Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 25,601 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Mario Carneiro
-/
import data.set.function
import logic.equiv.basic

/-!
# Equivalences and sets

In this file we provide lemmas linking equivalences to sets.

Some notable definitions are:

* `equiv.of_injective`: an injective function is (noncomputably) equivalent to its range.
* `equiv.set_congr`: two equal sets are equivalent as types.
* `equiv.set.union`: a disjoint union of sets is equivalent to their `sum`.

This file is separate from `equiv/basic` such that we do not require the full lattice structure
on sets before defining what an equivalence is.
-/

open function set

universes u v w z
variables {α : Sort u} {β : Sort v} {γ : Sort w}

namespace equiv

@[simp] lemma range_eq_univ {α : Type*} {β : Type*} (e : α ≃ β) : range e = univ :=
eq_univ_of_forall e.surjective

protected lemma image_eq_preimage {α β} (e : α ≃ β) (s : set α) : e '' s = e.symm ⁻¹' s :=
set.ext $ λ x, mem_image_iff_of_inverse e.left_inv e.right_inv

lemma _root_.set.mem_image_equiv {α β} {S : set α} {f : α ≃ β} {x : β} :
  x ∈ f '' S ↔ f.symm x ∈ S :=
set.ext_iff.mp (f.image_eq_preimage S) x

/-- Alias for `equiv.image_eq_preimage` -/
lemma _root_.set.image_equiv_eq_preimage_symm {α β} (S : set α) (f : α ≃ β) :
  f '' S = f.symm ⁻¹' S :=
f.image_eq_preimage S

/-- Alias for `equiv.image_eq_preimage` -/
lemma _root_.set.preimage_equiv_eq_image_symm {α β} (S : set α) (f : β ≃ α) :
  f ⁻¹' S = f.symm '' S :=
(f.symm.image_eq_preimage S).symm

@[simp] protected lemma subset_image {α β} (e : α ≃ β) (s : set α) (t : set β) :
  e.symm '' t ⊆ s ↔ t ⊆ e '' s :=
by rw [image_subset_iff, e.image_eq_preimage]

@[simp] protected lemma subset_image' {α β} (e : α ≃ β) (s : set α) (t : set β) :
  s ⊆ e.symm '' t ↔ e '' s ⊆ t :=
calc s ⊆ e.symm '' t ↔ e.symm.symm '' s ⊆ t : by rw e.symm.subset_image
                 ... ↔ e '' s ⊆ t : by rw e.symm_symm

@[simp] lemma symm_image_image {α β} (e : α ≃ β) (s : set α) : e.symm '' (e '' s) = s :=
e.left_inverse_symm.image_image s

lemma eq_image_iff_symm_image_eq {α β} (e : α ≃ β) (s : set α) (t : set β) :
  t = e '' s ↔ e.symm '' t = s :=
(e.symm.injective.image_injective.eq_iff' (e.symm_image_image s)).symm

@[simp] lemma image_symm_image {α β} (e : α ≃ β) (s : set β) : e '' (e.symm '' s) = s :=
e.symm.symm_image_image s

@[simp] lemma image_preimage {α β} (e : α ≃ β) (s : set β) : e '' (e ⁻¹' s) = s :=
e.surjective.image_preimage s

@[simp] lemma preimage_image {α β} (e : α ≃ β) (s : set α) : e ⁻¹' (e '' s) = s :=
e.injective.preimage_image s

protected lemma image_compl {α β} (f : equiv α β) (s : set α) :
  f '' sᶜ = (f '' s)ᶜ :=
image_compl_eq f.bijective

@[simp] lemma symm_preimage_preimage {α β} (e : α ≃ β) (s : set β) :
  e.symm ⁻¹' (e ⁻¹' s) = s :=
e.right_inverse_symm.preimage_preimage s

@[simp] lemma preimage_symm_preimage {α β} (e : α ≃ β) (s : set α) :
  e ⁻¹' (e.symm ⁻¹' s) = s :=
e.left_inverse_symm.preimage_preimage s

@[simp] lemma preimage_subset {α β} (e : α ≃ β) (s t : set β) : e ⁻¹' s ⊆ e ⁻¹' t ↔ s ⊆ t :=
e.surjective.preimage_subset_preimage_iff

