Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 117,113 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect ssralg matrix finmap order ssrnum.
From mathcomp Require Import ssrint interval.
Require Import mathcomp_extra boolp.
(******************************************************************************)
(* This file develops a basic theory of sets and types equipped with a *)
(* canonical inhabitant (pointed types). *)
(* *)
(* --> A decidable equality is defined for any type. It is thus possible to *)
(* define an eqType structure for any type using the mixin gen_eqMixin. *)
(* --> This file adds the possibility to define a choiceType structure for *)
(* any type thanks to an axiom gen_choiceMixin giving a choice mixin. *)
(* --> We chose to have generic mixins and no global instances of the eqType *)
(* and choiceType structures to let the user choose which definition of *)
(* equality to use and to avoid conflict with already declared instances. *)
(* *)
(* * Sets: *)
(* set T == type of sets on T. *)
(* (x \in P) == boolean membership predicate from ssrbool *)
(* for set P, available thanks to a canonical *)
(* predType T structure on sets on T. *)
(* [set x : T | P] == set of points x : T such that P holds. *)
(* [set x | P] == same as before with T left implicit. *)
(* [set E | x in A] == set defined by the expression E for x in *)
(* set A. *)
(* [set E | x in A & y in B] == same as before for E depending on 2 *)
(* variables x and y in sets A and B. *)
(* setT == full set. *)
(* set0 == empty set. *)
(* range f == the range of f, i.e. [set f x | x in setT] *)
(* [set a] == set containing only a. *)
(* [set a : T] == same as before with the type of a made *)
(* explicit. *)
(* A `|` B == union of A and B. *)
(* a |` A == A extended with a. *)
(* [set a1; a2; ..; an] == set containing only the n elements ai. *)
(* A `&` B == intersection of A and B. *)
(* A `*` B == product of A and B, i.e. set of pairs (a,b) *)
(* such that A a and B b. *)
(* A.`1 == set of points a such that there exists b so *)
(* that A (a, b). *)
(* A.`2 == set of points a such that there exists b so *)
(* that A (b, a). *)
(* ~` A == complement of A. *)
(* [set~ a] == complement of [set a]. *)
(* A `\` B == complement of B in A. *)
(* A `\ a == A deprived of a. *)
(* \bigcup_(i in P) F == union of the elements of the family F whose *)
(* index satisfies P. *)
(* \bigcup_(i : T) F == union of the family F indexed on T. *)
(* \bigcup_i F == same as before with T left implicit. *)
(* \bigcap_(i in P) F == intersection of the elements of the family *)
(* F whose index satisfies P. *)
(* \bigcap_(i : T) F == union of the family F indexed on T. *)
(* \bigcap_i F == same as before with T left implicit. *)
(* smallest C G := \bigcap_(A in [set M | C M /\ G `<=` M]) A *)
(* A `<=` B <-> A is included in B. *)
(* A `<=>` B <-> double inclusion A `<=` B and B `<=` A. *)
(* f @^-1` A == preimage of A by f. *)
(* f @` A == image of A by f. Notation for `image A f`. *)
(* A !=set0 := exists x, A x. *)
(* [set` p] == a classical set corresponding to the *)
(* predType p *)
(* `[a, b] := [set` `[a, b]], i.e., a classical set *)
(* corresponding to the interval `[a, b]. *)
(* `]a, b] := [set` `]a, b]] *)
(* `[a, b[ := [set` `[a, b[] *)
(* `]a, b[ := [set` `]a, b[] *)
(* `]-oo, b] := [set` `]-oo, b]] *)
(* `]-oo, b[ := [set` `]-oo, b[] *)
(* `[a, +oo[ := [set` `[a, +oo[] *)
(* `]a, +oo[ := [set` `]a, +oo[] *)
(* `]-oo, +oo[ := [set` `]-oo, +oo[] *)
(* `I_n := [set k | k < n] *)
(* is_subset1 A <-> A contains only 1 element. *)
(* is_fun f <-> for each a, f a contains only 1 element. *)
(* is_total f <-> for each a, f a is non empty. *)
(* is_totalfun f <-> conjunction of is_fun and is_total. *)
(* xget x0 P == point x in P if it exists, x0 otherwise; *)
(* P must be a set on a choiceType. *)
(* fun_of_rel f0 f == function that maps x to an element of f x *)
(* if there is one, to f0 x otherwise. *)
(* F `#` G <-> intersections beween elements of F an G are *)
(* all non empty. *)
(* *)
(* * Pointed types: *)
(* pointedType == interface type for types equipped with a *)
(* canonical inhabitant. *)
(* PointedType T m == packs the term m : T to build a *)
(* pointedType; T must have a choiceType *)
(* structure. *)
(* [pointedType of T for cT] == T-clone of the pointedType structure cT. *)
(* [pointedType of T] == clone of a canonical pointedType structure *)
(* on T. *)
(* point == canonical inhabitant of a pointedType. *)
(* get P == point x in P if it exists, point otherwise; *)
(* P must be a set on a pointedType. *)
(* *)
(* --> Thanks to this basic set theory, we proved Zorn's Lemma, which states *)
(* that any ordered set such that every totally ordered subset admits an *)
(* upper bound has a maximal element. We also proved an analogous version *)
(* for preorders, where maximal is replaced with premaximal: t is *)
(* premaximal if whenever t < s we also have s < t. *)
(* *)
(* $| T | == T : Type is inhabited *)
(* squash x == proof of $| T | (with x : T) *)
(* unsquash s == extract a witness from s : $| T | *)
(* --> Tactic: *)
(* - squash x: *)
(* solves a goal $| T | by instantiating with x or [the T of x] *)
(* *)
(* trivIset D F == the sets F i, where i ranges over D : set I,*)
(* are pairwise-disjoint *)
(* cover D F := \bigcup_(i in D) F i *)
(* partition D F A == the non-empty sets F i,where i ranges over *)
(* D : set I, form a partition of A *)
(* pblock_index D F x == index i such that i \in D and x \in F i *)
(* pblock D F x := F (pblock_index D F x) *)
(* *)
(* * Upper and lower bounds: *)
(* ubound A == the set of upper bounds of the set A *)
(* lbound A == the set of lower bounds of the set A *)
(* Predicates to express existence conditions of supremum and infimum of *)
(* sets of real numbers: *)
(* has_ubound A := ubound A != set0 *)
(* has_sup A := A != set0 /\ has_ubound A *)
(* has_lbound A := lbound A != set0 *)
(* has_inf A := A != set0 /\ has_lbound A *)
(* *)
(* isLub A m := m is a least upper bound of the set A *)
(* supremums A := set of supremums of the set A *)
(* supremum x0 A == supremum of A or x0 if A is empty *)
(* infimums A := set of infimums of the set A *)
(* infimum x0 A == infimum of A or x0 if A is empty *)
(* *)
(* F `#` G := the classes of sets F and G intersect *)
(* *)
(* * sections: *)
(* xsection A x == with A : set (T1 * T2) and x : T1 is the *)
(* x-section of A *)
(* ysection A y == with A : set (T1 * T2) and y : T2 is the *)
(* y-section of A *)
(* *)
(* * About the naming conventions in this file: *)
(* - use T, T', T1, T2, etc., aT (domain type), rT (return type) for names of *)
(* variables in Type (or choiceType/pointedType/porderType) *)
(* + use the same suffix or prefix for the sets as their containing type *)
(* (e.g., A1 in T1, etc.) *)
(* + as a consequence functions are rather of type aT -> rT *)
(* - use I, J when the type corresponds to an index *)
(* - sets are named A, B, C, D, etc., or Y when it is ostensibly an image set *)
(* (i.e., of type set rT) *)
(* - indexed sets are rather named F *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope classical_set_scope.
Reserved Notation "[ 'set' x : T | P ]"
(at level 0, x at level 99, only parsing).
Reserved Notation "[ 'set' x | P ]"
(at level 0, x, P at level 99, format "[ 'set' x | P ]").
Reserved Notation "[ 'set' E | x 'in' A ]" (at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A ] ']'").
Reserved Notation "[ 'set' E | x 'in' A & y 'in' B ]"
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A & y 'in' B ] ']'").
Reserved Notation "[ 'set' a ]"
(at level 0, a at level 99, format "[ 'set' a ]").
Reserved Notation "[ 'set' : T ]" (at level 0, format "[ 'set' : T ]").
Reserved Notation "[ 'set' a : T ]"
(at level 0, a at level 99, format "[ 'set' a : T ]").
Reserved Notation "A `|` B" (at level 52, left associativity).
Reserved Notation "a |` A" (at level 52, left associativity).
Reserved Notation "[ 'set' a1 ; a2 ; .. ; an ]"
(at level 0, a1 at level 99, format "[ 'set' a1 ; a2 ; .. ; an ]").
Reserved Notation "A `&` B" (at level 48, left associativity).
Reserved Notation "A `*` B" (at level 46, left associativity).
Reserved Notation "A `*`` B" (at level 46, left associativity).
Reserved Notation "A ``*` B" (at level 46, left associativity).
Reserved Notation "A .`1" (at level 2, left associativity, format "A .`1").
Reserved Notation "A .`2" (at level 2, left associativity, format "A .`2").
Reserved Notation "~` A" (at level 35, right associativity).
Reserved Notation "[ 'set' ~ a ]" (at level 0, format "[ 'set' ~ a ]").
Reserved Notation "A `\` B" (at level 50, left associativity).
Reserved Notation "A `\ b" (at level 50, left associativity).
(*
Reserved Notation "A `+` B" (at level 54, left associativity).
Reserved Notation "A +` B" (at level 54, left associativity).
*)
Reserved Notation "\bigcup_ ( i 'in' P ) F"
(at level 41, F at level 41, i, P at level 50,
format "'[' \bigcup_ ( i 'in' P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i : T ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcup_ ( i : T ) '/ ' F ']'").
Reserved Notation "\bigcup_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \bigcup_ i '/ ' F ']'").
Reserved Notation "\bigcap_ ( i 'in' P ) F"
(at level 41, F at level 41, i, P at level 50,
format "'[' \bigcap_ ( i 'in' P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i : T ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcap_ ( i : T ) '/ ' F ']'").
Reserved Notation "\bigcap_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \bigcap_ i '/ ' F ']'").
Reserved Notation "A `<` B" (at level 70, no associativity).
Reserved Notation "A `<=` B" (at level 70, no associativity).
Reserved Notation "A `<=>` B" (at level 70, no associativity).
Reserved Notation "f @^-1` A" (at level 24).
Reserved Notation "f @` A" (at level 24).
Reserved Notation "A !=set0" (at level 80).
Reserved Notation "[ 'set`' p ]" (at level 0, format "[ 'set`' p ]").
Reserved Notation "[ 'disjoint' A & B ]" (at level 0,
format "'[hv' [ 'disjoint' '/ ' A '/' & B ] ']'").
Reserved Notation "F `#` G"
(at level 48, left associativity, format "F `#` G").
Reserved Notation "'`I_' n" (at level 8, n at level 2, format "'`I_' n").
Definition set T := T -> Prop.
(* we use fun x => instead of pred to prevent inE from working *)
(* we will then extend inE with in_setE to make this work *)
Definition in_set T (A : set T) : pred T := (fun x => `[<A x>]).
Canonical set_predType T := @PredType T (set T) (@in_set T).
Lemma in_setE T (A : set T) x : x \in A = A x :> Prop.
Proof. by rewrite propeqE; split => [] /asboolP. Qed.
Definition inE := (inE, in_setE).
Bind Scope classical_set_scope with set.
Local Open Scope classical_set_scope.
Delimit Scope classical_set_scope with classic.
Definition mkset {T} (P : T -> Prop) : set T := P.
Arguments mkset _ _ _ /.
Notation "[ 'set' x : T | P ]" := (mkset (fun x : T => P)) : classical_set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P] : classical_set_scope.
Definition image {T rT} (A : set T) (f : T -> rT) :=
[set y | exists2 x, A x & f x = y].
Arguments image _ _ _ _ _ /.
Notation "[ 'set' E | x 'in' A ]" :=
(image A (fun x => E)) : classical_set_scope.
Definition image2 {TA TB rT} (A : set TA) (B : set TB) (f : TA -> TB -> rT) :=
[set z | exists2 x, A x & exists2 y, B y & f x y = z].
Arguments image2 _ _ _ _ _ _ _ /.
Notation "[ 'set' E | x 'in' A & y 'in' B ]" :=
(image2 A B (fun x y => E)) : classical_set_scope.
Section basic_definitions.
Context {T rT : Type}.
Implicit Types (T : Type) (A B : set T) (f : T -> rT) (Y : set rT).
Definition preimage f Y : set T := [set t | Y (f t)].
Definition setT := [set _ : T | True].
Definition set0 := [set _ : T | False].
Definition set1 (t : T) := [set x : T | x = t].
Definition setI A B := [set x | A x /\ B x].
Definition setU A B := [set x | A x \/ B x].
Definition nonempty A := exists a, A a.
Definition setC A := [set a | ~ A a].
Definition setD A B := [set x | A x /\ ~ B x].
Definition setM T1 T2 (A1 : set T1) (A2 : set T2) := [set z | A1 z.1 /\ A2 z.2].
Definition fst_set T1 T2 (A : set (T1 * T2)) := [set x | exists y, A (x, y)].
Definition snd_set T1 T2 (A : set (T1 * T2)) := [set y | exists x, A (x, y)].
Definition setMR T1 T2 (A1 : set T1) (A2 : T1 -> set T2) :=
[set z | A1 z.1 /\ A2 z.1 z.2].
Definition setML T1 T2 (A1 : T2 -> set T1) (A2 : set T2) :=
[set z | A1 z.2 z.1 /\ A2 z.2].
Lemma mksetE (P : T -> Prop) x : [set x | P x] x = P x.
Proof. by []. Qed.
Definition bigcap T I (P : set I) (F : I -> set T) :=
[set a | forall i, P i -> F i a].
Definition bigcup T I (P : set I) (F : I -> set T) :=
[set a | exists2 i, P i & F i a].
Definition subset A B := forall t, A t -> B t.
Local Notation "A `<=` B" := (subset A B).
Definition disj_set A B := setI A B == set0.
Definition proper A B := A `<=` B /\ ~ (B `<=` A).
End basic_definitions.
Arguments preimage T rT f Y t /.
Arguments set0 _ _ /.
Arguments setT _ _ /.
Arguments set1 _ _ _ /.
Arguments setI _ _ _ _ /.
Arguments setU _ _ _ _ /.
Arguments setC _ _ _ /.
Arguments setD _ _ _ _ /.
Arguments setM _ _ _ _ _ /.
Arguments setMR _ _ _ _ _ /.
Arguments setML _ _ _ _ _ /.
Arguments fst_set _ _ _ _ /.
Arguments snd_set _ _ _ _ /.
Notation range F := [set F i | i in setT].
Notation "[ 'set' a ]" := (set1 a) : classical_set_scope.
Notation "[ 'set' a : T ]" := [set (a : T)] : classical_set_scope.
Notation "[ 'set' : T ]" := (@setT T) : classical_set_scope.
Notation "A `|` B" := (setU A B) : classical_set_scope.
Notation "a |` A" := ([set a] `|` A) : classical_set_scope.
Notation "[ 'set' a1 ; a2 ; .. ; an ]" :=
(setU .. (a1 |` [set a2]) .. [set an]) : classical_set_scope.
Notation "A `&` B" := (setI A B) : classical_set_scope.
Notation "A `*` B" := (setM A B) : classical_set_scope.
Notation "A .`1" := (fst_set A) : classical_set_scope.
Notation "A .`2" := (snd_set A) : classical_set_scope.
Notation "A `*`` B" := (setMR A B) : classical_set_scope.
Notation "A ``*` B" := (setML A B) : classical_set_scope.
Notation "~` A" := (setC A) : classical_set_scope.
Notation "[ 'set' ~ a ]" := (~` [set a]) : classical_set_scope.
Notation "A `\` B" := (setD A B) : classical_set_scope.
Notation "A `\ a" := (A `\` [set a]) : classical_set_scope.
Notation "[ 'disjoint' A & B ]" := (disj_set A B) : classical_set_scope.
Notation "\bigcup_ ( i 'in' P ) F" :=
(bigcup P (fun i => F)) : classical_set_scope.
Notation "\bigcup_ ( i : T ) F" :=
(\bigcup_(i in @setT T) F) : classical_set_scope.
Notation "\bigcup_ i F" := (\bigcup_(i : _) F) : classical_set_scope.
Notation "\bigcap_ ( i 'in' P ) F" :=
(bigcap P (fun i => F)) : classical_set_scope.
Notation "\bigcap_ ( i : T ) F" :=
(\bigcap_(i in @setT T) F) : classical_set_scope.
Notation "\bigcap_ i F" := (\bigcap_(i : _) F) : classical_set_scope.
Notation "A `<=` B" := (subset A B) : classical_set_scope.
Notation "A `<` B" := (proper A B) : classical_set_scope.
Notation "A `<=>` B" := ((A `<=` B) /\ (B `<=` A)) : classical_set_scope.
Notation "f @^-1` A" := (preimage f A) : classical_set_scope.
Notation "f @` A" := (image A f) (only parsing) : classical_set_scope.
Notation "A !=set0" := (nonempty A) : classical_set_scope.
Notation "[ 'set`' p ]":= [set x | is_true (x \in p)] : classical_set_scope.
Notation pred_set := (fun i => [set` i]).
Notation "`[ a , b ]" :=
[set` Interval (BLeft a) (BRight b)] : classical_set_scope.
Notation "`] a , b ]" :=
[set` Interval (BRight a) (BRight b)] : classical_set_scope.
Notation "`[ a , b [" :=
[set` Interval (BLeft a) (BLeft b)] : classical_set_scope.
Notation "`] a , b [" :=
[set` Interval (BRight a) (BLeft b)] : classical_set_scope.
Notation "`] '-oo' , b ]" :=
[set` Interval -oo%O (BRight b)] : classical_set_scope.
Notation "`] '-oo' , b [" :=
[set` Interval -oo%O (BLeft b)] : classical_set_scope.
Notation "`[ a , '+oo' [" :=
[set` Interval (BLeft a) +oo%O] : classical_set_scope.
Notation "`] a , '+oo' [" :=
[set` Interval (BRight a) +oo%O] : classical_set_scope.
Notation "`] -oo , '+oo' [" :=
[set` Interval -oo%O +oo%O] : classical_set_scope.
Lemma preimage_itv T (d : unit) (rT : porderType d) (f : T -> rT) (i : interval rT) (x : T) :
((f @^-1` [set` i]) x) = (f x \in i).
Proof. by rewrite inE. Qed.
