Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 33,269 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Thomas Browning
-/
import data.nat.factorization.basic
import data.set_like.fintype
import group_theory.group_action.conj_act
import group_theory.p_group
import group_theory.noncomm_pi_coprod
/-!
# Sylow theorems
The Sylow theorems are the following results for every finite group `G` and every prime number `p`.
* There exists a Sylow `p`-subgroup of `G`.
* All Sylow `p`-subgroups of `G` are conjugate to each other.
* Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow
`p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow
`p`-subgroup in `G`.
## Main definitions
* `sylow p G` : The type of Sylow `p`-subgroups of `G`.
## Main statements
* `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem:
For every prime power `pⁿ` dividing the cardinality of `G`,
there exists a subgroup of `G` of order `pⁿ`.
* `is_p_group.exists_le_sylow`: A generalization of Sylow's first theorem:
Every `p`-subgroup is contained in a Sylow `p`-subgroup.
* `sylow_conjugate`: A generalization of Sylow's second theorem:
If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate.
* `card_sylow_modeq_one`: A generalization of Sylow's third theorem:
If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`.
-/
open fintype mul_action subgroup
section infinite_sylow
variables (p : ℕ) (G : Type*) [group G]
/-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/
structure sylow extends subgroup G :=
(is_p_group' : is_p_group p to_subgroup)
(is_maximal' : ∀ {Q : subgroup G}, is_p_group p Q → to_subgroup ≤ Q → Q = to_subgroup)
variables {p} {G}
namespace sylow
instance : has_coe (sylow p G) (subgroup G) := ⟨sylow.to_subgroup⟩
@[simp] lemma to_subgroup_eq_coe {P : sylow p G} : P.to_subgroup = ↑P := rfl
@[ext] lemma ext {P Q : sylow p G} (h : (P : subgroup G) = Q) : P = Q :=
by cases P; cases Q; congr'
lemma ext_iff {P Q : sylow p G} : P = Q ↔ (P : subgroup G) = Q :=
⟨congr_arg coe, ext⟩
instance : set_like (sylow p G) G :=
{ coe := coe,
coe_injective' := λ P Q h, ext (set_like.coe_injective h) }
instance : subgroup_class (sylow p G) G :=
{ mul_mem := λ s, s.mul_mem',
one_mem := λ s, s.one_mem',
inv_mem := λ s, s.inv_mem' }
variables (P : sylow p G)
/-- The action by a Sylow subgroup is the action by the underlying group. -/
instance mul_action_left {α : Type*} [mul_action G α] : mul_action P α :=
subgroup.mul_action ↑P
variables {K : Type*} [group K] (ϕ : K →* G) {N : subgroup G}
/-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/
def comap_of_ker_is_p_group (hϕ : is_p_group p ϕ.ker) (h : ↑P ≤ ϕ.range) : sylow p K :=
{ P.1.comap ϕ with
is_p_group' := P.2.comap_of_ker_is_p_group ϕ hϕ,
is_maximal' := λ Q hQ hle, by
{ rw ← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle)),
exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm }, }
@[simp] lemma coe_comap_of_ker_is_p_group (hϕ : is_p_group p ϕ.ker) (h : ↑P ≤ ϕ.range) :
↑(P.comap_of_ker_is_p_group ϕ hϕ h) = subgroup.comap ϕ ↑P := rfl
/-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/
def comap_of_injective (hϕ : function.injective ϕ) (h : ↑P ≤ ϕ.range) : sylow p K :=
P.comap_of_ker_is_p_group ϕ (is_p_group.ker_is_p_group_of_injective hϕ) h
@[simp] lemma coe_comap_of_injective (hϕ : function.injective ϕ) (h : ↑P ≤ ϕ.range) :
↑(P.comap_of_injective ϕ hϕ h) = subgroup.comap ϕ ↑P := rfl
/-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/
def subtype (h : ↑P ≤ N) : sylow p N :=
P.comap_of_injective N.subtype subtype.coe_injective (by simp [h])
@[simp] lemma coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroup.comap N.subtype ↑P := rfl
end sylow
/-- A generalization of **Sylow's first theorem**.
Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/
lemma is_p_group.exists_le_sylow {P : subgroup G} (hP : is_p_group p P) :
∃ Q : sylow p G, P ≤ Q :=
exists.elim (zorn_nonempty_partial_order₀ {Q : subgroup G | is_p_group p Q} (λ c hc1 hc2 Q hQ,
⟨ { carrier := ⋃ (R : c), R,
one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩,
inv_mem' := λ g ⟨_, ⟨R, rfl⟩, hg⟩, ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩,
mul_mem' := λ g h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩, (hc2.total R.2 S.2).elim
(λ T, ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) (λ T, ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩) },
λ ⟨g, _, ⟨S, rfl⟩, hg⟩, by
{ refine exists_imp_exists (λ k hk, _) (hc1 S.2 ⟨g, hg⟩),
rwa [subtype.ext_iff, coe_pow] at hk ⊢ },
λ M hM g hg, ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) (λ Q ⟨hQ1, hQ2, hQ3⟩, ⟨⟨Q, hQ1, hQ3⟩, hQ2⟩)
instance sylow.nonempty : nonempty (sylow p G) :=
nonempty_of_exists is_p_group.of_bot.exists_le_sylow
noncomputable instance sylow.inhabited : inhabited (sylow p G) :=
classical.inhabited_of_nonempty sylow.nonempty
lemma sylow.exists_comap_eq_of_ker_is_p_group {H : Type*} [group H] (P : sylow p H)
{f : H →* G} (hf : is_p_group p f.ker) : ∃ Q : sylow p G, (Q : subgroup G).comap f = P :=
exists_imp_exists (λ Q hQ, P.3 (Q.2.comap_of_ker_is_p_group f hf) (map_le_iff_le_comap.mp hQ))
(P.2.map f).exists_le_sylow
lemma sylow.exists_comap_eq_of_injective {H : Type*} [group H] (P : sylow p H)
{f : H →* G} (hf : function.injective f) : ∃ Q : sylow p G, (Q : subgroup G).comap f = P :=
P.exists_comap_eq_of_ker_is_p_group (is_p_group.ker_is_p_group_of_injective hf)
lemma sylow.exists_comap_subtype_eq {H : subgroup G} (P : sylow p H) :
∃ Q : sylow p G, (Q : subgroup G).comap H.subtype = P :=
P.exists_comap_eq_of_injective subtype.coe_injective
/-- If the kernel of `f : H →* G` is a `p`-group,
then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/
noncomputable def sylow.fintype_of_ker_is_p_group {H : Type*} [group H]
{f : H →* G} (hf : is_p_group p f.ker) [fintype (sylow p G)] : fintype (sylow p H) :=
let h_exists := λ P : sylow p H, P.exists_comap_eq_of_ker_is_p_group hf,
g : sylow p H → sylow p G := λ P, classical.some (h_exists P),
hg : ∀ P : sylow p H, (g P).1.comap f = P := λ P, classical.some_spec (h_exists P) in
fintype.of_injective g (λ P Q h, sylow.ext (by simp only [←hg, h]))
/-- If `f : H →* G` is injective, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/
noncomputable def sylow.fintype_of_injective {H : Type*} [group H]
{f : H →* G} (hf : function.injective f) [fintype (sylow p G)] : fintype (sylow p H) :=
sylow.fintype_of_ker_is_p_group (is_p_group.ker_is_p_group_of_injective hf)
/-- If `H` is a subgroup of `G`, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/
noncomputable instance (H : subgroup G) [fintype (sylow p G)] : fintype (sylow p H) :=
sylow.fintype_of_injective (show function.injective H.subtype, from subtype.coe_injective)
open_locale pointwise
/-- `subgroup.pointwise_mul_action` preserves Sylow subgroups. -/
instance sylow.pointwise_mul_action {α : Type*} [group α] [mul_distrib_mul_action α G] :
mul_action α (sylow p G) :=
{ smul := λ g P, ⟨g • P, P.2.map _, λ Q hQ hS, inv_smul_eq_iff.mp (P.3 (hQ.map _)
(λ s hs, (congr_arg (∈ g⁻¹ • Q) (inv_smul_smul g s)).mp
(smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs)))))⟩,
one_smul := λ P, sylow.ext (one_smul α P),