@[simp] lemma image_subset {α β} (e : α ≃ β) (s t : set α) : e '' s ⊆ e '' t ↔ s ⊆ t :=
image_subset_image_iff e.injective

@[simp] lemma image_eq_iff_eq {α β} (e : α ≃ β) (s t : set α) : e '' s = e '' t ↔ s = t :=
image_eq_image e.injective

lemma preimage_eq_iff_eq_image {α β} (e : α ≃ β) (s t) : e ⁻¹' s = t ↔ s = e '' t :=
preimage_eq_iff_eq_image e.bijective

lemma eq_preimage_iff_image_eq {α β} (e : α ≃ β) (s t) : s = e ⁻¹' t ↔ e '' s = t :=
eq_preimage_iff_image_eq e.bijective

@[simp] lemma prod_comm_preimage {α β} {s : set α} {t : set β} :
  equiv.prod_comm α β ⁻¹' t ×ˢ s = s ×ˢ t :=
preimage_swap_prod

lemma prod_comm_image {α β} {s : set α} {t : set β} : equiv.prod_comm α β '' s ×ˢ t = t ×ˢ s :=
image_swap_prod

@[simp]
lemma prod_assoc_preimage {α β γ} {s : set α} {t : set β} {u : set γ} :
  equiv.prod_assoc α β γ ⁻¹' s ×ˢ (t ×ˢ u) = (s ×ˢ t) ×ˢ u :=
by { ext, simp [and_assoc] }

@[simp]
lemma prod_assoc_symm_preimage {α β γ} {s : set α} {t : set β} {u : set γ} :
  (equiv.prod_assoc α β γ).symm ⁻¹' (s ×ˢ t) ×ˢ u = s ×ˢ (t ×ˢ u) :=
by { ext, simp [and_assoc] }

-- `@[simp]` doesn't like these lemmas, as it uses `set.image_congr'` to turn `equiv.prod_assoc`
-- into a lambda expression and then unfold it.

lemma prod_assoc_image {α β γ} {s : set α} {t : set β} {u : set γ} :
  equiv.prod_assoc α β γ '' (s ×ˢ t) ×ˢ u = s ×ˢ (t ×ˢ u) :=
by simpa only [equiv.image_eq_preimage] using prod_assoc_symm_preimage

lemma prod_assoc_symm_image {α β γ} {s : set α} {t : set β} {u : set γ} :
  (equiv.prod_assoc α β γ).symm '' s ×ˢ (t ×ˢ u) = (s ×ˢ t) ×ˢ u :=
by simpa only [equiv.image_eq_preimage] using prod_assoc_preimage

/-- A set `s` in `α × β` is equivalent to the sigma-type `Σ x, {y | (x, y) ∈ s}`. -/
def set_prod_equiv_sigma {α β : Type*} (s : set (α × β)) :
  s ≃ Σ x : α, {y | (x, y) ∈ s} :=
{ to_fun := λ x, ⟨x.1.1, x.1.2, by simp⟩,
  inv_fun := λ x, ⟨(x.1, x.2.1), x.2.2⟩,
  left_inv := λ ⟨⟨x, y⟩, h⟩, rfl,
  right_inv := λ ⟨x, y, h⟩, rfl }

/-- The subtypes corresponding to equal sets are equivalent. -/
@[simps apply]
def set_congr {α : Type*} {s t : set α} (h : s = t) : s ≃ t :=
subtype_equiv_prop h

/--
A set is equivalent to its image under an equivalence.
-/
-- We could construct this using `equiv.set.image e s e.injective`,
-- but this definition provides an explicit inverse.
@[simps]
def image {α β : Type*} (e : α ≃ β) (s : set α) : s ≃ e '' s :=
{ to_fun := λ x, ⟨e x.1, by simp⟩,
  inv_fun := λ y, ⟨e.symm y.1, by { rcases y with ⟨-, ⟨a, ⟨m, rfl⟩⟩⟩, simpa using m, }⟩,
  left_inv := λ x, by simp,
  right_inv := λ y, by simp, }.

