Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 32,484 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
(* ========================================================================= *)
(* Sigma_1 completeness of Robinson's axioms Q. *)
(* ========================================================================= *)
let robinson = new_definition
`robinson =
(!!0 (!!1 (Suc(V 0) === Suc(V 1) --> V 0 === V 1))) &&
(!!1 (Not(V 1 === Z) <-> ??0 (V 1 === Suc(V 0)))) &&
(!!1 (Z ++ V 1 === V 1)) &&
(!!0 (!!1 (Suc(V 0) ++ V 1 === Suc(V 0 ++ V 1)))) &&
(!!1 (Z ** V 1 === Z)) &&
(!!0 (!!1 (Suc(V 0) ** V 1 === V 1 ++ V 0 ** V 1))) &&
(!!0 (!!1 (V 0 <<= V 1 <-> ??2 (V 0 ++ V 2 === V 1)))) &&
(!!0 (!!1 (V 0 << V 1 <-> Suc(V 0) <<= V 1)))`;;
(* ------------------------------------------------------------------------- *)
(* Individual "axioms" and their instances. *)
(* ------------------------------------------------------------------------- *)
let [suc_inj; num_cases; add_0; add_suc; mul_0; mul_suc; le_def; lt_def] =
CONJUNCTS(REWRITE_RULE[META_AND] (GEN_REWRITE_RULE RAND_CONV [robinson]
(MATCH_MP assume (SET_RULE `robinson IN {robinson}`))));;
let suc_inj' = prove
(`!s t. {robinson} |-- Suc(s) === Suc(t) --> s === t`,
REWRITE_TAC[specl_rule [`s:term`; `t:term`] suc_inj]);;
let num_cases' = prove
(`!t z. ~(z IN FVT t)
==> {robinson} |-- (Not(t === Z) <-> ??z (t === Suc(V z)))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `t:term` (MATCH_MP spec num_cases)) THEN
REWRITE_TAC[formsubst] THEN
CONV_TAC(ONCE_DEPTH_CONV TERMSUBST_CONV) THEN
REWRITE_TAC[FV; FVT; SET_RULE `({1} UNION {0}) DELETE 0 = {1} DIFF {0}`] THEN
REWRITE_TAC[IN_DIFF; IN_SING; UNWIND_THM2; GSYM CONJ_ASSOC; ASSIGN] THEN
REWRITE_TAC[ARITH_EQ] THEN LET_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] iff_trans) THEN
SUBGOAL_THEN `~(z' IN FVT t)` ASSUME_TAC THENL
[EXPAND_TAC "z'" THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[SET_RULE `a IN s ==> s UNION {a} = s`;
VARIANT_FINITE; FVT_FINITE];
MATCH_MP_TAC imp_antisym THEN
ASM_CASES_TAC `z':num = z` THEN ASM_REWRITE_TAC[imp_refl] THEN
CONJ_TAC THEN MATCH_MP_TAC ichoose THEN
ASM_REWRITE_TAC[FV; IN_DELETE; IN_UNION; IN_SING; FVT] THEN
MATCH_MP_TAC gen THEN MATCH_MP_TAC imp_trans THENL
[EXISTS_TAC `formsubst (z |=> V z') (t === Suc(V z))`;
EXISTS_TAC `formsubst (z' |=> V z) (t === Suc(V z'))`] THEN
REWRITE_TAC[iexists] THEN REWRITE_TAC[formsubst] THEN
ASM_REWRITE_TAC[termsubst; ASSIGN] THEN
MATCH_MP_TAC(MESON[imp_refl] `p = q ==> A |-- p --> q`) THEN
AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC TERMSUBST_TRIVIAL THEN REWRITE_TAC[ASSIGN] THEN
ASM_MESON_TAC[]]);;
let add_0' = prove
(`!t. {robinson} |-- Z ++ t === t`,
REWRITE_TAC[spec_rule `t:term` add_0]);;
let add_suc' = prove
(`!s t. {robinson} |-- Suc(s) ++ t === Suc(s ++ t)`,
REWRITE_TAC[specl_rule [`s:term`; `t:term`] add_suc]);;
let mul_0' = prove
(`!t. {robinson} |-- Z ** t === Z`,
REWRITE_TAC[spec_rule `t:term` mul_0]);;
let mul_suc' = prove
(`!s t. {robinson} |-- Suc(s) ** t === t ++ s ** t`,
REWRITE_TAC[specl_rule [`s:term`; `t:term`] mul_suc]);;