Lemma preimage_itv_o_infty T (d : unit) (rT : porderType d) (f : T -> rT) y :
f @^-1` `]y, +oo[%classic = [set x | (y < f x)%O].
Proof.
by rewrite predeqE => t; split => [|?]; rewrite /= in_itv/= andbT.
Qed.
Lemma preimage_itv_c_infty T (d : unit) (rT : porderType d) (f : T -> rT) y :
f @^-1` `[y, +oo[%classic = [set x | (y <= f x)%O].
Proof.
by rewrite predeqE => t; split => [|?]; rewrite /= in_itv/= andbT.
Qed.
Lemma preimage_itv_infty_o T (d : unit) (rT : orderType d) (f : T -> rT) y :
f @^-1` `]-oo, y[%classic = [set x | (f x < y)%O].
Proof. by rewrite predeqE => t; split => [|?]; rewrite /= in_itv. Qed.
Lemma preimage_itv_infty_c T (d : unit) (rT : orderType d) (f : T -> rT) y :
f @^-1` `]-oo, y]%classic = [set x | (f x <= y)%O].
Proof. by rewrite predeqE => t; split => [|?]; rewrite /= in_itv. Qed.
Notation "'`I_' n" := [set k | is_true (k < n)%N].
Lemma eq_set T (P Q : T -> Prop) : (forall x : T, P x = Q x) ->
[set x | P x] = [set x | Q x].
Proof. by move=> /funext->. Qed.
Coercion set_type T (A : set T) := {x : T | x \in A}.
Definition SigSub {T} {pT : predType T} {P : pT} x : x \in P -> {x | x \in P} :=
exist (fun x => x \in P) x.
Lemma set0fun {P T : Type} : @set0 T -> P. Proof. by case=> x; rewrite inE. Qed.
Section basic_lemmas.
Context {T : Type}.
Implicit Types A B C D : set T.
Lemma mem_set {A} {u : T} : A u -> u \in A. Proof. by rewrite inE. Qed.
Lemma set_mem {A} {u : T} : u \in A -> A u. Proof. by rewrite inE. Qed.
Lemma mem_setT (u : T) : u \in [set: T]. Proof. by rewrite inE. Qed.
Lemma mem_setK {A} {u : T} : cancel (@mem_set A u) set_mem. Proof. by []. Qed.
Lemma set_memK {A} {u : T} : cancel (@set_mem A u) mem_set. Proof. by []. Qed.
Lemma memNset (A : set T) (u : T) : ~ A u -> u \in A = false.
Proof. by apply: contra_notF; rewrite inE. Qed.
Lemma notin_set (A : set T) x : (x \notin A : Prop) = ~ (A x).
Proof. by apply/propext; split=> /asboolPn. Qed.
Lemma setTPn (A : set T) : A != setT <-> exists t, ~ A t.
Proof.
split => [/negP|[t]]; last by apply: contra_notP => /negP/negPn/eqP ->.
apply: contra_notP => /forallNP h.
by apply/eqP; rewrite predeqE => t; split => // _; apply: contrapT.
Qed.
#[deprecated(note="Use setTPn instead")]
Notation setTP := setTPn.
Lemma in_set0 (x : T) : (x \in set0) = false. Proof. by rewrite memNset. Qed.
Lemma in_setT (x : T) : x \in setT. Proof. by rewrite mem_set. Qed.
Lemma in_setC (x : T) A : (x \in ~` A) = (x \notin A).
Proof. by apply/idP/idP; rewrite inE notin_set. Qed.
Lemma in_setI (x : T) A B : (x \in A `&` B) = (x \in A) && (x \in B).
Proof. by apply/idP/andP; rewrite !inE. Qed.
Lemma in_setD (x : T) A B : (x \in A `\` B) = (x \in A) && (x \notin B).
Proof. by apply/idP/andP; rewrite !inE notin_set. Qed.
Lemma in_setU (x : T) A B : (x \in A `|` B) = (x \in A) || (x \in B).
Proof. by apply/idP/orP; rewrite !inE. Qed.
Lemma in_setM T' (x : T * T') A E : (x \in A `*` E) = (x.1 \in A) && (x.2 \in E).
Proof. by apply/idP/andP; rewrite !inE. Qed.
Lemma set_valP {A} (x : A) : A (val x).
Proof. by apply: set_mem; apply: valP. Qed.
Lemma eqEsubset A B : (A = B) = (A `<=>` B).
Proof.
rewrite propeqE; split => [->|[AB BA]]; [by split|].
by rewrite predeqE => t; split=> [/AB|/BA].
Qed.
Lemma seteqP A B : (A = B) <-> (A `<=>` B). Proof. by rewrite eqEsubset. Qed.
Lemma set_true : [set` predT] = setT :> set T.
Proof. by apply/seteqP; split. Qed.
Lemma set_false : [set` pred0] = set0 :> set T.
Proof. by apply/seteqP; split. Qed.
Lemma set_andb (P Q : {pred T}) : [set` predI P Q] = [set` P] `&` [set` Q].
Proof. by apply/predeqP => x; split; rewrite /= inE => /andP. Qed.
Lemma set_orb (P Q : {pred T}) : [set` predU P Q] = [set` P] `|` [set` Q].
Proof. by apply/predeqP => x; split; rewrite /= inE => /orP. Qed.
Lemma fun_true : (fun=> true) = setT :> set T.
Proof. by rewrite [LHS]set_true. Qed.
Lemma fun_false : (fun=> false) = set0 :> set T.
Proof. by rewrite [LHS]set_false. Qed.
Lemma set_mem_set A : [set` A] = A.
Proof. by apply/seteqP; split=> x/=; rewrite inE. Qed.
Lemma mem_setE (P : pred T) : mem [set` P] = mem P.
Proof. by congr Mem; apply/funext=> x; apply/asboolP/idP. Qed.
Lemma subset_trans B A C : A `<=` B -> B `<=` C -> A `<=` C.
Proof. by move=> sAB sBC ? ?; apply/sBC/sAB. Qed.
Lemma sub0set A : set0 `<=` A. Proof. by []. Qed.
Lemma setC0 : ~` set0 = setT :> set T.
Proof. by rewrite predeqE; split => ?. Qed.
Lemma setCK : involutive (@setC T).
Proof. by move=> A; rewrite funeqE => t; rewrite /setC; exact: notLR. Qed.
Lemma setCT : ~` setT = set0 :> set T. Proof. by rewrite -setC0 setCK. Qed.
Definition setC_inj := can_inj setCK.
Lemma setIC : commutative (@setI T).
Proof. by move=> A B; rewrite predeqE => ?; split=> [[]|[]]. Qed.
Lemma setIS C A B : A `<=` B -> C `&` A `<=` C `&` B.
Proof. by move=> sAB t [Ct At]; split => //; exact: sAB. Qed.
Lemma setSI C A B : A `<=` B -> A `&` C `<=` B `&` C.
Proof. by move=> sAB; rewrite -!(setIC C); apply setIS. Qed.
Lemma setISS A B C D : A `<=` C -> B `<=` D -> A `&` B `<=` C `&` D.
Proof. by move=> /(@setSI B) /subset_trans sAC /(@setIS C) /sAC. Qed.
Lemma setIT : right_id setT (@setI T).
Proof. by move=> A; rewrite predeqE => ?; split=> [[]|]. Qed.
Lemma setTI : left_id setT (@setI T).
Proof. by move=> A; rewrite predeqE => ?; split=> [[]|]. Qed.
Lemma setI0 : right_zero set0 (@setI T).
Proof. by move=> A; rewrite predeqE => ?; split=> [[]|]. Qed.
Lemma set0I : left_zero set0 (@setI T).
Proof. by move=> A; rewrite setIC setI0. Qed.
Lemma setICl : left_inverse set0 setC (@setI T).
Proof. by move=> A; rewrite predeqE => ?; split => // -[]. Qed.
Lemma setICr : right_inverse set0 setC (@setI T).
Proof. by move=> A; rewrite setIC setICl. Qed.
Lemma setIA : associative (@setI T).
Proof. by move=> A B C; rewrite predeqE => ?; split=> [[? []]|[[]]]. Qed.
Lemma setICA : left_commutative (@setI T).
Proof. by move=> A B C; rewrite setIA [A `&` _]setIC -setIA. Qed.
Lemma setIAC : right_commutative (@setI T).
Proof. by move=> A B C; rewrite setIC setICA setIA. Qed.
Lemma setIACA : @interchange (set T) setI setI.
Proof. by move=> A B C D; rewrite -setIA [B `&` _]setICA setIA. Qed.
Lemma setIid : idempotent (@setI T).
Proof. by move=> A; rewrite predeqE => ?; split=> [[]|]. Qed.
Lemma setIIl A B C : A `&` B `&` C = (A `&` C) `&` (B `&` C).
Proof. by rewrite setIA !(setIAC _ C) -(setIA _ C) setIid. Qed.
Lemma setIIr A B C : A `&` (B `&` C) = (A `&` B) `&` (A `&` C).
Proof. by rewrite !(setIC A) setIIl. Qed.
Lemma setUC : commutative (@setU T).
Proof. move=> p q; rewrite /setU/mkset predeqE => a; tauto. Qed.
Lemma setUS C A B : A `<=` B -> C `|` A `<=` C `|` B.
Proof. by move=> sAB t [Ct|At]; [left|right; exact: sAB]. Qed.
Lemma setSU C A B : A `<=` B -> A `|` C `<=` B `|` C.
Proof. by move=> sAB; rewrite -!(setUC C); apply setUS. Qed.
Lemma setUSS A B C D : A `<=` C -> B `<=` D -> A `|` B `<=` C `|` D.
Proof. by move=> /(@setSU B) /subset_trans sAC /(@setUS C) /sAC. Qed.
Lemma setTU : left_zero setT (@setU T).
Proof. by move=> A; rewrite predeqE => t; split; [case|left]. Qed.
Lemma setUT : right_zero setT (@setU T).
Proof. by move=> A; rewrite predeqE => t; split; [case|right]. Qed.
Lemma set0U : left_id set0 (@setU T).
Proof. by move=> A; rewrite predeqE => t; split; [case|right]. Qed.
Lemma setU0 : right_id set0 (@setU T).
Proof. by move=> A; rewrite predeqE => t; split; [case|left]. Qed.
Lemma setUCl : left_inverse setT setC (@setU T).
Proof.
move=> A.
by rewrite predeqE => t; split => // _; case: (pselect (A t)); [right|left].
Qed.
Lemma setUCr : right_inverse setT setC (@setU T).
Proof. by move=> A; rewrite setUC setUCl. Qed.
Lemma setUA : associative (@setU T).
Proof. move=> p q r; rewrite /setU/mkset predeqE => a; tauto. Qed.
Lemma setUCA : left_commutative (@setU T).
Proof. by move=> A B C; rewrite setUA [A `|` _]setUC -setUA. Qed.
Lemma setUAC : right_commutative (@setU T).
Proof. by move=> A B C; rewrite setUC setUCA setUA. Qed.
Lemma setUACA : @interchange (set T) setU setU.
Proof. by move=> A B C D; rewrite -setUA [B `|` _]setUCA setUA. Qed.
Lemma setUid : idempotent (@setU T).
Proof. move=> p; rewrite /setU/mkset predeqE => a; tauto. Qed.
Lemma setUUl A B C : A `|` B `|` C = (A `|` C) `|` (B `|` C).
Proof. by rewrite setUA !(setUAC _ C) -(setUA _ C) setUid. Qed.
Lemma setUUr A B C : A `|` (B `|` C) = (A `|` B) `|` (A `|` C).
Proof. by rewrite !(setUC A) setUUl. Qed.
Lemma setDE A B : A `\` B = A `&` ~` B. Proof. by []. Qed.
Lemma setDUK A B : A `<=` B -> A `|` (B `\` A) = B.
Proof.
move=> AB; apply/seteqP; split=> [x [/AB//|[//]]|x Bx].
by have [Ax|nAx] := pselect (A x); [left|right].
Qed.
Lemma setDKU A B : A `<=` B -> (B `\` A) `|` A = B.
Proof. by move=> /setDUK; rewrite setUC. Qed.
Lemma setDv A : A `\` A = set0.
Proof. by rewrite predeqE => t; split => // -[]. Qed.
Lemma setUv A : A `|` ~` A = setT.
Proof. by apply/predeqP => x; split=> //= _; apply: lem. Qed.
Lemma setIv A : A `&` ~` A = set0. Proof. by rewrite -setDE setDv. Qed.
Lemma setvU A : ~` A `|` A = setT. Proof. by rewrite setUC setUv. Qed.
Lemma setvI A : ~` A `&` A = set0. Proof. by rewrite setIC setIv. Qed.
Lemma setUCK A B : (A `|` B) `|` ~` B = setT.
Proof. by rewrite -setUA setUv setUT. Qed.
Lemma setUKC A B : ~` A `|` (A `|` B) = setT.
Proof. by rewrite setUA setvU setTU. Qed.
Lemma setICK A B : (A `&` B) `&` ~` B = set0.
Proof. by rewrite -setIA setIv setI0. Qed.
Lemma setIKC A B : ~` A `&` (A `&` B) = set0.
Proof. by rewrite setIA setvI set0I. Qed.
Lemma setDIK A B : A `&` (B `\` A) = set0.
Proof. by rewrite setDE setICA -setDE setDv setI0. Qed.
Lemma setDKI A B : (B `\` A) `&` A = set0.
Proof. by rewrite setIC setDIK. Qed.
Lemma setD1K a A : A a -> a |` A `\ a = A.
Proof. by move=> Aa; rewrite setDUK//= => x ->. Qed.
Lemma setI1 A a : A `&` [set a] = if a \in A then [set a] else set0.
Proof.
by apply/predeqP => b; case: ifPn; rewrite (inE, notin_set) => Aa;
split=> [[]|]//; [move=> -> //|move=> /[swap] -> /Aa].
Qed.
Lemma set1I A a : [set a] `&` A = if a \in A then [set a] else set0.
Proof. by rewrite setIC setI1. Qed.
Lemma subset0 A : (A `<=` set0) = (A = set0).
Proof. by rewrite eqEsubset propeqE; split=> [A0|[]//]; split. Qed.
Lemma subTset A : (setT `<=` A) = (A = setT).
Proof. by rewrite eqEsubset propeqE; split=> [|[]]. Qed.
Lemma subsetT A : A `<=` setT. Proof. by []. Qed.
Lemma subsetW {A B} : A = B -> A `<=` B. Proof. by move->. Qed.
Definition subsetCW {A B} : A = B -> B `<=` A := subsetW \o esym.
Lemma disj_set2E A B : [disjoint A & B] = (A `&` B == set0).
Proof. by []. Qed.
Lemma disj_set2P {A B} : reflect (A `&` B = set0) [disjoint A & B]%classic.
Proof. exact/eqP. Qed.
Lemma disj_setPS {A B} : reflect (A `&` B `<=` set0) [disjoint A & B]%classic.
Proof. by rewrite subset0; apply: disj_set2P. Qed.
Lemma disj_set_sym A B : [disjoint B & A] = [disjoint A & B].
Proof. by rewrite !disj_set2E setIC. Qed.
Lemma disj_setPCl {A B} : reflect (A `<=` B) [disjoint A & ~` B]%classic.
Proof.
apply: (iffP disj_setPS) => [P t ?|P t [/P//]].
by apply: contrapT => ?; apply: (P t).
Qed.
Lemma disj_setPCr {A B} : reflect (A `<=` B) [disjoint ~` B & A]%classic.
Proof. by rewrite disj_set_sym; apply: disj_setPCl. Qed.
Lemma disj_setPLR {A B} : reflect (A `<=` ~` B) [disjoint A & B]%classic.
Proof. by apply: (equivP idP); rewrite (rwP disj_setPCl) setCK. Qed.
Lemma disj_setPRL {A B} : reflect (B `<=` ~` A) [disjoint A & B]%classic.
Proof. by apply: (equivP idP); rewrite (rwP disj_setPCr) setCK. Qed.
Lemma subsets_disjoint A B : A `<=` B <-> A `&` ~` B = set0.
Proof. by rewrite (rwP disj_setPCl) (rwP eqP). Qed.
Lemma disjoints_subset A B : A `&` B = set0 <-> A `<=` ~` B.
Proof. by rewrite subsets_disjoint setCK. Qed.
Lemma subsetC1 x A : (A `<=` [set~ x]) = (x \in ~` A).
Proof.
rewrite !inE; apply/propext; split; first by move/[apply]; apply.
by move=> NAx y; apply: contraPnot => ->.
Qed.
Lemma setSD C A B : A `<=` B -> A `\` C `<=` B `\` C.
Proof. by rewrite !setDE; apply: setSI. Qed.
Lemma setTD A : setT `\` A = ~` A.
Proof. by rewrite predeqE => t; split => // -[]. Qed.
Lemma set0P A : (A != set0) <-> (A !=set0).
Proof.
split=> [/negP A_neq0|[t tA]]; last by apply/negP => /eqP A0; rewrite A0 in tA.
apply: contrapT => /asboolPn/forallp_asboolPn A0; apply/A_neq0/eqP.
by rewrite eqEsubset; split.
Qed.
Lemma setF_eq0 : (T -> False) -> all_equal_to (set0 : set T).
Proof. by move=> TF A; rewrite -subset0 => x; have := TF x. Qed.
Lemma subset_nonempty A B : A `<=` B -> A !=set0 -> B !=set0.
Proof. by move=> sAB [x Ax]; exists x; apply: sAB. Qed.
Lemma subsetC A B : A `<=` B -> ~` B `<=` ~` A.
Proof. by move=> sAB ? nBa ?; apply/nBa/sAB. Qed.
Lemma subsetCl A B : ~` A `<=` B -> ~` B `<=` A.
Proof. by move=> /subsetC; rewrite setCK. Qed.
Lemma subsetCr A B : A `<=` ~` B -> B `<=` ~` A.
Proof. by move=> /subsetC; rewrite setCK. Qed.
Lemma subsetC2 A B : ~` A `<=` ~` B -> B `<=` A.
Proof. by move=> /subsetC; rewrite !setCK. Qed.
Lemma subsetCP A B : ~` A `<=` ~` B <-> B `<=` A.
Proof. by split=> /subsetC; rewrite ?setCK. Qed.
Lemma subsetCPl A B : ~` A `<=` B <-> ~` B `<=` A.
Proof. by split=> /subsetC; rewrite ?setCK. Qed.
Lemma subsetCPr A B : A `<=` ~` B <-> B `<=` ~` A.
Proof. by split=> /subsetC; rewrite ?setCK. Qed.
Lemma subsetUl A B : A `<=` A `|` B. Proof. by move=> x; left. Qed.