namespace set

/-- `univ α` is equivalent to `α`. -/
@[simps apply symm_apply]
protected def univ (α) : @univ α ≃ α :=
⟨coe, λ a, ⟨a, trivial⟩, λ ⟨a, _⟩, rfl, λ a, rfl⟩

/-- An empty set is equivalent to the `empty` type. -/
protected def empty (α) : (∅ : set α) ≃ empty :=
equiv_empty _

/-- An empty set is equivalent to a `pempty` type. -/
protected def pempty (α) : (∅ : set α) ≃ pempty :=
equiv_pempty _

/-- If sets `s` and `t` are separated by a decidable predicate, then `s ∪ t` is equivalent to
`s ⊕ t`. -/
protected def union' {α} {s t : set α}
  (p : α → Prop) [decidable_pred p]
  (hs : ∀ x ∈ s, p x)
  (ht : ∀ x ∈ t, ¬ p x) : (s ∪ t : set α) ≃ s ⊕ t :=
{ to_fun := λ x, if hp : p x
    then sum.inl ⟨_, x.2.resolve_right (λ xt, ht _ xt hp)⟩
    else sum.inr ⟨_, x.2.resolve_left (λ xs, hp (hs _ xs))⟩,
  inv_fun := λ o, match o with
    | (sum.inl x) := ⟨x, or.inl x.2⟩
    | (sum.inr x) := ⟨x, or.inr x.2end,
  left_inv := λ ⟨x, h'⟩, by by_cases p x; simp [union'._match_1, h]; congr,
  right_inv := λ o, begin
    rcases o with ⟨x, h⟩ | ⟨x, h⟩;
    dsimp [union'._match_1];
    [simp [hs _ h], simp [ht _ h]]
  end }

/-- If sets `s` and `t` are disjoint, then `s ∪ t` is equivalent to `s ⊕ t`. -/
protected def union {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) :
  (s ∪ t : set α) ≃ s ⊕ t :=
set.union' (λ x, x ∈ s) (λ _, id) (λ x xt xs, H ⟨xs, xt⟩)

lemma union_apply_left {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅)
  {a : (s ∪ t : set α)} (ha : ↑a ∈ s) : equiv.set.union H a = sum.inl ⟨a, ha⟩ :=
dif_pos ha

lemma union_apply_right {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅)
  {a : (s ∪ t : set α)} (ha : ↑a ∈ t) : equiv.set.union H a = sum.inr ⟨a, ha⟩ :=
dif_neg $ λ h, H ⟨h, ha⟩

@[simp] lemma union_symm_apply_left {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅)
  (a : s) : (equiv.set.union H).symm (sum.inl a) = ⟨a, subset_union_left _ _ a.2⟩ :=
rfl

@[simp] lemma union_symm_apply_right {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅)
  (a : t) : (equiv.set.union H).symm (sum.inr a) = ⟨a, subset_union_right _ _ a.2⟩ :=
rfl

/-- A singleton set is equivalent to a `punit` type. -/
protected def singleton {α} (a : α) : ({a} : set α) ≃ punit.{u} :=
⟨λ _, punit.star, λ _, ⟨a, mem_singleton _⟩,
 λ ⟨x, h⟩, by { simp at h, subst x },
 λ ⟨⟩, rfl⟩

/-- Equal sets are equivalent.

TODO: this is the same as `equiv.set_congr`! -/
@[simps apply symm_apply]
protected def of_eq {α : Type u} {s t : set α} (h : s = t) : s ≃ t :=
equiv.set_congr h

/-- If `a ∉ s`, then `insert a s` is equivalent to `s ⊕ punit`. -/
protected def insert {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) :
  (insert a s : set α) ≃ s ⊕ punit.{u+1} :=
calc (insert a s : set α) ≃ ↥(s ∪ {a}) : equiv.set.of_eq (by simp)
... ≃ s ⊕ ({a} : set α) : equiv.set.union (λ x ⟨hx, hx'⟩, by simp [*] at *)
... ≃ s ⊕ punit.{u+1} : sum_congr (equiv.refl _) (equiv.set.singleton _)

@[simp] lemma insert_symm_apply_inl {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s)
  (b : s) : (equiv.set.insert H).symm (sum.inl b) = ⟨b, or.inr b.2⟩ :=
rfl

