Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,957 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
/-
Copyright (c) 2022 Rémy Degenne. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Rémy Degenne
-/
import probability.variance
/-!
# Moments and moment generating function
## Main definitions
* `probability_theory.moment X p μ`: `p`th moment of a real random variable `X` with respect to
measure `μ`, `μ[X^p]`
* `probability_theory.central_moment X p μ`:`p`th central moment of `X` with respect to measure `μ`,
`μ[(X - μ[X])^p]`
* `probability_theory.mgf X μ t`: moment generating function of `X` with respect to measure `μ`,
`μ[exp(t*X)]`
* `probability_theory.cgf X μ t`: cumulant generating function, logarithm of the moment generating
function
## Main results
* `probability_theory.indep_fun.mgf_add`: if two real random variables `X` and `Y` are independent
and their mgf are defined at `t`, then `mgf (X + Y) μ t = mgf X μ t * mgf Y μ t`
* `probability_theory.indep_fun.cgf_add`: if two real random variables `X` and `Y` are independent
and their mgf are defined at `t`, then `cgf (X + Y) μ t = cgf X μ t + cgf Y μ t`
* `probability_theory.measure_ge_le_exp_cgf` and `probability_theory.measure_le_le_exp_cgf`:
Chernoff bound on the upper (resp. lower) tail of a random variable. For `t` nonnegative such that
the cgf exists, `ℙ(ε ≤ X) ≤ exp(- t*ε + cgf X ℙ t)`. See also
`probability_theory.measure_ge_le_exp_mul_mgf` and
`probability_theory.measure_le_le_exp_mul_mgf` for versions of these results using `mgf` instead
of `cgf`.
-/
open measure_theory filter finset real
noncomputable theory
open_locale big_operators measure_theory probability_theory ennreal nnreal
namespace probability_theory
variables {Ω ι : Type*} {m : measurable_space Ω} {X : Ω → ℝ} {p : ℕ} {μ : measure Ω}
include m
/-- Moment of a real random variable, `μ[X ^ p]`. -/
def moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[X ^ p]
/-- Central moment of a real random variable, `μ[(X - μ[X]) ^ p]`. -/
def central_moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[(X - (λ x, μ[X])) ^ p]
@[simp] lemma moment_zero (hp : p ≠ 0) : moment 0 p μ = 0 :=
by simp only [moment, hp, zero_pow', ne.def, not_false_iff, pi.zero_apply, integral_const,
algebra.id.smul_eq_mul, mul_zero]
@[simp] lemma central_moment_zero (hp : p ≠ 0) : central_moment 0 p μ = 0 :=
by simp only [central_moment, hp, pi.zero_apply, integral_const, algebra.id.smul_eq_mul,
mul_zero, zero_sub, pi.pow_apply, pi.neg_apply, neg_zero', zero_pow', ne.def, not_false_iff]
lemma central_moment_one' [is_finite_measure μ] (h_int : integrable X μ) :
central_moment X 1 μ = (1 - (μ set.univ).to_real) * μ[X] :=
begin
simp only [central_moment, pi.sub_apply, pow_one],
rw integral_sub h_int (integrable_const _),
simp only [sub_mul, integral_const, algebra.id.smul_eq_mul, one_mul],
end
@[simp] lemma central_moment_one [is_probability_measure μ] : central_moment X 1 μ = 0 :=
begin
by_cases h_int : integrable X μ,
{ rw central_moment_one' h_int,
simp only [measure_univ, ennreal.one_to_real, sub_self, zero_mul], },
{ simp only [central_moment, pi.sub_apply, pow_one],
have : ¬ integrable (λ x, X x - integral μ X) μ,
{ refine λ h_sub, h_int _,
