cancel_of_le h0m.nat_succ_le],
      let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ hp hdvd' K hK.1 in
      ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩)
    (λ hnm : n = m, ⟨H, by simp [hH, hnm]⟩)

/-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides
  the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/
theorem exists_subgroup_card_pow_prime [fintype G] (p : ℕ) {n : ℕ} [fact p.prime]
  (hdvd : p ^ n ∣ card G) : ∃ K : subgroup G, fintype.card K = p ^ n :=
let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (by simp) n.zero_le in
⟨K, hK.1lemma pow_dvd_card_of_pow_dvd_card [fintype G] {p n : ℕ} [hp : fact p.prime] (P : sylow p G)
  (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P :=
(hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P
  index_ne_zero_of_fintype)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd)

lemma dvd_card_of_dvd_card [fintype G] {p : ℕ} [fact p.prime] (P : sylow p G)
  (hdvd : p ∣ card G) : p ∣ card P :=
begin
  rw ← pow_one p at hdvd,
  have key := P.pow_dvd_card_of_pow_dvd_card hdvd,
  rwa pow_one at key,
end

/-- Sylow subgroups are Hall subgroups. -/
lemma card_coprime_index [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G) :
  (card P).coprime (index (P : subgroup G)) :=
let ⟨n, hn⟩ := is_p_group.iff_card.mp P.2 in
hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_fintype)).symm

lemma ne_bot_of_dvd_card [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G)
  (hdvd : p ∣ card G) : (P : subgroup G) ≠ ⊥ :=
begin
  refine λ h, hp.out.not_dvd_one _,
  have key : p ∣ card (P : subgroup G) := P.dvd_card_of_dvd_card hdvd,
  rwa [h, card_bot] at key,
end

/-- The cardinality of a Sylow group is `p ^ n`
 where `n` is the multiplicity of `p` in the group order. -/
lemma card_eq_multiplicity [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G) :
  card P = p ^ nat.factorization (card G) p :=
begin
  obtain ⟨n, heq : card P = _⟩ := is_p_group.iff_card.mp (P.is_p_group'),
  refine nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (nat.pow_factorization_dvd _ p)),
  rw [heq, ←hp.out.pow_dvd_iff_dvd_pow_factorization (show card G ≠ 0, from card_ne_zero), ←heq],
  exact P.1.card_subgroup_dvd_card,
end

lemma subsingleton_of_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G)
  (h : (P : subgroup G).normal) : subsingleton (sylow p G) :=
begin
  apply subsingleton.intro,
  intros Q R,
  obtain ⟨x, h1⟩ := exists_smul_eq G P Q,
  obtain ⟨x, h2⟩ := exists_smul_eq G P R,
  rw sylow.smul_eq_of_normal at h1 h2,
  rw [← h1, ← h2],
end

section pointwise

open_locale pointwise

lemma characteristic_of_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G)
  (h : (P : subgroup G).normal) :
  (P : subgroup G).characteristic :=
begin
  haveI := sylow.subsingleton_of_normal P h,
  rw characteristic_iff_map_eq,
  intros Φ,
  show (Φ • P).to_subgroup = P.to_subgroup,
  congr,
end

end pointwise

lemma normal_of_normalizer_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)]
  (P : sylow p G) (hn : (↑P : subgroup G).normalizer.normal) :
  (↑P : subgroup G).normal :=
by rw [←normalizer_eq_top, ←normalizer_sup_eq_top (P.subtype le_normalizer), coe_subtype,
  map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))), sup_idem]

@[simp] lemma normalizer_normalizer {p : ℕ} [fact p.prime] [fintype (sylow p G)]
 (P : sylow p G) :
 (↑P : subgroup G).normalizer.normalizer = (↑P : subgroup G).normalizer :=
begin
  have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)),
  simp_rw [←normalizer_eq_top, coe_subtype, ←comap_subtype_normalizer_eq le_normalizer,
    ←comap_subtype_normalizer_eq le_rfl, comap_subtype_self_eq_top] at this,
  rw [←subtype_range (P : subgroup G).normalizer.normalizer, monoid_hom.range_eq_map, ←this rfl],
  exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))),
end

