Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 34,708 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div.
From mathcomp Require Import choice fintype prime finset fingroup morphism.
From mathcomp Require Import automorphism.
(******************************************************************************)
(* This file contains the definitions of: *)
(* coset_of H == the (sub)type of bilateral cosets of H (see below). *)
(* coset H == the canonical projection into coset_of H. *)
(* A / H == the quotient of A by H, that is, the morphic image *)
(* of A by coset H. We do not require H <| A, so in a *)
(* textbook A / H would be written 'N_A(H) * H / H. *)
(* quotm f (nHG : H <| G) == the quotient morphism induced by f, *)
(* mapping G / H onto f @* G / f @* H. *)
(* qisom f (eqHG : H = G) == the identity isomorphism between *)
(* [set: coset_of G] and [set: coset_of H]. *)
(* We also prove the three isomorphism theorems, and counting lemmas for *)
(* morphisms. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GroupScope.
Section Cosets.
Variables (gT : finGroupType) (Q A : {set gT}).
(******************************************************************************)
(* Cosets are right cosets of elements in the normaliser. *)
(* We let cosets coerce to GroupSet.sort, so they inherit the group subset *)
(* base group structure. Later we will define a proper group structure on *)
(* cosets, which will then hide the inherited structure once coset_of unifies *)
(* with FinGroup.sort; the coercion to GroupSet.sort will no longer be used. *)
(* Note that for Hx Hy : coset_of H, Hx * Hy : {set gT} can mean either *)
(* set_of_coset (mulg Hx Hy) OR mulg (set_of_coset Hx) (set_of_coset Hy). *)
(* However, since the two terms are actually convertible, we can live with *)
(* this ambiguity. *)
(* We take great care that neither the type coset_of H, nor its Canonical *)
(* finGroupType structure, nor the coset H morphism depend on the actual *)
(* group structure of H. Otherwise, rewriting would be extremely awkward *)
(* because all our equalities are stated at the set level. *)
(* The trick we use is to interpret coset_of A, when A is any set, as the *)
(* type of cosets of the group <<A>> generated by A, in the group A <*> N(A) *)
(* generated by A and its normaliser. This coincides with the type of *)
(* bilateral cosets of A when A is a group. We restrict the domain of coset A *)
(* to 'N(A), so that we get almost all the same conversion equalities as if *)
(* we had forced A to be a group in the first place; the only exception, that *)
(* 1 : coset_of A : {set gT} = <<A>> rather than A, can be handled by genGid. *)
(******************************************************************************)
Notation H := <<A>>.
Definition coset_range := [pred B in rcosets H 'N(A)].
Record coset_of : Type :=
Coset { set_of_coset :> GroupSet.sort gT; _ : coset_range set_of_coset }.
Canonical coset_subType := Eval hnf in [subType for set_of_coset].
Definition coset_eqMixin := Eval hnf in [eqMixin of coset_of by <:].
Canonical coset_eqType := Eval hnf in EqType coset_of coset_eqMixin.
Definition coset_choiceMixin := [choiceMixin of coset_of by <:].
Canonical coset_choiceType := Eval hnf in ChoiceType coset_of coset_choiceMixin.
Definition coset_countMixin := [countMixin of coset_of by <:].
Canonical coset_countType := Eval hnf in CountType coset_of coset_countMixin.
Canonical coset_subCountType := Eval hnf in [subCountType of coset_of].
Definition coset_finMixin := [finMixin of coset_of by <:].
Canonical coset_finType := Eval hnf in FinType coset_of coset_finMixin.
Canonical coset_subFinType := Eval hnf in [subFinType of coset_of].
(* We build a new (canonical) structure of groupType for cosets. *)
(* When A is a group, this is the largest possible quotient 'N(A) / A. *)
Lemma coset_one_proof : coset_range H.
Proof. by apply/rcosetsP; exists (1 : gT); rewrite (group1, mulg1). Qed.
Definition coset_one := Coset coset_one_proof.
Let nNH := subsetP (norm_gen A).
Lemma coset_range_mul (B C : coset_of) : coset_range (B * C).
Proof.
case: B C => _ /= /rcosetsP[x Nx ->] [_ /= /rcosetsP[y Ny ->]].
by apply/rcosetsP; exists (x * y); rewrite !(groupM, rcoset_mul, nNH).
Qed.
Definition coset_mul B C := Coset (coset_range_mul B C).
Lemma coset_range_inv (B : coset_of) : coset_range B^-1.
Proof.
case: B => _ /= /rcosetsP[x Nx ->]; rewrite norm_rlcoset ?nNH // invg_lcoset.
by apply/rcosetsP; exists x^-1; rewrite ?groupV.
Qed.
Definition coset_inv B := Coset (coset_range_inv B).
Lemma coset_mulP : associative coset_mul.
Proof. by move=> B C D; apply: val_inj; rewrite /= mulgA. Qed.
Lemma coset_oneP : left_id coset_one coset_mul.
Proof.
case=> B coB; apply: val_inj => /=; case/rcosetsP: coB => x Hx ->{B}.
by rewrite mulgA mulGid.
Qed.
Lemma coset_invP : left_inverse coset_one coset_inv coset_mul.
Proof.
case=> B coB; apply: val_inj => /=; case/rcosetsP: coB => x Hx ->{B}.
rewrite invg_rcoset -mulgA (mulgA H) mulGid.
by rewrite norm_rlcoset ?nNH // -lcosetM mulVg mul1g.
Qed.
Definition coset_of_groupMixin :=
FinGroup.Mixin coset_mulP coset_oneP coset_invP.
Canonical coset_baseGroupType :=
Eval hnf in BaseFinGroupType coset_of coset_of_groupMixin.
Canonical coset_groupType := FinGroupType coset_invP.