Lemma subsetUr A B : B `<=` A `|` B. Proof. by move=> x; right. Qed.
Lemma subUset A B C : (B `|` C `<=` A) = ((B `<=` A) /\ (C `<=` A)).
Proof.
rewrite propeqE; split => [|[BA CA] x]; last by case; [exact: BA | exact: CA].
by move=> sBC_A; split=> x ?; apply sBC_A; [left | right].
Qed.
Lemma setIidPl A B : A `&` B = A <-> A `<=` B.
Proof.
rewrite predeqE; split=> [AB t /AB [] //|AB t].
by split=> [[]//|At]; split=> //; exact: AB.
Qed.
Lemma setIidPr A B : A `&` B = B <-> B `<=` A.
Proof. by rewrite setIC setIidPl. Qed.
Lemma setIidl A B : A `<=` B -> A `&` B = A. Proof. by rewrite setIidPl. Qed.
Lemma setIidr A B : B `<=` A -> A `&` B = B. Proof. by rewrite setIidPr. Qed.
Lemma setUidPl A B : A `|` B = A <-> B `<=` A.
Proof.
split=> [<- ? ?|BA]; first by right.
rewrite predeqE => t; split=> [[//|/BA//]|?]; by left.
Qed.
Lemma setUidPr A B : A `|` B = B <-> A `<=` B.
Proof. by rewrite setUC setUidPl. Qed.
Lemma setUidl A B : B `<=` A -> A `|` B = A. Proof. by rewrite setUidPl. Qed.
Lemma setUidr A B : A `<=` B -> A `|` B = B. Proof. by rewrite setUidPr. Qed.
Lemma subsetI A B C : (A `<=` B `&` C) = ((A `<=` B) /\ (A `<=` C)).
Proof.
rewrite propeqE; split=> [H|[y z ??]]; split; by [move=> ?/H[]|apply y|apply z].
Qed.
Lemma setDidPl A B : A `\` B = A <-> A `&` B = set0.
Proof.
rewrite setDE disjoints_subset predeqE; split => [AB t|AB t].
by rewrite -AB => -[].
by split=> [[]//|At]; move: (AB t At).
Qed.
Lemma setDidl A B : A `&` B = set0 -> A `\` B = A.
Proof. by move=> /setDidPl. Qed.
Lemma subIset A B C : A `<=` C \/ B `<=` C -> A `&` B `<=` C.
Proof. case=> sub a; by [move=> [/sub] | move=> [_ /sub]]. Qed.
Lemma subIsetl A B : A `&` B `<=` A. Proof. by move=> x []. Qed.
Lemma subIsetr A B : A `&` B `<=` B. Proof. by move=> x []. Qed.
Lemma subDsetl A B : A `\` B `<=` A.
Proof. by rewrite setDE; apply: subIsetl. Qed.
Lemma subDsetr A B : A `\` B `<=` ~` B.
Proof. by rewrite setDE; apply: subIsetr. Qed.
Lemma subsetI_neq0 A B C D :
A `<=` B -> C `<=` D -> A `&` C !=set0 -> B `&` D !=set0.
Proof. by move=> AB CD [x [/AB Bx /CD Dx]]; exists x. Qed.
Lemma subsetI_eq0 A B C D :
A `<=` B -> C `<=` D -> B `&` D = set0 -> A `&` C = set0.
Proof. by move=> AB /(subsetI_neq0 AB); rewrite -!set0P => /contra_eq. Qed.
Lemma setD_eq0 A B : (A `\` B = set0) = (A `<=` B).
Proof.
rewrite propeqE; split=> [ADB0 a|sAB].
by apply: contraPP => nBa xA; rewrite -[False]/(set0 a) -ADB0.
by rewrite predeqE => ?; split=> // - [?]; apply; apply: sAB.
Qed.
Lemma properEneq A B : (A `<` B) = (A != B /\ A `<=` B).
Proof.
rewrite /proper andC propeqE; split => [[BA AB]|[/eqP]].
by split => //; apply/negP; apply: contra_not BA => /eqP ->.
by rewrite eqEsubset => AB BA; split => //; exact: contra_not AB.
Qed.
Lemma nonsubset A B : ~ (A `<=` B) -> A `&` ~` B !=set0.
Proof. by rewrite -setD_eq0 setDE -set0P => /eqP. Qed.
Lemma setU_eq0 A B : (A `|` B = set0) = ((A = set0) /\ (B = set0)).
Proof. by rewrite -!subset0 subUset. Qed.
Lemma setCS A B : (~` A `<=` ~` B) = (B `<=` A).
Proof.
rewrite propeqE; split => [|BA].
by move/subsets_disjoint; rewrite setCK setIC => /subsets_disjoint.
by apply/subsets_disjoint; rewrite setCK setIC; apply/subsets_disjoint.
Qed.
Lemma setDT A : A `\` setT = set0.
Proof. by rewrite setDE setCT setI0. Qed.
Lemma set0D A : set0 `\` A = set0.
Proof. by rewrite setDE set0I. Qed.
Lemma setD0 A : A `\` set0 = A.
Proof. by rewrite setDE setC0 setIT. Qed.
Lemma setDS C A B : A `<=` B -> C `\` B `<=` C `\` A.
Proof. by rewrite !setDE -setCS; apply: setIS. Qed.
Lemma setDSS A B C D : A `<=` C -> D `<=` B -> A `\` B `<=` C `\` D.
Proof. by move=> /(@setSD B) /subset_trans sAC /(@setDS C) /sAC. Qed.
Lemma setCU A B : ~`(A `|` B) = ~` A `&` ~` B.
Proof.
rewrite predeqE => z.
by apply: asbool_eq_equiv; rewrite asbool_and !asbool_neg asbool_or negb_or.
Qed.
Lemma setCI A B : ~` (A `&` B) = ~` A `|` ~` B.
Proof. by rewrite -[in LHS](setCK A) -[in LHS](setCK B) -setCU setCK. Qed.
Lemma setDUr A B C : A `\` (B `|` C) = (A `\` B) `&` (A `\` C).
Proof. by rewrite !setDE setCU setIIr. Qed.
Lemma setIUl : left_distributive (@setI T) (@setU T).
Proof.
move=> A B C; rewrite predeqE => t; split.
by move=> [[At|Bt] Ct]; [left|right].
by move=> [[At Ct]|[Bt Ct]]; split => //; [left|right].
Qed.
Lemma setIUr : right_distributive (@setI T) (@setU T).
Proof. by move=> A B C; rewrite ![A `&` _]setIC setIUl. Qed.
Lemma setUIl : left_distributive (@setU T) (@setI T).
Proof.
move=> A B C; rewrite predeqE => t; split.
by move=> [[At Bt]|Ct]; split; by [left|right].
by move=> [[At|Ct] [Bt|Ct']]; by [left|right].
Qed.
Lemma setUIr : right_distributive (@setU T) (@setI T).
Proof. by move=> A B C; rewrite ![A `|` _]setUC setUIl. Qed.
Lemma setUK A B : (A `|` B) `&` A = A.
Proof. by rewrite eqEsubset; split => [t []//|t ?]; split => //; left. Qed.
Lemma setKU A B : A `&` (B `|` A) = A.
Proof. by rewrite eqEsubset; split => [t []//|t ?]; split => //; right. Qed.
Lemma setIK A B : (A `&` B) `|` A = A.
Proof. by rewrite eqEsubset; split => [t [[]//|//]|t At]; right. Qed.
Lemma setKI A B : A `|` (B `&` A) = A.
Proof. by rewrite eqEsubset; split => [t [//|[]//]|t At]; left. Qed.
Lemma setDUl : left_distributive setD (@setU T).
Proof. by move=> A B C; rewrite !setDE setIUl. Qed.
Lemma setUKD A B : A `&` B `<=` set0 -> (A `|` B) `\` A = B.
Proof. by move=> AB0; rewrite setDUl setDv set0U setDidl// -subset0 setIC. Qed.
Lemma setUDK A B : A `&` B `<=` set0 -> (B `|` A) `\` A = B.
Proof. by move=> *; rewrite setUC setUKD. Qed.
Lemma setIDA A B C : A `&` (B `\` C) = (A `&` B) `\` C.
Proof. by rewrite !setDE setIA. Qed.
Lemma setDD A B : A `\` (A `\` B) = A `&` B.
Proof. by rewrite 2!setDE setCI setCK setIUr setICr set0U. Qed.
Lemma setDDl A B C : (A `\` B) `\` C = A `\` (B `|` C).
Proof. by rewrite !setDE setCU setIA. Qed.
Lemma setDDr A B C : A `\` (B `\` C) = (A `\` B) `|` (A `&` C).
Proof. by rewrite !setDE setCI setIUr setCK. Qed.
Lemma setDIr A B C : A `\` B `&` C = (A `\` B) `|` (A `\` C).
Proof. by rewrite !setDE setCI setIUr. Qed.
Lemma setUIDK A B : (A `&` B) `|` A `\` B = A.
Proof. by rewrite setUC -setDDr setDv setD0. Qed.
Lemma setM0 T' (A : set T) : A `*` set0 = set0 :> set (T * T').
Proof. by rewrite predeqE => -[t u]; split => // -[]. Qed.
Lemma set0M T' (A : set T') : set0 `*` A = set0 :> set (T * T').
Proof. by rewrite predeqE => -[t u]; split => // -[]. Qed.
Lemma setMTT T' : setT `*` setT = setT :> set (T * T').
Proof. exact/predeqP. Qed.
Lemma setMT T1 T2 (A : set T1) : A `*` @setT T2 = fst @^-1` A.
Proof. by rewrite predeqE => -[x y]; split => //= -[]. Qed.
Lemma setTM T1 T2 (B : set T2) : @setT T1 `*` B = snd @^-1` B.
Proof. by rewrite predeqE => -[x y]; split => //= -[]. Qed.
Lemma setMI T1 T2 (X1 : set T1) (X2 : set T2) (Y1 : set T1) (Y2 : set T2) :
(X1 `&` Y1) `*` (X2 `&` Y2) = X1 `*` X2 `&` Y1 `*` Y2.
Proof. by rewrite predeqE => -[x y]; split=> [[[? ?] [*]//]|[] [? ?] [*]]. Qed.
Lemma setSM T1 T2 (C D : set T1) (A B : set T2) :
A `<=` B -> C `<=` D -> C `*` A `<=` D `*` B.
Proof. by move=> AB CD x [] /CD Dx1 /AB Bx2. Qed.
Lemma setM_bigcupr T1 T2 I (F : I -> set T2) (P : set I) (A : set T1) :
A `*` \bigcup_(i in P) F i = \bigcup_(i in P) (A `*` F i).
Proof.
rewrite predeqE => -[x y]; split; first by move=> [/= Ax [n Pn Fny]]; exists n.
by move=> [n Pn [/= Ax Fny]]; split => //; exists n.
Qed.
Lemma setM_bigcupl T1 T2 I (F : I -> set T2) (P : set I) (A : set T1) :
\bigcup_(i in P) F i `*` A = \bigcup_(i in P) (F i `*` A).
Proof.
rewrite predeqE => -[x y]; split; first by move=> [[n Pn Fnx] Ax]; exists n.
by move=> [n Pn [/= Ax Fny]]; split => //; exists n.
Qed.
Lemma bigcupM1l T1 T2 (A1 : set T1) (A2 : T1 -> set T2) :
\bigcup_(i in A1) ([set i] `*` (A2 i)) = A1 `*`` A2.
Proof. by apply/predeqP => -[i j]; split=> [[? ? [/= -> //]]|[]]; exists i. Qed.
Lemma bigcupM1r T1 T2 (A1 : T2 -> set T1) (A2 : set T2) :
\bigcup_(i in A2) (A1 i `*` [set i]) = A1 ``*` A2.
Proof. by apply/predeqP => -[i j]; split=> [[? ? [? /= -> //]]|[]]; exists j. Qed.
Lemma pred_oappE (D : {pred T}) : pred_oapp D = mem (some @` D).
Proof.
apply/funext=> -[x|]/=; apply/idP/idP; rewrite /pred_oapp/= inE //=.
- by move=> xD; exists x.
- by move=> [// + + [<-]].
- by case.
Qed.
Lemma pred_oapp_set (D : set T) : pred_oapp (mem D) = mem (some @` D).
Proof.
by rewrite pred_oappE; apply/funext => x/=; apply/idP/idP; rewrite ?inE;
move=> [y/= ]; rewrite ?in_setE; exists y; rewrite ?in_setE.
Qed.
End basic_lemmas.
#[global]
Hint Resolve subsetUl subsetUr subIsetl subIsetr subDsetl subDsetr : core.
Lemma image2E {TA TB rT : Type} (A : set TA) (B : set TB) (f : TA -> TB -> rT) :
[set f x y | x in A & y in B] = uncurry f @` (A `*` B).
Proof.
apply/predeqP => x; split=> [[a ? [b ? <-]]|[[a b] [? ? <-]]]/=;
by [exists (a, b) | exists a => //; exists b].
Qed.
Lemma set_nil (T : choiceType) : [set` [::]] = @set0 T.
Proof. by rewrite predeqP. Qed.
Lemma set_seq_eq0 (T : eqType) (S : seq T) : ([set` S] == set0) = (S == [::]).
Proof.
apply/eqP/eqP=> [|->]; rewrite predeqE //; case: S => // h t /(_ h).
by rewrite /= mem_head => -[/(_ erefl)].
Qed.
Lemma set_fset_eq0 (T : choiceType) (S : {fset T}) :
([set` S] == set0) = (S == fset0).
Proof. by rewrite set_seq_eq0. Qed.
Section InitialSegment.
Lemma II0 : `I_0 = set0. Proof. by rewrite predeqE. Qed.
Lemma II1 : `I_1 = [set 0%N].
Proof. by rewrite predeqE; case. Qed.
Lemma IIn_eq0 n : `I_n = set0 -> n = 0%N.
Proof. by case: n => // n; rewrite predeqE; case/(_ 0%N); case. Qed.
Lemma IIS n : `I_n.+1 = `I_n `|` [set n].
Proof.
rewrite /mkset predeqE => i; split => [|[|->//]].
by rewrite ltnS leq_eqVlt => /orP[/eqP ->|]; by [left|right].
by move/ltn_trans; apply.
Qed.
Lemma setI_II m n : `I_m `&` `I_n = `I_(minn m n).
Proof.
by case: leqP => mn; [rewrite setIidl// | rewrite setIidr//]
=> k /= /leq_trans; apply => //; apply: ltnW.
Qed.
Lemma setU_II m n : `I_m `|` `I_n = `I_(maxn m n).
Proof.
by case: leqP => mn; [rewrite setUidr// | rewrite setUidl//]
=> k /= /leq_trans; apply => //; apply: ltnW.
Qed.
Lemma Iiota (n : nat) : [set` iota 0 n] = `I_n.
Proof. by apply/seteqP; split => [|] ?; rewrite /= mem_iota add0n. Qed.
Definition ordII {n} (k : 'I_n) : `I_n := SigSub (@mem_set _ `I_n _ (ltn_ord k)).
Definition IIord {n} (k : `I_n) := Ordinal (set_valP k).
Definition ordIIK {n} : cancel (@ordII n) IIord.
Proof. by move=> k; apply/val_inj. Qed.
Lemma IIordK {n} : cancel (@IIord n) ordII.
Proof. by move=> k; apply/val_inj. Qed.
End InitialSegment.
Lemma set_bool : [set: bool] = [set true; false].
Proof. by rewrite eqEsubset; split => // [[]] // _; [left|right]. Qed.
(* TODO: other lemmas that relate fset and classical sets *)
Lemma fdisjoint_cset (T : choiceType) (A B : {fset T}) :
[disjoint A & B]%fset = [disjoint [set` A] & [set` B]].
Proof.
rewrite -fsetI_eq0; apply/idP/idP; apply: contraLR.
by move=> /set0P[t [tA tB]]; apply/fset0Pn; exists t; rewrite inE; apply/andP.
by move=> /fset0Pn[t]; rewrite inE => /andP[tA tB]; apply/set0P; exists t.
Qed.
Section SetFset.
Context {T : choiceType}.
Implicit Types (x y : T) (A B : {fset T}).
Lemma set_fset0 : [set y : T | y \in fset0] = set0.
Proof. by rewrite -subset0 => x. Qed.
Lemma set_fset1 x : [set y | y \in [fset x]%fset] = [set x].
Proof. by rewrite predeqE => y; split; rewrite /= inE => /eqP. Qed.
Lemma set_fsetI A B : [set` (A `&` B)%fset] = [set` A] `&` [set` B].
Proof.
by rewrite predeqE => x; split; rewrite /= !inE; [case/andP|case=> -> ->].
Qed.
Lemma set_fsetIr (P : {pred T}) (A : {fset T}) :
[set` [fset x | x in A & P x]%fset] = [set` A] `&` [set` P].
Proof. by apply/predeqP => x /=; split; rewrite 2!inE/= => /andP. Qed.
Lemma set_fsetU A B :
[set` (A `|` B)%fset] = [set` A] `|` [set` B].
Proof.
rewrite predeqE => x; split; rewrite /= !inE.
by case/orP; [left|right].
by move=> []->; rewrite ?orbT.
Qed.
Lemma set_fsetU1 x A : [set y | y \in (x |` A)%fset] = x |` [set` A].
Proof. by rewrite set_fsetU set_fset1. Qed.
Lemma set_fsetD A B :
[set` (A `\` B)%fset] = [set` A] `\` [set` B].
Proof.
rewrite predeqE => x; split; rewrite /= !inE; last by move=> [-> /negP ->].
by case/andP => /negP xNB xA.
Qed.
Lemma set_fsetD1 A x : [set y | y \in (A `\ x)%fset] = [set` A] `\ x.
Proof. by rewrite set_fsetD set_fset1. Qed.
Lemma set_imfset (key : unit) [K : choiceType] (f : T -> K) (p : finmempred T) :
[set` imfset key f p] = f @` [set` p].
Proof.
apply/predeqP => x; split=> [/imfsetP[i ip -> /=]|]; first by exists i.
by move=> [i ip <-]; apply: in_imfset.
Qed.
End SetFset.
Section SetMonoids.
Variable (T : Type).
Import Monoid.
Canonical setU_monoid := Law (@setUA T) (@set0U T) (@setU0 T).
Canonical setU_comoid := ComLaw (@setUC T).
Canonical setU_mul_monoid := MulLaw (@setTU T) (@setUT T).
Canonical setI_monoid := Law (@setIA T) (@setTI T) (@setIT T).
Canonical setI_comoid := ComLaw (@setIC T).
Canonical setI_mul_monoid := MulLaw (@set0I T) (@setI0 T).
