Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 15,278 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import data.fin.vec_notation
import logic.equiv.basic

/-!
# Equivalences for `fin n`
-/

universes u

variables {m n : ℕ}

/-- Equivalence between `fin 0` and `empty`. -/
def fin_zero_equiv : fin 0 ≃ empty :=
equiv.equiv_empty _

/-- Equivalence between `fin 0` and `pempty`. -/
def fin_zero_equiv' : fin 0 ≃ pempty.{u} :=
equiv.equiv_pempty _

/-- Equivalence between `fin 1` and `unit`. -/
def fin_one_equiv : fin 1 ≃ unit :=
equiv.equiv_punit _

/-- Equivalence between `fin 2` and `bool`. -/
def fin_two_equiv : fin 2 ≃ bool :=
{ to_fun := ![ff, tt],
  inv_fun := λ b, cond b 1 0,
  left_inv := fin.forall_fin_two.2 $ by simp,
  right_inv := bool.forall_bool.2 $ by simp }

/-- `Π i : fin 2, α i` is equivalent to `α 0 × α 1`. See also `fin_two_arrow_equiv` for a
non-dependent version and `prod_equiv_pi_fin_two` for a version with inputs `α β : Type u`. -/
@[simps {fully_applied := ff}] def pi_fin_two_equiv (α : fin 2Type u) : (Π i, α i) ≃ α 0 × α 1 :=
{ to_fun := λ f, (f 0, f 1),
  inv_fun := λ p, fin.cons p.1 $ fin.cons p.2 fin_zero_elim,
  left_inv := λ f, funext $ fin.forall_fin_two.2 ⟨rfl, rfl⟩,
  right_inv := λ ⟨x, y⟩, rfl }

lemma fin.preimage_apply_01_prod {α : fin 2Type u} (s : set0)) (t : set1)) :
  (λ f : Π i, α i, (f 0, f 1)) ⁻¹' s ×ˢ t =
    set.pi set.univ (fin.cons s $ fin.cons t fin.elim0) :=
begin
  ext f,
  have : (fin.cons s (fin.cons t fin.elim0) : Π i, set (α i)) 1 = t := rfl,
  simp [fin.forall_fin_two, this]
end

lemma fin.preimage_apply_01_prod' {α : Type u} (s t : set α) :
  (λ f : fin 2 → α, (f 0, f 1)) ⁻¹' s ×ˢ t = set.pi set.univ ![s, t] :=
fin.preimage_apply_01_prod s t

/-- A product space `α × β` is equivalent to the space `Π i : fin 2, γ i`, where
`γ = fin.cons α (fin.cons β fin_zero_elim)`. See also `pi_fin_two_equiv` and
`fin_two_arrow_equiv`. -/
@[simps {fully_applied := ff }] def prod_equiv_pi_fin_two (α β : Type u) :
  α × β ≃ Π i : fin 2, ![α, β] i :=
(pi_fin_two_equiv (fin.cons α (fin.cons β fin_zero_elim))).symm

/-- The space of functions `fin 2 → α` is equivalent to `α × α`. See also `pi_fin_two_equiv` and
`prod_equiv_pi_fin_two`. -/
@[simps { fully_applied := ff }] def fin_two_arrow_equiv (α : Type*) : (fin 2 → α) ≃ α × α :=
{ inv_fun := λ x, ![x.1, x.2],
  .. pi_fin_two_equiv (λ _, α) }

/-- `Π i : fin 2, α i` is order equivalent to `α 0 × α 1`. See also `order_iso.fin_two_arrow_equiv`
for a non-dependent version. -/
def order_iso.pi_fin_two_iso (α : fin 2Type u) [Π i, preorder (α i)] :
  (Π i, α i) ≃o α 0 × α 1 :=
{ to_equiv := pi_fin_two_equiv α,
  map_rel_iff' := λ f g, iff.symm fin.forall_fin_two }

/-- The space of functions `fin 2 → α` is order equivalent to `α × α`. See also
`order_iso.pi_fin_two_iso`. -/
def order_iso.fin_two_arrow_iso (α : Type*) [preorder α] : (fin 2 → α) ≃o α × α :=
{ to_equiv := fin_two_arrow_equiv α, .. order_iso.pi_fin_two_iso (λ _, α) }

/-- The 'identity' equivalence between `fin n` and `fin m` when `n = m`. -/
def fin_congr {n m : ℕ} (h : n = m) : fin n ≃ fin m :=
(fin.cast h).to_equiv