(* Projection of the initial group type over the cosets groupType. *)
Definition coset x : coset_of := insubd (1 : coset_of) (H :* x).
(* This is a primitive lemma -- we'll need to restate it for *)
(* the case where A is a group. *)
Lemma val_coset_prim x : x \in 'N(A) -> coset x :=: H :* x.
Proof.
by move=> Nx; rewrite val_insubd /= mem_rcosets -{1}(mul1g x) mem_mulg.
Qed.
Lemma coset_morphM : {in 'N(A) &, {morph coset : x y / x * y}}.
Proof.
move=> x y Nx Ny; apply: val_inj.
by rewrite /= !val_coset_prim ?groupM //= rcoset_mul ?nNH.
Qed.
Canonical coset_morphism := Morphism coset_morphM.
Lemma ker_coset_prim : 'ker coset = 'N_H(A).
Proof.
apply/setP=> z; rewrite !in_setI andbC 2!inE -val_eqE /=.
case Nz: (z \in 'N(A)); rewrite ?andbF ?val_coset_prim // !andbT.
by apply/eqP/idP=> [<-| Az]; rewrite (rcoset_refl, rcoset_id).
Qed.
Implicit Type xbar : coset_of.
Lemma coset_mem y xbar : y \in xbar -> coset y = xbar.
Proof.
case: xbar => /= Hx NHx Hxy; apply: val_inj=> /=.
case/rcosetsP: NHx (NHx) Hxy => x Nx -> NHx Hxy.
by rewrite val_insubd /= (rcoset_eqP Hxy) NHx.
Qed.
(* coset is an inverse to repr *)
Lemma mem_repr_coset xbar : repr xbar \in xbar.
Proof. by case: xbar => /= _ /rcosetsP[x _ ->]; apply: mem_repr_rcoset. Qed.
Lemma repr_coset1 : repr (1 : coset_of) = 1.
Proof. exact: repr_group. Qed.
Lemma coset_reprK : cancel (fun xbar => repr xbar) coset.
Proof. by move=> xbar; apply: coset_mem (mem_repr_coset xbar). Qed.
(* cosetP is slightly stronger than using repr because we only *)
(* guarantee repr xbar \in 'N(A) when A is a group. *)
Lemma cosetP xbar : {x | x \in 'N(A) & xbar = coset x}.
Proof.
pose x := repr 'N_xbar(A).
have [xbar_x Nx]: x \in xbar /\ x \in 'N(A).
apply/setIP; rewrite {}/x; case: xbar => /= _ /rcosetsP[y Ny ->].
by apply: (mem_repr y); rewrite inE rcoset_refl.
by exists x; last rewrite (coset_mem xbar_x).
Qed.
Lemma coset_id x : x \in A -> coset x = 1.
Proof. by move=> Ax; apply: coset_mem; apply: mem_gen. Qed.
Lemma im_coset : coset @* 'N(A) = setT.
Proof.
by apply/setP=> xbar; case: (cosetP xbar) => x Nx ->; rewrite inE mem_morphim.
Qed.
Lemma sub_im_coset (C : {set coset_of}) : C \subset coset @* 'N(A).
Proof. by rewrite im_coset subsetT. Qed.
Lemma cosetpre_proper C D :
(coset @*^-1 C \proper coset @*^-1 D) = (C \proper D).
Proof. by rewrite morphpre_proper ?sub_im_coset. Qed.
Definition quotient : {set coset_of} := coset @* Q.
Lemma quotientE : quotient = coset @* Q. Proof. by []. Qed.
End Cosets.
Arguments coset_of {gT} H%g : rename.
Arguments coset {gT} H%g x%g : rename.
Arguments quotient {gT} A%g H%g : rename.
Arguments coset_reprK {gT H%g} xbar%g : rename.
Bind Scope group_scope with coset_of.
Notation "A / H" := (quotient A H) : group_scope.
Section CosetOfGroupTheory.
Variables (gT : finGroupType) (H : {group gT}).
Implicit Types (A B : {set gT}) (G K : {group gT}) (xbar yb : coset_of H).
Implicit Types (C D : {set coset_of H}) (L M : {group coset_of H}).
Canonical quotient_group G A : {group coset_of A} :=
Eval hnf in [group of G / A].
Infix "/" := quotient_group : Group_scope.
Lemma val_coset x : x \in 'N(H) -> coset H x :=: H :* x.
Proof. by move=> Nx; rewrite val_coset_prim // genGid. Qed.
Lemma coset_default x : (x \in 'N(H)) = false -> coset H x = 1.
Proof.
move=> Nx; apply: val_inj.
by rewrite val_insubd /= mem_rcosets /= genGid mulSGid ?normG ?Nx.
Qed.
Lemma coset_norm xbar : xbar \subset 'N(H).
Proof.
case: xbar => /= _ /rcosetsP[x Nx ->].
by rewrite genGid mul_subG ?sub1set ?normG.
Qed.
Lemma ker_coset : 'ker (coset H) = H.
Proof. by rewrite ker_coset_prim genGid (setIidPl _) ?normG. Qed.
Lemma coset_idr x : x \in 'N(H) -> coset H x = 1 -> x \in H.
Proof. by move=> Nx Hx1; rewrite -ker_coset mem_morphpre //= Hx1 set11. Qed.
Lemma repr_coset_norm xbar : repr xbar \in 'N(H).
Proof. exact: subsetP (coset_norm _) _ (mem_repr_coset _). Qed.
Lemma imset_coset G : coset H @: G = G / H.
Proof.
apply/eqP; rewrite eqEsubset andbC imsetS ?subsetIr //=.
apply/subsetP=> _ /imsetP[x Gx ->].
by case Nx: (x \in 'N(H)); rewrite ?(coset_default Nx) ?mem_morphim ?group1.
Qed.
Lemma val_quotient A : val @: (A / H) = rcosets H 'N_A(H).