@[simp] lemma insert_symm_apply_inr {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s)
  (b : punit.{u+1}) : (equiv.set.insert H).symm (sum.inr b) = ⟨a, or.inl rfl⟩ :=
rfl

@[simp] lemma insert_apply_left {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) :
  equiv.set.insert H ⟨a, or.inl rfl⟩ = sum.inr punit.star :=
(equiv.set.insert H).apply_eq_iff_eq_symm_apply.2 rfl

@[simp] lemma insert_apply_right {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s)
  (b : s) : equiv.set.insert H ⟨b, or.inr b.2⟩ = sum.inl b :=
(equiv.set.insert H).apply_eq_iff_eq_symm_apply.2 rfl

/-- If `s : set α` is a set with decidable membership, then `s ⊕ sᶜ` is equivalent to `α`. -/
protected def sum_compl {α} (s : set α) [decidable_pred (∈ s)] : s ⊕ (sᶜ : set α) ≃ α :=
calc s ⊕ (sᶜ : set α) ≃ ↥(s ∪ sᶜ) : (equiv.set.union (by simp [set.ext_iff])).symm
... ≃ @univ α : equiv.set.of_eq (by simp)
... ≃ α : equiv.set.univ _

@[simp] lemma sum_compl_apply_inl {α : Type u} (s : set α) [decidable_pred (∈ s)] (x : s) :
  equiv.set.sum_compl s (sum.inl x) = x := rfl

@[simp] lemma sum_compl_apply_inr {α : Type u} (s : set α) [decidable_pred (∈ s)] (x : sᶜ) :
  equiv.set.sum_compl s (sum.inr x) = x := rfl

lemma sum_compl_symm_apply_of_mem {α : Type u} {s : set α} [decidable_pred (∈ s)] {x : α}
  (hx : x ∈ s) : (equiv.set.sum_compl s).symm x = sum.inl ⟨x, hx⟩ :=
have ↑(⟨x, or.inl hx⟩ : (s ∪ sᶜ : set α)) ∈ s, from hx,
by { rw [equiv.set.sum_compl], simpa using set.union_apply_left _ this }

lemma sum_compl_symm_apply_of_not_mem {α : Type u} {s : set α} [decidable_pred (∈ s)] {x : α}
  (hx : x ∉ s) : (equiv.set.sum_compl s).symm x = sum.inr ⟨x, hx⟩ :=
have ↑(⟨x, or.inr hx⟩ : (s ∪ sᶜ : set α)) ∈ sᶜ, from hx,
by { rw [equiv.set.sum_compl], simpa using set.union_apply_right _ this }

@[simp] lemma sum_compl_symm_apply {α : Type*} {s : set α} [decidable_pred (∈ s)] {x : s} :
  (equiv.set.sum_compl s).symm x = sum.inl x :=
by cases x with x hx; exact set.sum_compl_symm_apply_of_mem hx

@[simp] lemma sum_compl_symm_apply_compl {α : Type*} {s : set α}
  [decidable_pred (∈ s)] {x : sᶜ} : (equiv.set.sum_compl s).symm x = sum.inr x :=
by cases x with x hx; exact set.sum_compl_symm_apply_of_not_mem hx

/-- `sum_diff_subset s t` is the natural equivalence between
`s ⊕ (t \ s)` and `t`, where `s` and `t` are two sets. -/
protected def sum_diff_subset {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] :
  s ⊕ (t \ s : set α) ≃ t :=
calc s ⊕ (t \ s : set α) ≃ (s ∪ (t \ s) : set α) :
  (equiv.set.union (by simp [inter_diff_self])).symm
... ≃ t : equiv.set.of_eq (by { simp [union_diff_self, union_eq_self_of_subset_left h] })

@[simp] lemma sum_diff_subset_apply_inl
  {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] (x : s) :
  equiv.set.sum_diff_subset h (sum.inl x) = inclusion h x := rfl