@[simp] lemma fin_congr_apply_mk {n m : ℕ} (h : n = m) (k : ℕ) (w : k < n) :
  fin_congr h ⟨k, w⟩ = ⟨k, by { subst h, exact w }⟩ :=
rfl

@[simp] lemma fin_congr_symm {n m : ℕ} (h : n = m) :
  (fin_congr h).symm = fin_congr h.symm := rfl

@[simp] lemma fin_congr_apply_coe {n m : ℕ} (h : n = m) (k : fin n) :
  (fin_congr h k : ℕ) = k :=
by { cases k, refl, }

lemma fin_congr_symm_apply_coe {n m : ℕ} (h : n = m) (k : fin m) :
  ((fin_congr h).symm k : ℕ) = k :=
by { cases k, refl, }

/-- An equivalence that removes `i` and maps it to `none`.
This is a version of `fin.pred_above` that produces `option (fin n)` instead of
mapping both `i.cast_succ` and `i.succ` to `i`. -/
def fin_succ_equiv' {n : ℕ} (i : fin (n + 1)) :
  fin (n + 1) ≃ option (fin n) :=
{ to_fun := i.insert_nth none some,
  inv_fun := λ x, x.cases_on' i (fin.succ_above i),
  left_inv := λ x, fin.succ_above_cases i (by simp) (λ j, by simp) x,
  right_inv := λ x, by cases x; dsimp; simp }

@[simp] lemma fin_succ_equiv'_at {n : ℕ} (i : fin (n + 1)) :
  (fin_succ_equiv' i) i = none := by simp [fin_succ_equiv']

@[simp] lemma fin_succ_equiv'_succ_above {n : ℕ} (i : fin (n + 1)) (j : fin n) :
  fin_succ_equiv' i (i.succ_above j) = some j :=
@fin.insert_nth_apply_succ_above n (λ _, option (fin n)) i _ _ _

lemma fin_succ_equiv'_below {n : ℕ} {i : fin (n + 1)} {m : fin n} (h : m.cast_succ < i) :
  (fin_succ_equiv' i) m.cast_succ = some m :=
by rw [← fin.succ_above_below _ _ h, fin_succ_equiv'_succ_above]

lemma fin_succ_equiv'_above {n : ℕ} {i : fin (n + 1)} {m : fin n} (h : i ≤ m.cast_succ) :
  (fin_succ_equiv' i) m.succ = some m :=
by rw [← fin.succ_above_above _ _ h, fin_succ_equiv'_succ_above]

@[simp] lemma fin_succ_equiv'_symm_none {n : ℕ} (i : fin (n + 1)) :
  (fin_succ_equiv' i).symm none = i := rfl

@[simp] lemma fin_succ_equiv'_symm_some {n : ℕ} (i : fin (n + 1)) (j : fin n) :
  (fin_succ_equiv' i).symm (some j) = i.succ_above j :=
rfl

lemma fin_succ_equiv'_symm_some_below {n : ℕ} {i : fin (n + 1)} {m : fin n} (h : m.cast_succ < i) :
  (fin_succ_equiv' i).symm (some m) = m.cast_succ :=
fin.succ_above_below i m h

lemma fin_succ_equiv'_symm_some_above {n : ℕ} {i : fin (n + 1)} {m : fin n} (h : i ≤ m.cast_succ) :
  (fin_succ_equiv' i).symm (some m) = m.succ :=
fin.succ_above_above i m h

lemma fin_succ_equiv'_symm_coe_below {n : ℕ} {i : fin (n + 1)} {m : fin n} (h : m.cast_succ < i) :
  (fin_succ_equiv' i).symm m = m.cast_succ :=
fin_succ_equiv'_symm_some_below h

lemma fin_succ_equiv'_symm_coe_above {n : ℕ} {i : fin (n + 1)} {m : fin n} (h : i ≤ m.cast_succ) :
  (fin_succ_equiv' i).symm m = m.succ :=
fin_succ_equiv'_symm_some_above h

/-- Equivalence between `fin (n + 1)` and `option (fin n)`.
This is a version of `fin.pred` that produces `option (fin n)` instead of
requiring a proof that the input is not `0`. -/
def fin_succ_equiv (n : ℕ) : fin (n + 1) ≃ option (fin n) :=
fin_succ_equiv' 0