Proof.
apply/setP=> B; apply/imsetP/rcosetsP=> [[xbar Axbar]|[x /setIP[Ax Nx]]] ->{B}.
case/morphimP: Axbar => x Nx Ax ->{xbar}.
by exists x; [rewrite inE Ax | rewrite /= val_coset].
by exists (coset H x); [apply/morphimP; exists x | rewrite /= val_coset].
Qed.
Lemma card_quotient_subnorm A : #|A / H| = #|'N_A(H) : H|.
Proof. by rewrite -(card_imset _ val_inj) val_quotient. Qed.
Lemma leq_quotient A : #|A / H| <= #|A|.
Proof. exact: leq_morphim. Qed.
Lemma ltn_quotient A : H :!=: 1 -> H \subset A -> #|A / H| < #|A|.
Proof.
by move=> ntH sHA; rewrite ltn_morphim // ker_coset (setIidPr sHA) proper1G.
Qed.
Lemma card_quotient A : A \subset 'N(H) -> #|A / H| = #|A : H|.
Proof. by move=> nHA; rewrite card_quotient_subnorm (setIidPl nHA). Qed.
Lemma divg_normal G : H <| G -> #|G| %/ #|H| = #|G / H|.
Proof. by case/andP=> sHG nHG; rewrite divgS ?card_quotient. Qed.
(* Specializing all the morphisms lemmas that have different assumptions *)
(* (e.g., because 'ker (coset H) = H), or conclusions (e.g., because we use *)
(* A / H rather than coset H @* A). We may want to reevaluate later, and *)
(* eliminate variants that aren't used . *)
(* Variant of morph1; no specialization for other morph lemmas. *)
Lemma coset1 : coset H 1 :=: H.
Proof. by rewrite morph1 /= genGid. Qed.
(* Variant of kerE. *)
Lemma cosetpre1 : coset H @*^-1 1 = H.
Proof. by rewrite -kerE ker_coset. Qed.
(* Variant of morphimEdom; mophimE[sub] covered by imset_coset. *)
(* morph[im|pre]Iim are also covered by im_quotient. *)
Lemma im_quotient : 'N(H) / H = setT.
Proof. exact: im_coset. Qed.
Lemma quotientT : setT / H = setT.
Proof. by rewrite -im_quotient; apply: morphimT. Qed.
(* Variant of morphimIdom. *)
Lemma quotientInorm A : 'N_A(H) / H = A / H.
Proof. by rewrite /quotient setIC morphimIdom. Qed.
Lemma quotient_setIpre A D : (A :&: coset H @*^-1 D) / H = A / H :&: D.
Proof. exact: morphim_setIpre. Qed.
Lemma mem_quotient x G : x \in G -> coset H x \in G / H.
Proof. by move=> Gx; rewrite -imset_coset imset_f. Qed.
Lemma quotientS A B : A \subset B -> A / H \subset B / H.
Proof. exact: morphimS. Qed.
Lemma quotient0 : set0 / H = set0.
Proof. exact: morphim0. Qed.
Lemma quotient_set1 x : x \in 'N(H) -> [set x] / H = [set coset H x].
Proof. exact: morphim_set1. Qed.
Lemma quotient1 : 1 / H = 1.
Proof. exact: morphim1. Qed.
Lemma quotientV A : A^-1 / H = (A / H)^-1.
Proof. exact: morphimV. Qed.
Lemma quotientMl A B : A \subset 'N(H) -> A * B / H = (A / H) * (B / H).
Proof. exact: morphimMl. Qed.
Lemma quotientMr A B : B \subset 'N(H) -> A * B / H = (A / H) * (B / H).
Proof. exact: morphimMr. Qed.
Lemma cosetpreM C D : coset H @*^-1 (C * D) = coset H @*^-1 C * coset H @*^-1 D.
Proof. by rewrite morphpreMl ?sub_im_coset. Qed.
Lemma quotientJ A x : x \in 'N(H) -> A :^ x / H = (A / H) :^ coset H x.
Proof. exact: morphimJ. Qed.
Lemma quotientU A B : (A :|: B) / H = A / H :|: B / H.
Proof. exact: morphimU. Qed.
Lemma quotientI A B : (A :&: B) / H \subset A / H :&: B / H.
Proof. exact: morphimI. Qed.
Lemma quotientY A B :
A \subset 'N(H) -> B \subset 'N(H) -> (A <*> B) / H = (A / H) <*> (B / H).
Proof. exact: morphimY. Qed.
Lemma quotient_homg A : A \subset 'N(H) -> homg (A / H) A.
Proof. exact: morphim_homg. Qed.
Lemma coset_kerl x y : x \in H -> coset H (x * y) = coset H y.
Proof.
move=> Hx; case Ny: (y \in 'N(H)); first by rewrite mkerl ?ker_coset.
by rewrite !coset_default ?groupMl // (subsetP (normG H)).
Qed.
Lemma coset_kerr x y : y \in H -> coset H (x * y) = coset H x.
Proof.
move=> Hy; case Nx: (x \in 'N(H)); first by rewrite mkerr ?ker_coset.
by rewrite !coset_default ?groupMr // (subsetP (normG H)).
Qed.
Lemma rcoset_kercosetP x y :
x \in 'N(H) -> y \in 'N(H) -> reflect (coset H x = coset H y) (x \in H :* y).
Proof. by rewrite -{6}ker_coset; apply: rcoset_kerP. Qed.
Lemma kercoset_rcoset x y :
x \in 'N(H) -> y \in 'N(H) ->
coset H x = coset H y -> exists2 z, z \in H & x = z * y.
Proof. by move=> Nx Ny eqfxy; rewrite -ker_coset; apply: ker_rcoset. Qed.
Lemma quotientGI G A : H \subset G -> (G :&: A) / H = G / H :&: A / H.
