Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 40,364 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import data.polynomial.expand
import linear_algebra.finite_dimensional
import linear_algebra.matrix.determinant
import ring_theory.adjoin.fg
import ring_theory.polynomial.scale_roots
import ring_theory.polynomial.tower
/-!
# Integral closure of a subring.
If A is an R-algebra then `a : A` is integral over R if it is a root of a monic polynomial
with coefficients in R. Enough theory is developed to prove that integral elements
form a sub-R-algebra of A.
## Main definitions
Let `R` be a `comm_ring` and let `A` be an R-algebra.
* `ring_hom.is_integral_elem (f : R →+* A) (x : A)` : `x` is integral with respect to the map `f`,
* `is_integral (x : A)` : `x` is integral over `R`, i.e., is a root of a monic polynomial with
coefficients in `R`.
* `integral_closure R A` : the integral closure of `R` in `A`, regarded as a sub-`R`-algebra of `A`.
-/
open_locale classical
open_locale big_operators polynomial
open polynomial submodule
section ring
variables {R S A : Type*}
variables [comm_ring R] [ring A] [ring S] (f : R →+* S)
/-- An element `x` of `A` is said to be integral over `R` with respect to `f`
if it is a root of a monic polynomial `p : R[X]` evaluated under `f` -/
def ring_hom.is_integral_elem (f : R →+* A) (x : A) :=
∃ p : R[X], monic p ∧ eval₂ f x p = 0
/-- A ring homomorphism `f : R →+* A` is said to be integral
if every element `A` is integral with respect to the map `f` -/
def ring_hom.is_integral (f : R →+* A) :=
∀ x : A, f.is_integral_elem x
variables [algebra R A] (R)
/-- An element `x` of an algebra `A` over a commutative ring `R` is said to be *integral*,
if it is a root of some monic polynomial `p : R[X]`.
Equivalently, the element is integral over `R` with respect to the induced `algebra_map` -/
def is_integral (x : A) : Prop :=
(algebra_map R A).is_integral_elem x
variable (A)
/-- An algebra is integral if every element of the extension is integral over the base ring -/
def algebra.is_integral : Prop :=
(algebra_map R A).is_integral
variables {R A}
lemma ring_hom.is_integral_map {x : R} : f.is_integral_elem (f x) :=
⟨X - C x, monic_X_sub_C _, by simp⟩
theorem is_integral_algebra_map {x : R} : is_integral R (algebra_map R A x) :=
(algebra_map R A).is_integral_map
theorem is_integral_of_noetherian (H : is_noetherian R A) (x : A) :
is_integral R x :=
begin
let leval : (R[X] →ₗ[R] A) := (aeval x).to_linear_map,
let D : ℕ → submodule R A := λ n, (degree_le R n).map leval,
let M := well_founded.min (is_noetherian_iff_well_founded.1 H)
(set.range D) ⟨_, ⟨0, rfl⟩⟩,
have HM : M ∈ set.range D := well_founded.min_mem _ _ _,
cases HM with N HN,
have HM : ¬M < D (N+1) := well_founded.not_lt_min
(is_noetherian_iff_well_founded.1 H) (set.range D) _ ⟨N+1, rfl⟩,
rw ← HN at HM,
have HN2 : D (N+1) ≤ D N := classical.by_contradiction (λ H, HM
(lt_of_le_not_le (map_mono (degree_le_mono
(with_bot.coe_le_coe.2 (nat.le_succ N)))) H)),
have HN3 : leval (X^(N+1)) ∈ D N,
{ exact HN2 (mem_map_of_mem (mem_degree_le.2 (degree_X_pow_le _))) },
rcases HN3 with ⟨p, hdp, hpe⟩,
refine ⟨X^(N+1) - p, monic_X_pow_sub (mem_degree_le.1 hdp), _⟩,
show leval (X ^ (N + 1) - p) = 0,
rw [linear_map.map_sub, hpe, sub_self]
end
theorem is_integral_of_submodule_noetherian (S : subalgebra R A)
(H : is_noetherian R S.to_submodule) (x : A) (hx : x ∈ S) :
is_integral R x :=
begin
suffices : is_integral R (show S, from ⟨x, hx⟩),
{ rcases this with ⟨p, hpm, hpx⟩,
replace hpx := congr_arg S.val hpx,
refine ⟨p, hpm, eq.trans _ hpx⟩,
simp only [aeval_def, eval₂, sum_def],
rw S.val.map_sum,
refine finset.sum_congr rfl (λ n hn, _),
rw [S.val.map_mul, S.val.map_pow, S.val.commutes, S.val_apply, subtype.coe_mk], },
refine is_integral_of_noetherian H ⟨x, hx⟩
end
end ring
section
variables {R A B S : Type*}
variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S]
variables [algebra R A] [algebra R B] (f : R →+* S)
theorem is_integral_alg_hom (f : A →ₐ[R] B) {x : A} (hx : is_integral R x) : is_integral R (f x) :=
let ⟨p, hp, hpx⟩ :=
hx in ⟨p, hp, by rw [← aeval_def, aeval_alg_hom_apply, aeval_def, hpx, f.map_zero]⟩
@[simp]
theorem is_integral_alg_equiv (f : A ≃ₐ[R] B) {x : A} : is_integral R (f x) ↔ is_integral R x :=
⟨λ h, by simpa using is_integral_alg_hom f.symm.to_alg_hom h, is_integral_alg_hom f.to_alg_hom⟩
theorem is_integral_of_is_scalar_tower [algebra A B] [is_scalar_tower R A B]
(x : B) (hx : is_integral R x) : is_integral A x :=
let ⟨p, hp, hpx⟩ := hx in
⟨p.map $ algebra_map R A, hp.map _,
by rw [← aeval_def, ← is_scalar_tower.aeval_apply, aeval_def, hpx]⟩
theorem is_integral_of_subring {x : A} (T : subring R)
(hx : is_integral T x) : is_integral R x :=
is_integral_of_is_scalar_tower x hx