mul_smul := λ g h P, sylow.ext (mul_smul g h P) }
lemma sylow.pointwise_smul_def {α : Type*} [group α] [mul_distrib_mul_action α G]
{g : α} {P : sylow p G} : ↑(g • P) = g • (P : subgroup G) := rfl
instance sylow.mul_action : mul_action G (sylow p G) :=
comp_hom _ mul_aut.conj
lemma sylow.smul_def {g : G} {P : sylow p G} : g • P = mul_aut.conj g • P := rfl
lemma sylow.coe_subgroup_smul {g : G} {P : sylow p G} :
↑(g • P) = mul_aut.conj g • (P : subgroup G) := rfl
lemma sylow.coe_smul {g : G} {P : sylow p G} :
↑(g • P) = mul_aut.conj g • (P : set G) := rfl
lemma sylow.smul_le {P : sylow p G} {H : subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H :=
subgroup.conj_smul_le_of_le hP h
lemma sylow.smul_subtype {P : sylow p G} {H : subgroup G} (hP : ↑P ≤ H) (h : H) :
h • P.subtype hP = (h • P).subtype (sylow.smul_le hP h) :=
sylow.ext (subgroup.conj_smul_subgroup_of hP h)
lemma sylow.smul_eq_iff_mem_normalizer {g : G} {P : sylow p G} :
g • P = P ↔ g ∈ (P : subgroup G).normalizer :=
begin
rw [eq_comm, set_like.ext_iff, ←inv_mem_iff, mem_normalizer_iff, inv_inv],
exact forall_congr (λ h, iff_congr iff.rfl ⟨λ ⟨a, b, c⟩, (congr_arg _ c).mp
((congr_arg (∈ P.1) (mul_aut.inv_apply_self G (mul_aut.conj g) a)).mpr b),
λ hh, ⟨(mul_aut.conj g)⁻¹ h, hh, mul_aut.apply_inv_self G (mul_aut.conj g) h⟩⟩),
end
lemma sylow.smul_eq_of_normal {g : G} {P : sylow p G} [h : (P : subgroup G).normal] :
g • P = P :=
by simp only [sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top]
lemma subgroup.sylow_mem_fixed_points_iff (H : subgroup G) {P : sylow p G} :
P ∈ fixed_points H (sylow p G) ↔ H ≤ (P : subgroup G).normalizer :=
by simp_rw [set_like.le_def, ←sylow.smul_eq_iff_mem_normalizer]; exact subtype.forall
lemma is_p_group.inf_normalizer_sylow {P : subgroup G} (hP : is_p_group p P) (Q : sylow p G) :
P ⊓ (Q : subgroup G).normalizer = P ⊓ Q :=
le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right'
Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer)
lemma is_p_group.sylow_mem_fixed_points_iff
{P : subgroup G} (hP : is_p_group p P) {Q : sylow p G} :
Q ∈ fixed_points P (sylow p G) ↔ P ≤ Q :=
by rw [P.sylow_mem_fixed_points_iff, ←inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left]
/-- A generalization of **Sylow's second theorem**.
If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/
instance [hp : fact p.prime] [fintype (sylow p G)] : is_pretransitive G (sylow p G) :=
⟨λ P Q, by
{ classical,
have H := λ {R : sylow p G} {S : orbit G P},
calc S ∈ fixed_points R (orbit G P)
↔ S.1 ∈ fixed_points R (sylow p G) : forall_congr (λ a, subtype.ext_iff)
... ↔ R.1 ≤ S : R.2.sylow_mem_fixed_points_iff
... ↔ S.1.1 = R : ⟨λ h, R.3 S.1.2 h, ge_of_eq⟩,
suffices : set.nonempty (fixed_points Q (orbit G P)),
{ exact exists.elim this (λ R hR, (congr_arg _ (sylow.ext (H.mp hR))).mp R.2) },
apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card,
refine λ h, hp.out.not_dvd_one (nat.modeq_zero_iff_dvd.mp _),
calc 1 = card (fixed_points P (orbit G P)) : _
... ≡ card (orbit G P) [MOD p] : (P.2.card_modeq_card_fixed_points (orbit G P)).symm
... ≡ 0 [MOD p] : nat.modeq_zero_iff_dvd.mpr h,
rw ← set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P),
refine card_congr' (congr_arg _ (eq.symm _)),
rw set.eq_singleton_iff_unique_mem,
exact ⟨H.mpr rfl, λ R h, subtype.ext (sylow.ext (H.mp h))⟩ }⟩
variables (p) (G)
/-- A generalization of **Sylow's third theorem**.