Proof. by rewrite -{1}ker_coset; apply: morphimGI. Qed.
Lemma quotientIG A G : H \subset G -> (A :&: G) / H = A / H :&: G / H.
Proof. by rewrite -{1}ker_coset; apply: morphimIG. Qed.
Lemma quotientD A B : A / H :\: B / H \subset (A :\: B) / H.
Proof. exact: morphimD. Qed.
Lemma quotientD1 A : (A / H)^# \subset A^# / H.
Proof. exact: morphimD1. Qed.
Lemma quotientDG A G : H \subset G -> (A :\: G) / H = A / H :\: G / H.
Proof. by rewrite -{1}ker_coset; apply: morphimDG. Qed.
Lemma quotientK A : A \subset 'N(H) -> coset H @*^-1 (A / H) = H * A.
Proof. by rewrite -{8}ker_coset; apply: morphimK. Qed.
Lemma quotientYK G : G \subset 'N(H) -> coset H @*^-1 (G / H) = H <*> G.
Proof. by move=> nHG; rewrite quotientK ?norm_joinEr. Qed.
Lemma quotientGK G : H <| G -> coset H @*^-1 (G / H) = G.
Proof. by case/andP; rewrite -{1}ker_coset; apply: morphimGK. Qed.
Lemma quotient_class x A :
x \in 'N(H) -> A \subset 'N(H) -> x ^: A / H = coset H x ^: (A / H).
Proof. exact: morphim_class. Qed.
Lemma classes_quotient A :
A \subset 'N(H) -> classes (A / H) = [set xA / H | xA in classes A].
Proof. exact: classes_morphim. Qed.
Lemma cosetpre_set1 x :
x \in 'N(H) -> coset H @*^-1 [set coset H x] = H :* x.
Proof. by rewrite -{9}ker_coset; apply: morphpre_set1. Qed.
Lemma cosetpre_set1_coset xbar : coset H @*^-1 [set xbar] = xbar.
Proof. by case: (cosetP xbar) => x Nx ->; rewrite cosetpre_set1 ?val_coset. Qed.
Lemma cosetpreK C : coset H @*^-1 C / H = C.
Proof. by rewrite /quotient morphpreK ?sub_im_coset. Qed.
(* Variant of morhphim_ker *)
Lemma trivg_quotient : H / H = 1.
Proof. by rewrite -{3}ker_coset /quotient morphim_ker. Qed.
Lemma quotientS1 G : G \subset H -> G / H = 1.
Proof. by move=> sGH; apply/trivgP; rewrite -trivg_quotient quotientS. Qed.
Lemma sub_cosetpre M : H \subset coset H @*^-1 M.
Proof. by rewrite -{1}ker_coset; apply: ker_sub_pre. Qed.
Lemma quotient_proper G K :
H <| G -> H <| K -> (G / H \proper K / H) = (G \proper K).
Proof. by move=> nHG nHK; rewrite -cosetpre_proper ?quotientGK. Qed.
Lemma normal_cosetpre M : H <| coset H @*^-1 M.
Proof. by rewrite -{1}ker_coset; apply: ker_normal_pre. Qed.
Lemma cosetpreSK C D :
(coset H @*^-1 C \subset coset H @*^-1 D) = (C \subset D).
Proof. by rewrite morphpreSK ?sub_im_coset. Qed.
Lemma sub_quotient_pre A C :
A \subset 'N(H) -> (A / H \subset C) = (A \subset coset H @*^-1 C).
Proof. exact: sub_morphim_pre. Qed.
Lemma sub_cosetpre_quo C G :
H <| G -> (coset H @*^-1 C \subset G) = (C \subset G / H).
Proof. by move=> nHG; rewrite -cosetpreSK quotientGK. Qed.
(* Variant of ker_trivg_morphim. *)
Lemma quotient_sub1 A : A \subset 'N(H) -> (A / H \subset [1]) = (A \subset H).
Proof. by move=> nHA /=; rewrite -{10}ker_coset ker_trivg_morphim nHA. Qed.
Lemma quotientSK A B :
A \subset 'N(H) -> (A / H \subset B / H) = (A \subset H * B).
Proof. by move=> nHA; rewrite morphimSK ?ker_coset. Qed.
Lemma quotientSGK A G :
A \subset 'N(H) -> H \subset G -> (A / H \subset G / H) = (A \subset G).
Proof. by rewrite -{2}ker_coset; apply: morphimSGK. Qed.
Lemma quotient_injG :
{in [pred G : {group gT} | H <| G] &, injective (fun G => G / H)}.
Proof. by rewrite /normal -{1}ker_coset; apply: morphim_injG. Qed.
Lemma quotient_inj G1 G2 :
H <| G1 -> H <| G2 -> G1 / H = G2 / H -> G1 :=: G2.
Proof. by rewrite /normal -[in mem H]ker_coset; apply: morphim_inj. Qed.
Lemma quotient_neq1 A : H <| A -> (A / H != 1) = (H \proper A).
Proof.
case/andP=> sHA nHA; rewrite /proper sHA -trivg_quotient eqEsubset andbC.
by rewrite quotientS //= quotientSGK.
Qed.
Lemma quotient_gen A : A \subset 'N(H) -> <<A>> / H = <<A / H>>.
Proof. exact: morphim_gen. Qed.
Lemma cosetpre_gen C :
1 \in C -> coset H @*^-1 <<C>> = <<coset H @*^-1 C>>.
Proof. by move=> C1; rewrite morphpre_gen ?sub_im_coset. Qed.
Lemma quotientR A B :
A \subset 'N(H) -> B \subset 'N(H) -> [~: A, B] / H = [~: A / H, B / H].
Proof. exact: morphimR. Qed.
Lemma quotient_norm A : 'N(A) / H \subset 'N(A / H).