@[simp] lemma sum_diff_subset_apply_inr
  {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] (x : t \ s) :
  equiv.set.sum_diff_subset h (sum.inr x) = inclusion (diff_subset t s) x := rfl

lemma sum_diff_subset_symm_apply_of_mem
  {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] {x : t} (hx : x.1 ∈ s) :
  (equiv.set.sum_diff_subset h).symm x = sum.inl ⟨x, hx⟩ :=
begin
  apply (equiv.set.sum_diff_subset h).injective,
  simp only [apply_symm_apply, sum_diff_subset_apply_inl],
  exact subtype.eq rfl,
end

lemma sum_diff_subset_symm_apply_of_not_mem
  {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] {x : t} (hx : x.1 ∉ s) :
  (equiv.set.sum_diff_subset h).symm x = sum.inr ⟨x, ⟨x.2, hx⟩⟩  :=
begin
  apply (equiv.set.sum_diff_subset h).injective,
  simp only [apply_symm_apply, sum_diff_subset_apply_inr],
  exact subtype.eq rfl,
end

/-- If `s` is a set with decidable membership, then the sum of `s ∪ t` and `s ∩ t` is equivalent
to `s ⊕ t`. -/
protected def union_sum_inter {α : Type u} (s t : set α) [decidable_pred (∈ s)] :
  (s ∪ t : set α) ⊕ (s ∩ t : set α) ≃ s ⊕ t :=
calc  (s ∪ t : set α) ⊕ (s ∩ t : set α)
    ≃ (s ∪ t \ s : set α) ⊕ (s ∩ t : set α) : by rw [union_diff_self]
... ≃ (s ⊕ (t \ s : set α)) ⊕ (s ∩ t : set α) :
  sum_congr (set.union $ subset_empty_iff.2 (inter_diff_self _ _)) (equiv.refl _)
... ≃ s ⊕ (t \ s : set α) ⊕ (s ∩ t : set α) : sum_assoc _ _ _
... ≃ s ⊕ (t \ s ∪ s ∩ t : set α) : sum_congr (equiv.refl _) begin
    refine (set.union' (∉ s) _ _).symm,
    exacts [λ x hx, hx.2, λ x hx, not_not_intro hx.1]
  end
... ≃ s ⊕ t : by { rw (_ : t \ s ∪ s ∩ t = t), rw [union_comm, inter_comm, inter_union_diff] }

/-- Given an equivalence `e₀` between sets `s : set α` and `t : set β`, the set of equivalences
`e : α ≃ β` such that `e ↑x = ↑(e₀ x)` for each `x : s` is equivalent to the set of equivalences
between `sᶜ` and `tᶜ`. -/
protected def compl {α : Type u} {β : Type v} {s : set α} {t : set β} [decidable_pred (∈ s)]
  [decidable_pred (∈ t)] (e₀ : s ≃ t) :
  {e : α ≃ β // ∀ x : s, e x = e₀ x} ≃ ((sᶜ : set α) ≃ (tᶜ : set β)) :=
{ to_fun := λ e, subtype_equiv e
    (λ a, not_congr $ iff.symm $ maps_to.mem_iff
      (maps_to_iff_exists_map_subtype.2 ⟨e₀, e.2⟩)
      (surj_on.maps_to_compl (surj_on_iff_exists_map_subtype.2
        ⟨t, e₀, subset.refl t, e₀.surjective, e.2⟩) e.1.injective)),
  inv_fun := λ e₁,
    subtype.mk
      (calc α ≃ s ⊕ (sᶜ : set α) : (set.sum_compl s).symm
          ... ≃ t ⊕ (tᶜ : set β) : e₀.sum_congr e₁
          ... ≃ β : set.sum_compl t)
      (λ x, by simp only [sum.map_inl, trans_apply, sum_congr_apply,
        set.sum_compl_apply_inl, set.sum_compl_symm_apply]),
  left_inv := λ e,
    begin
      ext x,
      by_cases hx : x ∈ s,
      { simp only [set.sum_compl_symm_apply_of_mem hx, ←e.prop ⟨x, hx⟩,
          sum.map_inl, sum_congr_apply, trans_apply,
          subtype.coe_mk, set.sum_compl_apply_inl] },
      { simp only [set.sum_compl_symm_apply_of_not_mem hx, sum.map_inr,
          subtype_equiv_apply, set.sum_compl_apply_inr, trans_apply,
          sum_congr_apply, subtype.coe_mk] },
    end,
  right_inv := λ e, equiv.ext $ λ x, by simp only [sum.map_inr, subtype_equiv_apply,
    set.sum_compl_apply_inr, function.comp_app, sum_congr_apply, equiv.coe_trans,
    subtype.coe_eta, subtype.coe_mk, set.sum_compl_symm_apply_compl] }