If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/
lemma card_sylow_modeq_one [fact p.prime] [fintype (sylow p G)] : card (sylow p G) ≡ 1 [MOD p] :=
begin
refine sylow.nonempty.elim (λ P : sylow p G, _),
have : fixed_points P.1 (sylow p G) = {P} :=
set.ext (λ Q : sylow p G, calc Q ∈ fixed_points P (sylow p G)
↔ P.1 ≤ Q : P.2.sylow_mem_fixed_points_iff
... ↔ Q.1 = P.1 : ⟨P.3 Q.2, ge_of_eq⟩
... ↔ Q ∈ {P} : sylow.ext_iff.symm.trans set.mem_singleton_iff.symm),
haveI : fintype (fixed_points P.1 (sylow p G)), { rw this, apply_instance },
have : card (fixed_points P.1 (sylow p G)) = 1, { simp [this] },
exact (P.2.card_modeq_card_fixed_points (sylow p G)).trans (by rw this),
end
lemma not_dvd_card_sylow [hp : fact p.prime] [fintype (sylow p G)] : ¬ p ∣ card (sylow p G) :=
λ h, hp.1.ne_one (nat.dvd_one.mp ((nat.modeq_iff_dvd' zero_le_one).mp
((nat.modeq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modeq_one p G))))
variables {p} {G}
/-- Sylow subgroups are isomorphic -/
def sylow.equiv_smul (P : sylow p G) (g : G) : P ≃* (g • P : sylow p G) :=
equiv_smul (mul_aut.conj g) ↑P
/-- Sylow subgroups are isomorphic -/
noncomputable def sylow.equiv [fact p.prime] [fintype (sylow p G)] (P Q : sylow p G) :
P ≃* Q :=
begin
rw ← classical.some_spec (exists_smul_eq G P Q),
exact P.equiv_smul (classical.some (exists_smul_eq G P Q)),
end
@[simp] lemma sylow.orbit_eq_top [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
orbit G P = ⊤ :=
top_le_iff.mp (λ Q hQ, exists_smul_eq G P Q)
lemma sylow.stabilizer_eq_normalizer (P : sylow p G) :
stabilizer G P = (P : subgroup G).normalizer :=
ext (λ g, sylow.smul_eq_iff_mem_normalizer)
/-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/
noncomputable def sylow.equiv_quotient_normalizer [fact p.prime] [fintype (sylow p G)]
(P : sylow p G) : sylow p G ≃ G ⧸ (P : subgroup G).normalizer :=
calc sylow p G ≃ (⊤ : set (sylow p G)) : (equiv.set.univ (sylow p G)).symm
... ≃ orbit G P : by rw P.orbit_eq_top
... ≃ G ⧸ (stabilizer G P) : orbit_equiv_quotient_stabilizer G P
... ≃ G ⧸ (P : subgroup G).normalizer : by rw P.stabilizer_eq_normalizer
noncomputable instance [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
fintype (G ⧸ (P : subgroup G).normalizer) :=
of_equiv (sylow p G) P.equiv_quotient_normalizer
lemma card_sylow_eq_card_quotient_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
card (sylow p G) = card (G ⧸ (P : subgroup G).normalizer) :=
card_congr P.equiv_quotient_normalizer
lemma card_sylow_eq_index_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
card (sylow p G) = (P : subgroup G).normalizer.index :=
(card_sylow_eq_card_quotient_normalizer P).trans (P : subgroup G).normalizer.index_eq_card.symm
lemma card_sylow_dvd_index [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
card (sylow p G) ∣ (P : subgroup G).index :=
((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer)
lemma not_dvd_index_sylow' [hp : fact p.prime] (P : sylow p G) [(P : subgroup G).normal]
(hP : (P : subgroup G).index ≠ 0) : ¬ p ∣ (P : subgroup G).index :=
begin
intro h,
haveI : fintype (G ⧸ (P : subgroup G)) := fintype_of_index_ne_zero hP,
rw index_eq_card at h,
obtain ⟨x, hx⟩ := exists_prime_order_of_dvd_card p h,
have h := is_p_group.of_card ((order_eq_card_zpowers.symm.trans hx).trans (pow_one p).symm),
let Q := (zpowers x).comap (quotient_group.mk' (P : subgroup G)),
have hQ : is_p_group p Q,
{ apply h.comap_of_ker_is_p_group,
rw [quotient_group.ker_mk],
exact P.2 },
replace hp := mt order_of_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one),
rw [←zpowers_eq_bot, ←ne, ←bot_lt_iff_ne_bot, ←comap_lt_comap_of_surjective
(quotient_group.mk'_surjective _), monoid_hom.comap_bot, quotient_group.ker_mk] at hp,
exact hp.ne' (P.3 hQ hp.le),
end
lemma not_dvd_index_sylow [hp : fact p.prime] [fintype (sylow p G)] (P : sylow p G)
(hP : relindex ↑P (P : subgroup G).normalizer ≠ 0) : ¬ p ∣ (P : subgroup G).index :=
begin
rw [←relindex_mul_index le_normalizer, ←card_sylow_eq_index_normalizer],