lemma is_integral.algebra_map [algebra A B] [is_scalar_tower R A B]
{x : A} (h : is_integral R x) :
is_integral R (algebra_map A B x) :=
begin
rcases h with ⟨f, hf, hx⟩,
use [f, hf],
rw [is_scalar_tower.algebra_map_eq R A B, ← hom_eval₂, hx, ring_hom.map_zero]
end
lemma is_integral_algebra_map_iff [algebra A B] [is_scalar_tower R A B]
{x : A} (hAB : function.injective (algebra_map A B)) :
is_integral R (algebra_map A B x) ↔ is_integral R x :=
begin
refine ⟨_, λ h, h.algebra_map⟩,
rintros ⟨f, hf, hx⟩,
use [f, hf],
exact is_scalar_tower.aeval_eq_zero_of_aeval_algebra_map_eq_zero R A B hAB hx,
end
theorem is_integral_iff_is_integral_closure_finite {r : A} :
is_integral R r ↔ ∃ s : set R, s.finite ∧ is_integral (subring.closure s) r :=
begin
split; intro hr,
{ rcases hr with ⟨p, hmp, hpr⟩,
refine ⟨_, finset.finite_to_set _, p.restriction, monic_restriction.2 hmp, _⟩,
erw [← aeval_def, is_scalar_tower.aeval_apply _ R, map_restriction, aeval_def, hpr] },
rcases hr with ⟨s, hs, hsr⟩,
exact is_integral_of_subring _ hsr
end
theorem fg_adjoin_singleton_of_integral (x : A) (hx : is_integral R x) :
(algebra.adjoin R ({x} : set A)).to_submodule.fg :=
begin
rcases hx with ⟨f, hfm, hfx⟩,
existsi finset.image ((^) x) (finset.range (nat_degree f + 1)),
apply le_antisymm,
{ rw span_le, intros s hs, rw finset.mem_coe at hs,
rcases finset.mem_image.1 hs with ⟨k, hk, rfl⟩, clear hk,
exact (algebra.adjoin R {x}).pow_mem (algebra.subset_adjoin (set.mem_singleton _)) k },
intros r hr, change r ∈ algebra.adjoin R ({x} : set A) at hr,
rw algebra.adjoin_singleton_eq_range_aeval at hr,
rcases (aeval x).mem_range.mp hr with ⟨p, rfl⟩,
rw ← mod_by_monic_add_div p hfm,
rw ← aeval_def at hfx,
rw [alg_hom.map_add, alg_hom.map_mul, hfx, zero_mul, add_zero],
have : degree (p %ₘ f) ≤ degree f := degree_mod_by_monic_le p hfm,
generalize_hyp : p %ₘ f = q at this ⊢,
rw [← sum_C_mul_X_eq q, aeval_def, eval₂_sum, sum_def],
refine sum_mem (λ k hkq, _),
rw [eval₂_mul, eval₂_C, eval₂_pow, eval₂_X, ← algebra.smul_def],
refine smul_mem _ _ (subset_span _),
rw finset.mem_coe, refine finset.mem_image.2 ⟨_, _, rfl⟩,
rw [finset.mem_range, nat.lt_succ_iff], refine le_of_not_lt (λ hk, _),
rw [degree_le_iff_coeff_zero] at this,
rw [mem_support_iff] at hkq, apply hkq, apply this,
exact lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 hk)
end
theorem fg_adjoin_of_finite {s : set A} (hfs : s.finite)
(his : ∀ x ∈ s, is_integral R x) : (algebra.adjoin R s).to_submodule.fg :=
set.finite.induction_on hfs (λ _, ⟨{1}, submodule.ext $ λ x,
by { erw [algebra.adjoin_empty, finset.coe_singleton, ← one_eq_span, one_eq_range,
linear_map.mem_range, algebra.mem_bot], refl }⟩)
(λ a s has hs ih his, by rw [← set.union_singleton, algebra.adjoin_union_coe_submodule]; exact
fg.mul (ih $ λ i hi, his i $ set.mem_insert_of_mem a hi)
(fg_adjoin_singleton_of_integral _ $ his a $ set.mem_insert a s)) his
lemma is_noetherian_adjoin_finset [is_noetherian_ring R] (s : finset A)
(hs : ∀ x ∈ s, is_integral R x) :
is_noetherian R (algebra.adjoin R (↑s : set A)) :=
is_noetherian_of_fg_of_noetherian _ (fg_adjoin_of_finite s.finite_to_set hs)
/-- If `S` is a sub-`R`-algebra of `A` and `S` is finitely-generated as an `R`-module,
then all elements of `S` are integral over `R`. -/
theorem is_integral_of_mem_of_fg (S : subalgebra R A)
(HS : S.to_submodule.fg) (x : A) (hx : x ∈ S) : is_integral R x :=
begin
-- say `x ∈ S`. We want to prove that `x` is integral over `R`.
-- Say `S` is generated as an `R`-module by the set `y`.
cases HS with y hy,
-- We can write `x` as `∑ rᵢ yᵢ` for `yᵢ ∈ Y`.
obtain ⟨lx, hlx1, hlx2⟩ :
∃ (l : A →₀ R) (H : l ∈ finsupp.supported R R ↑y), (finsupp.total A A R id) l = x,
{ rwa [←(@finsupp.mem_span_image_iff_total A A R _ _ _ id ↑y x), set.image_id ↑y, hy] },
-- Note that `y ⊆ S`.
have hyS : ∀ {p}, p ∈ y → p ∈ S := λ p hp, show p ∈ S.to_submodule,
by { rw ← hy, exact subset_span hp },
-- Now `S` is a subalgebra so the product of two elements of `y` is also in `S`.
have : ∀ (jk : (↑(y.product y) : set (A × A))), jk.1.1 * jk.1.2 ∈ S.to_submodule :=
λ jk, S.mul_mem (hyS (finset.mem_product.1 jk.2).1) (hyS (finset.mem_product.1 jk.2).2),
rw [← hy, ← set.image_id ↑y] at this, simp only [finsupp.mem_span_image_iff_total] at this,
-- Say `yᵢyⱼ = ∑rᵢⱼₖ yₖ`
choose ly hly1 hly2,
-- Now let `S₀` be the subring of `R` generated by the `rᵢ` and the `rᵢⱼₖ`.
let S₀ : subring R :=
subring.closure ↑(lx.frange ∪ finset.bUnion finset.univ (finsupp.frange ∘ ly)),
-- It suffices to prove that `x` is integral over `S₀`.
refine is_integral_of_subring S₀ _,
letI : comm_ring S₀ := subring_class.to_comm_ring S₀,
letI : algebra S₀ A := algebra.of_subring S₀,
-- Claim: the `S₀`-module span (in `A`) of the set `y ∪ {1}` is closed under
-- multiplication (indeed, this is the motivation for the definition of `S₀`).