have h_add : X = (λ x, X x - integral μ X) + (λ x, integral μ X),
{ ext1 x, simp, },
rw h_add,
exact h_sub.add (integrable_const _), },
rw integral_undef this, },
end
@[simp] lemma central_moment_two_eq_variance : central_moment X 2 μ = variance X μ := rfl
section moment_generating_function
variables {t : ℝ}
/-- Moment generating function of a real random variable `X`: `λ t, μ[exp(t*X)]`. -/
def mgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := μ[λ ω, exp (t * X ω)]
/-- Cumulant generating function of a real random variable `X`: `λ t, log μ[exp(t*X)]`. -/
def cgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := log (mgf X μ t)
@[simp] lemma mgf_zero_fun : mgf 0 μ t = (μ set.univ).to_real :=
by simp only [mgf, pi.zero_apply, mul_zero, exp_zero, integral_const, algebra.id.smul_eq_mul,
mul_one]
@[simp] lemma cgf_zero_fun : cgf 0 μ t = log (μ set.univ).to_real :=
by simp only [cgf, mgf_zero_fun]
@[simp] lemma mgf_zero_measure : mgf X (0 : measure Ω) t = 0 :=
by simp only [mgf, integral_zero_measure]
@[simp] lemma cgf_zero_measure : cgf X (0 : measure Ω) t = 0 :=
by simp only [cgf, log_zero, mgf_zero_measure]
@[simp] lemma mgf_const' (c : ℝ) : mgf (λ _, c) μ t = (μ set.univ).to_real * exp (t * c) :=
by simp only [mgf, integral_const, algebra.id.smul_eq_mul]
@[simp] lemma mgf_const (c : ℝ) [is_probability_measure μ] : mgf (λ _, c) μ t = exp (t * c) :=
by simp only [mgf_const', measure_univ, ennreal.one_to_real, one_mul]
@[simp] lemma cgf_const' [is_finite_measure μ] (hμ : μ ≠ 0) (c : ℝ) :
cgf (λ _, c) μ t = log (μ set.univ).to_real + t * c :=
begin
simp only [cgf, mgf_const'],
rw log_mul _ (exp_pos _).ne',
{ rw log_exp _, },
{ rw [ne.def, ennreal.to_real_eq_zero_iff, measure.measure_univ_eq_zero],
simp only [hμ, measure_ne_top μ set.univ, or_self, not_false_iff], },
end
@[simp] lemma cgf_const [is_probability_measure μ] (c : ℝ) : cgf (λ _, c) μ t = t * c :=
by simp only [cgf, mgf_const, log_exp]
@[simp] lemma mgf_zero' : mgf X μ 0 = (μ set.univ).to_real :=
by simp only [mgf, zero_mul, exp_zero, integral_const, algebra.id.smul_eq_mul, mul_one]
@[simp] lemma mgf_zero [is_probability_measure μ] : mgf X μ 0 = 1 :=
by simp only [mgf_zero', measure_univ, ennreal.one_to_real]
@[simp] lemma cgf_zero' : cgf X μ 0 = log (μ set.univ).to_real :=
by simp only [cgf, mgf_zero']
@[simp] lemma cgf_zero [is_probability_measure μ] : cgf X μ 0 = 0 :=
by simp only [cgf_zero', measure_univ, ennreal.one_to_real, log_one]
lemma mgf_undef (hX : ¬ integrable (λ ω, exp (t * X ω)) μ) : mgf X μ t = 0 :=
by simp only [mgf, integral_undef hX]
lemma cgf_undef (hX : ¬ integrable (λ ω, exp (t * X ω)) μ) : cgf X μ t = 0 :=
by simp only [cgf, mgf_undef hX, log_zero]
lemma mgf_nonneg : 0 ≤ mgf X μ t :=
begin
refine integral_nonneg _,
intro ω,
simp only [pi.zero_apply],
exact (exp_pos _).le,
end
lemma mgf_pos' (hμ : μ ≠ 0) (h_int_X : integrable (λ ω, exp (t * X ω)) μ) : 0 < mgf X μ t :=
begin
simp_rw mgf,
have : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in set.univ, exp (t * X x) ∂μ,
{ simp only [measure.restrict_univ], },
rw [this, set_integral_pos_iff_support_of_nonneg_ae _ _],
{ have h_eq_univ : function.support (λ (x : Ω), exp (t * X x)) = set.univ,
{ ext1 x,
simp only [function.mem_support, set.mem_univ, iff_true],