haveI : (P.subtype le_normalizer : subgroup (P : subgroup G).normalizer).normal :=
subgroup.normal_in_normalizer,
replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) hP,
exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G),
end
/-- Frattini's Argument: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup
of `N`, then `N_G(P) ⊔ N = G`. -/
lemma sylow.normalizer_sup_eq_top {p : ℕ} [fact p.prime] {N : subgroup G} [N.normal]
[fintype (sylow p N)] (P : sylow p N) : ((↑P : subgroup N).map N.subtype).normalizer ⊔ N = ⊤ :=
begin
refine top_le_iff.mp (λ g hg, _),
obtain ⟨n, hn⟩ := exists_smul_eq N ((mul_aut.conj_normal g : mul_aut N) • P) P,
rw [←inv_mul_cancel_left ↑n g, sup_comm],
apply mul_mem_sup (N.inv_mem n.2),
rw [sylow.smul_def, ←mul_smul, ←mul_aut.conj_normal_coe, ←mul_aut.conj_normal.map_mul,
sylow.ext_iff, sylow.pointwise_smul_def, pointwise_smul_def] at hn,
refine λ x, (mem_map_iff_mem (show function.injective (mul_aut.conj (↑n * g)).to_monoid_hom,
from (mul_aut.conj (↑n * g)).injective)).symm.trans _,
rw [map_map, ←(congr_arg (map N.subtype) hn), map_map],
refl,
end
end infinite_sylow
open equiv equiv.perm finset function list quotient_group
open_locale big_operators
universes u v w
variables {G : Type u} {α : Type v} {β : Type w} [group G]
local attribute [instance, priority 10] subtype.fintype set_fintype classical.prop_decidable
lemma quotient_group.card_preimage_mk [fintype G] (s : subgroup G)
(t : set (G ⧸ s)) : fintype.card (quotient_group.mk ⁻¹' t) =
fintype.card s * fintype.card t :=
by rw [← fintype.card_prod, fintype.card_congr
(preimage_mk_equiv_subgroup_times_set _ _)]
namespace sylow
open subgroup submonoid mul_action
lemma mem_fixed_points_mul_left_cosets_iff_mem_normalizer {H : subgroup G}
[fintype ((H : set G) : Type u)] {x : G} :
(x : G ⧸ H) ∈ fixed_points H (G ⧸ H) ↔ x ∈ normalizer H :=
⟨λ hx, have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x,
from λ _, ((mem_fixed_points' _).1 hx _),
inv_mem_iff.1 (@mem_normalizer_fintype _ _ _ _inst_2 _ (λ n (hn : n ∈ H),
have (n⁻¹ * x)⁻¹ * x ∈ H := quotient_group.eq.1 (ha (mem_orbit _ ⟨n⁻¹, H.inv_mem hn⟩)),
show _ ∈ H, by {rw [mul_inv_rev, inv_inv] at this, convert this, rw inv_inv}
)),
λ (hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H),
(mem_fixed_points' _).2 $ λ y, quotient.induction_on' y $ λ y hy, quotient_group.eq.2
(let ⟨⟨b, hb₁⟩, hb₂⟩ := hy in
have hb₂ : (b * x)⁻¹ * y ∈ H := quotient_group.eq.1 hb₂,
inv_mem_iff.1 $ (hx _).2 $ (mul_mem_cancel_left (inv_mem hb₁)).1
$ by rw hx at hb₂;
simpa [mul_inv_rev, mul_assoc] using hb₂)⟩
def fixed_points_mul_left_cosets_equiv_quotient (H : subgroup G) [fintype (H : set G)] :
mul_action.fixed_points H (G ⧸ H) ≃
normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) :=
@subtype_quotient_equiv_quotient_subtype G (normalizer H : set G) (id _) (id _) (fixed_points _ _)
(λ a, (@mem_fixed_points_mul_left_cosets_iff_mem_normalizer _ _ _ _inst_2 _).symm)
(by { intros, rw setoid_has_equiv, simp only [left_rel_apply], refl })
/-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent
mod `p` to the index of `H`. -/
lemma card_quotient_normalizer_modeq_card_quotient [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
{H : subgroup G} (hH : fintype.card H = p ^ n) :
card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H))
≡ card (G ⧸ H) [MOD p] :=
begin
rw [← fintype.card_congr (fixed_points_mul_left_cosets_equiv_quotient H)],
exact ((is_p_group.of_card hH).card_modeq_card_fixed_points _).symm
end
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the
normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/
lemma card_normalizer_modeq_card [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
{H : subgroup G} (hH : fintype.card H = p ^ n) :
card (normalizer H) ≡ card G [MOD p ^ (n + 1)] :=
have subgroup.comap ((normalizer H).subtype : normalizer H →* G) H ≃ H,
from set.bij_on.equiv (normalizer H).subtype