have :
span S₀ (insert 1 ↑y : set A) * span S₀ (insert 1 ↑y : set A) ≤ span S₀ (insert 1 ↑y : set A),
{ rw span_mul_span, refine span_le.2 (λ z hz, _),
rcases set.mem_mul.1 hz with ⟨p, q, rfl | hp, hq, rfl⟩,
{ rw one_mul, exact subset_span hq },
rcases hq with rfl | hq,
{ rw mul_one, exact subset_span (or.inr hp) },
erw ← hly2 ⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩,
rw [finsupp.total_apply, finsupp.sum],
refine (span S₀ (insert 1 ↑y : set A)).sum_mem (λ t ht, _),
have : ly ⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩ t ∈ S₀ :=
subring.subset_closure (finset.mem_union_right _ $ finset.mem_bUnion.2
⟨⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩, finset.mem_univ _,
finsupp.mem_frange.2 ⟨finsupp.mem_support_iff.1 ht, _, rfl⟩⟩),
change (⟨_, this⟩ : S₀) • t ∈ _, exact smul_mem _ _ (subset_span $ or.inr $ hly1 _ ht) },
-- Hence this span is a subring. Call this subring `S₁`.
let S₁ : subring A :=
{ carrier := span S₀ (insert 1 ↑y : set A),
one_mem' := subset_span $ or.inl rfl,
mul_mem' := λ p q hp hq, this $ mul_mem_mul hp hq,
zero_mem' := (span S₀ (insert 1 ↑y : set A)).zero_mem,
add_mem' := λ _ _, (span S₀ (insert 1 ↑y : set A)).add_mem,
neg_mem' := λ _, (span S₀ (insert 1 ↑y : set A)).neg_mem },
have : S₁ = subalgebra.to_subring (algebra.adjoin S₀ (↑y : set A)),
{ ext z,
suffices : z ∈ span ↥S₀ (insert 1 ↑y : set A) ↔
z ∈ (algebra.adjoin ↥S₀ (y : set A)).to_submodule,
{ simpa },
split; intro hz,
{ exact (span_le.2
(set.insert_subset.2 ⟨(algebra.adjoin S₀ ↑y).one_mem, algebra.subset_adjoin⟩)) hz },
{ rw [subalgebra.mem_to_submodule, algebra.mem_adjoin_iff] at hz,
suffices : subring.closure (set.range ⇑(algebra_map ↥S₀ A) ∪ ↑y) ≤ S₁,
{ exact this hz },
refine subring.closure_le.2 (set.union_subset _ (λ t ht, subset_span $ or.inr ht)),
rw set.range_subset_iff,
intro y,
rw algebra.algebra_map_eq_smul_one,
exact smul_mem _ y (subset_span (or.inl rfl)) } },
have foo : ∀ z, z ∈ S₁ ↔ z ∈ algebra.adjoin ↥S₀ (y : set A),
simp [this],
haveI : is_noetherian_ring ↥S₀ := is_noetherian_subring_closure _ (finset.finite_to_set _),
refine is_integral_of_submodule_noetherian (algebra.adjoin S₀ ↑y)
(is_noetherian_of_fg_of_noetherian _ ⟨insert 1 y,
by { rw [finset.coe_insert], ext z, simp [S₁], convert foo z}⟩) _ _,
rw [← hlx2, finsupp.total_apply, finsupp.sum], refine subalgebra.sum_mem _ (λ r hr, _),
have : lx r ∈ S₀ :=
subring.subset_closure (finset.mem_union_left _ (finset.mem_image_of_mem _ hr)),
change (⟨_, this⟩ : S₀) • r ∈ _,
rw finsupp.mem_supported at hlx1,
exact subalgebra.smul_mem _ (algebra.subset_adjoin $ hlx1 hr) _
end
lemma ring_hom.is_integral_of_mem_closure {x y z : S}
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y)
(hz : z ∈ subring.closure ({x, y} : set S)) :
f.is_integral_elem z :=
begin
letI : algebra R S := f.to_algebra,
have := (fg_adjoin_singleton_of_integral x hx).mul (fg_adjoin_singleton_of_integral y hy),
rw [← algebra.adjoin_union_coe_submodule, set.singleton_union] at this,
exact is_integral_of_mem_of_fg (algebra.adjoin R {x, y}) this z
(algebra.mem_adjoin_iff.2 $ subring.closure_mono (set.subset_union_right _ _) hz),
end
theorem is_integral_of_mem_closure {x y z : A}
(hx : is_integral R x) (hy : is_integral R y)
(hz : z ∈ subring.closure ({x, y} : set A)) :
is_integral R z :=
(algebra_map R A).is_integral_of_mem_closure hx hy hz
lemma ring_hom.is_integral_zero : f.is_integral_elem 0 :=
f.map_zero ▸ f.is_integral_map
theorem is_integral_zero : is_integral R (0:A) :=
(algebra_map R A).is_integral_zero
lemma ring_hom.is_integral_one : f.is_integral_elem 1 :=
f.map_one ▸ f.is_integral_map
theorem is_integral_one : is_integral R (1:A) :=
(algebra_map R A).is_integral_one
lemma ring_hom.is_integral_add {x y : S}
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) :
f.is_integral_elem (x + y) :=
f.is_integral_of_mem_closure hx hy $ subring.add_mem _
(subring.subset_closure (or.inl rfl)) (subring.subset_closure (or.inr rfl))
theorem is_integral_add {x y : A}
(hx : is_integral R x) (hy : is_integral R y) :
is_integral R (x + y) :=
(algebra_map R A).is_integral_add hx hy
lemma ring_hom.is_integral_neg {x : S}
(hx : f.is_integral_elem x) : f.is_integral_elem (-x) :=
f.is_integral_of_mem_closure hx hx (subring.neg_mem _ (subring.subset_closure (or.inl rfl)))
theorem is_integral_neg {x : A}
(hx : is_integral R x) : is_integral R (-x) :=
(algebra_map R A).is_integral_neg hx
lemma ring_hom.is_integral_sub {x y : S}
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x - y) :=
by simpa only [sub_eq_add_neg] using f.is_integral_add hx (f.is_integral_neg hy)
theorem is_integral_sub {x y : A}
(hx : is_integral R x) (hy : is_integral R y) : is_integral R (x - y) :=
(algebra_map R A).is_integral_sub hx hy
lemma ring_hom.is_integral_mul {x y : S}
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x * y) :=