let lt_def' = prove
(`!s t. {robinson} |-- (s << t <-> Suc(s) <<= t)`,
REWRITE_TAC[specl_rule [`s:term`; `t:term`] lt_def]);;
(* ------------------------------------------------------------------------- *)
(* All ground terms can be evaluated by proof. *)
(* ------------------------------------------------------------------------- *)
let SIGMA1_COMPLETE_ADD = prove
(`!m n. {robinson} |-- numeral m ++ numeral n === numeral(m + n)`,
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; numeral] THEN
ASM_MESON_TAC[add_0'; add_suc'; axiom_funcong; eq_trans; modusponens]);;
let SIGMA1_COMPLETE_MUL = prove
(`!m n. {robinson} |-- (numeral m ** numeral n === numeral(m * n))`,
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; numeral] THENL
[ASM_MESON_TAC[mul_0']; ALL_TAC] THEN
GEN_TAC THEN MATCH_MP_TAC eq_trans_rule THEN
EXISTS_TAC `numeral(n) ++ numeral(m * n)` THEN CONJ_TAC THENL
[ASM_MESON_TAC[mul_suc'; eq_trans_rule; axiom_funcong; imp_trans;
modusponens; imp_swap;add_assum; axiom_eqrefl];
ASM_MESON_TAC[SIGMA1_COMPLETE_ADD; ADD_SYM; eq_trans_rule]]);;
let SIGMA1_COMPLETE_TERM = prove
(`!v t n. FVT t = {} /\ termval v t = n
==> {robinson} |-- (t === numeral n)`,
let lemma = prove(`(!n. p /\ (x = n) ==> P n) <=> p ==> P x`,MESON_TAC[]) in
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval;FVT; NOT_INSERT_EMPTY] THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[numeral] THEN
MESON_TAC[axiom_eqrefl; add_assum];
ALL_TAC] THEN
REWRITE_TAC[lemma] THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN
RULE_ASSUM_TAC(REWRITE_RULE[EMPTY_UNION]) THEN ASM_REWRITE_TAC[numeral] THEN
MESON_TAC[SIGMA1_COMPLETE_ADD; SIGMA1_COMPLETE_MUL;
cong_suc; cong_add; cong_mul; eq_trans_rule]);;
(* ------------------------------------------------------------------------- *)
(* Convenient stepping theorems for atoms and other useful lemmas. *)
(* ------------------------------------------------------------------------- *)
let canonize_clauses =
let lemma0 = MESON[imp_refl; imp_swap; modusponens; axiom_doubleneg]
`!A p. A |-- (p --> False) --> False <=> A |-- p`
and lemma1 = MESON[iff_imp1; iff_imp2; modusponens; imp_trans]
`A |-- p <-> q
==> (A |-- p <=> A |-- q) /\ (A |-- p --> False <=> A |-- q --> False)` in
itlist (CONJ o MATCH_MP lemma1 o SPEC_ALL)
[axiom_true; axiom_not; axiom_and; axiom_or; iff_def; axiom_exists]
lemma0
and false_imp = MESON[imp_truefalse; modusponens]
`A |-- p /\ A |-- q --> False ==> A |-- (p --> q) --> False`
and true_imp = MESON[axiom_addimp; modusponens; ex_falso; imp_trans]
`A |-- p --> False \/ A |-- q ==> A |-- p --> q`;;
let CANONIZE_TAC =
REWRITE_TAC[canonize_clauses; imp_refl] THEN
REPEAT((MATCH_MP_TAC false_imp THEN CONJ_TAC) ORELSE
MATCH_MP_TAC true_imp THEN
REWRITE_TAC[canonize_clauses; imp_refl]);;
let suc_inj_eq = prove
(`!s t. {robinson} |-- Suc s === Suc t <-> s === t`,
MESON_TAC[suc_inj'; axiom_funcong; imp_antisym]);;
let suc_le_eq = prove
(`!s t. {robinson} |-- Suc s <<= Suc t <-> s <<= t`,
gens_tac [0;1] THEN
TRANS_TAC iff_trans `??2 (Suc(V 0) ++ V 2 === Suc(V 1))` THEN