exact (exp_pos _).ne', },
rw [h_eq_univ, set.inter_univ _],
refine ne.bot_lt _,
simp only [hμ, ennreal.bot_eq_zero, ne.def, measure.measure_univ_eq_zero, not_false_iff], },
{ refine eventually_of_forall (λ x, _),
rw pi.zero_apply,
exact (exp_pos _).le, },
{ rwa integrable_on_univ, },
end
lemma mgf_pos [is_probability_measure μ] (h_int_X : integrable (λ ω, exp (t * X ω)) μ) :
0 < mgf X μ t :=
mgf_pos' (is_probability_measure.ne_zero μ) h_int_X
lemma mgf_neg : mgf (-X) μ t = mgf X μ (-t) :=
by simp_rw [mgf, pi.neg_apply, mul_neg, neg_mul]
lemma cgf_neg : cgf (-X) μ t = cgf X μ (-t) := by simp_rw [cgf, mgf_neg]
/-- This is a trivial application of `indep_fun.comp` but it will come up frequently. -/
lemma indep_fun.exp_mul {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) (s t : ℝ) :
indep_fun (λ ω, exp (s * X ω)) (λ ω, exp (t * Y ω)) μ :=
begin
have h_meas : ∀ t, measurable (λ x, exp (t * x)) := λ t, (measurable_id'.const_mul t).exp,
change indep_fun ((λ x, exp (s * x)) ∘ X) ((λ x, exp (t * x)) ∘ Y) μ,
exact indep_fun.comp h_indep (h_meas s) (h_meas t),
end
lemma indep_fun.mgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ)
(h_int_X : integrable (λ ω, exp (t * X ω)) μ)
(h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) :
mgf (X + Y) μ t = mgf X μ t * mgf Y μ t :=
begin
simp_rw [mgf, pi.add_apply, mul_add, exp_add],
exact (h_indep.exp_mul t t).integral_mul_of_integrable' h_int_X h_int_Y,
end
lemma indep_fun.cgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ)
(h_int_X : integrable (λ ω, exp (t * X ω)) μ)
(h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) :
cgf (X + Y) μ t = cgf X μ t + cgf Y μ t :=
begin
by_cases hμ : μ = 0,
{ simp [hμ], },
simp only [cgf, h_indep.mgf_add h_int_X h_int_Y],
exact log_mul (mgf_pos' hμ h_int_X).ne' (mgf_pos' hμ h_int_Y).ne',
end
lemma indep_fun.integrable_exp_mul_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ)
(h_int_X : integrable (λ ω, exp (t * X ω)) μ)
(h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) :
integrable (λ ω, exp (t * (X + Y) ω)) μ :=
begin
simp_rw [pi.add_apply, mul_add, exp_add],
exact (h_indep.exp_mul t t).integrable_mul h_int_X h_int_Y,
end
lemma Indep_fun.integrable_exp_mul_sum [is_probability_measure μ]
{X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i))
{s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) :
integrable (λ ω, exp (t * (∑ i in s, X i) ω)) μ :=
begin
classical,
induction s using finset.induction_on with i s hi_notin_s h_rec h_int,
{ simp only [pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero],
exact integrable_const _, },
{ have : ∀ (i : ι), i ∈ s → integrable (λ (ω : Ω), exp (t * X i ω)) μ,
from λ i hi, h_int i (mem_insert_of_mem hi),
specialize h_rec this,
rw sum_insert hi_notin_s,
refine indep_fun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec,
exact (h_indep.indep_fun_finset_sum_of_not_mem h_meas hi_notin_s).symm, },
end
lemma Indep_fun.mgf_sum [is_probability_measure μ]
{X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i))
{s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) :
mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t :=
begin
classical,
induction s using finset.induction_on with i s hi_notin_s h_rec h_int,