f.is_integral_of_mem_closure hx hy (subring.mul_mem _
(subring.subset_closure (or.inl rfl)) (subring.subset_closure (or.inr rfl)))
theorem is_integral_mul {x y : A}
(hx : is_integral R x) (hy : is_integral R y) : is_integral R (x * y) :=
(algebra_map R A).is_integral_mul hx hy
lemma is_integral_smul [algebra S A] [algebra R S] [is_scalar_tower R S A] {x : A} (r : R)
(hx : is_integral S x) : is_integral S (r • x) :=
begin
rw [algebra.smul_def, is_scalar_tower.algebra_map_apply R S A],
exact is_integral_mul is_integral_algebra_map hx,
end
lemma is_integral_of_pow {x : A} {n : ℕ} (hn : 0 < n) (hx : is_integral R $ x ^ n) :
is_integral R x :=
begin
rcases hx with ⟨p, ⟨hmonic, heval⟩⟩,
exact ⟨expand R n p, monic.expand hn hmonic,
by rwa [eval₂_eq_eval_map, map_expand, expand_eval, ← eval₂_eq_eval_map]⟩
end
variables (R A)
/-- The integral closure of R in an R-algebra A. -/
def integral_closure : subalgebra R A :=
{ carrier := { r | is_integral R r },
zero_mem' := is_integral_zero,
one_mem' := is_integral_one,
add_mem' := λ _ _, is_integral_add,
mul_mem' := λ _ _, is_integral_mul,
algebra_map_mem' := λ x, is_integral_algebra_map }
theorem mem_integral_closure_iff_mem_fg {r : A} :
r ∈ integral_closure R A ↔ ∃ M : subalgebra R A, M.to_submodule.fg ∧ r ∈ M :=
⟨λ hr, ⟨algebra.adjoin R {r}, fg_adjoin_singleton_of_integral _ hr, algebra.subset_adjoin rfl⟩,
λ ⟨M, Hf, hrM⟩, is_integral_of_mem_of_fg M Hf _ hrM⟩
variables {R} {A}
lemma adjoin_le_integral_closure {x : A} (hx : is_integral R x) :
algebra.adjoin R {x} ≤ integral_closure R A :=
begin
rw [algebra.adjoin_le_iff],
simp only [set_like.mem_coe, set.singleton_subset_iff],
exact hx
end
lemma le_integral_closure_iff_is_integral {S : subalgebra R A} :
S ≤ integral_closure R A ↔ algebra.is_integral R S :=
set_like.forall.symm.trans (forall_congr (λ x, show is_integral R (algebra_map S A x)
↔ is_integral R x, from is_integral_algebra_map_iff subtype.coe_injective))
lemma is_integral_sup {S T : subalgebra R A} :
algebra.is_integral R ↥(S ⊔ T) ↔ algebra.is_integral R S ∧ algebra.is_integral R T :=
by simp only [←le_integral_closure_iff_is_integral, sup_le_iff]
/-- Mapping an integral closure along an `alg_equiv` gives the integral closure. -/
lemma integral_closure_map_alg_equiv (f : A ≃ₐ[R] B) :
(integral_closure R A).map (f : A →ₐ[R] B) = integral_closure R B :=
begin
ext y,
rw subalgebra.mem_map,
split,
{ rintros ⟨x, hx, rfl⟩,
exact is_integral_alg_hom f hx },
{ intro hy,
use [f.symm y, is_integral_alg_hom (f.symm : B →ₐ[R] A) hy],
simp }
end
lemma integral_closure.is_integral (x : integral_closure R A) : is_integral R x :=
let ⟨p, hpm, hpx⟩ := x.2 in ⟨p, hpm, subtype.eq $
by rwa [← aeval_def, subtype.val_eq_coe, ← subalgebra.val_apply, aeval_alg_hom_apply] at hpx⟩
lemma ring_hom.is_integral_of_is_integral_mul_unit (x y : S) (r : R) (hr : f r * y = 1)
(hx : f.is_integral_elem (x * y)) : f.is_integral_elem x :=
begin
obtain ⟨p, ⟨p_monic, hp⟩⟩ := hx,
refine ⟨scale_roots p r, ⟨(monic_scale_roots_iff r).2 p_monic, _⟩⟩,
convert scale_roots_eval₂_eq_zero f hp,
rw [mul_comm x y, ← mul_assoc, hr, one_mul],
end
theorem is_integral_of_is_integral_mul_unit {x y : A} {r : R} (hr : algebra_map R A r * y = 1)
(hx : is_integral R (x * y)) : is_integral R x :=
(algebra_map R A).is_integral_of_is_integral_mul_unit x y r hr hx
/-- Generalization of `is_integral_of_mem_closure` bootstrapped up from that lemma -/
lemma is_integral_of_mem_closure' (G : set A) (hG : ∀ x ∈ G, is_integral R x) :
∀ x ∈ (subring.closure G), is_integral R x :=
λ x hx, subring.closure_induction hx hG is_integral_zero is_integral_one
(λ _ _, is_integral_add) (λ _, is_integral_neg) (λ _ _, is_integral_mul)
lemma is_integral_of_mem_closure'' {S : Type*} [comm_ring S] {f : R →+* S} (G : set S)
(hG : ∀ x ∈ G, f.is_integral_elem x) : ∀ x ∈ (subring.closure G), f.is_integral_elem x :=
λ x hx, @is_integral_of_mem_closure' R S _ _ f.to_algebra G hG x hx
lemma is_integral.pow {x : A} (h : is_integral R x) (n : ℕ) : is_integral R (x ^ n) :=
(integral_closure R A).pow_mem h n
lemma is_integral.nsmul {x : A} (h : is_integral R x) (n : ℕ) : is_integral R (n • x) :=
(integral_closure R A).nsmul_mem h n
lemma is_integral.zsmul {x : A} (h : is_integral R x) (n : ℤ) : is_integral R (n • x) :=
(integral_closure R A).zsmul_mem h n
lemma is_integral.multiset_prod {s : multiset A} (h : ∀ x ∈ s, is_integral R x) :
is_integral R s.prod :=
(integral_closure R A).multiset_prod_mem h
lemma is_integral.multiset_sum {s : multiset A} (h : ∀ x ∈ s, is_integral R x) :
is_integral R s.sum :=
(integral_closure R A).multiset_sum_mem h
lemma is_integral.prod {α : Type*} {s : finset α} (f : α → A) (h : ∀ x ∈ s, is_integral R (f x)) :
is_integral R (∏ x in s, f x) :=
(integral_closure R A).prod_mem h
lemma is_integral.sum {α : Type*} {s : finset α} (f : α → A) (h : ∀ x ∈ s, is_integral R (f x)) :
is_integral R (∑ x in s, f x) :=