Canonical setU_add_monoid := AddLaw (@setUIl T) (@setUIr T).
Canonical setI_add_monoid := AddLaw (@setIUl T) (@setIUr T).
End SetMonoids.
Section base_image_lemmas.
Context {aT rT : Type}.
Implicit Types (A B : set aT) (f : aT -> rT) (Y : set rT).
Lemma imageP f A a : A a -> (f @` A) (f a). Proof. by exists a. Qed.
Lemma imageT (f : aT -> rT) (a : aT) : range f (f a).
Proof. by apply: imageP. Qed.
End base_image_lemmas.
#[global]
Hint Extern 0 ((?f @` _) (?f _)) => solve [apply: imageP; assumption] : core.
#[global] Hint Extern 0 ((?f @` setT) _) => solve [apply: imageT] : core.
Section image_lemmas.
Context {aT rT : Type}.
Implicit Types (A B : set aT) (f : aT -> rT) (Y : set rT).
Lemma image_inj {f A a} : injective f -> (f @` A) (f a) = A a.
Proof.
by move=> f_inj; rewrite propeqE; split => [[b Ab /f_inj <-]|/(imageP f)//].
Qed.
Lemma image_id A : id @` A = A.
Proof. by rewrite eqEsubset; split => a; [case=> /= x Ax <-|exists a]. Qed.
Lemma homo_setP {A Y f} :
{homo f : x / x \in A >-> x \in Y} <-> {homo f : x / A x >-> Y x}.
Proof. by split=> fAY x; have := fAY x; rewrite !inE. Qed.
Lemma image_subP {A Y f} : f @` A `<=` Y <-> {homo f : x / A x >-> Y x}.
Proof. by split=> fAY x => [Ax|[y + <-]]; apply: fAY=> //; exists x. Qed.
Lemma image_sub {f : aT -> rT} {A : set aT} {B : set rT} :
(f @` A `<=` B) = (A `<=` f @^-1` B).
Proof. by apply/propext; rewrite image_subP; split=> AB a /AB. Qed.
Lemma image_setU f A B : f @` (A `|` B) = f @` A `|` f @` B.
Proof.
rewrite eqEsubset; split => b.
- by case=> a [] Ha <-; [left | right]; apply imageP.
- by case=> -[] a Ha <-; apply imageP; [left | right].
Qed.
Lemma image_set0 f : f @` set0 = set0.
Proof. by rewrite eqEsubset; split => b // -[]. Qed.
Lemma image_set0_set0 A f : f @` A = set0 -> A = set0.
Proof.
move=> fA0; rewrite predeqE => t; split => // At.
by have : set0 (f t) by rewrite -fA0; exists t.
Qed.
Lemma image_set1 f t : f @` [set t] = [set f t].
Proof. by rewrite eqEsubset; split => [b [a' -> <-] //|b ->]; exact/imageP. Qed.
Lemma subset_set1 A a : A `<=` [set a] -> A = set0 \/ A = [set a].
Proof.
move=> Aa; have [/eqP|/set0P[t At]] := boolP (A == set0); first by left.
by right; rewrite eqEsubset; split => // ? ->; rewrite -(Aa _ At).
Qed.
Lemma subset_set2 A a b : A `<=` [set a; b] ->
[\/ A = set0, A = [set a], A = [set b] | A = [set a; b]].
Proof.
have [<-|ab Aab] := pselect (a = b).
by rewrite setUid => /subset_set1[]->; [apply: Or41|apply: Or42].
have [|/nonsubset[x [/[dup] /Aab []// -> Ab _]]] := pselect (A `<=` [set a]).
by move=> /subset_set1[]->; [apply: Or41|apply: Or42].
have [|/nonsubset[y [/[dup] /Aab []// -> Aa _]]] := pselect (A `<=` [set b]).
by move=> /subset_set1[]->; [apply: Or41|apply: Or43].
by apply: Or44; apply/seteqP; split=> // z /= [] ->.
Qed.
Lemma sub_image_setI f A B : f @` (A `&` B) `<=` f @` A `&` f @` B.
Proof. by move=> b [x [Aa Ba <-]]; split; apply: imageP. Qed.
Lemma nonempty_image f A : f @` A !=set0 -> A !=set0.
Proof. by case=> b [a]; exists a. Qed.
Lemma image_subset f A B : A `<=` B -> f @` A `<=` f @` B.
Proof. by move=> AB _ [a Aa <-]; exists a => //; apply/AB. Qed.
Lemma preimage_set0 f : f @^-1` set0 = set0. Proof. exact/predeqP. Qed.
Lemma preimage_setT f : f @^-1` setT = setT. Proof. by []. Qed.
Lemma nonempty_preimage f Y : f @^-1` Y !=set0 -> Y !=set0.
Proof. by case=> [t ?]; exists (f t). Qed.
Lemma preimage_image f A : A `<=` f @^-1` (f @` A).
Proof. by move=> a Aa; exists a. Qed.
Lemma image_preimage_subset f Y : f @` (f @^-1` Y) `<=` Y.
Proof. by move=> _ [t /= Yft <-]. Qed.
Lemma image_preimage f Y : f @` setT = setT -> f @` (f @^-1` Y) = Y.
Proof.
move=> fsurj; rewrite predeqE => x; split; first by move=> [? ? <-].
move=> Yx; have : setT x by [].
by rewrite -fsurj => - [y _ fy_eqx]; exists y => //=; rewrite fy_eqx.
Qed.
Lemma eq_imagel T1 T2 (A : set T1) (f f' : T1 -> T2) :
(forall x, A x -> f x = f' x) -> f @` A = f' @` A.
Proof.
by move=> h; rewrite predeqE=> y; split=> [][x ? <-]; exists x=> //; rewrite h.
Qed.
Lemma preimage_setU f Y1 Y2 : f @^-1` (Y1 `|` Y2) = f @^-1` Y1 `|` f @^-1` Y2.
Proof. exact/predeqP. Qed.
Lemma preimage_setI f Y1 Y2 : f @^-1` (Y1 `&` Y2) = f @^-1` Y1 `&` f @^-1` Y2.
Proof. exact/predeqP. Qed.
Lemma preimage_setC f Y : ~` (f @^-1` Y) = f @^-1` (~` Y).
Proof. by rewrite predeqE => a; split=> nAfa ?; apply: nAfa. Qed.
Lemma preimage_subset f Y1 Y2 : Y1 `<=` Y2 -> f @^-1` Y1 `<=` f @^-1` Y2.
Proof. by move=> Y12 t /Y12. Qed.
Lemma nonempty_preimage_setI f Y1 Y2 :
(f @^-1` (Y1 `&` Y2)) !=set0 <-> (f @^-1` Y1 `&` f @^-1` Y2) !=set0.
Proof. by split; case=> t ?; exists t. Qed.
Lemma preimage_bigcup {I} (P : set I) f (F : I -> set rT) :
f @^-1` (\bigcup_ (i in P) F i) = \bigcup_(i in P) (f @^-1` F i).
Proof. exact/predeqP. Qed.
Lemma preimage_bigcap {I} (P : set I) f (F : I -> set rT) :
f @^-1` (\bigcap_ (i in P) F i) = \bigcap_(i in P) (f @^-1` F i).
Proof. exact/predeqP. Qed.
Lemma eq_preimage {I T : Type} (D : set I) (A : set T) (F G : I -> T) :
{in D, F =1 G} -> D `&` F @^-1` A = D `&` G @^-1` A.
Proof.
move=> eqFG; apply/predeqP => i.
by split=> [] [Di FAi]; split; rewrite /preimage//= (eqFG,=^~eqFG) ?inE.
Qed.
Lemma notin_setI_preimage T R D (f : T -> R) i :
i \notin f @` D -> D `&` f @^-1` [set i] = set0.
Proof.
by rewrite notin_set/=; apply: contra_notP => /eqP/set0P[t [Dt fit]]; exists t.
Qed.
Lemma comp_preimage T1 T2 T3 (A : set T3) (g : T1 -> T2) (f : T2 -> T3) :
(f \o g) @^-1` A = g @^-1` (f @^-1` A).
Proof. by []. Qed.
Lemma preimage_id T (A : set T) : id @^-1` A = A. Proof. by []. Qed.
Lemma preimage_comp T1 T2 (g : T1 -> rT) (f : T2 -> rT) (C : set T1) :
f @^-1` [set g x | x in C] = [set x | f x \in g @` C].
Proof.
rewrite predeqE => t; split => /=.
by move=> -[r Cr <-]; rewrite inE; exists r.
by rewrite inE => -[r Cr <-]; exists r.
Qed.
Lemma preimage_setI_eq0 (f : aT -> rT) (Y1 Y2 : set rT) :
f @^-1` (Y1 `&` Y2) = set0 <-> f @^-1` Y1 `&` f @^-1` Y2 = set0.
Proof.
by split; apply: contraPP => /eqP/set0P/(nonempty_preimage_setI f _ _).2/set0P/eqP.
Qed.
Lemma preimage0eq (f : aT -> rT) (Y : set rT) : Y = set0 -> f @^-1` Y = set0.
Proof. by move=> ->; rewrite preimage_set0. Qed.
Lemma preimage0 {T R} {f : T -> R} {A : set R} :
A `&` range f `<=` set0 -> f @^-1` A = set0.
Proof. by rewrite -subset0 => + x /= Afx => /(_ (f x))[]; split. Qed.
Lemma preimage10P {T R} {f : T -> R} {x} : ~ range f x <-> f @^-1` [set x] = set0.
Proof.
split => [fx|]; first by rewrite preimage0// => ? [->].
by apply: contraPnot => -[t _ <-] /seteqP[+ _] => /(_ t) /=.
Qed.
Lemma preimage10 {T R} {f : T -> R} {x} : ~ range f x -> f @^-1` [set x] = set0.
Proof. by move/preimage10P. Qed.
End image_lemmas.
Arguments sub_image_setI {aT rT f A B} t _.
Lemma image_comp T1 T2 T3 (f : T1 -> T2) (g : T2 -> T3) A :
g @` (f @` A) = (g \o f) @` A.
Proof.
by rewrite eqEsubset; split => [x [b [a Aa] <- <-]|x [a Aa] <-];
[apply/imageP |apply/imageP/imageP].
Qed.
Lemma some_set0 {T} : some @` set0 = set0 :> set (option T).
Proof. by rewrite -subset0 => x []. Qed.
Lemma some_set1 {T} (x : T) : some @` [set x] = [set some x].
Proof. by apply/seteqP; split=> [_ [_ -> <-]|_ ->]//=; exists x. Qed.
Lemma some_setC {T} (A : set T) : some @` (~` A) = [set~ None] `\` (some @` A).
Proof.
apply/seteqP; split; first by move=> _ [x nAx <-]; split=> // -[y /[swap]-[->]].
by move=> [x [_ exAx]|[/(_ erefl)//]]; exists x => // Ax; apply: exAx; exists x.
Qed.
Lemma some_setT {T} : some @` [set: T] = [set~ None].
Proof. by rewrite -[setT]setCK some_setC setCT some_set0 setD0. Qed.
Lemma some_setI {T} (A B : set T) : some @` (A `&` B) = some @` A `&` some @` B.
Proof.
apply/seteqP; split; first by move=> _ [x [Ax Bx] <-]; split; exists x.
by move=> _ [[x + <-] [y By []]] => /[swap]<- Ay; exists y.
Qed.
Lemma some_setU {T} (A B : set T) : some @` (A `|` B) = some @` A `|` some @` B.
Proof.
by rewrite -[_ `|` _]setCK setCU some_setC some_setI setDIr -!some_setC !setCK.
Qed.
Lemma some_setD {T} (A B : set T) : some @` (A `\` B) = (some @` A) `\` (some @` B).
Proof. by rewrite some_setI some_setC setIDA setIidl// => _ [? _ <-]. Qed.
Lemma sub_image_some {T} (A B : set T) : some @` A `<=` some @` B -> A `<=` B.
Proof. by move=> + x Ax => /(_ (Some x))[|y By [<-]]; first by exists x. Qed.
Lemma sub_image_someP {T} (A B : set T) : some @` A `<=` some @` B <-> A `<=` B.
Proof. by split=> [/sub_image_some//|/image_subset]. Qed.
Lemma image_some_inj {T} (A B : set T) : some @` A = some @` B -> A = B.
Proof. by move=> e; apply/seteqP; split; apply: sub_image_some; rewrite e. Qed.
Lemma some_set_eq0 {T} (A : set T) : some @` A = set0 <-> A = set0.
Proof.
split=> [|->]; last by rewrite some_set0.
by rewrite -!subset0 => A0 x Ax; apply: (A0 (some x)); exists x.
Qed.
Lemma some_preimage {aT rT} (f : aT -> rT) (A : set rT) :
some @` (f @^-1` A) = omap f @^-1` (some @` A).
Proof.
apply/seteqP; split; first by move=> _ [a Afa <-]; exists (f a).
by move=> [x|] [a Aa //= [afx]]; exists x; rewrite // -afx.
Qed.
Lemma some_image {aT rT} (f : aT -> rT) (A : set aT) :
some @` (f @` A) = omap f @` (some @` A).
Proof. by rewrite !image_comp. Qed.
Lemma disj_set_some {T} {A B : set T} :
[disjoint some @` A & some @` B] = [disjoint A & B].
Proof.
by apply/disj_setPS/disj_setPS; rewrite -some_setI -some_set0 sub_image_someP.
Qed.
Section bigop_lemmas.
Context {T I : Type}.
Implicit Types (A : set T) (i : I) (P : set I) (F G : I -> set T).
Lemma bigcup_sup i P F : P i -> F i `<=` \bigcup_(j in P) F j.
Proof. by move=> Pi a Fia; exists i. Qed.
Lemma bigcap_inf i P F : P i -> \bigcap_(j in P) F j `<=` F i.
Proof. by move=> Pi a /(_ i); apply. Qed.
Lemma subset_bigcup_r P : {homo (fun x : I -> set T => \bigcup_(i in P) x i)
: F G / [set F i | i in P] `<=` [set G i | i in P] >-> F `<=` G}.
Proof.
move=> F G FG t [i Pi Fit]; have := FG (F i).
by move=> /(_ (ex_intro2 _ _ _ Pi erefl))[j Pj ji]; exists j => //; rewrite ji.
Qed.
Lemma subset_bigcap_r P : {homo (fun x : I -> set T => \bigcap_(i in P) x i)
: F G / [set F i | i in P] `<=` [set G i | i in P] >-> G `<=` F}.
Proof.
by move=> F G FG t Gt i Pi; have [|j Pj <-] := FG (F i); [exists i|apply: Gt].
Qed.
Lemma eq_bigcupr P F G : (forall i, P i -> F i = G i) ->
\bigcup_(i in P) F i = \bigcup_(i in P) G i.
Proof.
by move=> FG; rewrite eqEsubset; split; apply: subset_bigcup_r;
move=> A [i ? <-]; exists i => //; rewrite FG.
Qed.
Lemma eq_bigcapr P F G : (forall i, P i -> F i = G i) ->
\bigcap_(i in P) F i = \bigcap_(i in P) G i.
Proof.
by move=> FG; rewrite eqEsubset; split; apply: subset_bigcap_r;
move=> A [i ? <-]; exists i => //; rewrite FG.
Qed.
Lemma setC_bigcup P F : ~` (\bigcup_(i in P) F i) = \bigcap_(i in P) ~` F i.
Proof.
by rewrite eqEsubset; split => [t PFt i Pi ?|t PFt [i Pi ?]];
[apply PFt; exists i | exact: (PFt _ Pi)].
Qed.
Lemma setC_bigcap P F : ~` (\bigcap_(i in P) (F i)) = \bigcup_(i in P) ~` F i.
Proof.
apply: setC_inj; rewrite setC_bigcup setCK.
by apply: eq_bigcapr => ?; rewrite setCK.
Qed.
Lemma image_bigcup rT P F (f : T -> rT) :
f @` (\bigcup_(i in P) (F i)) = \bigcup_(i in P) f @` F i.
Proof.
apply/seteqP; split=> [_/= [x [i Pi Fix <-]]|]; first by exists i.
by move=> _ [i Pi [x Fix <-]]; exists x => //; exists i.
Qed.
Lemma some_bigcap P F : some @` (\bigcap_(i in P) (F i)) =
[set~ None] `&` \bigcap_(i in P) some @` F i.
Proof.
apply/seteqP; split.
by move=> _ [x Fx <-]; split=> // i; exists x => //; apply: Fx.
by move=> [x|[//=]] [_ Fx]; exists x => //= i /Fx [y ? [<-]].
Qed.
Lemma bigcup_set_type P F : \bigcup_(i in P) F i = \bigcup_(j : P) F (val j).
Proof.
rewrite predeqE => x; split; last by move=> [[i/= /set_mem Pi] _ Fix]; exists i.
by move=> [i Pi Fix]; exists (SigSub (mem_set Pi)).
Qed.
Lemma eq_bigcupl P Q F : P `<=>` Q ->
\bigcup_(i in P) F i = \bigcup_(i in Q) F i.
Proof. by move=> /seteqP->. Qed.
Lemma eq_bigcapl P Q F : P `<=>` Q ->
\bigcap_(i in P) F i = \bigcap_(i in Q) F i.
Proof. by move=> /seteqP->. Qed.
Lemma eq_bigcup P Q F G : P `<=>` Q -> (forall i, P i -> F i = G i) ->
\bigcup_(i in P) F i = \bigcup_(i in Q) G i.
Proof. by move=> /eq_bigcupl<- /eq_bigcupr->. Qed.
Lemma eq_bigcap P Q F G : P `<=>` Q -> (forall i, P i -> F i = G i) ->
\bigcap_(i in P) F i = \bigcap_(i in Q) G i.
Proof. by move=> /eq_bigcapl<- /eq_bigcapr->. Qed.
Lemma bigcupU P F G : \bigcup_(i in P) (F i `|` G i) =
(\bigcup_(i in P) F i) `|` (\bigcup_(i in P) G i).
Proof.
apply/predeqP => x; split=> [[i Pi [Fix|Gix]]|[[i Pi Fix]|[i Pi Gix]]];
by [left; exists i|right; exists i|exists i =>//; left|exists i =>//; right].
Qed.
Lemma bigcapI P F G : \bigcap_(i in P) (F i `&` G i) =
(\bigcap_(i in P) F i) `&` (\bigcap_(i in P) G i).
Proof.
apply: setC_inj; rewrite !(setCI, setC_bigcap) -bigcupU.
by apply: eq_bigcupr => *; rewrite setCI.
Qed.
Lemma bigcup_const P A : P !=set0 -> \bigcup_(_ in P) A = A.