⟨λ _, id, λ _ _ _ _ h, subtype.val_injective h,
λ x hx, ⟨⟨x, le_normalizer hx⟩, hx, rfl⟩⟩,
begin
rw [card_eq_card_quotient_mul_card_subgroup H,
card_eq_card_quotient_mul_card_subgroup
(subgroup.comap ((normalizer H).subtype : normalizer H →* G) H),
fintype.card_congr this, hH, pow_succ],
exact (card_quotient_normalizer_modeq_card_quotient hH).mul_right' _
end
/-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the
index of `H` inside its normalizer. -/
lemma prime_dvd_card_quotient_normalizer [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
(hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) :
p ∣ card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) :=
let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd in
have hcard : card (G ⧸ H) = s * p :=
(nat.mul_left_inj (show card H > 0, from fintype.card_pos_iff.2
⟨⟨1, H.one_mem⟩⟩)).1
(by rwa [← card_eq_card_quotient_mul_card_subgroup H, hH, hs,
pow_succ', mul_assoc, mul_comm p]),
have hm : s * p % p =
card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) % p :=
hcard ▸ (card_quotient_normalizer_modeq_card_quotient hH).symm,
nat.dvd_of_mod_eq_zero
(by rwa [nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm)
/-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`,
then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/
lemma prime_pow_dvd_card_normalizer [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
(hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) :
p ^ (n + 1) ∣ card (normalizer H) :=
nat.modeq_zero_iff_dvd.1 ((card_normalizer_modeq_card hH).trans
hdvd.modeq_zero_nat)
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`,
then `H` is contained in a subgroup of cardinality `p ^ (n + 1)`
if `p ^ (n + 1)` divides the cardinality of `G` -/
theorem exists_subgroup_card_pow_succ [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime]
(hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) :
∃ K : subgroup G, fintype.card K = p ^ (n + 1) ∧ H ≤ K :=
let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd in
have hcard : card (G ⧸ H) = s * p :=
(nat.mul_left_inj (show card H > 0, from fintype.card_pos_iff.2
⟨⟨1, H.one_mem⟩⟩)).1
(by rwa [← card_eq_card_quotient_mul_card_subgroup H, hH, hs,
pow_succ', mul_assoc, mul_comm p]),
have hm : s * p % p =
card (normalizer H ⧸ (subgroup.comap (normalizer H).subtype H)) % p :=
card_congr (fixed_points_mul_left_cosets_equiv_quotient H) ▸ hcard ▸
(is_p_group.of_card hH).card_modeq_card_fixed_points _,
have hm' : p ∣ card (normalizer H ⧸ (subgroup.comap (normalizer H).subtype H)) :=
nat.dvd_of_mod_eq_zero
(by rwa [nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm),
let ⟨x, hx⟩ := @exists_prime_order_of_dvd_card _ (quotient_group.quotient.group _) _ _ hp hm' in
have hequiv : H ≃ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) :=
⟨λ a, ⟨⟨a.1, le_normalizer a.2⟩, a.2⟩, λ a, ⟨a.1.1, a.2⟩,
λ ⟨_, _⟩, rfl, λ ⟨⟨_, _⟩, _⟩, rfl⟩,
⟨subgroup.map ((normalizer H).subtype) (subgroup.comap
(quotient_group.mk' (comap H.normalizer.subtype H)) (zpowers x)),
begin
show card ↥(map H.normalizer.subtype
(comap (mk' (comap H.normalizer.subtype H)) (subgroup.zpowers x))) = p ^ (n + 1),
suffices : card ↥(subtype.val '' ((subgroup.comap (mk' (comap H.normalizer.subtype H))
(zpowers x)) : set (↥(H.normalizer)))) = p^(n+1),
{ convert this using 2 },
rw [set.card_image_of_injective
(subgroup.comap (mk' (comap H.normalizer.subtype H)) (zpowers x) : set (H.normalizer))
subtype.val_injective,
pow_succ', ← hH, fintype.card_congr hequiv, ← hx, order_eq_card_zpowers,
← fintype.card_prod],
exact @fintype.card_congr _ _ (id _) (id _) (preimage_mk_equiv_subgroup_times_set _ _)
end,
begin
assume y hy,
simp only [exists_prop, subgroup.coe_subtype, mk'_apply, subgroup.mem_map, subgroup.mem_comap],
refine ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩,
rw [zpow_zero, eq_comm, quotient_group.eq_one_iff],
simpa using hy
end⟩
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`,