@[simp] lemma fin_succ_equiv_zero {n : ℕ} :
  (fin_succ_equiv n) 0 = none :=
rfl

@[simp] lemma fin_succ_equiv_succ {n : ℕ} (m : fin n):
  (fin_succ_equiv n) m.succ = some m :=
fin_succ_equiv'_above (fin.zero_le _)

@[simp] lemma fin_succ_equiv_symm_none {n : ℕ} :
  (fin_succ_equiv n).symm none = 0 :=
fin_succ_equiv'_symm_none _

@[simp] lemma fin_succ_equiv_symm_some {n : ℕ} (m : fin n) :
  (fin_succ_equiv n).symm (some m) = m.succ :=
congr_fun fin.succ_above_zero m

@[simp] lemma fin_succ_equiv_symm_coe {n : ℕ} (m : fin n) :
  (fin_succ_equiv n).symm m = m.succ :=
fin_succ_equiv_symm_some m

/-- The equiv version of `fin.pred_above_zero`. -/
lemma fin_succ_equiv'_zero {n : ℕ} :
  fin_succ_equiv' (0 : fin (n + 1)) = fin_succ_equiv n := rfl

/-- `equiv` between `fin (n + 1)` and `option (fin n)` sending `fin.last n` to `none` -/
def fin_succ_equiv_last {n : ℕ} : fin (n + 1) ≃ option (fin n) :=
fin_succ_equiv' (fin.last n)

@[simp] lemma fin_succ_equiv_last_cast_succ {n : ℕ} (i : fin n) :
  fin_succ_equiv_last i.cast_succ = some i :=
fin_succ_equiv'_below i.2

@[simp] lemma fin_succ_equiv_last_last {n : ℕ} :
  fin_succ_equiv_last (fin.last n) = none :=
by simp [fin_succ_equiv_last]

@[simp] lemma fin_succ_equiv_last_symm_some {n : ℕ} (i : fin n) :
  fin_succ_equiv_last.symm (some i) = i.cast_succ :=
fin_succ_equiv'_symm_some_below i.2

@[simp] lemma fin_succ_equiv_last_symm_coe {n : ℕ} (i : fin n) :
  fin_succ_equiv_last.symm ↑i = i.cast_succ :=
fin_succ_equiv'_symm_some_below i.2

@[simp] lemma fin_succ_equiv_last_symm_none {n : ℕ}  :
  fin_succ_equiv_last.symm none = fin.last n :=
fin_succ_equiv'_symm_none _

/-- Equivalence between `Π j : fin (n + 1), α j` and `α i × Π j : fin n, α (fin.succ_above i j)`. -/
@[simps { fully_applied := ff}]
def equiv.pi_fin_succ_above_equiv {n : ℕ} (α : fin (n + 1) → Type u) (i : fin (n + 1)) :
  (Π j, α j) ≃ α i × (Π j, α (i.succ_above j)) :=
{ to_fun := λ f, (f i, λ j, f (i.succ_above j)),
  inv_fun := λ f, i.insert_nth f.1 f.2,
  left_inv := λ f, by simp [fin.insert_nth_eq_iff],
  right_inv := λ f, by simp }

/-- Order isomorphism between `Π j : fin (n + 1), α j` and
`α i × Π j : fin n, α (fin.succ_above i j)`. -/
def order_iso.pi_fin_succ_above_iso {n : ℕ} (α : fin (n + 1) → Type u) [Π i, has_le (α i)]
  (i : fin (n + 1)) :
  (Π j, α j) ≃o α i × (Π j, α (i.succ_above j)) :=
{ to_equiv := equiv.pi_fin_succ_above_equiv α i,
  map_rel_iff' := λ f g, i.forall_iff_succ_above.symm }

/-- Equivalence between `fin (n + 1) → β` and `β × (fin n → β)`. -/
@[simps { fully_applied := ff}]
def equiv.pi_fin_succ (n : ℕ) (β : Type u) :
  (fin (n+1) → β) ≃ β × (fin n → β) :=
equiv.pi_fin_succ_above_equiv (λ _, β) 0

/-- Equivalence between `fin m ⊕ fin n` and `fin (m + n)` -/
def fin_sum_fin_equiv : fin m ⊕ fin n ≃ fin (m + n) :=
{ to_fun := sum.elim (fin.cast_add n) (fin.nat_add m),
  inv_fun := λ i, @fin.add_cases m n (λ _, fin m ⊕ fin n) sum.inl sum.inr i,
  left_inv := λ x, by { cases x with y y; dsimp; simp },
  right_inv := λ x, by refine fin.add_cases (λ i, _) (λ i, _) x; simp }