Proof. by case=> j ?; rewrite predeqE => x; split=> [[i //]|Ax]; exists j. Qed.
Lemma bigcap_const P A : P !=set0 -> \bigcap_(_ in P) A = A.
Proof. by move=> PN0; apply: setC_inj; rewrite setC_bigcap bigcup_const. Qed.
Lemma bigcapIl P F A : P !=set0 ->
\bigcap_(i in P) (F i `&` A) = \bigcap_(i in P) F i `&` A.
Proof. by move=> PN0; rewrite bigcapI bigcap_const. Qed.
Lemma bigcapIr P F A : P !=set0 ->
\bigcap_(i in P) (A `&` F i) = A `&` \bigcap_(i in P) F i.
Proof. by move=> PN0; rewrite bigcapI bigcap_const. Qed.
Lemma bigcupUl P F A : P !=set0 ->
\bigcup_(i in P) (F i `|` A) = \bigcup_(i in P) F i `|` A.
Proof. by move=> PN0; rewrite bigcupU bigcup_const. Qed.
Lemma bigcupUr P F A : P !=set0 ->
\bigcup_(i in P) (A `|` F i) = A `|` \bigcup_(i in P) F i.
Proof. by move=> PN0; rewrite bigcupU bigcup_const. Qed.
Lemma bigcup_set0 F : \bigcup_(i in set0) F i = set0.
Proof. by rewrite eqEsubset; split => a // []. Qed.
Lemma bigcup_set1 F i : \bigcup_(j in [set i]) F j = F i.
Proof. by rewrite eqEsubset; split => ? => [[] ? -> //|]; exists i. Qed.
Lemma bigcap_set0 F : \bigcap_(i in set0) F i = setT.
Proof. by rewrite eqEsubset; split=> a // []. Qed.
Lemma bigcap_set1 F i : \bigcap_(j in [set i]) F j = F i.
Proof. by rewrite eqEsubset; split => ?; [exact|move=> ? ? ->]. Qed.
Lemma bigcup_nonempty P F :
(\bigcup_(i in P) F i !=set0) <-> exists2 i, P i & F i !=set0.
Proof.
split=> [[t [i ? ?]]|[j ? [t ?]]]; by [exists i => //; exists t| exists t, j].
Qed.
Lemma bigcup0 P F :
(forall i, P i -> F i = set0) -> \bigcup_(i in P) F i = set0.
Proof. by move=> PF; rewrite -subset0 => t -[i /PF ->]. Qed.
Lemma bigcap0 P F :
(exists2 i, P i & F i = set0) -> \bigcap_(i in P) F i = set0.
Proof. by move=> [i Pi]; rewrite -!subset0 => Fi t Ft; apply/Fi/Ft. Qed.
Lemma bigcapT P F :
(forall i, P i -> F i = setT) -> \bigcap_(i in P) F i = setT.
Proof. by move=> PF; rewrite -subTset => t -[i /PF ->]. Qed.
Lemma bigcupT P F :
(exists2 i, P i & F i = setT) -> \bigcup_(i in P) F i = setT.
Proof. by move=> [i Pi F0]; rewrite -subTset => t; exists i; rewrite ?F0. Qed.
Lemma bigcup0P P F :
(\bigcup_(i in P) F i = set0) <-> forall i, P i -> F i = set0.
Proof.
split=> [|/bigcup0//]; rewrite -subset0 => F0 i Pi; rewrite -subset0.
by move=> t Ft; apply: F0; exists i.
Qed.
Lemma bigcapTP P F :
(\bigcap_(i in P) F i = setT) <-> forall i, P i -> F i = setT.
Proof.
split=> [|/bigcapT//]; rewrite -subTset => FT i Pi; rewrite -subTset.
by move=> t _; apply: FT.
Qed.
Lemma setI_bigcupr F P A :
A `&` \bigcup_(i in P) F i = \bigcup_(i in P) (A `&` F i).
Proof.
rewrite predeqE => t; split => [[At [k ? ?]]|[k ? [At ?]]];
by [exists k |split => //; exists k].
Qed.
Lemma setI_bigcupl F P A :
\bigcup_(i in P) F i `&` A = \bigcup_(i in P) (F i `&` A).
Proof. by rewrite setIC setI_bigcupr//; under eq_bigcupr do rewrite setIC. Qed.
Lemma setU_bigcapr F P A :
A `|` \bigcap_(i in P) F i = \bigcap_(i in P) (A `|` F i).
Proof.
apply: setC_inj; rewrite setCU !setC_bigcap setI_bigcupr.
by under eq_bigcupr do rewrite -setCU.
Qed.
Lemma setU_bigcapl F P A :
\bigcap_(i in P) F i `|` A = \bigcap_(i in P) (F i `|` A).
Proof. by rewrite setUC setU_bigcapr//; under eq_bigcapr do rewrite setUC. Qed.
Lemma bigcup_mkcond P F :
\bigcup_(i in P) F i = \bigcup_i if i \in P then F i else set0.
Proof.
rewrite predeqE => x; split=> [[i Pi Fix]|[i _]].
by exists i => //; case: ifPn; rewrite (inE, notin_set).
by case: ifPn; rewrite (inE, notin_set) => Pi Fix; exists i.
Qed.
Lemma bigcup_mkcondr P Q F :
\bigcup_(i in P `&` Q) F i = \bigcup_(i in P) if i \in Q then F i else set0.
Proof.
rewrite bigcup_mkcond [RHS]bigcup_mkcond; apply: eq_bigcupr => i _.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
Lemma bigcup_mkcondl P Q F :
\bigcup_(i in P `&` Q) F i = \bigcup_(i in Q) if i \in P then F i else set0.
Proof.
rewrite bigcup_mkcond [RHS]bigcup_mkcond; apply: eq_bigcupr => i _.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
Lemma bigcap_mkcond F P :
\bigcap_(i in P) F i = \bigcap_i if i \in P then F i else setT.
Proof.
apply: setC_inj; rewrite !setC_bigcap bigcup_mkcond; apply: eq_bigcupr => i _.
by case: ifP; rewrite ?setCT.
Qed.
Lemma bigcap_mkcondr P Q F :
\bigcap_(i in P `&` Q) F i = \bigcap_(i in P) if i \in Q then F i else setT.
Proof.
rewrite bigcap_mkcond [RHS]bigcap_mkcond; apply: eq_bigcapr => i _.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
Lemma bigcap_mkcondl P Q F :
\bigcap_(i in P `&` Q) F i = \bigcap_(i in Q) if i \in P then F i else setT.
Proof.
rewrite bigcap_mkcond [RHS]bigcap_mkcond; apply: eq_bigcapr => i _.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
Lemma bigcup_imset1 P (f : I -> T) : \bigcup_(x in P) [set f x] = f @` P.
Proof.
by rewrite eqEsubset; split=>[a [i ?]->| a [i ?]<-]; [apply: imageP | exists i].
Qed.
Lemma bigcup_setU F (X Y : set I) :
\bigcup_(i in X `|` Y) F i = \bigcup_(i in X) F i `|` \bigcup_(i in Y) F i.
Proof.
rewrite predeqE => t; split=> [[z]|].
by move=> [Xz|Yz]; [left|right]; exists z.
by move=> [[z Xz Fzy]|[z Yz Fxz]]; exists z => //; [left|right].
Qed.
Lemma bigcap_setU F (X Y : set I) :
\bigcap_(i in X `|` Y) F i = \bigcap_(i in X) F i `&` \bigcap_(i in Y) F i.
Proof. by apply: setC_inj; rewrite !(setCI, setC_bigcap) bigcup_setU. Qed.
Lemma bigcup_setU1 F (x : I) (X : set I) :
\bigcup_(i in x |` X) F i = F x `|` \bigcup_(i in X) F i.
Proof. by rewrite bigcup_setU bigcup_set1. Qed.
Lemma bigcap_setU1 F (x : I) (X : set I) :
\bigcap_(i in x |` X) F i = F x `&` \bigcap_(i in X) F i.
Proof. by rewrite bigcap_setU bigcap_set1. Qed.
Lemma bigcup_setD1 (x : I) F (X : set I) : X x ->
\bigcup_(i in X) F i = F x `|` \bigcup_(i in X `\ x) F i.
Proof. by move=> Xx; rewrite -bigcup_setU1 setD1K. Qed.
Lemma bigcap_setD1 (x : I) F (X : set I) : X x ->
\bigcap_(i in X) F i = F x `&` \bigcap_(i in X `\ x) F i.
Proof. by move=> Xx; rewrite -bigcap_setU1 setD1K. Qed.
Lemma setC_bigsetU U (s : seq T) (f : T -> set U) (P : pred T) :
(~` \big[setU/set0]_(t <- s | P t) f t) = \big[setI/setT]_(t <- s | P t) ~` f t.
Proof. by elim/big_rec2: _ => [|i X Y Pi <-]; rewrite ?setC0 ?setCU. Qed.
Lemma setC_bigsetI U (s : seq T) (f : T -> set U) (P : pred T) :
(~` \big[setI/setT]_(t <- s | P t) f t) = \big[setU/set0]_(t <- s | P t) ~` f t.
Proof. by elim/big_rec2: _ => [|i X Y Pi <-]; rewrite ?setCT ?setCI. Qed.
Lemma bigcupDr (F : I -> set T) (P : set I) (A : set T) : P !=set0 ->
\bigcap_(i in P) (A `\` F i) = A `\` \bigcup_(i in P) F i.
Proof. by move=> PN0; rewrite setDE setC_bigcup -bigcapIr. Qed.
Lemma setD_bigcupl (F : I -> set T) (P : set I) (A : set T) :
\bigcup_(i in P) F i `\` A = \bigcup_(i in P) (F i `\` A).
Proof. by rewrite setDE setI_bigcupl; under eq_bigcupr do rewrite -setDE. Qed.
Lemma bigcup_bigcup_dep {J : Type} (F : I -> J -> set T) (P : set I) (Q : I -> set J) :
\bigcup_(i in P) \bigcup_(j in Q i) F i j =
\bigcup_(k in P `*`` Q) F k.1 k.2.
Proof.
apply/predeqP => x; split=> [[i Pi [j Pj Fijx]]|]; first by exists (i, j).
by move=> [[/= i j] [Pi Qj] Fijx]; exists i => //; exists j.
Qed.
Lemma bigcup_bigcup {J : Type} (F : I -> J -> set T) (P : set I) (Q : set J) :
\bigcup_(i in P) \bigcup_(j in Q) F i j =
\bigcup_(k in P `*` Q) F k.1 k.2.
Proof. exact: bigcup_bigcup_dep. Qed.
Lemma bigcupID (Q : set I) (F : I -> set T) (P : set I) :
\bigcup_(i in P) F i =
(\bigcup_(i in P `&` Q) F i) `|` (\bigcup_(i in P `&` ~` Q) F i).
Proof. by rewrite -bigcup_setU -setIUr setUv setIT. Qed.
Lemma bigcapID (Q : set I) (F : I -> set T) (P : set I) :
\bigcap_(i in P) F i =
(\bigcap_(i in P `&` Q) F i) `&` (\bigcap_(i in P `&` ~` Q) F i).
Proof. by rewrite -bigcap_setU -setIUr setUv setIT. Qed.
End bigop_lemmas.
Arguments bigcup_setD1 {T I} x.
Arguments bigcap_setD1 {T I} x.
Definition bigcup2 T (A B : set T) : nat -> set T :=
fun i => if i == 0%N then A else if i == 1%N then B else set0.
Arguments bigcup2 T A B n /.
Lemma bigcup2E T (A B : set T) : \bigcup_i (bigcup2 A B) i = A `|` B.
Proof.
rewrite predeqE => t; split=> [|[At|Bt]]; [|by exists 0%N|by exists 1%N].
by case=> -[_ At|[_ Bt|//]]; [left|right].
Qed.
Lemma bigcup2inE T (A B : set T) : \bigcup_(i in `I_2) (bigcup2 A B) i = A `|` B.
Proof.
rewrite predeqE => t; split=> [|[At|Bt]]; [|by exists 0%N|by exists 1%N].
by case=> -[_ At|[_ Bt|//]]; [left|right].
Qed.
Definition bigcap2 T (A B : set T) : nat -> set T :=
fun i => if i == 0%N then A else if i == 1%N then B else setT.
Arguments bigcap2 T A B n /.
Lemma bigcap2E T (A B : set T) : \bigcap_i (bigcap2 A B) i = A `&` B.
Proof.
apply: setC_inj; rewrite setC_bigcap setCI -bigcup2E /bigcap2 /bigcup2.
by apply: eq_bigcupr => -[|[|[]]]//=; rewrite setCT.
Qed.
Lemma bigcap2inE T (A B : set T) : \bigcap_(i in `I_2) (bigcap2 A B) i = A `&` B.
Proof.
apply: setC_inj; rewrite setC_bigcap setCI -bigcup2inE /bigcap2 /bigcup2.
by apply: eq_bigcupr => // -[|[|[]]].
Qed.
Lemma bigcup_sub T I (F : I -> set T) (D : set T) (P : set I) :
(forall i, P i -> F i `<=` D) -> \bigcup_(i in P) F i `<=` D.
Proof. by move=> FD t [n Pn Fnt]; apply: (FD n). Qed.
Lemma sub_bigcap T I (F : I -> set T) (D : set T) (P : set I) :
(forall i, P i -> D `<=` F i) -> D `<=` \bigcap_(i in P) F i.
Proof. by move=> DF t Dt n Pn; apply: DF. Qed.
Lemma subset_bigcup T I [P : set I] [F G : I -> set T] :
(forall i, P i -> F i `<=` G i) ->
\bigcup_(i in P) F i `<=` \bigcup_(i in P) G i.
Proof.
by move=> FG; apply: bigcup_sub => i Pi + /(FG _ Pi); apply: bigcup_sup.
Qed.
Lemma subset_bigcap T I [P : set I] [F G : I -> set T] :
(forall i, P i -> F i `<=` G i) ->
\bigcap_(i in P) F i `<=` \bigcap_(i in P) G i.
Proof.
move=> FG; apply: sub_bigcap => i Pi x Fx; apply: FG => //.
exact: bigcap_inf Fx.
Qed.
Lemma bigcup_image {aT rT I} (P : set aT) (f : aT -> I) (F : I -> set rT) :
\bigcup_(x in f @` P) F x = \bigcup_(x in P) F (f x).
Proof.
rewrite eqEsubset; split=> x; first by case=> j [] i pi <- Xfix; exists i.
by case=> i Pi Ffix; exists (f i); [exists i|].
Qed.
Lemma bigcap_set_type {I T} (P : set I) (F : I -> set T) :
\bigcap_(i in P) F i = \bigcap_(j : P) F (val j).
Proof. by apply: setC_inj; rewrite !setC_bigcap bigcup_set_type. Qed.
Lemma bigcap_image {aT rT I} (P : set aT) (f : aT -> I) (F : I -> set rT) :
\bigcap_(x in f @` P) F x = \bigcap_(x in P) F (f x).
Proof. by apply: setC_inj; rewrite !setC_bigcap bigcup_image. Qed.
Lemma bigcup_fset {I : choiceType} {U : Type}
(F : I -> set U) (X : {fset I}) :
\bigcup_(i in [set i | i \in X]) F i = \big[setU/set0]_(i <- X) F i :> set U.
Proof.
elim/finSet_rect: X => X IHX; have [->|[x xX]] := fset_0Vmem X.
by rewrite big_seq_fset0 -subset0 => x [].
rewrite -(fsetD1K xX) set_fsetU set_fset1 big_fsetU1 ?inE ?eqxx//=.
by rewrite bigcup_setU1 IHX// fproperD1.
Qed.
Lemma bigcap_fset {I : choiceType} {U : Type}
(F : I -> set U) (X : {fset I}) :
\bigcap_(i in [set i | i \in X]) F i = \big[setI/setT]_(i <- X) F i :> set U.
Proof. by apply: setC_inj; rewrite setC_bigcap setC_bigsetI bigcup_fset. Qed.
Lemma bigcup_fsetU1 {T U : choiceType} (F : T -> set U) (x : T) (X : {fset T}) :
\bigcup_(i in [set j | j \in x |` X]%fset) F i =
F x `|` \bigcup_(i in [set j | j \in X]) F i.
Proof. by rewrite set_fsetU1 bigcup_setU1. Qed.
Lemma bigcap_fsetU1 {T U : choiceType} (F : T -> set U) (x : T) (X : {fset T}) :
\bigcap_(i in [set j | j \in x |` X]%fset) F i =
F x `&` \bigcap_(i in [set j | j \in X]) F i.
Proof. by rewrite set_fsetU1 bigcap_setU1. Qed.
Lemma bigcup_fsetD1 {T U : choiceType} (x : T) (F : T -> set U) (X : {fset T}) :
x \in X ->
\bigcup_(i in [set i | i \in X]%fset) F i =
F x `|` \bigcup_(i in [set i | i \in X `\ x]%fset) F i.
Proof. by move=> Xx; rewrite (bigcup_setD1 x)// set_fsetD1. Qed.
Arguments bigcup_fsetD1 {T U} x.
Lemma bigcap_fsetD1 {T U : choiceType} (x : T) (F : T -> set U) (X : {fset T}) :
x \in X ->
\bigcap_(i in [set i | i \in X]%fset) F i =
F x `&` \bigcap_(i in [set i | i \in X `\ x]%fset) F i.
Proof. by move=> Xx; rewrite (bigcap_setD1 x)// set_fsetD1. Qed.
Arguments bigcup_fsetD1 {T U} x.
Section bigcup_set.
Variables (T : choiceType) (U : Type).
Lemma bigcup_set_cond (s : seq T) (f : T -> set U) (P : pred T) :
\bigcup_(t in [set x | (x \in s) && P x]) (f t) =
\big[setU/set0]_(t <- s | P t) (f t).
Proof.
elim: s => [/=|h s ih]; first by rewrite set_nil bigcup_set0 big_nil.
rewrite big_cons -ih predeqE => u; split=> [[t /andP[]]|].
- rewrite inE => /orP[/eqP ->{t} -> fhu|ts Pt ftu]; first by left.
case: ifPn => Ph; first by right; exists t => //; apply/andP; split.
by exists t => //; apply/andP; split.
- case: ifPn => [Ph [fhu|[t /andP[ts Pt] ftu]]|Ph [t /andP[ts Pt ftu]]].
+ by exists h => //; apply/andP; split => //; rewrite mem_head.
+ by exists t => //; apply/andP; split => //; rewrite inE orbC ts.
+ by exists t => //; apply/andP; split => //; rewrite inE orbC ts.
Qed.