Proof. exact: morphim_norm. Qed.
Lemma quotient_norms A B : A \subset 'N(B) -> A / H \subset 'N(B / H).
Proof. exact: morphim_norms. Qed.
Lemma quotient_subnorm A B : 'N_A(B) / H \subset 'N_(A / H)(B / H).
Proof. exact: morphim_subnorm. Qed.
Lemma quotient_normal A B : A <| B -> A / H <| B / H.
Proof. exact: morphim_normal. Qed.
Lemma quotient_cent1 x : 'C[x] / H \subset 'C[coset H x].
Proof.
case Nx: (x \in 'N(H)); first exact: morphim_cent1.
by rewrite coset_default // cent11T subsetT.
Qed.
Lemma quotient_cent1s A x : A \subset 'C[x] -> A / H \subset 'C[coset H x].
Proof.
by move=> sAC; apply: subset_trans (quotientS sAC) (quotient_cent1 x).
Qed.
Lemma quotient_subcent1 A x : 'C_A[x] / H \subset 'C_(A / H)[coset H x].
Proof. exact: subset_trans (quotientI _ _) (setIS _ (quotient_cent1 x)). Qed.
Lemma quotient_cent A : 'C(A) / H \subset 'C(A / H).
Proof. exact: morphim_cent. Qed.
Lemma quotient_cents A B : A \subset 'C(B) -> A / H \subset 'C(B / H).
Proof. exact: morphim_cents. Qed.
Lemma quotient_abelian A : abelian A -> abelian (A / H).
Proof. exact: morphim_abelian. Qed.
Lemma quotient_subcent A B : 'C_A(B) / H \subset 'C_(A / H)(B / H).
Proof. exact: morphim_subcent. Qed.
Lemma norm_quotient_pre A C :
A \subset 'N(H) -> A / H \subset 'N(C) -> A \subset 'N(coset H @*^-1 C).
Proof.
by move/sub_quotient_pre=> -> /subset_trans-> //; apply: morphpre_norm.
Qed.
Lemma cosetpre_normal C D : (coset H @*^-1 C <| coset H @*^-1 D) = (C <| D).
Proof. by rewrite morphpre_normal ?sub_im_coset. Qed.
Lemma quotient_normG G : H <| G -> 'N(G) / H = 'N(G / H).
Proof.
case/andP=> sHG nHG.
by rewrite [_ / _]morphim_normG ?ker_coset // im_coset setTI.
Qed.
Lemma quotient_subnormG A G : H <| G -> 'N_A(G) / H = 'N_(A / H)(G / H).
Proof. by case/andP=> sHG nHG; rewrite -morphim_subnormG ?ker_coset. Qed.
Lemma cosetpre_cent1 x : 'C_('N(H))[x] \subset coset H @*^-1 'C[coset H x].
Proof.
case Nx: (x \in 'N(H)); first by rewrite morphpre_cent1.
by rewrite coset_default // cent11T morphpreT subsetIl.
Qed.
Lemma cosetpre_cent1s C x :
coset H @*^-1 C \subset 'C[x] -> C \subset 'C[coset H x].
Proof.
move=> sC; rewrite -cosetpreSK; apply: subset_trans (cosetpre_cent1 x).
by rewrite subsetI subsetIl.
Qed.
Lemma cosetpre_subcent1 C x :
'C_(coset H @*^-1 C)[x] \subset coset H @*^-1 'C_C[coset H x].
Proof.
by rewrite -morphpreIdom -setIA setICA morphpreI setIS // cosetpre_cent1.
Qed.
Lemma cosetpre_cent A : 'C_('N(H))(A) \subset coset H @*^-1 'C(A / H).
Proof. exact: morphpre_cent. Qed.
Lemma cosetpre_cents A C : coset H @*^-1 C \subset 'C(A) -> C \subset 'C(A / H).
Proof. by apply: morphpre_cents; rewrite ?sub_im_coset. Qed.
Lemma cosetpre_subcent C A :
'C_(coset H @*^-1 C)(A) \subset coset H @*^-1 'C_C(A / H).
Proof. exact: morphpre_subcent. Qed.
Lemma restrm_quotientE G A (nHG : G \subset 'N(H)) :
A \subset G -> restrm nHG (coset H) @* A = A / H.
Proof. exact: restrmEsub. Qed.
Section InverseImage.
Variables (G : {group gT}) (Kbar : {group coset_of H}).
Hypothesis nHG : H <| G.
Variant inv_quotient_spec (P : pred {group gT}) : Prop :=
InvQuotientSpec K of Kbar :=: K / H & H \subset K & P K.
Lemma inv_quotientS :
Kbar \subset G / H -> inv_quotient_spec (fun K => K \subset G).
Proof.
case/andP: nHG => sHG nHG' sKbarG.
have sKdH: Kbar \subset 'N(H) / H by rewrite (subset_trans sKbarG) ?morphimS.
exists (coset H @*^-1 Kbar)%G; first by rewrite cosetpreK.
by rewrite -{1}ker_coset morphpreS ?sub1G.
by rewrite sub_cosetpre_quo.
Qed.
Lemma inv_quotientN : Kbar <| G / H -> inv_quotient_spec (fun K => K <| G).
Proof.
move=> nKbar; case/inv_quotientS: (normal_sub nKbar) => K defKbar sHK sKG.
exists K => //; rewrite defKbar -cosetpre_normal !quotientGK // in nKbar.
exact: normalS nHG.
Qed.
End InverseImage.
Lemma quotientMidr A : A * H / H = A / H.
Proof.
by rewrite [_ /_]morphimMr ?normG //= -!quotientE trivg_quotient mulg1.
Qed.
Lemma quotientMidl A : H * A / H = A / H.
Proof.
by rewrite [_ /_]morphimMl ?normG //= -!quotientE trivg_quotient mul1g.