@[simp] lemma fin_sum_fin_equiv_apply_left (i : fin m) :
  (fin_sum_fin_equiv (sum.inl i) : fin (m + n)) = fin.cast_add n i := rfl

@[simp] lemma fin_sum_fin_equiv_apply_right (i : fin n) :
  (fin_sum_fin_equiv (sum.inr i) : fin (m + n)) = fin.nat_add m i := rfl

@[simp] lemma fin_sum_fin_equiv_symm_apply_cast_add (x : fin m) :
  fin_sum_fin_equiv.symm (fin.cast_add n x) = sum.inl x :=
fin_sum_fin_equiv.symm_apply_apply (sum.inl x)

@[simp] lemma fin_sum_fin_equiv_symm_apply_nat_add (x : fin n) :
  fin_sum_fin_equiv.symm (fin.nat_add m x) = sum.inr x :=
fin_sum_fin_equiv.symm_apply_apply (sum.inr x)

@[simp] lemma fin_sum_fin_equiv_symm_last :
  fin_sum_fin_equiv.symm (fin.last n) = sum.inr 0 :=
fin_sum_fin_equiv_symm_apply_nat_add 0

/-- The equivalence between `fin (m + n)` and `fin (n + m)` which rotates by `n`. -/
def fin_add_flip : fin (m + n) ≃ fin (n + m) :=
(fin_sum_fin_equiv.symm.trans (equiv.sum_comm _ _)).trans fin_sum_fin_equiv

@[simp] lemma fin_add_flip_apply_cast_add (k : fin m) (n : ℕ) :
  fin_add_flip (fin.cast_add n k) = fin.nat_add n k :=
by simp [fin_add_flip]

@[simp] lemma fin_add_flip_apply_nat_add (k : fin n) (m : ℕ) :
  fin_add_flip (fin.nat_add m k) = fin.cast_add m k :=
by simp [fin_add_flip]

@[simp] lemma fin_add_flip_apply_mk_left {k : ℕ} (h : k < m)
  (hk : k < m + n := nat.lt_add_right k m n h)
  (hnk : n + k < n + m := add_lt_add_left h n) :
  fin_add_flip (⟨k, hk⟩ : fin (m + n)) = ⟨n + k, hnk⟩ :=
by convert fin_add_flip_apply_cast_add ⟨k, h⟩ n

@[simp] lemma fin_add_flip_apply_mk_right {k : ℕ} (h₁ : m ≤ k) (h₂ : k < m + n) :
  fin_add_flip (⟨k, h₂⟩ : fin (m + n)) = ⟨k - m, tsub_le_self.trans_lt $ add_comm m n ▸ h₂⟩ :=
begin
  convert fin_add_flip_apply_nat_add ⟨k - m, (tsub_lt_iff_right h₁).2 _⟩ m,
  { simp [add_tsub_cancel_of_le h₁] },
  { rwa add_comm }
end

/-- Rotate `fin n` one step to the right. -/
def fin_rotate : Π n, equiv.perm (fin n)
| 0 := equiv.refl _
| (n+1) := fin_add_flip.trans (fin_congr (add_comm _ _))

lemma fin_rotate_of_lt {k : ℕ} (h : k < n) :
  fin_rotate (n+1) ⟨k, lt_of_lt_of_le h (nat.le_succ _)⟩ = ⟨k + 1, nat.succ_lt_succ h⟩ :=
begin
  dsimp [fin_rotate],
  simp [h, add_comm],
end

lemma fin_rotate_last' : fin_rotate (n+1) ⟨n, lt_add_one _⟩ = ⟨0, nat.zero_lt_succ _⟩ :=
begin
  dsimp [fin_rotate],
  rw fin_add_flip_apply_mk_right,
  simp,
end

lemma fin_rotate_last : fin_rotate (n+1) (fin.last _) = 0 :=
fin_rotate_last'

lemma fin.snoc_eq_cons_rotate {α : Type*} (v : fin n → α) (a : α) :
  @fin.snoc _ (λ _, α) v a = (λ i, @fin.cons _ (λ _, α) a v (fin_rotate _ i)) :=
begin
  ext ⟨i, h⟩,
  by_cases h' : i < n,
  { rw [fin_rotate_of_lt h', fin.snoc, fin.cons, dif_pos h'],
    refl, },
  { have h'' : n = i,
    { simp only [not_lt] at h', exact (nat.eq_of_le_of_lt_succ h' h).symm, },
    subst h'',
    rw [fin_rotate_last', fin.snoc, fin.cons, dif_neg (lt_irrefl _)],
    refl, }
end