then `H` is contained in a subgroup of cardinality `p ^ m`
if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/
theorem exists_subgroup_card_pow_prime_le [fintype G] (p : ℕ) : ∀ {n m : ℕ} [hp : fact p.prime]
(hdvd : p ^ m ∣ card G) (H : subgroup G) (hH : card H = p ^ n) (hnm : n ≤ m),
∃ K : subgroup G, card K = p ^ m ∧ H ≤ K
| n m := λ hp hdvd H hH hnm,
(lt_or_eq_of_le hnm).elim
(λ hnm : n < m,
have h0m : 0 < m, from (lt_of_le_of_lt n.zero_le hnm),
have wf : m - 1 < m, from nat.sub_lt h0m zero_lt_one,
have hnm1 : n ≤ m - 1, from le_tsub_of_add_le_right hnm,
let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le n (m - 1) hp
(nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 in
have hdvd' : p ^ ((m - 1) + 1) ∣ card G, by rwa [tsub_add_cancel_of_le h0m.nat_succ_le],
let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ hp hdvd' K hK.1 in
⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩)
(λ hnm : n = m, ⟨H, by simp [hH, hnm]⟩)
/-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides
the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/
theorem exists_subgroup_card_pow_prime [fintype G] (p : ℕ) {n : ℕ} [fact p.prime]
(hdvd : p ^ n ∣ card G) : ∃ K : subgroup G, fintype.card K = p ^ n :=
let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (by simp) n.zero_le in
⟨K, hK.1⟩
lemma pow_dvd_card_of_pow_dvd_card [fintype G] {p n : ℕ} [hp : fact p.prime] (P : sylow p G)
(hdvd : p ^ n ∣ card G) : p ^ n ∣ card P :=
(hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P
index_ne_zero_of_fintype)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd)
lemma dvd_card_of_dvd_card [fintype G] {p : ℕ} [fact p.prime] (P : sylow p G)
(hdvd : p ∣ card G) : p ∣ card P :=
begin
rw ← pow_one p at hdvd,
have key := P.pow_dvd_card_of_pow_dvd_card hdvd,
rwa pow_one at key,
end
/-- Sylow subgroups are Hall subgroups. -/
lemma card_coprime_index [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G) :
(card P).coprime (index (P : subgroup G)) :=
let ⟨n, hn⟩ := is_p_group.iff_card.mp P.2 in
hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_fintype)).symm
lemma ne_bot_of_dvd_card [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G)
(hdvd : p ∣ card G) : (P : subgroup G) ≠ ⊥ :=
begin
refine λ h, hp.out.not_dvd_one _,
have key : p ∣ card (P : subgroup G) := P.dvd_card_of_dvd_card hdvd,
rwa [h, card_bot] at key,
end
/-- The cardinality of a Sylow group is `p ^ n`
where `n` is the multiplicity of `p` in the group order. -/
lemma card_eq_multiplicity [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G) :
card P = p ^ nat.factorization (card G) p :=
begin
obtain ⟨n, heq : card P = _⟩ := is_p_group.iff_card.mp (P.is_p_group'),
refine nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (nat.pow_factorization_dvd _ p)),
rw [heq, ←hp.out.pow_dvd_iff_dvd_pow_factorization (show card G ≠ 0, from card_ne_zero), ←heq],
exact P.1.card_subgroup_dvd_card,
end
lemma subsingleton_of_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G)
(h : (P : subgroup G).normal) : subsingleton (sylow p G) :=
begin
apply subsingleton.intro,
intros Q R,
obtain ⟨x, h1⟩ := exists_smul_eq G P Q,
obtain ⟨x, h2⟩ := exists_smul_eq G P R,
rw sylow.smul_eq_of_normal at h1 h2,
rw [← h1, ← h2],
end
section pointwise
open_locale pointwise
lemma characteristic_of_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G)
(h : (P : subgroup G).normal) :
(P : subgroup G).characteristic :=
begin
haveI := sylow.subsingleton_of_normal P h,
rw characteristic_iff_map_eq,
intros Φ,
show (Φ • P).to_subgroup = P.to_subgroup,
congr,
end
end pointwise
lemma normal_of_normalizer_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)]
(P : sylow p G) (hn : (↑P : subgroup G).normalizer.normal) :
(↑P : subgroup G).normal :=
by rw [←normalizer_eq_top, ←normalizer_sup_eq_top (P.subtype le_normalizer), coe_subtype,
map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))), sup_idem]
@[simp] lemma normalizer_normalizer {p : ℕ} [fact p.prime] [fintype (sylow p G)]