Qed.
Lemma quotientYidr G : G \subset 'N(H) -> G <*> H / H = G / H.
Proof.
move=> nHG; rewrite -genM_join quotient_gen ?mul_subG ?normG //.
by rewrite quotientMidr genGid.
Qed.
Lemma quotientYidl G : G \subset 'N(H) -> H <*> G / H = G / H.
Proof. by move=> nHG; rewrite joingC quotientYidr. Qed.
Section Injective.
Variables (G : {group gT}).
Hypotheses (nHG : G \subset 'N(H)) (tiHG : H :&: G = 1).
Lemma quotient_isom : isom G (G / H) (restrm nHG (coset H)).
Proof. by apply/isomP; rewrite ker_restrm setIC ker_coset tiHG im_restrm. Qed.
Lemma quotient_isog : isog G (G / H).
Proof. exact: isom_isog quotient_isom. Qed.
End Injective.
End CosetOfGroupTheory.
Notation "A / H" := (quotient_group A H) : Group_scope.
Section Quotient1.
Variables (gT : finGroupType) (A : {set gT}).
Lemma coset1_injm : 'injm (@coset gT 1).
Proof. by rewrite ker_coset /=. Qed.
Lemma quotient1_isom : isom A (A / 1) (coset 1).
Proof. by apply: sub_isom coset1_injm; rewrite ?norms1. Qed.
Lemma quotient1_isog : isog A (A / 1).
Proof. by apply: isom_isog quotient1_isom; apply: norms1. Qed.
End Quotient1.
Section QuotientMorphism.
Variable (gT rT : finGroupType) (G H : {group gT}) (f : {morphism G >-> rT}).
Implicit Types A : {set gT}.
Implicit Types B : {set (coset_of H)}.
Hypotheses (nsHG : H <| G).
Let sHG : H \subset G := normal_sub nsHG.
Let nHG : G \subset 'N(H) := normal_norm nsHG.
Let nfHfG : f @* G \subset 'N(f @* H) := morphim_norms f nHG.
Notation fH := (coset (f @* H) \o f).
Lemma quotm_dom_proof : G \subset 'dom fH.
Proof. by rewrite -sub_morphim_pre. Qed.
Notation fH_G := (restrm quotm_dom_proof fH).
Lemma quotm_ker_proof : 'ker (coset H) \subset 'ker fH_G.
Proof.
by rewrite ker_restrm ker_comp !ker_coset morphpreIdom morphimK ?mulG_subr.
Qed.
Definition quotm := factm quotm_ker_proof nHG.
Canonical quotm_morphism := [morphism G / H of quotm].
Lemma quotmE x : x \in G -> quotm (coset H x) = coset (f @* H) (f x).
Proof. exact: factmE. Qed.
Lemma morphim_quotm A : quotm @* (A / H) = f @* A / f @* H.
Proof. by rewrite morphim_factm morphim_restrm morphim_comp morphimIdom. Qed.
Lemma morphpre_quotm Abar : quotm @*^-1 (Abar / f @* H) = f @*^-1 Abar / H.
Proof.
rewrite morphpre_factm morphpre_restrm morphpre_comp /=.
rewrite morphpreIdom -[Abar / _]quotientInorm quotientK ?subsetIr //=.
rewrite morphpreMl ?morphimS // morphimK // [_ * H]normC ?subIset ?nHG //.
rewrite -quotientE -mulgA quotientMidl /= setIC -morphpreIim setIA.
by rewrite (setIidPl nfHfG) morphpreIim -morphpreMl ?sub1G ?mul1g.
Qed.
Lemma ker_quotm : 'ker quotm = 'ker f / H.
Proof. by rewrite -morphpre_quotm /quotient morphim1. Qed.
Lemma injm_quotm : 'injm f -> 'injm quotm.
Proof. by move/trivgP=> /= kf1; rewrite ker_quotm kf1 quotientE morphim1. Qed.
End QuotientMorphism.
Section EqIso.
Variables (gT : finGroupType) (G H : {group gT}).
Hypothesis (eqGH : G :=: H).
Lemma im_qisom_proof : 'N(H) \subset 'N(G). Proof. by rewrite eqGH. Qed.
Lemma qisom_ker_proof : 'ker (coset G) \subset 'ker (coset H).
Proof. by rewrite eqGH. Qed.
Lemma qisom_restr_proof : setT \subset 'N(H) / G.
Proof. by rewrite eqGH im_quotient. Qed.
Definition qisom :=
restrm qisom_restr_proof (factm qisom_ker_proof im_qisom_proof).
Canonical qisom_morphism := Eval hnf in [morphism of qisom].
Lemma qisomE x : qisom (coset G x) = coset H x.
Proof.
case Nx: (x \in 'N(H)); first exact: factmE.
by rewrite !coset_default ?eqGH ?morph1.
Qed.
Lemma val_qisom Gx : val (qisom Gx) = val Gx.
Proof.
by case: (cosetP Gx) => x Nx ->{Gx}; rewrite qisomE /= !val_coset -?eqGH.
Qed.
Lemma morphim_qisom A : qisom @* (A / G) = A / H.
Proof. by rewrite morphim_restrm setTI morphim_factm. Qed.
Lemma morphpre_qisom A : qisom @*^-1 (A / H) = A / G.
Proof.
rewrite morphpre_restrm setTI morphpre_factm eqGH.
by rewrite morphpreK // im_coset subsetT.
Qed.
Lemma injm_qisom : 'injm qisom.
Proof. by rewrite -quotient1 -morphpre_qisom morphpreS ?sub1G. Qed.
Lemma im_qisom : qisom @* setT = setT.
Proof. by rewrite -{2}im_quotient morphim_qisom eqGH im_quotient. Qed.
Lemma qisom_isom : isom setT setT qisom.