Lemma bigcup_set (s : seq T) (f : T -> set U) :
\bigcup_(t in [set` s]) (f t) = \big[setU/set0]_(t <- s) (f t).
Proof.
rewrite -(bigcup_set_cond s f xpredT); congr (\bigcup_(t in mkset _) _).
by rewrite funeqE => t; rewrite andbT.
Qed.
Lemma bigcap_set_cond (s : seq T) (f : T -> set U) (P : pred T) :
\bigcap_(t in [set x | (x \in s) && P x]) (f t) =
\big[setI/setT]_(t <- s | P t) (f t).
Proof. by apply: setC_inj; rewrite setC_bigcap setC_bigsetI bigcup_set_cond. Qed.
Lemma bigcap_set (s : seq T) (f : T -> set U) :
\bigcap_(t in [set` s]) (f t) = \big[setI/setT]_(t <- s) (f t).
Proof. by apply: setC_inj; rewrite setC_bigcap setC_bigsetI bigcup_set. Qed.
End bigcup_set.
Lemma bigcup_pred [T : finType] [U : Type] (P : {pred T}) (f : T -> set U) :
\bigcup_(t in [set` P]) f t = \big[setU/set0]_(t in P) f t.
Proof.
apply/predeqP => u; split=> [[x Px fxu]|]; first by rewrite (bigD1 x)//; left.
move=> /mem_set; rewrite (@big_morph _ _ (fun X => u \in X) false orb).
- by rewrite big_has_cond => /hasP[x _ /andP[xP]]; rewrite inE => ufx; exists x.
- by move=> /= x y; apply/idP/orP; rewrite !inE.
- by rewrite in_set0.
Qed.
Section smallest.
Context {T} (C : set T -> Prop) (G : set T).
Definition smallest := \bigcap_(A in [set M | C M /\ G `<=` M]) A.
Lemma sub_smallest X : X `<=` G -> X `<=` smallest.
Proof. by move=> XG A /XG GA Y /= [PY]; apply. Qed.
Lemma sub_gen_smallest : G `<=` smallest. Proof. exact: sub_smallest. Qed.
Lemma smallest_sub X : C X -> G `<=` X -> smallest `<=` X.
Proof. by move=> XC GX A; apply. Qed.
Lemma smallest_id : C G -> smallest = G.
Proof.
by move=> Cs; apply/seteqP; split; [apply: smallest_sub|apply: sub_smallest].
Qed.
End smallest.
#[global] Hint Resolve sub_gen_smallest : core.
Lemma sub_smallest2r {T} (C : set T-> Prop) G1 G2 :
C (smallest C G2) -> G1 `<=` G2 -> smallest C G1 `<=` smallest C G2.
Proof. by move=> *; apply: smallest_sub=> //; apply: sub_smallest. Qed.
Lemma sub_smallest2l {T} (C1 C2 : set T -> Prop) :
(forall G, C2 G -> C1 G) ->
forall G, smallest C1 G `<=` smallest C2 G.
Proof. by move=> C12 G X sX M [/C12 C1M GM]; apply: sX. Qed.
Section bigop_nat_lemmas.
Context {T : Type}.
Implicit Types (A : set T) (F : nat -> set T).
Lemma bigcup_mkord n F :
\bigcup_(i in `I_n) F i = \big[setU/set0]_(i < n) F i.
Proof.
rewrite -(big_mkord xpredT F) -bigcup_set.
by apply: eq_bigcupl; split=> i; rewrite /= mem_index_iota leq0n.
Qed.
Lemma bigcap_mkord n F :
\bigcap_(i in `I_n) F i = \big[setI/setT]_(i < n) F i.
Proof. by apply: setC_inj; rewrite setC_bigsetI setC_bigcap bigcup_mkord. Qed.
Lemma bigsetU_bigcup F n : \big[setU/set0]_(i < n) F i `<=` \bigcup_k F k.
Proof. by rewrite -bigcup_mkord => x [k _ Fkx]; exists k. Qed.
Lemma bigsetU_bigcup2 (A B : set T) :
\big[setU/set0]_(i < 2) bigcup2 A B i = A `|` B.
Proof. by rewrite -bigcup_mkord bigcup2inE. Qed.
Lemma bigsetI_bigcap2 (A B : set T) :
\big[setI/setT]_(i < 2) bigcap2 A B i = A `&` B.
Proof. by rewrite -bigcap_mkord bigcap2inE. Qed.
Lemma bigcup_splitn n F :
\bigcup_i F i = \big[setU/set0]_(i < n) F i `|` \bigcup_i F (n + i)%N.
Proof.
rewrite -bigcup_mkord -(bigcup_image _ (addn n)) -bigcup_setU.
apply: eq_bigcupl; split=> // k _.
have [ltkn|lenk] := ltnP k n; [left => //|right].
by exists (k - n); rewrite // subnKC.
Qed.
Lemma bigcap_splitn n F :
\bigcap_i F i = \big[setI/setT]_(i < n) F i `&` \bigcap_i F (n + i)%N.
Proof.
by apply: setC_inj; rewrite setCI !setC_bigcap (bigcup_splitn n) setC_bigsetI.
Qed.
Lemma subset_bigsetU F :
{homo (fun n => \big[setU/set0]_(i < n) F i) : n m / (n <= m)%N >-> n `<=` m}.
Proof.
move=> m n mn; rewrite -!bigcup_mkord => x [i im Fix].
by exists i => //=; rewrite (leq_trans im).
Qed.
Lemma subset_bigsetI F :
{homo (fun n => \big[setI/setT]_(i < n) F i) : n m / (n <= m)%N >-> m `<=` n}.
Proof.
move=> m n mn; rewrite -setCS !setC_bigsetI.
exact: (@subset_bigsetU (setC \o F)).
Qed.
Lemma subset_bigsetU_cond (P : pred nat) F :
{homo (fun n => \big[setU/set0]_(i < n | P i) F i)
: n m / (n <= m)%N >-> n `<=` m}.
Proof.
move=> n m nm; rewrite big_mkcond [in X in _ `<=` X]big_mkcond/=.
exact: (@subset_bigsetU (fun i => if P i then F i else _)).
Qed.
Lemma subset_bigsetI_cond (P : pred nat) F :
{homo (fun n => \big[setI/setT]_(i < n | P i) F i)
: n m / (n <= m)%N >-> m `<=` n}.
Proof.
move=> n m nm; rewrite big_mkcond [in X in _ `<=` X]big_mkcond/=.
exact: (@subset_bigsetI (fun i => if P i then F i else _)).
Qed.
End bigop_nat_lemmas.
Definition is_subset1 {T} (A : set T) := forall x y, A x -> A y -> x = y.
Definition is_fun {T1 T2} (f : T1 -> T2 -> Prop) := Logic.all (is_subset1 \o f).
Definition is_total {T1 T2} (f : T1 -> T2 -> Prop) := Logic.all (nonempty \o f).
Definition is_totalfun {T1 T2} (f : T1 -> T2 -> Prop) :=
forall x, f x !=set0 /\ is_subset1 (f x).
Definition xget {T : choiceType} x0 (P : set T) : T :=
if pselect (exists x : T, `[<P x>]) isn't left exP then x0
else projT1 (sigW exP).
CoInductive xget_spec {T : choiceType} x0 (P : set T) : T -> Prop -> Type :=
| XGetSome x of x = xget x0 P & P x : xget_spec x0 P x True
| XGetNone of (forall x, ~ P x) : xget_spec x0 P x0 False.
Lemma xgetP {T : choiceType} x0 (P : set T) :
xget_spec x0 P (xget x0 P) (P (xget x0 P)).
Proof.
move: (erefl (xget x0 P)); set y := {2}(xget x0 P).
rewrite /xget; case: pselect => /= [?|neqP _].
by case: sigW => x /= /asboolP Px; rewrite [P x]propT //; constructor.
suff NP x : ~ P x by rewrite [P x0]propF //; constructor.
by apply: contra_not neqP => Px; exists x; apply/asboolP.
Qed.
Lemma xgetPex {T : choiceType} x0 (P : set T) : (exists x, P x) -> P (xget x0 P).
Proof. by case: xgetP=> // NP [x /NP]. Qed.
Lemma xgetI {T : choiceType} x0 (P : set T) (x : T): P x -> P (xget x0 P).
Proof. by move=> Px; apply: xgetPex; exists x. Qed.
Lemma xget_subset1 {T : choiceType} x0 (P : set T) (x : T) :
P x -> is_subset1 P -> xget x0 P = x.
Proof. by move=> Px /(_ _ _ (xgetI x0 Px) Px). Qed.
Lemma xget_unique {T : choiceType} x0 (P : set T) (x : T) :
P x -> (forall y, P y -> y = x) -> xget x0 P = x.
Proof. by move=> /xget_subset1 gPx eqx; apply: gPx=> y z /eqx-> /eqx. Qed.
Lemma xgetPN {T : choiceType} x0 (P : set T) :
(forall x, ~ P x) -> xget x0 P = x0.
Proof. by case: xgetP => // x _ Px /(_ x). Qed.
Definition fun_of_rel {aT} {rT : choiceType} (f0 : aT -> rT)
(f : aT -> rT -> Prop) := fun x => xget (f0 x) (f x).
Lemma fun_of_relP {aT} {rT : choiceType} (f : aT -> rT -> Prop) (f0 : aT -> rT) a :
f a !=set0 -> f a (fun_of_rel f0 f a).
Proof. by move=> [b fab]; rewrite /fun_of_rel; apply: xgetI fab. Qed.
Lemma fun_of_rel_uniq {aT} {rT : choiceType}
(f : aT -> rT -> Prop) (f0 : aT -> rT) a :
is_subset1 (f a) -> forall b, f a b -> fun_of_rel f0 f a = b.
Proof. by move=> fa1 b /xget_subset1 xgeteq; rewrite /fun_of_rel xgeteq. Qed.
Lemma forall_sig T (A : set T) (P : {x | x \in A} -> Prop) :
(forall u : {x | x \in A}, P u) =
(forall u : T, forall (a : A u), P (exist _ u (mem_set a))).
Proof.
rewrite propeqE; split=> [+ u a|PA [u a]]; first exact.
have Au : A u by rewrite inE in a.
by rewrite (Prop_irrelevance a (mem_set Au)); apply: PA.
Qed.
Lemma in_setP {U} (A : set U) (P : U -> Prop) :
{in A, forall x, P x} <-> forall x, A x -> P x.
Proof. by split=> AP x; have := AP x; rewrite inE. Qed.
Lemma in_set2P {U V} (A : set U) (B : set V) (P : U -> V -> Prop) :
{in A & B, forall x y, P x y} <-> (forall x y, A x -> B y -> P x y).
Proof. by split=> AP x y; have := AP x y; rewrite !inE. Qed.
Lemma in1TT [T1] [P1 : T1 -> Prop] :
{in [set: T1], forall x : T1, P1 x : Prop} -> forall x : T1, P1 x : Prop.
Proof. by move=> + *; apply; rewrite !inE. Qed.
Lemma in2TT [T1 T2] [P2 : T1 -> T2 -> Prop] :
{in [set: T1] & [set: T2], forall (x : T1) (y : T2), P2 x y : Prop} ->
forall (x : T1) (y : T2), P2 x y : Prop.
Proof. by move=> + *; apply; rewrite !inE. Qed.
Lemma in3TT [T1 T2 T3] [P3 : T1 -> T2 -> T3 -> Prop] :
{in [set: T1] & [set: T2] & [set: T3], forall (x : T1) (y : T2) (z : T3), P3 x y z : Prop} ->
forall (x : T1) (y : T2) (z : T3), P3 x y z : Prop.
Proof. by move=> + *; apply; rewrite !inE. Qed.
Lemma inTT_bij [T1 T2 : Type] [f : T1 -> T2] :
{in [set: T1], bijective f} -> bijective f.
Proof. by case=> [g /in1TT + /in1TT +]; exists g. Qed.
Module Pointed.
Definition point_of (T : Type) := T.
Record class_of (T : Type) := Class {
base : Choice.class_of T;
mixin : point_of T
}.
Section ClassDef.
Structure type := Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone c of phant_id class c := @Pack T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Local Coercion base : class_of >-> Choice.class_of.
Definition pack m :=
fun bT b of phant_id (Choice.class bT) b => @Pack T (Class b m).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
End ClassDef.
Module Exports.
Coercion sort : type >-> Sortclass.
Coercion base : class_of >-> Choice.class_of.
Coercion mixin : class_of >-> point_of.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Notation pointedType := type.
Notation PointedType T m := (@pack T m _ _ idfun).
Notation "[ 'pointedType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'pointedType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'pointedType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'pointedType' 'of' T ]") : form_scope.
End Exports.
End Pointed.
Export Pointed.Exports.
Definition point {M : pointedType} : M := Pointed.mixin (Pointed.class M).
Canonical arrow_pointedType (T : Type) (T' : pointedType) :=
PointedType (T -> T') (fun=> point).
Definition dep_arrow_pointedType (T : Type) (T' : T -> pointedType) :=
Pointed.Pack
(Pointed.Class (dep_arrow_choiceClass T') (fun i => @point (T' i))).
Canonical bool_pointedType := PointedType bool false.
Canonical Prop_pointedType := PointedType Prop False.
Canonical nat_pointedType := PointedType nat 0%N.
Canonical prod_pointedType (T T' : pointedType) :=
PointedType (T * T') (point, point).
Canonical matrix_pointedType m n (T : pointedType) :=
PointedType 'M[T]_(m, n) (\matrix_(_, _) point)%R.
Canonical option_pointedType (T : choiceType) := PointedType (option T) None.
Notation get := (xget point).
Notation "[ 'get' x | E ]" := (get [set x | E])
(at level 0, x name, format "[ 'get' x | E ]", only printing) : form_scope.
Notation "[ 'get' x : T | E ]" := (get (fun x : T => E))
(at level 0, x name, format "[ 'get' x : T | E ]", only parsing) : form_scope.
Notation "[ 'get' x | E ]" := (get (fun x => E))
(at level 0, x name, format "[ 'get' x | E ]") : form_scope.
Section PointedTheory.
Context {T : pointedType}.
Lemma getPex (P : set T) : (exists x, P x) -> P (get P).
Proof. exact: (xgetPex point). Qed.
Lemma getI (P : set T) (x : T): P x -> P (get P).
Proof. exact: (xgetI point). Qed.
Lemma get_subset1 (P : set T) (x : T) : P x -> is_subset1 P -> get P = x.
Proof. exact: (xget_subset1 point). Qed.
Lemma get_unique (P : set T) (x : T) :
P x -> (forall y, P y -> y = x) -> get P = x.
Proof. exact: (xget_unique point). Qed.
Lemma getPN (P : set T) : (forall x, ~ P x) -> get P = point.
Proof. exact: (xgetPN point). Qed.
End PointedTheory.
Variant squashed T : Prop := squash (x : T).
Arguments squash {T} x.
Notation "$| T |" := (squashed T) : form_scope.
Tactic Notation "squash" uconstr(x) := (exists; refine x) ||
match goal with |- $| ?T | => exists; refine [the T of x] end.
Definition unsquash {T} (s : $|T|) : T :=
projT1 (cid (let: squash x := s in @ex_intro T _ x isT)).
Lemma unsquashK {T} : cancel (@unsquash T) squash. Proof. by move=> []. Qed.
(* Empty types *)
Module Empty.
Definition mixin_of T := T -> False.
Section EqMixin.
Variables (T : Type) (m : mixin_of T).
Definition eq_op (x y : T) := true.
Lemma eq_opP : Equality.axiom eq_op. Proof. by []. Qed.
Definition eqMixin := EqMixin eq_opP.
End EqMixin.
Section ChoiceMixin.
Variables (T : Type) (m : mixin_of T).
Definition find of pred T & nat : option T := None.
Lemma findP (P : pred T) (n : nat) (x : T) : find P n = Some x -> P x.
Proof. by []. Qed.
Lemma ex_find (P : pred T) : (exists x : T, P x) -> exists n : nat, find P n.
Proof. by case. Qed.
Lemma eq_find (P Q : pred T) : P =1 Q -> find P =1 find Q.
Proof. by []. Qed.
Definition choiceMixin := Choice.Mixin findP ex_find eq_find.
End ChoiceMixin.
Section CountMixin.
Variables (T : Type) (m : mixin_of T).
Definition pickle : T -> nat := fun=> 0%N.
Definition unpickle : nat -> option T := fun=> None.
Lemma pickleK : pcancel pickle unpickle. Proof. by []. Qed.
Definition countMixin := CountMixin pickleK.
End CountMixin.
Section FinMixin.
Variables (T : countType) (m : mixin_of T).
Lemma fin_axiom : Finite.axiom ([::] : seq T). Proof. by []. Qed.
Definition finMixin := FinMixin fin_axiom.
End FinMixin.
Section ClassDef.
Set Primitive Projections.
Record class_of T := Class {
base : Finite.class_of T;
mixin : mixin_of T
}.
Unset Primitive Projections.
Local Coercion base : class_of >-> Finite.class_of.
Structure type : Type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c as cT' := cT return class_of cT' in c.
Definition clone c of phant_id class c := @Pack T c.
Definition pack (m0 : mixin_of T) :=
fun bT b & phant_id (Finite.class bT) b =>
fun m & phant_id m0 m => Pack (@Class T b m).
Definition eqType := @Equality.Pack cT class.
Definition choiceType := @Choice.Pack cT class.
Definition countType := @Countable.Pack cT class.
Definition finType := @Finite.Pack cT class.
End ClassDef.
Module Import Exports.
Coercion base : class_of >-> Finite.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Coercion finType : type >-> Finite.type.
Canonical finType.
Notation emptyType := type.
Notation EmptyType T m := (@pack T m _ _ id _ id).
Notation "[ 'emptyType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'emptyType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'emptyType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'emptyType' 'of' T ]") : form_scope.
Coercion eqMixin : mixin_of >-> Equality.mixin_of.
Coercion choiceMixin : mixin_of >-> Choice.mixin_of.
Coercion countMixin : mixin_of >-> Countable.mixin_of.
End Exports.
End Empty.
Export Empty.Exports.
Definition False_emptyMixin : Empty.mixin_of False := id.
Canonical False_eqType := EqType False False_emptyMixin.
Canonical False_choiceType := ChoiceType False False_emptyMixin.
Canonical False_countType := CountType False False_emptyMixin.
Canonical False_finType := FinType False (Empty.finMixin False_emptyMixin).
Canonical False_emptyType := EmptyType False False_emptyMixin.
Definition void_emptyMixin : Empty.mixin_of void := @of_void _.
Canonical void_emptyType := EmptyType void void_emptyMixin.
Definition no {T : emptyType} : T -> False :=
let: Empty.Pack _ (Empty.Class _ f) := T in f.