(integral_closure R A).sum_mem h
lemma is_integral.det {n : Type*} [fintype n] [decidable_eq n] {M : matrix n n A}
(h : ∀ i j, is_integral R (M i j)) :
is_integral R M.det :=
begin
rw [matrix.det_apply],
exact is_integral.sum _ (λ σ hσ, is_integral.zsmul (is_integral.prod _ (λ i hi, h _ _)) _)
end
@[simp] lemma is_integral.pow_iff {x : A} {n : ℕ} (hn : 0 < n) :
is_integral R (x ^ n) ↔ is_integral R x :=
⟨is_integral_of_pow hn, λ hx, is_integral.pow hx n⟩
section
variables (p : R[X]) (x : S)
/-- The monic polynomial whose roots are `p.leading_coeff * x` for roots `x` of `p`. -/
noncomputable
def normalize_scale_roots (p : R[X]) : R[X] :=
∑ i in p.support, monomial i
(if i = p.nat_degree then 1 else p.coeff i * p.leading_coeff ^ (p.nat_degree - 1 - i))
lemma normalize_scale_roots_coeff_mul_leading_coeff_pow (i : ℕ) (hp : 1 ≤ nat_degree p) :
(normalize_scale_roots p).coeff i * p.leading_coeff ^ i =
p.coeff i * p.leading_coeff ^ (p.nat_degree - 1) :=
begin
simp only [normalize_scale_roots, finset_sum_coeff, coeff_monomial, finset.sum_ite_eq', one_mul,
zero_mul, mem_support_iff, ite_mul, ne.def, ite_not],
split_ifs with h₁ h₂,
{ simp [h₁], },
{ rw [h₂, leading_coeff, ← pow_succ, tsub_add_cancel_of_le hp], },
{ rw [mul_assoc, ← pow_add, tsub_add_cancel_of_le],
apply nat.le_pred_of_lt,
rw lt_iff_le_and_ne,
exact ⟨le_nat_degree_of_ne_zero h₁, h₂⟩, },
end
lemma leading_coeff_smul_normalize_scale_roots (p : R[X]) :
p.leading_coeff • normalize_scale_roots p = scale_roots p p.leading_coeff :=
begin
ext,
simp only [coeff_scale_roots, normalize_scale_roots, coeff_monomial, coeff_smul, finset.smul_sum,
ne.def, finset.sum_ite_eq', finset_sum_coeff, smul_ite, smul_zero, mem_support_iff],
split_ifs with h₁ h₂,
{ simp [*] },
{ simp [*] },
{ rw [algebra.id.smul_eq_mul, mul_comm, mul_assoc, ← pow_succ', tsub_right_comm,
tsub_add_cancel_of_le],
rw nat.succ_le_iff,
exact tsub_pos_of_lt (lt_of_le_of_ne (le_nat_degree_of_ne_zero h₁) h₂) },
end
lemma normalize_scale_roots_support :
(normalize_scale_roots p).support ≤ p.support :=
begin
intro x,
contrapose,
simp only [not_mem_support_iff, normalize_scale_roots, finset_sum_coeff, coeff_monomial,
finset.sum_ite_eq', mem_support_iff, ne.def, not_not, ite_eq_right_iff],
intros h₁ h₂,
exact (h₂ h₁).rec _,
end
lemma normalize_scale_roots_degree :
(normalize_scale_roots p).degree = p.degree :=
begin
apply le_antisymm,
{ exact finset.sup_mono (normalize_scale_roots_support p) },
{ rw [← degree_scale_roots, ← leading_coeff_smul_normalize_scale_roots],
exact degree_smul_le _ _ }
end
lemma normalize_scale_roots_eval₂_leading_coeff_mul (h : 1 ≤ p.nat_degree) (f : R →+* S) (x : S) :
(normalize_scale_roots p).eval₂ f (f p.leading_coeff * x) =
f p.leading_coeff ^ (p.nat_degree - 1) * (p.eval₂ f x) :=
begin
rw [eval₂_eq_sum_range, eval₂_eq_sum_range, finset.mul_sum],
apply finset.sum_congr,
{ rw nat_degree_eq_of_degree_eq (normalize_scale_roots_degree p) },
intros n hn,
rw [mul_pow, ← mul_assoc, ← f.map_pow, ← f.map_mul,
normalize_scale_roots_coeff_mul_leading_coeff_pow _ _ h, f.map_mul, f.map_pow],
ring,
end
lemma normalize_scale_roots_monic (h : p ≠ 0) : (normalize_scale_roots p).monic :=
begin
delta monic leading_coeff,
rw nat_degree_eq_of_degree_eq (normalize_scale_roots_degree p),
suffices : p = 0 → (0 : R) = 1,
{ simpa [normalize_scale_roots, coeff_monomial] },
exact λ h', (h h').rec _,
end
/-- Given a `p : R[X]` and a `x : S` such that `p.eval₂ f x = 0`,
`f p.leading_coeff * x` is integral. -/
lemma ring_hom.is_integral_elem_leading_coeff_mul (h : p.eval₂ f x = 0) :
f.is_integral_elem (f p.leading_coeff * x) :=
begin
by_cases h' : 1 ≤ p.nat_degree,
{ use normalize_scale_roots p,
have : p ≠ 0 := λ h'', by { rw [h'', nat_degree_zero] at h', exact nat.not_succ_le_zero 0 h' },
use normalize_scale_roots_monic p this,
rw [normalize_scale_roots_eval₂_leading_coeff_mul p h' f x, h, mul_zero] },
{ by_cases hp : p.map f = 0,
{ apply_fun (λ q, coeff q p.nat_degree) at hp,
rw [coeff_map, coeff_zero, coeff_nat_degree] at hp,
rw [hp, zero_mul],
exact f.is_integral_zero },
{ rw [nat.one_le_iff_ne_zero, not_not] at h',
rw [eq_C_of_nat_degree_eq_zero h', eval₂_C] at h,
suffices : p.map f = 0,
{ exact (hp this).rec _ },
rw [eq_C_of_nat_degree_eq_zero h', map_C, h, C_eq_zero] } }
end
/-- Given a `p : R[X]` and a root `x : S`,
then `p.leading_coeff • x : S` is integral over `R`. -/
lemma is_integral_leading_coeff_smul [algebra R S] (h : aeval x p = 0) :
is_integral R (p.leading_coeff • x) :=
begin
rw aeval_def at h,
rw algebra.smul_def,
exact (algebra_map R S).is_integral_elem_leading_coeff_mul p x h,
end
end
end
section is_integral_closure
/-- `is_integral_closure A R B` is the characteristic predicate stating `A` is
the integral closure of `R` in `B`,
i.e. that an element of `B` is integral over `R` iff it is an element of (the image of) `A`.