Proof. by apply/isomP; rewrite injm_qisom im_qisom. Qed.
Lemma qisom_isog : [set: coset_of G] \isog [set: coset_of H].
Proof. exact: isom_isog qisom_isom. Qed.
Lemma qisom_inj : injective qisom.
Proof. by move=> x y; apply: (injmP injm_qisom); rewrite inE. Qed.
Lemma morphim_qisom_inj : injective (fun Gx => qisom @* Gx).
Proof.
by move=> Gx Gy; apply: injm_morphim_inj; rewrite (injm_qisom, subsetT).
Qed.
End EqIso.
Arguments qisom_inj {gT G H} eqGH [x1 x2].
Arguments morphim_qisom_inj {gT G H} eqGH [x1 x2].
Section FirstIsomorphism.
Variables aT rT : finGroupType.
Lemma first_isom (G : {group aT}) (f : {morphism G >-> rT}) :
{g : {morphism G / 'ker f >-> rT} | 'injm g &
forall A : {set aT}, g @* (A / 'ker f) = f @* A}.
Proof.
have nkG := ker_norm f.
have skk: 'ker (coset ('ker f)) \subset 'ker f by rewrite ker_coset.
exists (factm_morphism skk nkG) => /=; last exact: morphim_factm.
by rewrite ker_factm -quotientE trivg_quotient.
Qed.
Variables (G H : {group aT}) (f : {morphism G >-> rT}).
Hypothesis sHG : H \subset G.
Lemma first_isog : (G / 'ker f) \isog (f @* G).
Proof.
by case: (first_isom f) => g injg im_g; apply/isogP; exists g; rewrite ?im_g.
Qed.
Lemma first_isom_loc : {g : {morphism H / 'ker_H f >-> rT} |
'injm g & forall A : {set aT}, A \subset H -> g @* (A / 'ker_H f) = f @* A}.
Proof.
case: (first_isom (restrm_morphism sHG f)).
rewrite ker_restrm => g injg im_g; exists g => // A sAH.
by rewrite im_g morphim_restrm (setIidPr sAH).
Qed.
Lemma first_isog_loc : (H / 'ker_H f) \isog (f @* H).
Proof.
by case: first_isom_loc => g injg im_g; apply/isogP; exists g; rewrite ?im_g.
Qed.
End FirstIsomorphism.
Section SecondIsomorphism.
Variables (gT : finGroupType) (H K : {group gT}).
Hypothesis nKH : H \subset 'N(K).
Lemma second_isom : {f : {morphism H / (K :&: H) >-> coset_of K} |
'injm f & forall A : {set gT}, A \subset H -> f @* (A / (K :&: H)) = A / K}.
Proof.
have ->: K :&: H = 'ker_H (coset K) by rewrite ker_coset setIC.
exact: first_isom_loc.
Qed.
Lemma second_isog : H / (K :&: H) \isog H / K.
Proof. by rewrite setIC -{1 3}(ker_coset K); apply: first_isog_loc. Qed.
Lemma weak_second_isog : H / (K :&: H) \isog H * K / K.
Proof. by rewrite quotientMidr; apply: second_isog. Qed.
End SecondIsomorphism.
Section ThirdIsomorphism.
Variables (gT : finGroupType) (G H K : {group gT}).
Lemma homg_quotientS (A : {set gT}) :
A \subset 'N(H) -> A \subset 'N(K) -> H \subset K -> A / K \homg A / H.
Proof.
rewrite -!(gen_subG A) /=; set L := <<A>> => nHL nKL sKH.
have sub_ker: 'ker (restrm nHL (coset H)) \subset 'ker (restrm nKL (coset K)).
by rewrite !ker_restrm !ker_coset setIS.
have sAL: A \subset L := subset_gen A; rewrite -(setIidPr sAL).
rewrite -[_ / H](morphim_restrm nHL) -[_ / K](morphim_restrm nKL) /=.
by rewrite -(morphim_factm sub_ker (subxx L)) morphim_homg ?morphimS.
Qed.
Hypothesis sHK : H \subset K.
Hypothesis snHG : H <| G.
Hypothesis snKG : K <| G.
Theorem third_isom : {f : {morphism (G / H) / (K / H) >-> coset_of K} | 'injm f
& forall A : {set gT}, A \subset G -> f @* (A / H / (K / H)) = A / K}.
Proof.
have [[sKG nKG] [sHG nHG]] := (andP snKG, andP snHG).
have sHker: 'ker (coset H) \subset 'ker (restrm nKG (coset K)).
by rewrite ker_restrm !ker_coset subsetI sHG.
have:= first_isom_loc (factm_morphism sHker nHG) (subxx _) => /=.
rewrite ker_factm_loc ker_restrm ker_coset !(setIidPr sKG) /= -!quotientE.
case=> f injf im_f; exists f => // A sAG; rewrite im_f ?morphimS //.
by rewrite morphim_factm morphim_restrm (setIidPr sAG).
Qed.
Theorem third_isog : (G / H / (K / H)) \isog (G / K).
Proof.
by case: third_isom => f inj_f im_f; apply/isogP; exists f; rewrite ?im_f.
Qed.
End ThirdIsomorphism.
Lemma char_from_quotient (gT : finGroupType) (G H K : {group gT}) :
H <| K -> H \char G -> K / H \char G / H -> K \char G.
Proof.
case/andP=> sHK nHK chHG.
have nsHG := char_normal chHG; have [sHG nHG] := andP nsHG.
case/charP; rewrite quotientSGK // => sKG /= chKG.
apply/charP; split=> // f injf Gf; apply/morphim_fixP => //.
rewrite -(quotientSGK _ sHK); last by rewrite -morphimIim Gf subIset ?nHG.
have{chHG} Hf: f @* H = H by case/charP: chHG => _; apply.
set q := quotm_morphism f nsHG; have{injf}: 'injm q by apply: injm_quotm.
have: q @* _ = _ := morphim_quotm _ _ _; move: q; rewrite Hf => q im_q injq.
by rewrite -im_q chKG // im_q Gf.