(P : sylow p G) :
(↑P : subgroup G).normalizer.normalizer = (↑P : subgroup G).normalizer :=
begin
have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)),
simp_rw [←normalizer_eq_top, coe_subtype, ←comap_subtype_normalizer_eq le_normalizer,
←comap_subtype_normalizer_eq le_rfl, comap_subtype_self_eq_top] at this,
rw [←subtype_range (P : subgroup G).normalizer.normalizer, monoid_hom.range_eq_map, ←this rfl],
exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))),
end
lemma normal_of_all_max_subgroups_normal [fintype G]
(hnc : ∀ (H : subgroup G), is_coatom H → H.normal)
{p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
(↑P : subgroup G).normal :=
normalizer_eq_top.mp begin
rcases eq_top_or_exists_le_coatom ((↑P : subgroup G).normalizer) with heq | ⟨K, hK, hNK⟩,
{ exact heq },
{ haveI := hnc _ hK,
have hPK := le_trans le_normalizer hNK,
let P' := P.subtype hPK,
exfalso,
apply hK.1,
calc K = (↑P : subgroup G).normalizer ⊔ K : by { rw sup_eq_right.mpr, exact hNK }
... = (map K.subtype (↑P' : subgroup K)).normalizer ⊔ K : by simp [map_comap_eq_self, hPK]
... = ⊤ : normalizer_sup_eq_top P' },
end
lemma normal_of_normalizer_condition (hnc : normalizer_condition G)
{p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) :
(↑P : subgroup G).normal :=
normalizer_eq_top.mp $ normalizer_condition_iff_only_full_group_self_normalizing.mp hnc _ $
normalizer_normalizer _
open_locale big_operators
/-- If all its sylow groups are normal, then a finite group is isomorphic to the direct product
of these sylow groups.
-/
noncomputable
def direct_product_of_normal [fintype G]
(hn : ∀ {p : ℕ} [fact p.prime] (P : sylow p G), (↑P : subgroup G).normal) :
(Π p : (card G).factorization.support, Π P : sylow p G, (↑P : subgroup G)) ≃* G :=
begin
set ps := (fintype.card G).factorization.support,
-- “The” sylow group for p
let P : Π p, sylow p G := default,
have hcomm : pairwise (λ (p₁ p₂ : ps), ∀ (x y : G), x ∈ P p₁ → y ∈ P p₂ → commute x y),
{ rintros ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne,
haveI hp₁' := fact.mk (nat.prime_of_mem_factorization hp₁),
haveI hp₂' := fact.mk (nat.prime_of_mem_factorization hp₂),
have hne' : p₁ ≠ p₂, by simpa using hne,
apply subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P p₂)),
apply is_p_group.disjoint_of_ne p₁ p₂ hne' _ _ (P p₁).is_p_group' (P p₂).is_p_group', },
refine mul_equiv.trans _ _,
-- There is only one sylow group for each p, so the inner product is trivial
show (Π p : ps, Π P : sylow p G, P) ≃* (Π p : ps, P p),
{ -- here we need to help the elaborator with an explicit instantiation
apply @mul_equiv.Pi_congr_right ps (λ p, (Π P : sylow p G, P)) (λ p, P p) _ _ ,
rintro ⟨p, hp⟩,
haveI hp' := fact.mk (nat.prime_of_mem_factorization hp),
haveI := subsingleton_of_normal _ (hn (P p)),
change (Π (P : sylow p G), P) ≃* P p,
exact mul_equiv.Pi_subsingleton _ _, },
show (Π p : ps, P p) ≃* G,
apply mul_equiv.of_bijective (subgroup.noncomm_pi_coprod hcomm),
apply (bijective_iff_injective_and_card _).mpr,
split,
show injective _,
{ apply subgroup.injective_noncomm_pi_coprod_of_independent,
apply independent_of_coprime_order hcomm,
rintros ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne,
haveI hp₁' := fact.mk (nat.prime_of_mem_factorization hp₁),
haveI hp₂' := fact.mk (nat.prime_of_mem_factorization hp₂),
have hne' : p₁ ≠ p₂, by simpa using hne,
apply is_p_group.coprime_card_of_ne p₁ p₂ hne' _ _ (P p₁).is_p_group' (P p₂).is_p_group', },
show card (Π (p : ps), P p) = card G,
{ calc card (Π (p : ps), P p)
= ∏ (p : ps), card ↥(P p) : fintype.card_pi
... = ∏ (p : ps), p.1 ^ (card G).factorization p.1 :
begin
congr' 1 with ⟨p, hp⟩,
exact @card_eq_multiplicity _ _ _ p ⟨nat.prime_of_mem_factorization hp⟩ (P p)
end
... = ∏ p in ps, p ^ (card G).factorization p :
finset.prod_finset_coe (λ p, p ^ (card G).factorization p) _
... = (card G).factorization.prod pow : rfl
... = card G : nat.factorization_prod_pow_eq_self fintype.card_ne_zero }
end
end sylow
|