Definition any {T : emptyType} {U} : T -> U := @False_rect _ \o no.
Lemma empty_eq0 {T : emptyType} : all_equal_to (set0 : set T).
Proof. by move=> X; apply/setF_eq0/no. Qed.
Definition quasi_canonical_of T C (sort : C -> T) (alt : emptyType -> T):=
forall (G : T -> Type), (forall s : emptyType, G (alt s)) -> (forall x, G (sort x)) ->
forall x, G x.
Notation quasi_canonical_ sort alt := (@quasi_canonical_of _ _ sort alt).
Notation quasi_canonical T C := (@quasi_canonical_of T C id id).
Lemma qcanon T C (sort : C -> T) (alt : emptyType -> T) :
(forall x, (exists y : emptyType, alt y = x) + (exists y, sort y = x)) ->
quasi_canonical_ sort alt.
Proof. by move=> + G Cx Gs x => /(_ x)[/cid[y <-]|/cid[y <-]]. Qed.
Arguments qcanon {T C sort alt} x.
Lemma choicePpointed : quasi_canonical choiceType pointedType.
Proof.
apply: qcanon => T; have [/unsquash x|/(_ (squash _)) TF] := pselect $|T|.
by right; exists (PointedType T x); case: T x.
left.
pose cT := CountType _ (TF : Empty.mixin_of T).
pose fM := Empty.finMixin (TF : Empty.mixin_of cT).
exists (EmptyType (FinType _ fM) TF) => //=.
by case: T TF @cT @fM.
Qed.
Lemma eqPpointed : quasi_canonical eqType pointedType.
Proof.
by apply: qcanon; elim/eqPchoice; elim/choicePpointed => [[T F]|T];
[left; exists (Empty.Pack F) | right; exists T].
Qed.
Lemma Ppointed : quasi_canonical Type pointedType.
Proof.
by apply: qcanon; elim/Peq; elim/eqPpointed => [[T F]|T];
[left; exists (Empty.Pack F) | right; exists T].
Qed.
Section partitions.
Definition trivIset T I (D : set I) (F : I -> set T) :=
forall i j : I, D i -> D j -> F i `&` F j !=set0 -> i = j.
Lemma trivIset_set0 {I T} (D : set I) : trivIset D (fun=> set0 : set T).
Proof. by move=> i j Di Dj; rewrite setI0 => /set0P; rewrite eqxx. Qed.
Lemma trivIsetP {T} {I : eqType} {D : set I} {F : I -> set T} :
trivIset D F <->
forall i j : I, D i -> D j -> i != j -> F i `&` F j = set0.
Proof.
split=> tDF i j Di Dj; first by apply: contraNeq => /set0P/tDF->.
by move=> /set0P; apply: contraNeq => /tDF->.
Qed.
Lemma trivIset_bigsetUI T (D : {pred nat}) (F : nat -> set T) : trivIset D F ->
forall n m, D m -> n <= m -> \big[setU/set0]_(i < n | D i) F i `&` F m = set0.
Proof.
move=> /trivIsetP tA; elim => [|n IHn] m Dm.
by move=> _; rewrite big_ord0 set0I.
move=> lt_nm; rewrite big_mkcond/= big_ord_recr -big_mkcond/=.
rewrite setIUl IHn 1?ltnW// set0U.
by case: ifPn => [Dn|NDn]; rewrite ?set0I// tA// ltn_eqF.
Qed.
Lemma trivIset_setIl (T I : Type) (D : set I) (F : I -> set T) (G : I -> set T) :
trivIset D F -> trivIset D (fun i => G i `&` F i).
Proof.
by move=> tF i j Di Dj [x [[Gix Fix] [Gjx Fjx]]]; apply tF => //; exists x.
Qed.
Lemma trivIset_setIr (T I : Type) (D : set I) (F : I -> set T) (G : I -> set T) :
trivIset D F -> trivIset D (fun i => F i `&` G i).
Proof.
by move=> tF i j Di Dj [x [[Fix Gix] [Fjx Gjx]]]; apply tF => //; exists x.
Qed.
#[deprecated(note="Use trivIset_setIl instead")]
Lemma trivIset_setI T I D (F : I -> set T) X :
trivIset D F -> trivIset D (fun i => X `&` F i).
Proof. exact: trivIset_setIl. Qed.
Lemma sub_trivIset I T (D D' : set I) (F : I -> set T) :
D `<=` D' -> trivIset D' F -> trivIset D F.
Proof. by move=> DD' Ftriv i j /DD' + /DD' + /Ftriv->//. Qed.
Lemma trivIset_bigcup2 T (A B : set T) :
(A `&` B = set0) = trivIset setT (bigcup2 A B).
Proof.
apply/propext; split=> [AB0|/trivIsetP/(_ 0%N 1%N Logic.I Logic.I erefl)//].
apply/trivIsetP => -[/=|]; rewrite /bigcup2 /=.
- by move=> [//|[_ _ _ //|j _ _ _]]; rewrite setI0.
- move=> [[j _ _|]|i j _ _ _]; [by rewrite setIC| |by rewrite set0I].
by move=> [//|j _ _ _]; rewrite setI0.
Qed.
Lemma trivIset_image (T I I' : Type) (D : set I) (f : I -> I') (F : I' -> set T) :
trivIset D (F \o f) -> trivIset (f @` D) F.
Proof.
by move=> trivF i j [{}i Di <-] [{}j Dj <-] Ffij; congr (f _); apply: trivF.
Qed.
Arguments trivIset_image {T I I'} D f F.
Lemma trivIset_comp (T I I' : Type) (D : set I) (f : I -> I') (F : I' -> set T) :
{in D &, injective f} ->
trivIset D (F \o f) = trivIset (f @` D) F.
Proof.
move=> finj; apply/propext; split; first exact: trivIset_image.
move=> trivF i j Di Dj Ffij; apply: finj; rewrite ?in_setE//.
by apply: trivF => //=; [exists i| exists j].
Qed.
Definition cover T I D (F : I -> set T) := \bigcup_(i in D) F i.
Lemma cover_restr T I D' D (F : I -> set T) :
D `<=` D' -> (forall i, D' i -> ~ D i -> F i = set0) ->
cover D F = cover D' F.
Proof.
move=> DD' D'DF; rewrite /cover eqEsubset; split=> [r [i Di Fit]|r [i D'i Fit]].
- by have [D'i|] := pselect (D' i); [exists i | have := DD' _ Di].
- by have [Di|Di] := pselect (D i); [exists i | move: Fit; rewrite (D'DF i)].
Qed.
Lemma eqcover_r T I D (F G : I -> set T) :
[set F i | i in D] = [set G i | i in D] ->
cover D F = cover D G.
Proof.
move=> FG.
rewrite eqEsubset; split => [t [i Di Fit]|t [i Di Git]].
have [j Dj GF] : [set G i | i in D] (F i) by rewrite -FG /mkset; exists i.
by exists j => //; rewrite GF.
have [j Dj GF] : [set F i | i in D] (G i) by rewrite FG /mkset; exists i.
by exists j => //; rewrite GF.
Qed.
Definition partition T I D (F : I -> set T) (A : set T) :=
[/\ cover D F = A, trivIset D F & forall i, D i -> F i !=set0].
Definition pblock_index T (I : pointedType) D (F : I -> set T) (x : T) :=
[get i | D i /\ F i x].
Definition pblock T (I : pointedType) D (F : I -> set T) (x : T) :=
F (pblock_index D F x).
(* TODO: theory of trivIset, cover, partition, pblock_index and pblock *)
Notation trivIsets X := (trivIset X id).
Lemma trivIset_sets T I D (F : I -> set T) :
trivIset D F -> trivIsets [set F i | i in D].
Proof. exact: trivIset_image. Qed.
Lemma trivIset_widen T I D' D (F : I -> set T) :
(* D `<=` D' -> (forall i, D i -> ~ D' i -> F i !=set0) ->*)
D `<=` D' -> (forall i, D' i -> ~ D i -> F i = set0) ->
trivIset D F = trivIset D' F.
Proof.
move=> DD' DD'F.
rewrite propeqE; split=> [DF i j D'i D'j FiFj0|D'F i j Di Dj FiFj0].
have [Di|Di] := pselect (D i); last first.
by move: FiFj0; rewrite (DD'F i) // set0I => /set0P; rewrite eqxx.
have [Dj|Dj] := pselect (D j).
- exact: DF.
- by move: FiFj0; rewrite (DD'F j) // setI0 => /set0P; rewrite eqxx.
by apply D'F => //; apply DD'.
Qed.
Lemma perm_eq_trivIset {T : eqType} (s1 s2 : seq (set T)) (D : set nat) :
[set k | (k < size s1)%N] `<=` D -> perm_eq s1 s2 ->
trivIset D (fun i => nth set0 s1 i) -> trivIset D (fun i => nth set0 s2 i).
Proof.
move=> s1D; rewrite perm_sym => /(perm_iotaP set0)[s ss1 s12] /trivIsetP ts1.
apply/trivIsetP => i j Di Dj ij.
rewrite {}s12 {s2}; have [si|si] := ltnP i (size s); last first.
by rewrite (nth_default set0) ?size_map// set0I.
rewrite (nth_map O) //; have [sj|sj] := ltnP j (size s); last first.
by rewrite (nth_default set0) ?size_map// setI0.
have nth_mem k : k < size s -> nth O s k \in iota 0 (size s1).
by move=> ?; rewrite -(perm_mem ss1) mem_nth.
rewrite (nth_map O)// ts1 ?(nth_uniq,(perm_uniq ss1),iota_uniq)//; apply/s1D.
- by have := nth_mem _ si; rewrite mem_iota leq0n add0n.
- by have := nth_mem _ sj; rewrite mem_iota leq0n add0n.
Qed.
End partitions.
Definition total_on T (A : set T) (R : T -> T -> Prop) :=
forall s t, A s -> A t -> R s t \/ R t s.
Section ZL.
Variable (T : Type) (t0 : T) (R : T -> T -> Prop).
Hypothesis (Rrefl : forall t, R t t).
Hypothesis (Rtrans : forall r s t, R r s -> R s t -> R r t).
Hypothesis (Rantisym : forall s t, R s t -> R t s -> s = t).
Hypothesis (tot_lub : forall A : set T, total_on A R -> exists t,
(forall s, A s -> R s t) /\ forall r, (forall s, A s -> R s r) -> R t r).
Hypothesis (Rsucc : forall s, exists t, R s t /\ s <> t /\
forall r, R s r -> R r t -> r = s \/ r = t).
Let Teq := @gen_eqMixin T.
Let Tch := @gen_choiceMixin T.
Let Tp := Pointed.Pack (Pointed.Class (Choice.Class Teq Tch) t0).
Let lub := fun A : {A : set T | total_on A R} =>
[get t : Tp | (forall s, sval A s -> R s t) /\
forall r, (forall s, sval A s -> R s r) -> R t r].
Let succ := fun s => [get t : Tp | R s t /\ s <> t /\
forall r, R s r -> R r t -> r = s \/ r = t].
Inductive tower : set T :=
| Lub : forall A, sval A `<=` tower -> tower (lub A)
| Succ : forall t, tower t -> tower (succ t).
Lemma ZL' : False.
Proof.
have lub_ub (A : {A : set T | total_on A R}) :
forall s, sval A s -> R s (lub A).
suff /getPex [] : exists t : Tp, (forall s, sval A s -> R s t) /\
forall r, (forall s, sval A s -> R s r) -> R t r by [].
by apply: tot_lub; apply: (svalP A).
have lub_lub (A : {A : set T | total_on A R}) :
forall t, (forall s, sval A s -> R s t) -> R (lub A) t.
suff /getPex [] : exists t : Tp, (forall s, sval A s -> R s t) /\
forall r, (forall s, sval A s -> R s r) -> R t r by [].
by apply: tot_lub; apply: (svalP A).
have RS s : R s (succ s) /\ s <> succ s.
by have /getPex [? []] : exists t : Tp, R s t /\ s <> t /\
forall r, R s r -> R r t -> r = s \/ r = t by apply: Rsucc.
have succS s : forall t, R s t -> R t (succ s) -> t = s \/ t = succ s.
by have /getPex [? []] : exists t : Tp, R s t /\ s <> t /\
forall r, R s r -> R r t -> r = s \/ r = t by apply: Rsucc.
suff Twtot : total_on tower R.
have [R_S] := RS (lub (exist _ tower Twtot)); apply.
by apply/Rantisym => //; apply/lub_ub/Succ/Lub.
move=> s t Tws; elim: Tws t => {s} [A sATw ihA|s Tws ihs] t Twt.
have [?|/asboolP] := pselect (forall s, sval A s -> R s t).
by left; apply: lub_lub.
rewrite asbool_neg => /existsp_asboolPn [s /asboolP].
rewrite asbool_neg => /imply_asboolPn [As nRst]; right.
by have /lub_ub := As; apply: Rtrans; have [] := ihA _ As _ Twt.
suff /(_ _ Twt) [Rts|RSst] : forall r, tower r -> R r s \/ R (succ s) r.
by right; apply: Rtrans Rts _; have [] := RS s.
by left.
move=> r; elim=> {r} [A sATw ihA|r Twr ihr].
have [?|/asboolP] := pselect (forall r, sval A r -> R r s).
by left; apply: lub_lub.
rewrite asbool_neg => /existsp_asboolPn [r /asboolP].
rewrite asbool_neg => /imply_asboolPn [Ar nRrs]; right.
by have /lub_ub := Ar; apply: Rtrans; have /ihA [] := Ar.
have [Rrs|RSsr] := ihr; last by right; apply: Rtrans RSsr _; have [] := RS r.
have : tower (succ r) by apply: Succ.
move=> /ihs [RsSr|]; last by left.
by have [->|->] := succS _ _ Rrs RsSr; [right|left]; apply: Rrefl.
Qed.
End ZL.
Lemma Zorn T (R : T -> T -> Prop) :
(forall t, R t t) -> (forall r s t, R r s -> R s t -> R r t) ->
(forall s t, R s t -> R t s -> s = t) ->
(forall A : set T, total_on A R -> exists t, forall s, A s -> R s t) ->
exists t, forall s, R t s -> s = t.
Proof.
move=> Rrefl Rtrans Rantisym Rtot_max.
set totR := ({A : set T | total_on A R}).
set R' := fun A B : totR => sval A `<=` sval B.
have R'refl A : R' A A by [].
have R'trans A B C : R' A B -> R' B C -> R' A C by apply: subset_trans.
have R'antisym A B : R' A B -> R' B A -> A = B.
rewrite /R'; case: A; case: B => /= B totB A totA sAB sBA.
by apply: eq_exist; rewrite predeqE=> ?; split=> [/sAB|/sBA].
have R'tot_lub A : total_on A R' -> exists t, (forall s, A s -> R' s t) /\
forall r, (forall s, A s -> R' s r) -> R' t r.
move=> Atot.
have AUtot : total_on (\bigcup_(B in A) (sval B)) R.
move=> s t [B AB Bs] [C AC Ct].
have [/(_ _ Bs) Cs|/(_ _ Ct) Bt] := Atot _ _ AB AC.
by have /(_ _ _ Cs Ct) := svalP C.
by have /(_ _ _ Bs Bt) := svalP B.
exists (exist _ (\bigcup_(B in A) sval B) AUtot); split.
by move=> B ???; exists B.
by move=> B Bub ? /= [? /Bub]; apply.
apply: contrapT => nomax.
have {}nomax t : exists s, R t s /\ s <> t.
have /asboolP := nomax; rewrite asbool_neg => /forallp_asboolPn /(_ t).
move=> /asboolP; rewrite asbool_neg => /existsp_asboolPn [s].
by move=> /asboolP; rewrite asbool_neg => /imply_asboolPn []; exists s.
have tot0 : total_on set0 R by [].
apply: (ZL' (exist _ set0 tot0)) R'tot_lub _ => // A.
have /Rtot_max [t tub] := svalP A; have [s [Rts snet]] := nomax t.
have Astot : total_on (sval A `|` [set s]) R.
move=> u v [Au|->]; last first.
by move=> [/tub Rvt|->]; right=> //; apply: Rtrans Rts.
move=> [Av|->]; [apply: (svalP A)|left] => //.
by apply: Rtrans Rts; apply: tub.
exists (exist _ (sval A `|` [set s]) Astot); split; first by move=> ??; left.
split=> [AeAs|[B Btot] sAB sBAs].
have [/tub Rst|] := (pselect (sval A s)); first exact/snet/Rantisym.
by rewrite AeAs /=; apply; right.
have [Bs|nBs] := pselect (B s).
by right; apply: eq_exist; rewrite predeqE => r; split=> [/sBAs|[/sAB|->]].
left; case: A tub Astot sBAs sAB => A Atot /= tub Astot sBAs sAB.
apply: eq_exist; rewrite predeqE => r; split=> [Br|/sAB] //.
by have /sBAs [|ser] // := Br; rewrite ser in Br.
Qed.
Definition premaximal T (R : T -> T -> Prop) (t : T) :=
forall s, R t s -> R s t.
Lemma ZL_preorder T (t0 : T) (R : T -> T -> Prop) :
(forall t, R t t) -> (forall r s t, R r s -> R s t -> R r t) ->
(forall A : set T, total_on A R -> exists t, forall s, A s -> R s t) ->
exists t, premaximal R t.