-/
class is_integral_closure (A R B : Type*) [comm_ring R] [comm_semiring A] [comm_ring B]
[algebra R B] [algebra A B] : Prop :=
(algebra_map_injective [] : function.injective (algebra_map A B))
(is_integral_iff : ∀ {x : B}, is_integral R x ↔ ∃ y, algebra_map A B y = x)
instance integral_closure.is_integral_closure (R A : Type*) [comm_ring R] [comm_ring A]
[algebra R A] : is_integral_closure (integral_closure R A) R A :=
⟨subtype.coe_injective, λ x, ⟨λ h, ⟨⟨x, h⟩, rfl⟩, by { rintro ⟨⟨_, h⟩, rfl⟩, exact h }⟩⟩
namespace is_integral_closure
variables {R A B : Type*} [comm_ring R] [comm_ring A] [comm_ring B]
variables [algebra R B] [algebra A B] [is_integral_closure A R B]
variables (R) {A} (B)
protected theorem is_integral [algebra R A] [is_scalar_tower R A B] (x : A) : is_integral R x :=
(is_integral_algebra_map_iff (algebra_map_injective A R B)).mp $
show is_integral R (algebra_map A B x), from is_integral_iff.mpr ⟨x, rfl⟩
theorem is_integral_algebra [algebra R A] [is_scalar_tower R A B] :
algebra.is_integral R A :=
λ x, is_integral_closure.is_integral R B x
variables {R} (A) {B}
/-- If `x : B` is integral over `R`, then it is an element of the integral closure of `R` in `B`. -/
noncomputable def mk' (x : B) (hx : is_integral R x) : A :=
classical.some (is_integral_iff.mp hx)
@[simp] lemma algebra_map_mk' (x : B) (hx : is_integral R x) :
algebra_map A B (mk' A x hx) = x :=
classical.some_spec (is_integral_iff.mp hx)
@[simp] lemma mk'_one (h : is_integral R (1 : B) := is_integral_one) :
mk' A 1 h = 1 :=
algebra_map_injective A R B $ by rw [algebra_map_mk', ring_hom.map_one]
@[simp] lemma mk'_zero (h : is_integral R (0 : B) := is_integral_zero) :
mk' A 0 h = 0 :=
algebra_map_injective A R B $ by rw [algebra_map_mk', ring_hom.map_zero]
@[simp] lemma mk'_add (x y : B) (hx : is_integral R x) (hy : is_integral R y) :
mk' A (x + y) (is_integral_add hx hy) = mk' A x hx + mk' A y hy :=
algebra_map_injective A R B $ by simp only [algebra_map_mk', ring_hom.map_add]
@[simp] lemma mk'_mul (x y : B) (hx : is_integral R x) (hy : is_integral R y) :
mk' A (x * y) (is_integral_mul hx hy) = mk' A x hx * mk' A y hy :=
algebra_map_injective A R B $ by simp only [algebra_map_mk', ring_hom.map_mul]
@[simp] lemma mk'_algebra_map [algebra R A] [is_scalar_tower R A B] (x : R)
(h : is_integral R (algebra_map R B x) := is_integral_algebra_map) :
is_integral_closure.mk' A (algebra_map R B x) h = algebra_map R A x :=
algebra_map_injective A R B $ by rw [algebra_map_mk', ← is_scalar_tower.algebra_map_apply]
section lift
variables {R} (A B) {S : Type*} [comm_ring S] [algebra R S] [algebra S B] [is_scalar_tower R S B]
variables [algebra R A] [is_scalar_tower R A B] (h : algebra.is_integral R S)
/-- If `B / S / R` is a tower of ring extensions where `S` is integral over `R`,
then `S` maps (uniquely) into an integral closure `B / A / R`. -/
noncomputable def lift : S →ₐ[R] A :=
{ to_fun := λ x, mk' A (algebra_map S B x) (is_integral.algebra_map (h x)),
map_one' := by simp only [ring_hom.map_one, mk'_one],
map_zero' := by simp only [ring_hom.map_zero, mk'_zero],
map_add' := λ x y, by simp_rw [← mk'_add, ring_hom.map_add],
map_mul' := λ x y, by simp_rw [← mk'_mul, ring_hom.map_mul],
commutes' := λ x, by simp_rw [← is_scalar_tower.algebra_map_apply, mk'_algebra_map] }
@[simp] lemma algebra_map_lift (x : S) : algebra_map A B (lift A B h x) = algebra_map S B x :=
algebra_map_mk' _ _ _
end lift
section equiv
variables (R A B) (A' : Type*) [comm_ring A'] [algebra A' B] [is_integral_closure A' R B]
variables [algebra R A] [algebra R A'] [is_scalar_tower R A B] [is_scalar_tower R A' B]
/-- Integral closures are all isomorphic to each other. -/
noncomputable def equiv : A ≃ₐ[R] A' :=
alg_equiv.of_alg_hom (lift _ B (is_integral_algebra R B)) (lift _ B (is_integral_algebra R B))
(by { ext x, apply algebra_map_injective A' R B, simp })
(by { ext x, apply algebra_map_injective A R B, simp })
@[simp] lemma algebra_map_equiv (x : A) : algebra_map A' B (equiv R A B A' x) = algebra_map A B x :=
algebra_map_lift _ _ _ _
end equiv
end is_integral_closure
end is_integral_closure
section algebra
open algebra
variables {R A B S T : Type*}
variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S] [comm_ring T]
variables [algebra A B] [algebra R B] (f : R →+* S) (g : S →+* T)
lemma is_integral_trans_aux (x : B) {p : A[X]} (pmonic : monic p) (hp : aeval x p = 0) :
is_integral (adjoin R (↑(p.map $ algebra_map A B).frange : set B)) x :=
begin
generalize hS : (↑(p.map $ algebra_map A B).frange : set B) = S,
have coeffs_mem : ∀ i, (p.map $ algebra_map A B).coeff i ∈ adjoin R S,
{ intro i, by_cases hi : (p.map $ algebra_map A B).coeff i = 0,
{ rw hi, exact subalgebra.zero_mem _ },
rw ← hS,
exact subset_adjoin (coeff_mem_frange _ _ hi) },
obtain ⟨q, hq⟩ : ∃ q : (adjoin R S)[X], q.map (algebra_map (adjoin R S) B) =
(p.map $ algebra_map A B),
{ rw ← set.mem_range, exact (polynomial.mem_map_range _).2 (λ i, ⟨⟨_, coeffs_mem i⟩, rfl⟩) },
use q,
split,
{ suffices h : (q.map (algebra_map (adjoin R S) B)).monic,
{ refine monic_of_injective _ h,
exact subtype.val_injective },
{ rw hq, exact pmonic.map _ } },
{ convert hp using 1,
replace hq := congr_arg (eval x) hq,