Qed.
(* Counting lemmas for morphisms. *)
Section CardMorphism.
Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}).
Implicit Types G H : {group aT}.
Implicit Types L M : {group rT}.
Lemma card_morphim G : #|f @* G| = #|D :&: G : 'ker f|.
Proof.
rewrite -morphimIdom -indexgI -card_quotient; last first.
by rewrite normsI ?normG ?subIset ?ker_norm.
by apply: esym (card_isog _); rewrite first_isog_loc ?subsetIl.
Qed.
Lemma dvdn_morphim G : #|f @* G| %| #|G|.
Proof.
rewrite card_morphim (dvdn_trans (dvdn_indexg _ _)) //.
by rewrite cardSg ?subsetIr.
Qed.
Lemma logn_morphim p G : logn p #|f @* G| <= logn p #|G|.
Proof. by rewrite dvdn_leq_log ?dvdn_morphim. Qed.
Lemma coprime_morphl G p : coprime #|G| p -> coprime #|f @* G| p.
Proof. exact: coprime_dvdl (dvdn_morphim G). Qed.
Lemma coprime_morphr G p : coprime p #|G| -> coprime p #|f @* G|.
Proof. exact: coprime_dvdr (dvdn_morphim G). Qed.
Lemma coprime_morph G H : coprime #|G| #|H| -> coprime #|f @* G| #|f @* H|.
Proof. by move=> coGH; rewrite coprime_morphl // coprime_morphr. Qed.
Lemma index_morphim_ker G H :
H \subset G -> G \subset D ->
(#|f @* G : f @* H| * #|'ker_G f : H|)%N = #|G : H|.
Proof.
move=> sHG sGD; apply/eqP.
rewrite -(eqn_pmul2l (cardG_gt0 (f @* H))) mulnA Lagrange ?morphimS //.
rewrite !card_morphim (setIidPr sGD) (setIidPr (subset_trans sHG sGD)).
rewrite -(eqn_pmul2l (cardG_gt0 ('ker_H f))) /=.
by rewrite -{1}(setIidPr sHG) setIAC mulnCA mulnC mulnA !LagrangeI Lagrange.
Qed.
Lemma index_morphim G H : G :&: H \subset D -> #|f @* G : f @* H| %| #|G : H|.
Proof.
move=> dGH; rewrite -(indexgI G) -(setIidPr dGH) setIA.
apply: dvdn_trans (indexSg (subsetIl _ H) (subsetIr D G)).
rewrite -index_morphim_ker ?subsetIl ?subsetIr ?dvdn_mulr //= morphimIdom.
by rewrite indexgS ?morphimS ?subsetIr.
Qed.
Lemma index_injm G H : 'injm f -> G \subset D -> #|f @* G : f @* H| = #|G : H|.
Proof.
move=> injf dG; rewrite -{2}(setIidPr dG) -(indexgI _ H) /=.
rewrite -index_morphim_ker ?subsetIl ?subsetIr //= setIAC morphimIdom setIC.
rewrite injmI ?subsetIr // indexgI /= morphimIdom setIC ker_injm //.
by rewrite -(indexgI (1 :&: _)) /= -setIA !(setIidPl (sub1G _)) indexgg muln1.
Qed.
Lemma card_morphpre L : L \subset f @* D -> #|f @*^-1 L| = (#|'ker f| * #|L|)%N.
Proof.
move/morphpreK=> {2} <-; rewrite card_morphim morphpreIdom.
by rewrite Lagrange // morphpreS ?sub1G.
Qed.
Lemma index_morphpre L M :
L \subset f @* D -> #|f @*^-1 L : f @*^-1 M| = #|L : M|.
Proof.
move=> dL; rewrite -!divgI -morphpreI card_morphpre //.
have: L :&: M \subset f @* D by rewrite subIset ?dL.
by move/card_morphpre->; rewrite divnMl ?cardG_gt0.
Qed.
End CardMorphism.
Lemma card_homg (aT rT : finGroupType) (G : {group aT}) (R : {group rT}) :
G \homg R -> #|G| %| #|R|.
Proof. by case/homgP=> f <-; rewrite card_morphim setIid dvdn_indexg. Qed.
Section CardCosetpre.
Variables (gT : finGroupType) (G H K : {group gT}) (L M : {group coset_of H}).
Lemma dvdn_quotient : #|G / H| %| #|G|.
Proof. exact: dvdn_morphim. Qed.
Lemma index_quotient_ker :
K \subset G -> G \subset 'N(H) ->
(#|G / H : K / H| * #|G :&: H : K|)%N = #|G : K|.
Proof. by rewrite -{5}(ker_coset H); apply: index_morphim_ker. Qed.
Lemma index_quotient : G :&: K \subset 'N(H) -> #|G / H : K / H| %| #|G : K|.
Proof. exact: index_morphim. Qed.
Lemma index_quotient_eq :
G :&: H \subset K -> K \subset G -> G \subset 'N(H) ->
#|G / H : K / H| = #|G : K|.
Proof.
move=> sGH_K sKG sGN; rewrite -index_quotient_ker {sKG sGN}//.
by rewrite -(indexgI _ K) (setIidPl sGH_K) indexgg muln1.
Qed.
Lemma card_cosetpre : #|coset H @*^-1 L| = (#|H| * #|L|)%N.
Proof. by rewrite card_morphpre ?ker_coset ?sub_im_coset. Qed.
Lemma index_cosetpre : #|coset H @*^-1 L : coset H @*^-1 M| = #|L : M|.
Proof. by rewrite index_morphpre ?sub_im_coset. Qed.
End CardCosetpre.
|