{ simp only [sum_empty, mgf_zero_fun, measure_univ, ennreal.one_to_real, prod_empty], },
{ have h_int' : ∀ (i : ι), i ∈ s → integrable (λ (ω : Ω), exp (t * X i ω)) μ,
from λ i hi, h_int i (mem_insert_of_mem hi),
rw [sum_insert hi_notin_s, indep_fun.mgf_add
(h_indep.indep_fun_finset_sum_of_not_mem h_meas hi_notin_s).symm
(h_int i (mem_insert_self _ _)) (h_indep.integrable_exp_mul_sum h_meas h_int'),
h_rec h_int', prod_insert hi_notin_s], },
end
lemma Indep_fun.cgf_sum [is_probability_measure μ]
{X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i))
{s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) :
cgf (∑ i in s, X i) μ t = ∑ i in s, cgf (X i) μ t :=
begin
simp_rw cgf,
rw ← log_prod _ _ (λ j hj, _),
{ rw h_indep.mgf_sum h_meas h_int, },
{ exact (mgf_pos (h_int j hj)).ne', },
end
/-- **Chernoff bound** on the upper tail of a real random variable. -/
lemma measure_ge_le_exp_mul_mgf [is_finite_measure μ] (ε : ℝ) (ht : 0 ≤ t)
(h_int : integrable (λ ω, exp (t * X ω)) μ) :
(μ {ω | ε ≤ X ω}).to_real ≤ exp (- t * ε) * mgf X μ t :=
begin
cases ht.eq_or_lt with ht_zero_eq ht_pos,
{ rw ht_zero_eq.symm,
simp only [neg_zero', zero_mul, exp_zero, mgf_zero', one_mul],
rw ennreal.to_real_le_to_real (measure_ne_top μ _) (measure_ne_top μ _),
exact measure_mono (set.subset_univ _), },
calc (μ {ω | ε ≤ X ω}).to_real
= (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).to_real :
begin
congr' with ω,
simp only [exp_le_exp, eq_iff_iff],
exact ⟨λ h, mul_le_mul_of_nonneg_left h ht_pos.le, λ h, le_of_mul_le_mul_left h ht_pos⟩,
end
... ≤ (exp (t * ε))⁻¹ * μ[λ ω, exp (t * X ω)] :
begin
have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).to_real
≤ μ[λ ω, exp (t * X ω)],
from mul_meas_ge_le_integral_of_nonneg (λ x, (exp_pos _).le) h_int _,
rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)],
end
... = exp (- t * ε) * mgf X μ t : by { rw [neg_mul, exp_neg], refl, },
end
/-- **Chernoff bound** on the lower tail of a real random variable. -/
lemma measure_le_le_exp_mul_mgf [is_finite_measure μ] (ε : ℝ) (ht : t ≤ 0)
(h_int : integrable (λ ω, exp (t * X ω)) μ) :
(μ {ω | X ω ≤ ε}).to_real ≤ exp (- t * ε) * mgf X μ t :=
begin
rw [← neg_neg t, ← mgf_neg, neg_neg, ← neg_mul_neg (-t)],
refine eq.trans_le _ (measure_ge_le_exp_mul_mgf (-ε) (neg_nonneg.mpr ht) _),
{ congr' with ω,
simp only [pi.neg_apply, neg_le_neg_iff], },
{ simp_rw [pi.neg_apply, neg_mul_neg],
exact h_int, },
end
/-- **Chernoff bound** on the upper tail of a real random variable. -/
lemma measure_ge_le_exp_cgf [is_finite_measure μ] (ε : ℝ) (ht : 0 ≤ t)
(h_int : integrable (λ ω, exp (t * X ω)) μ) :
(μ {ω | ε ≤ X ω}).to_real ≤ exp (- t * ε + cgf X μ t) :=
begin
refine (measure_ge_le_exp_mul_mgf ε ht h_int).trans _,
rw exp_add,
exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le,
end
/-- **Chernoff bound** on the lower tail of a real random variable. -/
lemma measure_le_le_exp_cgf [is_finite_measure μ] (ε : ℝ) (ht : t ≤ 0)
(h_int : integrable (λ ω, exp (t * X ω)) μ) :
(μ {ω | X ω ≤ ε}).to_real ≤ exp (- t * ε + cgf X μ t) :=
begin
refine (measure_le_le_exp_mul_mgf ε ht h_int).trans _,
rw exp_add,
exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le,
end
end moment_generating_function
end probability_theory
|