convert hq using 1; symmetry; apply eval_map },
end
variables [algebra R A] [is_scalar_tower R A B]
/-- If A is an R-algebra all of whose elements are integral over R,
and x is an element of an A-algebra that is integral over A, then x is integral over R.-/
lemma is_integral_trans (A_int : is_integral R A) (x : B) (hx : is_integral A x) :
is_integral R x :=
begin
rcases hx with ⟨p, pmonic, hp⟩,
let S : set B := ↑(p.map $ algebra_map A B).frange,
refine is_integral_of_mem_of_fg (adjoin R (S ∪ {x})) _ _ (subset_adjoin $ or.inr rfl),
refine fg_trans (fg_adjoin_of_finite (finset.finite_to_set _) (λ x hx, _)) _,
{ rw [finset.mem_coe, frange, finset.mem_image] at hx,
rcases hx with ⟨i, _, rfl⟩,
rw coeff_map,
exact is_integral_alg_hom (is_scalar_tower.to_alg_hom R A B) (A_int _) },
{ apply fg_adjoin_singleton_of_integral,
exact is_integral_trans_aux _ pmonic hp }
end
/-- If A is an R-algebra all of whose elements are integral over R,
and B is an A-algebra all of whose elements are integral over A,
then all elements of B are integral over R.-/
lemma algebra.is_integral_trans (hA : is_integral R A) (hB : is_integral A B) : is_integral R B :=
λ x, is_integral_trans hA x (hB x)
lemma ring_hom.is_integral_trans (hf : f.is_integral) (hg : g.is_integral) :
(g.comp f).is_integral :=
@algebra.is_integral_trans R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra
(@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra
(ring_hom.comp_apply g f)) hf hg
lemma ring_hom.is_integral_of_surjective (hf : function.surjective f) : f.is_integral :=
λ x, (hf x).rec_on (λ y hy, (hy ▸ f.is_integral_map : f.is_integral_elem x))
lemma is_integral_of_surjective (h : function.surjective (algebra_map R A)) : is_integral R A :=
(algebra_map R A).is_integral_of_surjective h
/-- If `R → A → B` is an algebra tower with `A → B` injective,
then if the entire tower is an integral extension so is `R → A` -/
lemma is_integral_tower_bot_of_is_integral (H : function.injective (algebra_map A B))
{x : A} (h : is_integral R (algebra_map A B x)) : is_integral R x :=
begin
rcases h with ⟨p, ⟨hp, hp'⟩⟩,
refine ⟨p, ⟨hp, _⟩⟩,
rw [is_scalar_tower.algebra_map_eq R A B, ← eval₂_map,
eval₂_hom, ← ring_hom.map_zero (algebra_map A B)] at hp',
rw [eval₂_eq_eval_map],
exact H hp',
end
lemma ring_hom.is_integral_tower_bot_of_is_integral (hg : function.injective g)
(hfg : (g.comp f).is_integral) : f.is_integral :=
λ x,
@is_integral_tower_bot_of_is_integral R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra
(@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra
(ring_hom.comp_apply g f)) hg x (hfg (g x))
lemma is_integral_tower_bot_of_is_integral_field {R A B : Type*} [comm_ring R] [field A]
[comm_ring B] [nontrivial B] [algebra R A] [algebra A B] [algebra R B] [is_scalar_tower R A B]
{x : A} (h : is_integral R (algebra_map A B x)) : is_integral R x :=
is_integral_tower_bot_of_is_integral (algebra_map A B).injective h
lemma ring_hom.is_integral_elem_of_is_integral_elem_comp {x : T}
(h : (g.comp f).is_integral_elem x) : g.is_integral_elem x :=
let ⟨p, ⟨hp, hp'⟩⟩ := h in ⟨p.map f, hp.map f, by rwa ← eval₂_map at hp'⟩
lemma ring_hom.is_integral_tower_top_of_is_integral (h : (g.comp f).is_integral) : g.is_integral :=
λ x, ring_hom.is_integral_elem_of_is_integral_elem_comp f g (h x)
/-- If `R → A → B` is an algebra tower,
then if the entire tower is an integral extension so is `A → B`. -/
lemma is_integral_tower_top_of_is_integral {x : B} (h : is_integral R x) : is_integral A x :=
begin
rcases h with ⟨p, ⟨hp, hp'⟩⟩,
refine ⟨p.map (algebra_map R A), ⟨hp.map (algebra_map R A), _⟩⟩,
rw [is_scalar_tower.algebra_map_eq R A B, ← eval₂_map] at hp',
exact hp',
end
lemma ring_hom.is_integral_quotient_of_is_integral {I : ideal S} (hf : f.is_integral) :
(ideal.quotient_map I f le_rfl).is_integral :=
begin
rintros ⟨x⟩,
obtain ⟨p, ⟨p_monic, hpx⟩⟩ := hf x,
refine ⟨p.map (ideal.quotient.mk _), ⟨p_monic.map _, _⟩⟩,
simpa only [hom_eval₂, eval₂_map] using congr_arg (ideal.quotient.mk I) hpx
end
lemma is_integral_quotient_of_is_integral {I : ideal A} (hRA : is_integral R A) :
is_integral (R ⧸ I.comap (algebra_map R A)) (A ⧸ I) :=
(algebra_map R A).is_integral_quotient_of_is_integral hRA
lemma is_integral_quotient_map_iff {I : ideal S} :
(ideal.quotient_map I f le_rfl).is_integral ↔
((ideal.quotient.mk I).comp f : R →+* S ⧸ I).is_integral :=
begin
let g := ideal.quotient.mk (I.comap f),
have := ideal.quotient_map_comp_mk le_rfl,
refine ⟨λ h, _, λ h, ring_hom.is_integral_tower_top_of_is_integral g _ (this ▸ h)⟩,
refine this ▸ ring_hom.is_integral_trans g (ideal.quotient_map I f le_rfl) _ h,
exact ring_hom.is_integral_of_surjective g ideal.quotient.mk_surjective,
end
/-- If the integral extension `R → S` is injective, and `S` is a field, then `R` is also a field. -/
lemma is_field_of_is_integral_of_is_field
{R S : Type*} [comm_ring R] [nontrivial R] [comm_ring S] [is_domain S]
[algebra R S] (H : is_integral R S) (hRS : function.injective (algebra_map R S))
(hS : is_field S) : is_field R :=
begin
refine ⟨⟨0, 1, zero_ne_one⟩, mul_comm, λ a ha, _⟩,
-- Let `a_inv` be the inverse of `algebra_map R S a`,
-- then we need to show that `a_inv` is of the form `algebra_map R S b`.