lemma normal_of_all_max_subgroups_normal [fintype G]
  (hnc : ∀ (H : subgroup G), is_coatom H → H.normal)
  {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
  (↑P : subgroup G).normal :=
normalizer_eq_top.mp begin
  rcases eq_top_or_exists_le_coatom ((↑P : subgroup G).normalizer) with heq | ⟨K, hK, hNK⟩,
  { exact heq },
  { haveI := hnc _ hK,
    have hPK := le_trans le_normalizer hNK,
    let P' := P.subtype hPK,
    exfalso,
    apply hK.1,
    calc K = (↑P : subgroup G).normalizer ⊔ K : by { rw sup_eq_right.mpr, exact hNK }
    ... = (map K.subtype (↑P' : subgroup K)).normalizer ⊔ K : by simp [map_comap_eq_self, hPK]
    ... = ⊤ : normalizer_sup_eq_top P' },
end

lemma normal_of_normalizer_condition (hnc : normalizer_condition G)
 {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
 (↑P : subgroup G).normal :=
normalizer_eq_top.mp $ normalizer_condition_iff_only_full_group_self_normalizing.mp hnc _ $
  normalizer_normalizer _

open_locale big_operators

/-- If all its sylow groups are normal, then a finite group is isomorphic to the direct product
of these sylow groups.
-/
noncomputable
def direct_product_of_normal [fintype G]
  (hn : ∀ {p : ℕ} [fact p.prime] (P : sylow p G), (↑P : subgroup G).normal) :
  (Π p : (card G).factorization.support, Π P : sylow p G, (↑P : subgroup G)) ≃* G :=
begin
  set ps := (fintype.card G).factorization.support,

  -- “The” sylow group for p
  let P : Π p, sylow p G := default,

  have hcomm : pairwise (λ (p₁ p₂ : ps), ∀ (x y : G), x ∈ P p₁ → y ∈ P p₂ → commute x y),
  { rintros ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne,
    haveI hp₁' := fact.mk (nat.prime_of_mem_factorization hp₁),
    haveI hp₂' := fact.mk (nat.prime_of_mem_factorization hp₂),
    have hne' : p₁ ≠ p₂, by simpa using hne,
    apply subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P p₂)),
    apply is_p_group.disjoint_of_ne p₁ p₂ hne' _ _ (P p₁).is_p_group' (P p₂).is_p_group', },

  refine mul_equiv.trans _ _,
  -- There is only one sylow group for each p, so the inner product is trivial
  show (Π p : ps, Π P : sylow p G, P) ≃* (Π p : ps, P p),
  { -- here we need to help the elaborator with an explicit instantiation
    apply @mul_equiv.Pi_congr_right ps (λ p, (Π P : sylow p G, P)) (λ p, P p) _ _ ,
    rintro ⟨p, hp⟩,
    haveI hp' := fact.mk (nat.prime_of_mem_factorization hp),
    haveI := subsingleton_of_normal _ (hn (P p)),
    change (Π (P : sylow p G), P) ≃* P p,
    exact mul_equiv.Pi_subsingleton _ _, },

  show (Π p : ps, P p) ≃* G,
  apply mul_equiv.of_bijective (subgroup.noncomm_pi_coprod hcomm),
  apply (bijective_iff_injective_and_card _).mpr,
  split,

  show injective _,
  { apply subgroup.injective_noncomm_pi_coprod_of_independent,
    apply independent_of_coprime_order hcomm,
    rintros ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne,
    haveI hp₁' := fact.mk (nat.prime_of_mem_factorization hp₁),
    haveI hp₂' := fact.mk (nat.prime_of_mem_factorization hp₂),
    have hne' : p₁ ≠ p₂, by simpa using hne,
    apply is_p_group.coprime_card_of_ne p₁ p₂ hne' _ _ (P p₁).is_p_group' (P p₂).is_p_group', },

  show card (Π (p : ps), P p) = card G,
  { calc card (Π (p : ps), P p)
        = ∏ (p : ps), card ↥(P p) : fintype.card_pi
    ... = ∏ (p : ps), p.1 ^ (card G).factorization p.1 :
      begin
        congr' 1 with ⟨p, hp⟩,
        exact @card_eq_multiplicity _ _ _ p ⟨nat.prime_of_mem_factorization hp⟩ (P p)
      end
    ... = ∏ p in ps, p ^ (card G).factorization p :
      finset.prod_finset_coe (λ p, p ^ (card G).factorization p) _
    ... = (card G).factorization.prod pow : rfl
    ... = card G : nat.factorization_prod_pow_eq_self fintype.card_ne_zero }
end

end sylow