@[simp] lemma fin_rotate_zero : fin_rotate 0 = equiv.refl _ := rfl

@[simp] lemma fin_rotate_one : fin_rotate 1 = equiv.refl _ :=
subsingleton.elim _ _

@[simp] lemma fin_rotate_succ_apply {n : ℕ} (i : fin n.succ) :
  fin_rotate n.succ i = i + 1 :=
begin
  cases n,
  { simp },
  rcases i.le_last.eq_or_lt with rfl|h,
  { simp [fin_rotate_last] },
  { cases i,
    simp only [fin.lt_iff_coe_lt_coe, fin.coe_last, fin.coe_mk] at h,
    simp [fin_rotate_of_lt h, fin.eq_iff_veq, fin.add_def, nat.mod_eq_of_lt (nat.succ_lt_succ h)] },
end

@[simp] lemma fin_rotate_apply_zero {n : ℕ} : fin_rotate n.succ 0 = 1 :=
by rw [fin_rotate_succ_apply, zero_add]

lemma coe_fin_rotate_of_ne_last {n : ℕ} {i : fin n.succ} (h : i ≠ fin.last n) :
  (fin_rotate n.succ i : ℕ) = i + 1 :=
begin
  rw fin_rotate_succ_apply,
  have : (i : ℕ) < n := lt_of_le_of_ne (nat.succ_le_succ_iff.mp i.2) (fin.coe_injective.ne h),
  exact fin.coe_add_one_of_lt this
end

lemma coe_fin_rotate {n : ℕ} (i : fin n.succ) :
  (fin_rotate n.succ i : ℕ) = if i = fin.last n then 0 else i + 1 :=
by rw [fin_rotate_succ_apply, fin.coe_add_one i]

/-- Equivalence between `fin m × fin n` and `fin (m * n)` -/
@[simps]
def fin_prod_fin_equiv : fin m × fin n ≃ fin (m * n) :=
{ to_fun := λ x, ⟨x.2 + n * x.1,
    calc x.2.1 + n * x.1.1 + 1
        = x.1.1 * n + x.2.1 + 1 : by ac_refl
    ... ≤ x.1.1 * n + n : nat.add_le_add_left x.2.2 _
    ... = (x.1.1 + 1) * n : eq.symm $ nat.succ_mul _ _
    ... ≤ m * n : nat.mul_le_mul_right _ x.1.2⟩,
  inv_fun := λ x, (x.div_nat, x.mod_nat),
  left_inv := λ ⟨x, y⟩,
    have H : 0 < n, from nat.pos_of_ne_zero $ λ H, nat.not_lt_zero y.1 $ H ▸ y.2,
    prod.ext
      (fin.eq_of_veq $ calc
              (y.1 + n * x.1) / n
            = y.1 / n + x.1 : nat.add_mul_div_left _ _ H
        ... = 0 + x.1 : by rw nat.div_eq_of_lt y.2
        ... = x.1 : nat.zero_add x.1)
      (fin.eq_of_veq $ calc
              (y.1 + n * x.1) % n
            = y.1 % n : nat.add_mul_mod_self_left _ _ _
        ... = y.1 : nat.mod_eq_of_lt y.2),
  right_inv := λ x, fin.eq_of_veq $ nat.mod_add_div _ _ }

/-- Promote a `fin n` into a larger `fin m`, as a subtype where the underlying
values are retained. This is the `order_iso` version of `fin.cast_le`. -/
@[simps apply symm_apply]
def fin.cast_le_order_iso {n m : ℕ} (h : n ≤ m) : fin n ≃o {i : fin m // (i : ℕ) < n} :=
{ to_fun := λ i, ⟨fin.cast_le h i, by simpa using i.is_lt⟩,
  inv_fun := λ i, ⟨i, i.prop⟩,
  left_inv := λ _, by simp,
  right_inv := λ _, by simp,
  map_rel_iff' := λ _ _, by simp }

/-- `fin 0` is a subsingleton. -/
instance subsingleton_fin_zero : subsingleton (fin 0) :=
fin_zero_equiv.subsingleton

/-- `fin 1` is a subsingleton. -/
instance subsingleton_fin_one : subsingleton (fin 1) :=
fin_one_equiv.subsingleton