Proof.
set Teq := @gen_eqMixin T; set Tch := @gen_choiceMixin T.
set Tp := Pointed.Pack (Pointed.Class (Choice.Class Teq Tch) t0).
move=> Rrefl Rtrans tot_max.
set eqR := fun s t => R s t /\ R t s; set ceqR := fun s => [set t | eqR s t].
have eqR_trans r s t : eqR r s -> eqR s t -> eqR r t.
by move=> [Rrs Rsr] [Rst Rts]; split; [apply: Rtrans Rst|apply: Rtrans Rsr].
have ceqR_uniq s t : eqR s t -> ceqR s = ceqR t.
by rewrite predeqE => - [Rst Rts] r; split=> [[Rr rR] | [Rr rR]]; split;
try exact: Rtrans Rr; exact: Rtrans rR _.
set ceqRs := ceqR @` setT; set quotR := sig ceqRs.
have ceqRP t : ceqRs (ceqR t) by exists t.
set lift := fun t => exist _ (ceqR t) (ceqRP t).
have lift_surj (A : quotR) : exists t : Tp, lift t = A.
case: A => A [t Tt ctA]; exists t; rewrite /lift; case : _ / ctA.
exact/congr1/Prop_irrelevance.
have lift_inj s t : eqR s t -> lift s = lift t.
by move=> eqRst; apply/eq_exist/ceqR_uniq.
have lift_eqR s t : lift s = lift t -> eqR s t.
move=> cst; have ceqst : ceqR s = ceqR t by have := congr1 sval cst.
by rewrite [_ s]ceqst; split; apply: Rrefl.
set repr := fun A : quotR => get [set t : Tp | lift t = A].
have repr_liftE t : eqR t (repr (lift t))
by apply: lift_eqR; have -> := getPex (lift_surj (lift t)).
set R' := fun A B : quotR => R (repr A) (repr B).
have R'refl A : R' A A by apply: Rrefl.
have R'trans A B C : R' A B -> R' B C -> R' A C by apply: Rtrans.
have R'antisym A B : R' A B -> R' B A -> A = B.
move=> RAB RBA; have [t tA] := lift_surj A; have [s sB] := lift_surj B.
rewrite -tA -sB; apply: lift_inj; apply (eqR_trans _ _ _ (repr_liftE t)).
have eAB : eqR (repr A) (repr B) by [].
rewrite tA; apply: eqR_trans eAB _; rewrite -sB.
by have [] := repr_liftE s.
have [A Atot|A Amax] := Zorn R'refl R'trans R'antisym.
have /tot_max [t tmax] : total_on [set repr B | B in A] R.
by move=> ?? [B AB <-] [C AC <-]; apply: Atot.
exists (lift t) => B AB; have [Rt _] := repr_liftE t.
by apply: Rtrans Rt; apply: tmax; exists B.
exists (repr A) => t RAt.
have /Amax <- : R' A (lift t).
by have [Rt _] := repr_liftE t; apply: Rtrans Rt.
by have [] := repr_liftE t.
Qed.
Section UpperLowerTheory.
Import Order.TTheory.
Variables (d : unit) (T : porderType d).
Implicit Types (A : set T) (x y z : T).
Definition ubound A : set T := [set y | forall x, A x -> (x <= y)%O].
Definition lbound A : set T := [set y | forall x, A x -> (y <= x)%O].
Lemma ubP A x : (forall y, A y -> (y <= x)%O) <-> ubound A x.
Proof. by []. Qed.
Lemma lbP A x : (forall y, A y -> (x <= y)%O) <-> lbound A x.
Proof. by []. Qed.
Lemma ub_set1 x y : ubound [set x] y = (x <= y)%O.
Proof. by rewrite propeqE; split => [/(_ x erefl)//|xy z ->]. Qed.
Lemma lb_set1 x y : lbound [set x] y = (x >= y)%O.
Proof. by rewrite propeqE; split => [/(_ x erefl)//|xy z ->]. Qed.
Lemma lb_ub_set1 x y : lbound (ubound [set x]) y -> (y <= x)%O.
Proof. by move/(_ x); apply; rewrite ub_set1. Qed.
Lemma ub_lb_set1 x y : ubound (lbound [set x]) y -> (x <= y)%O.
Proof. by move/(_ x); apply; rewrite lb_set1. Qed.
Lemma lb_ub_refl x : lbound (ubound [set x]) x.
Proof. by move=> y; apply. Qed.
Lemma ub_lb_refl x : ubound (lbound [set x]) x.
Proof. by move=> y; apply. Qed.
Lemma ub_lb_ub A x y : ubound A y -> lbound (ubound A) x -> (x <= y)%O.
Proof. by move=> Ay; apply. Qed.
Lemma lb_ub_lb A x y : lbound A y -> ubound (lbound A) x -> (y <= x)%O.
Proof. by move=> Ey; apply. Qed.
(* down set (i.e., generated order ideal) *)
(* i.e. down A := { x | exists y, y \in A /\ x <= y} *)
Definition down A : set T := [set x | exists y, A y /\ (x <= y)%O].
Definition has_ubound A := ubound A !=set0.
Definition has_sup A := A !=set0 /\ has_ubound A.
Definition has_lbound A := lbound A !=set0.
Definition has_inf A := A !=set0 /\ has_lbound A.
Lemma has_ub_set1 x : has_ubound [set x].
Proof. by exists x; rewrite ub_set1. Qed.
Lemma has_inf0 : ~ has_inf (@set0 T).
Proof. by rewrite /has_inf not_andP; left; apply/set0P/negP/negPn. Qed.
Lemma has_sup0 : ~ has_sup (@set0 T).
Proof. by rewrite /has_sup not_andP; left; apply/set0P/negP/negPn. Qed.
Lemma has_sup1 x : has_sup [set x].
Proof. by split; [exists x | exists x => y ->]. Qed.
Lemma has_inf1 x : has_inf [set x].
Proof. by split; [exists x | exists x => y ->]. Qed.
Lemma subset_has_lbound A B : A `<=` B -> has_lbound B -> has_lbound A.
Proof. by move=> AB [l Bl]; exists l => a Aa; apply/Bl/AB. Qed.
Lemma subset_has_ubound A B : A `<=` B -> has_ubound B -> has_ubound A.
Proof. by move=> AB [l Bl]; exists l => a Aa; apply/Bl/AB. Qed.
Lemma downP A x : (exists2 y, A y & (x <= y)%O) <-> down A x.
Proof. by split => [[y Ay xy]|[y [Ay xy]]]; [exists y| exists y]. Qed.
Definition isLub A m := ubound A m /\ forall b, ubound A b -> (m <= b)%O.
Definition supremums A := ubound A `&` lbound (ubound A).
Lemma supremums1 x : supremums [set x] = [set x].
Proof.
rewrite /supremums predeqE => y; split => [[]|->{y}]; last first.
by split; [rewrite ub_set1|exact: lb_ub_refl].
by rewrite ub_set1 => xy /lb_ub_set1 yx; apply/eqP; rewrite eq_le xy yx.
Qed.
Lemma is_subset1_supremums A : is_subset1 (supremums A).
Proof.
move=> x y [Ax xA] [Ay yA]; apply/eqP.
by rewrite eq_le (ub_lb_ub Ax yA) (ub_lb_ub Ay xA).
Qed.
Definition supremum x0 A := if A == set0 then x0 else xget x0 (supremums A).
Lemma supremum_out x0 A : ~ has_sup A -> supremum x0 A = x0.
Proof.
move=> hsA; rewrite /supremum; case: ifPn => // /set0P[/= x Ax].
case: xgetP => //= _ -> [uA _]; exfalso.
by apply: hsA; split; [exists x|exists (xget x0 (supremums A))].
Qed.
Lemma supremum0 x0 : supremum x0 set0 = x0.
Proof. by rewrite /supremum eqxx. Qed.
Lemma supremum1 x0 x : supremum x0 [set x] = x.
Proof.
rewrite /supremum ifF; last first.
by apply/eqP; rewrite predeqE => /(_ x)[+ _]; apply.
by rewrite supremums1; case: xgetP => // /(_ x) /(_ erefl).
Qed.
Definition infimums A := lbound A `&` ubound (lbound A).
Lemma infimums1 x : infimums [set x] = [set x].
Proof.
rewrite /infimums predeqE => y; split => [[]|->{y}]; last first.
by split; [rewrite lb_set1|apply ub_lb_refl].
by rewrite lb_set1 => xy /ub_lb_set1 yx; apply/eqP; rewrite eq_le xy yx.
Qed.
Lemma is_subset1_infimums A : is_subset1 (infimums A).
Proof.
move=> x y [Ax xA] [Ay yA]; apply/eqP.
by rewrite eq_le (lb_ub_lb Ax yA) (lb_ub_lb Ay xA).
Qed.
Definition infimum x0 A := if A == set0 then x0 else xget x0 (infimums A).
End UpperLowerTheory.
Section UpperLowerOrderTheory.
Import Order.TTheory.
Variables (d : unit) (T : orderType d).
Implicit Types (A : set T) (x y z : T).
Lemma ge_supremum_Nmem x0 A t :
supremums A !=set0 -> A t -> (supremum x0 A >= t)%O.
Proof.
case=> x Ax; rewrite /supremum; case: ifPn => [/eqP -> //|_].
by case: xgetP => [y yA [uAy _]|/(_ x) //]; exact: uAy.
Qed.
Lemma le_infimum_Nmem x0 A t :
infimums A !=set0 -> A t -> (infimum x0 A <= t)%O.
Proof.
case=> x Ex; rewrite /infimum; case: ifPn => [/eqP -> //|_].
by case: xgetP => [y yE [uEy _]|/(_ x) //]; exact: uEy.
Qed.
End UpperLowerOrderTheory.
Lemma nat_supremums_neq0 (A : set nat) : ubound A !=set0 -> supremums A !=set0.
Proof.
case => /=; elim => [A0|n ih]; first by exists O.
case: (pselect (ubound A n)) => [/ih //|An {ih}] An1.
exists n.+1; split => // m Am; case/existsNP : An => k /not_implyP[Ak /negP].
rewrite -Order.TotalTheory.ltNge => kn.
by rewrite (Order.POrderTheory.le_trans _ (Am _ Ak)).
Qed.
Definition meets T (F G : set (set T)) :=
forall A B, F A -> G B -> A `&` B !=set0.
Notation "F `#` G" := (meets F G) : classical_set_scope.
Section meets.
Lemma meetsC T (F G : set (set T)) : F `#` G = G `#` F.
Proof.
gen have sFG : F G / F `#` G -> G `#` F.
by move=> FG B A => /FG; rewrite setIC; apply.
by rewrite propeqE; split; apply: sFG.
Qed.
Lemma sub_meets T (F F' G G' : set (set T)) :
F `<=` F' -> G `<=` G' -> F' `#` G' -> F `#` G.
Proof. by move=> sF sG FG A B /sF FA /sG GB; apply: (FG A B). Qed.
Lemma meetsSr T (F G G' : set (set T)) :
G `<=` G' -> F `#` G' -> F `#` G.
Proof. exact: sub_meets. Qed.
Lemma meetsSl T (G F F' : set (set T)) :
F `<=` F' -> F' `#` G -> F `#` G.
Proof. by move=> /sub_meets; apply. Qed.
End meets.
Fact set_display : unit. Proof. by []. Qed.
Module SetOrder.
Module Internal.
Section SetOrder.
Context {T : Type}.
Implicit Types A B : set T.
Lemma le_def A B : `[< A `<=` B >] = (A `&` B == A).
Proof. by apply/asboolP/eqP; rewrite setIidPl. Qed.
Lemma lt_def A B : `[< A `<` B >] = (B != A) && `[< A `<=` B >].
Proof.
apply/idP/idP => [/asboolP|/andP[BA /asboolP AB]]; rewrite properEneq eq_sym;
by [move=> [] -> /asboolP|apply/asboolP].
Qed.
Lemma joinKI B A : A `&` (A `|` B) = A.
Proof. by rewrite setUC setKU. Qed.
Lemma meetKU B A : A `|` (A `&` B) = A.
Proof. by rewrite setIC setKI. Qed.
Definition orderMixin := @MeetJoinMixin _ _ (fun A B => `[<proper A B>]) setI
setU le_def lt_def (@setIC _) (@setUC _) (@setIA _) (@setUA _) joinKI meetKU
(@setIUl _) setIid.
Local Canonical porderType := POrderType set_display (set T) orderMixin.
Local Canonical latticeType := LatticeType (set T) orderMixin.
Local Canonical distrLatticeType := DistrLatticeType (set T) orderMixin.
Lemma SetOrder_sub0set A : (set0 <= A)%O.
Proof. by apply/asboolP; apply: sub0set. Qed.
Lemma SetOrder_setTsub A : (A <= setT)%O.
Proof. exact/asboolP. Qed.
Local Canonical bLatticeType :=
BLatticeType (set T) (Order.BLattice.Mixin SetOrder_sub0set).
Local Canonical tbLatticeType :=
TBLatticeType (set T) (Order.TBLattice.Mixin SetOrder_setTsub).
Local Canonical bDistrLatticeType := [bDistrLatticeType of set T].
Local Canonical tbDistrLatticeType := [tbDistrLatticeType of set T].
Lemma subKI A B : B `&` (A `\` B) = set0.
Proof. by rewrite setDE setICA setICr setI0. Qed.
Lemma joinIB A B : (A `&` B) `|` A `\` B = A.
Proof. by rewrite setUC -setDDr setDv setD0. Qed.
Local Canonical cbDistrLatticeType := CBDistrLatticeType (set T)
(@CBDistrLatticeMixin _ _ (fun A B => A `\` B) subKI joinIB).
Local Canonical ctbDistrLatticeType := CTBDistrLatticeType (set T)
(@CTBDistrLatticeMixin _ _ _ (fun A => ~` A) (fun x => esym (setTD x))).
End SetOrder.
End Internal.
Module Exports.
Canonical Internal.porderType.
Canonical Internal.latticeType.
Canonical Internal.distrLatticeType.
Canonical Internal.bLatticeType.
Canonical Internal.tbLatticeType.
Canonical Internal.bDistrLatticeType.
Canonical Internal.tbDistrLatticeType.
Canonical Internal.cbDistrLatticeType.
Canonical Internal.ctbDistrLatticeType.
Section exports.
Context {T : Type}.
Implicit Types A B : set T.
Lemma subsetEset A B : (A <= B)%O = (A `<=` B) :> Prop.
Proof. by rewrite asboolE. Qed.
Lemma properEset A B : (A < B)%O = (A `<` B) :> Prop.
Proof. by rewrite asboolE. Qed.
Lemma subEset A B : (A `\` B)%O = (A `\` B). Proof. by []. Qed.
Lemma complEset A : (~` A)%O = ~` A. Proof. by []. Qed.
Lemma botEset : 0%O = @set0 T. Proof. by []. Qed.
Lemma topEset : 1%O = @setT T. Proof. by []. Qed.
Lemma meetEset A B : (A `&` B)%O = (A `&` B). Proof. by []. Qed.
Lemma joinEset A B : (A `|` B)%O = (A `|` B). Proof. by []. Qed.
Lemma subsetPset A B : reflect (A `<=` B) (A <= B)%O.
Proof. by apply: (iffP idP); rewrite subsetEset. Qed.
Lemma properPset A B : reflect (A `<` B) (A < B)%O.
Proof. by apply: (iffP idP); rewrite properEset. Qed.
End exports.
End Exports.
End SetOrder.
Export SetOrder.Exports.
Section section.
Variables (T1 T2 : Type).
Implicit Types (A : set (T1 * T2)) (x : T1) (y : T2).
Definition xsection A x := [set y | (x, y) \in A].
Definition ysection A y := [set x | (x, y) \in A].
Lemma xsection0 x : xsection set0 x = set0.
Proof. by rewrite predeqE /xsection => y; split => //=; rewrite inE. Qed.
Lemma ysection0 y : ysection set0 y = set0.
Proof. by rewrite predeqE /ysection => x; split => //=; rewrite inE. Qed.
Lemma in_xsectionM X1 X2 x : x \in X1 -> xsection (X1 `*` X2) x = X2.
Proof.
move=> xX1; rewrite /xsection predeqE => y /=; split; rewrite inE.
by move=> [].
by move=> X2y; split => //=; rewrite inE in xX1.
Qed.
Lemma in_ysectionM X1 X2 y : y \in X2 -> ysection (X1 `*` X2) y = X1.
Proof.
move=> yX2; rewrite /ysection predeqE => x /=; split; rewrite inE.
by move=> [].
by move=> X1x; split => //=; rewrite inE in yX2.
Qed.
Lemma notin_xsectionM X1 X2 x : x \notin X1 -> xsection (X1 `*` X2) x = set0.
Proof.
move=> xX1; rewrite /xsection /= predeqE => y; split => //.
by rewrite /xsection/= inE => -[] /=; rewrite notin_set in xX1.
Qed.
Lemma notin_ysectionM X1 X2 y : y \notin X2 -> ysection (X1 `*` X2) y = set0.
Proof.
move=> yX2; rewrite /xsection /= predeqE => x; split => //.
by rewrite /ysection/= inE => -[_]; rewrite notin_set in yX2.
Qed.
Lemma xsection_bigcup (F : nat -> set (T1 * T2)) x :
xsection (\bigcup_n F n) x = \bigcup_n xsection (F n) x.
Proof.
rewrite predeqE /xsection => y; split => [|[n _]] /=; rewrite inE.
by move=> -[n _ Fnxy]; exists n => //=; rewrite inE.
by move=> Fnxy; rewrite inE; exists n.
Qed.
Lemma ysection_bigcup (F : nat -> set (T1 * T2)) y :
ysection (\bigcup_n F n) y = \bigcup_n ysection (F n) y.
Proof.
rewrite predeqE /ysection => x; split => [|[n _]] /=; rewrite inE.
by move=> -[n _ Fnxy]; exists n => //=; rewrite inE.
by move=> Fnxy; rewrite inE; exists n.
Qed.
Lemma trivIset_xsection (F : nat -> set (T1 * T2)) x : trivIset setT F ->
trivIset setT (fun n => xsection (F n) x).
Proof.
move=> /trivIsetP h; apply/trivIsetP => i j _ _ ij.
rewrite /xsection /= predeqE => y; split => //= -[]; rewrite !inE => Fixy Fjxy.
by have := h i j Logic.I Logic.I ij; rewrite predeqE => /(_ (x, y))[+ _]; apply.
Qed.
Lemma trivIset_ysection (F : nat -> set (T1 * T2)) y : trivIset setT F ->
trivIset setT (fun n => ysection (F n) y).
Proof.
move=> /trivIsetP h; apply/trivIsetP => i j _ _ ij.
rewrite /ysection /= predeqE => x; split => //= -[]; rewrite !inE => Fixy Fjxy.
by have := h i j Logic.I Logic.I ij; rewrite predeqE => /(_ (x, y))[+ _]; apply.
Qed.
Lemma le_xsection x : {homo xsection ^~ x : X Y / X `<=` Y >-> X `<=` Y}.
Proof. by move=> X Y XY y; rewrite /xsection /= 2!inE => /XY. Qed.
Lemma le_ysection y : {homo ysection ^~ y : X Y / X `<=` Y >-> X `<=` Y}.
Proof. by move=> X Y XY x; rewrite /ysection /= 2!inE => /XY. Qed.
Lemma xsectionD X Y x : xsection (X `\` Y) x = xsection X x `\` xsection Y x.
Proof.
rewrite predeqE /xsection /= => y; split; last by rewrite 3!inE.
by rewrite inE => -[Xxy Yxy]; rewrite 2!inE.
Qed.
Lemma ysectionD X Y y : ysection (X `\` Y) y = ysection X y `\` ysection Y y.
Proof.
rewrite predeqE /ysection /= => x; split; last by rewrite 3!inE.
by rewrite inE => -[Xxy Yxy]; rewrite 2!inE.
Qed.
End section.
|