/-- The set product of two sets is equivalent to the type product of their coercions to types. -/
protected def prod {α β} (s : set α) (t : set β) :
  ↥(s ×ˢ t) ≃ s × t :=
@subtype_prod_equiv_prod α β s t

/-- The set `set.pi set.univ s` is equivalent to `Π a, s a`. -/
@[simps] protected def univ_pi {α : Type*} {β : α → Type*} (s : Π a, set (β a)) :
  pi univ s ≃ Π a, s a :=
{ to_fun := λ f a, ⟨(f : Π a, β a) a, f.2 a (mem_univ a)⟩,
  inv_fun := λ f, ⟨λ a, f a, λ a ha, (f a).2⟩,
  left_inv := λ ⟨f, hf⟩, by { ext a, refl },
  right_inv := λ f, by { ext a, refl } }

/-- If a function `f` is injective on a set `s`, then `s` is equivalent to `f '' s`. -/
protected noncomputable def image_of_inj_on {α β} (f : α → β) (s : set α) (H : inj_on f s) :
  s ≃ (f '' s) :=
⟨λ p, ⟨f p, mem_image_of_mem f p.2⟩,
 λ p, ⟨classical.some p.2, (classical.some_spec p.2).1⟩,
 λ ⟨x, h⟩, subtype.eq (H (classical.some_spec (mem_image_of_mem f h)).1 h
   (classical.some_spec (mem_image_of_mem f h)).2),
 λ ⟨y, h⟩, subtype.eq (classical.some_spec h).2⟩

/-- If `f` is an injective function, then `s` is equivalent to `f '' s`. -/
@[simps apply]
protected noncomputable def image {α β} (f : α → β) (s : set α) (H : injective f) : s ≃ (f '' s) :=
equiv.set.image_of_inj_on f s (H.inj_on s)

@[simp] protected lemma image_symm_apply {α β} (f : α → β) (s : set α) (H : injective f)
  (x : α) (h : x ∈ s) :
  (set.image f s H).symm ⟨f x, ⟨x, ⟨h, rfl⟩⟩⟩ = ⟨x, h⟩ :=
begin
  apply (set.image f s H).injective,
  simp [(set.image f s H).apply_symm_apply],
end

lemma image_symm_preimage {α β} {f : α → β} (hf : injective f) (u s : set α) :
  (λ x, (set.image f s hf).symm x : f '' s → α) ⁻¹' u = coe ⁻¹' (f '' u) :=
begin
  ext ⟨b, a, has, rfl⟩,
  have : ∀(h : ∃a', a' ∈ s ∧ a' = a), classical.some h = a := λ h, (classical.some_spec h).2,
  simp [equiv.set.image, equiv.set.image_of_inj_on, hf.eq_iff, this],
end

/-- If `α` is equivalent to `β`, then `set α` is equivalent to `set β`. -/
@[simps]
protected def congr {α β : Type*} (e : α ≃ β) : set α ≃ set β :=
⟨λ s, e '' s, λ t, e.symm '' t, symm_image_image e, symm_image_image e.symm⟩

/-- The set `{x ∈ s | t x}` is equivalent to the set of `x : s` such that `t x`. -/
protected def sep {α : Type u} (s : set α) (t : α → Prop) :
  ({ x ∈ s | t x } : set α) ≃ { x : s | t x } :=
(equiv.subtype_subtype_equiv_subtype_inter s t).symm

/-- The set `𝒫 S := {x | x ⊆ S}` is equivalent to the type `set S`. -/
protected def powerset {α} (S : set α) : 𝒫 S ≃ set S :=
{ to_fun := λ x : 𝒫 S, coe ⁻¹' (x : set α),
  inv_fun := λ x : set S, ⟨coe '' x, by rintro _ ⟨a : S, _, rfl⟩; exact a.2⟩,
  left_inv := λ x, by ext y; exact ⟨λ ⟨⟨_, _⟩, h, rfl⟩, h, λ h, ⟨⟨_, x.2 h⟩, h, rfl⟩⟩,
  right_inv := λ x, by ext; simp }