obtain ⟨a_inv, ha_inv⟩ := hS.mul_inv_cancel (λ h, ha (hRS (trans h (ring_hom.map_zero _).symm))),
-- Let `p : R[X]` be monic with root `a_inv`,
-- and `q` be `p` with coefficients reversed (so `q(a) = q'(a) * a + 1`).
-- We claim that `q(a) = 0`, so `-q'(a)` is the inverse of `a`.
obtain ⟨p, p_monic, hp⟩ := H a_inv,
use -∑ (i : ℕ) in finset.range p.nat_degree, (p.coeff i) * a ^ (p.nat_degree - i - 1),
-- `q(a) = 0`, because multiplying everything with `a_inv^n` gives `p(a_inv) = 0`.
-- TODO: this could be a lemma for `polynomial.reverse`.
have hq : ∑ (i : ℕ) in finset.range (p.nat_degree + 1), (p.coeff i) * a ^ (p.nat_degree - i) = 0,
{ apply (injective_iff_map_eq_zero (algebra_map R S)).mp hRS,
have a_inv_ne_zero : a_inv ≠ 0 := right_ne_zero_of_mul (mt ha_inv.symm.trans one_ne_zero),
refine (mul_eq_zero.mp _).resolve_right (pow_ne_zero p.nat_degree a_inv_ne_zero),
rw [eval₂_eq_sum_range] at hp,
rw [ring_hom.map_sum, finset.sum_mul],
refine (finset.sum_congr rfl (λ i hi, _)).trans hp,
rw [ring_hom.map_mul, mul_assoc],
congr,
have : a_inv ^ p.nat_degree = a_inv ^ (p.nat_degree - i) * a_inv ^ i,
{ rw [← pow_add a_inv, tsub_add_cancel_of_le (nat.le_of_lt_succ (finset.mem_range.mp hi))] },
rw [ring_hom.map_pow, this, ← mul_assoc, ← mul_pow, ha_inv, one_pow, one_mul] },
-- Since `q(a) = 0` and `q(a) = q'(a) * a + 1`, we have `a * -q'(a) = 1`.
-- TODO: we could use a lemma for `polynomial.div_X` here.
rw [finset.sum_range_succ_comm, p_monic.coeff_nat_degree, one_mul, tsub_self, pow_zero,
add_eq_zero_iff_eq_neg, eq_comm] at hq,
rw [mul_comm, neg_mul, finset.sum_mul],
convert hq using 2,
refine finset.sum_congr rfl (λ i hi, _),
have : 1 ≤ p.nat_degree - i := le_tsub_of_add_le_left (finset.mem_range.mp hi),
rw [mul_assoc, ← pow_succ', tsub_add_cancel_of_le this]
end
lemma is_field_of_is_integral_of_is_field'
{R S : Type*} [comm_ring R] [comm_ring S] [is_domain S] [algebra R S]
(H : algebra.is_integral R S) (hR : is_field R) :
is_field S :=
begin
letI := hR.to_field,
refine ⟨⟨0, 1, zero_ne_one⟩, mul_comm, λ x hx, _⟩,
let A := algebra.adjoin R ({x} : set S),
haveI : is_noetherian R A :=
is_noetherian_of_fg_of_noetherian A.to_submodule (fg_adjoin_singleton_of_integral x (H x)),
haveI : module.finite R A := module.is_noetherian.finite R A,
obtain ⟨y, hy⟩ := linear_map.surjective_of_injective (@lmul_left_injective R A _ _ _ _
⟨x, subset_adjoin (set.mem_singleton x)⟩ (λ h, hx (subtype.ext_iff.mp h))) 1,
exact ⟨y, subtype.ext_iff.mp hy⟩,
end
lemma algebra.is_integral.is_field_iff_is_field
{R S : Type*} [comm_ring R] [nontrivial R] [comm_ring S] [is_domain S] [algebra R S]
(H : algebra.is_integral R S) (hRS : function.injective (algebra_map R S)) :
is_field R ↔ is_field S :=
⟨is_field_of_is_integral_of_is_field' H, is_field_of_is_integral_of_is_field H hRS⟩
end algebra
theorem integral_closure_idem {R : Type*} {A : Type*} [comm_ring R] [comm_ring A] [algebra R A] :
integral_closure (integral_closure R A : set A) A = ⊥ :=
eq_bot_iff.2 $ λ x hx, algebra.mem_bot.2
⟨⟨x, @is_integral_trans _ _ _ _ _ _ _ _ (integral_closure R A).algebra
_ integral_closure.is_integral x hx⟩, rfl⟩
section is_domain
variables {R S : Type*} [comm_ring R] [comm_ring S] [is_domain S] [algebra R S]
instance : is_domain (integral_closure R S) :=
infer_instance
end is_domain
|