/--
If `s` is a set in `range f`,
then its image under `range_splitting f` is in bijection (via `f`) with `s`.
-/
@[simps]
noncomputable def range_splitting_image_equiv {α β : Type*} (f : α → β) (s : set (range f)) :
  range_splitting f '' s ≃ s :=
{ to_fun := λ x, ⟨⟨f x, by simp⟩,
    (by { rcases x with ⟨x, ⟨y, ⟨m, rfl⟩⟩⟩, simpa [apply_range_splitting f] using m, })⟩,
  inv_fun := λ x, ⟨range_splitting f x, ⟨x, ⟨x.2, rfl⟩⟩⟩,
  left_inv := λ x, by { rcases x with ⟨x, ⟨y, ⟨m, rfl⟩⟩⟩, simp [apply_range_splitting f] },
  right_inv := λ x, by simp [apply_range_splitting f], }

end set


/-- If `f : α → β` has a left-inverse when `α` is nonempty, then `α` is computably equivalent to the
range of `f`.

While awkward, the `nonempty α` hypothesis on `f_inv` and `hf` allows this to be used when `α` is
empty too. This hypothesis is absent on analogous definitions on stronger `equiv`s like
`linear_equiv.of_left_inverse` and `ring_equiv.of_left_inverse` as their typeclass assumptions
are already sufficient to ensure non-emptiness. -/
@[simps]
def of_left_inverse {α β : Sort*}
  (f : α → β) (f_inv : nonempty α → β → α) (hf : Π h : nonempty α, left_inverse (f_inv h) f) :
  α ≃ range f :=
{ to_fun := λ a, ⟨f a, a, rfl⟩,
  inv_fun := λ b, f_inv (nonempty_of_exists b.2) b,
  left_inv := λ a, hf ⟨a⟩ a,
  right_inv := λ ⟨b, a, ha⟩, subtype.eq $ show f (f_inv ⟨a⟩ b) = b,
    from eq.trans (congr_arg f $ by exact ha ▸ (hf _ a)) ha }

/-- If `f : α → β` has a left-inverse, then `α` is computably equivalent to the range of `f`.

Note that if `α` is empty, no such `f_inv` exists and so this definition can't be used, unlike
the stronger but less convenient `of_left_inverse`. -/
abbreviation of_left_inverse' {α β : Sort*}
  (f : α → β) (f_inv : β → α) (hf : left_inverse f_inv f) :
  α ≃ range f :=
of_left_inverse f (λ _, f_inv) (λ _, hf)

/-- If `f : α → β` is an injective function, then domain `α` is equivalent to the range of `f`. -/
@[simps apply]
noncomputable def of_injective {α β} (f : α → β) (hf : injective f) : α ≃ range f :=
equiv.of_left_inverse f
  (λ h, by exactI function.inv_fun f) (λ h, by exactI function.left_inverse_inv_fun hf)

theorem apply_of_injective_symm {α β} {f : α → β} (hf : injective f) (b : range f) :
  f ((of_injective f hf).symm b) = b :=
subtype.ext_iff.1 $ (of_injective f hf).apply_symm_apply b

@[simp] theorem of_injective_symm_apply {α β} {f : α → β} (hf : injective f) (a : α) :
  (of_injective f hf).symm ⟨f a, ⟨a, rfl⟩⟩ = a :=
begin
  apply (of_injective f hf).injective,
  simp [apply_of_injective_symm hf],
end

lemma coe_of_injective_symm {α β} {f : α → β} (hf : injective f) :
  ((of_injective f hf).symm : range f → α) = range_splitting f :=
by { ext ⟨y, x, rfl⟩, apply hf, simp [apply_range_splitting f] }

@[simp] lemma self_comp_of_injective_symm {α β} {f : α → β} (hf : injective f) :
  f ∘ ((of_injective f hf).symm) = coe :=
funext (λ x, apply_of_injective_symm hf x)

lemma of_left_inverse_eq_of_injective {α β : Type*}
  (f : α → β) (f_inv : nonempty α → β → α) (hf : Π h : nonempty α, left_inverse (f_inv h) f) :
  of_left_inverse f f_inv hf = of_injective f
    ((em (nonempty α)).elim (λ h, (hf h).injective) (λ h _ _ _, by
    { haveI : subsingleton α := subsingleton_of_not_nonempty h, simp })) :=
by { ext, simp }

lemma of_left_inverse'_eq_of_injective {α β : Type*}
  (f : α → β) (f_inv : β → α) (hf : left_inverse f_inv f) :
  of_left_inverse' f f_inv hf = of_injective f hf.injective :=
by { ext, simp }

protected lemma set_forall_iff {α β} (e : α ≃ β) {p : set α → Prop} :
  (∀ a, p a) ↔ (∀ a, p (e ⁻¹' a)) :=
e.injective.preimage_surjective.forall

lemma preimage_pi_equiv_pi_subtype_prod_symm_pi {α : Type*} {β : α → Type*}
  (p : α → Prop) [decidable_pred p] (s : Π i, set (β i)) :
  (pi_equiv_pi_subtype_prod p β).symm ⁻¹' pi univ s =
    (pi univ (λ i : {i // p i}, s i)) ×ˢ (pi univ (λ i : {i // ¬p i}, s i)) :=
begin
  ext ⟨f, g⟩,
  simp only [mem_preimage, mem_univ_pi, prod_mk_mem_set_prod_eq, subtype.forall,
    ← forall_and_distrib],
  refine forall_congr (λ i, _),
  dsimp only [subtype.coe_mk],
  by_cases hi : p i; simp [hi]
end

/-- `sigma_fiber_equiv f` for `f : α → β` is the natural equivalence between
the type of all preimages of points under `f` and the total space `α`. -/
-- See also `equiv.sigma_fiber_equiv`.
@[simps] def sigma_preimage_equiv {α β} (f : α → β) : (Σ b, f ⁻¹' {b}) ≃ α :=
sigma_fiber_equiv f

/-- A family of equivalences between preimages of points gives an equivalence between domains. -/
-- See also `equiv.of_fiber_equiv`.
@[simps]
def of_preimage_equiv {α β γ} {f : α → γ} {g : β → γ} (e : Π c, (f ⁻¹' {c}) ≃ (g ⁻¹' {c})) :
  α ≃ β :=
equiv.of_fiber_equiv e

lemma of_preimage_equiv_map {α β γ} {f : α → γ} {g : β → γ}
  (e : Π c, (f ⁻¹' {c}) ≃ (g ⁻¹' {c})) (a : α) : g (of_preimage_equiv e a) = f a :=
equiv.of_fiber_equiv_map e a

end equiv

/-- If a function is a bijection between two sets `s` and `t`, then it induces an
equivalence between the types `↥s` and `↥t`. -/
noncomputable def set.bij_on.equiv {α : Type*} {β : Type*} {s : set α} {t : set β} (f : α → β)
  (h : bij_on f s t) : s ≃ t :=
equiv.of_bijective _ h.bijective

/-- The composition of an updated function with an equiv on a subset can be expressed as an
updated function. -/
lemma dite_comp_equiv_update {α : Type*} {β : Sort*} {γ : Sort*} {s : set α} (e : β ≃ s)
  (v : β → γ) (w : α → γ) (j : β) (x : γ) [decidable_eq β] [decidable_eq α]
  [∀ j, decidable (j ∈ s)] :
  (λ (i : α), if h : i ∈ s then (function.update v j x) (e.symm ⟨i, h⟩) else w i) =
  function.update (λ (i : α), if h : i ∈ s then v (e.symm ⟨i, h⟩) else w i) (e j) x :=
begin
  ext i,
  by_cases h : i ∈ s,
  { rw [dif_pos h,
        function.update_apply_equiv_apply, equiv.symm_symm, function.comp,
        function.update_apply, function.update_apply,
        dif_pos h],
    have h_coe : (⟨i, h⟩ : s) = e j ↔ i = e j := subtype.ext_iff.trans (by rw subtype.coe_mk),
    simp_rw h_coe },
  { have : i ≠ e j,
      by { contrapose! h, have : (e j : α) ∈ s := (e j).2, rwa ← h at this },
    simp [h, this] }
end