REWRITE_TAC[itlist spec_rule [`Suc(V 1)`; `Suc(V 0)`] le_def] THEN
TRANS_TAC iff_trans `??2 (V 0 ++ V 2 === V 1)` THEN
GEN_REWRITE_TAC RAND_CONV [iff_sym] THEN
REWRITE_TAC[itlist spec_rule [`V 1`; `V 0`] le_def] THEN
MATCH_MP_TAC exiff THEN
TRANS_TAC iff_trans `Suc(V 0 ++ V 2) === Suc(V 1)` THEN
REWRITE_TAC[suc_inj_eq] THEN MATCH_MP_TAC cong_eq THEN
REWRITE_TAC[axiom_eqrefl; add_suc']);;
let le_iff_lt = prove
(`!s t. {robinson} |-- s <<= t <-> s << Suc t`,
REPEAT GEN_TAC THEN TRANS_TAC iff_trans `Suc s <<= Suc t` THEN
ONCE_REWRITE_TAC[iff_sym] THEN
REWRITE_TAC[suc_le_eq; lt_def']);;
let suc_lt_eq = prove
(`!s t. {robinson} |-- Suc s << Suc t <-> s << t`,
MESON_TAC[iff_sym; iff_trans; le_iff_lt; lt_def']);;
let not_suc_eq_0 = prove
(`!t. {robinson} |-- Suc t === Z --> False`,
gen_tac 1 THEN
SUBGOAL_THEN `{robinson} |-- Not(Suc(V 1) === Z)` MP_TAC THENL
[ALL_TAC; REWRITE_TAC[canonize_clauses]] THEN
SUBGOAL_THEN `{robinson} |-- ?? 0 (Suc(V 1) === Suc(V 0))` MP_TAC THENL
[MATCH_MP_TAC exists_intro THEN EXISTS_TAC `V 1` THEN
CONV_TAC(RAND_CONV FORMSUBST_CONV) THEN REWRITE_TAC[axiom_eqrefl];
MESON_TAC[iff_imp2; modusponens; spec_rule `Suc(V 1)` num_cases]]);;
let not_suc_le_0 = prove
(`!t. {robinson} |-- Suc t <<= Z --> False`,
X_GEN_TAC `s:term` THEN
SUBGOAL_THEN `{robinson} |-- !!0 (Suc(V 0) <<= Z --> False)` MP_TAC THENL
[ALL_TAC; DISCH_THEN(ACCEPT_TAC o spec_rule `s:term`)] THEN
MATCH_MP_TAC gen THEN
SUBGOAL_THEN `{robinson} |-- ?? 2 (Suc (V 0) ++ V 2 === Z) --> False`
MP_TAC THENL
[ALL_TAC;
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
MATCH_MP_TAC iff_imp1 THEN
ACCEPT_TAC(itlist spec_rule [`Z`; `Suc(V 0)`] le_def)] THEN
MATCH_MP_TAC ichoose THEN REWRITE_TAC[FV; NOT_IN_EMPTY] THEN
MATCH_MP_TAC gen THEN TRANS_TAC imp_trans `Suc(V 0 ++ V 2) === Z` THEN
REWRITE_TAC[not_suc_eq_0] THEN MATCH_MP_TAC iff_imp1 THEN
MATCH_MP_TAC cong_eq THEN REWRITE_TAC[axiom_eqrefl] THEN
REWRITE_TAC[add_suc']);;
let not_lt_0 = prove
(`!t. {robinson} |-- t << Z --> False`,
MESON_TAC[not_suc_le_0; lt_def'; imp_trans; iff_imp1]);;
(* ------------------------------------------------------------------------- *)
(* Evaluation of atoms built from numerals by proof. *)
(* ------------------------------------------------------------------------- *)
let add_0_right = prove
(`!n. {robinson} |-- numeral n ++ Z === numeral n`,
GEN_TAC THEN MP_TAC(ISPECL [`n:num`; `0`] SIGMA1_COMPLETE_ADD) THEN
REWRITE_TAC[numeral; ADD_CLAUSES]);;
let ATOM_EQ_FALSE = prove
(`!m n. ~(m = n) ==> {robinson} |-- numeral m === numeral n --> False`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN CONJ_TAC THENL
[MESON_TAC[eq_sym; imp_trans]; ALL_TAC] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT] THEN INDUCT_TAC THEN
REWRITE_TAC[numeral; not_suc_eq_0; LT_SUC; SUC_INJ] THEN
ASM_MESON_TAC[suc_inj_eq; imp_trans; iff_imp1; iff_imp2]);;
let ATOM_LE_FALSE = prove
(`!m n. n < m ==> {robinson} |-- numeral m <<= numeral n --> False`,
INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT] THEN
INDUCT_TAC THEN REWRITE_TAC[numeral; not_suc_le_0; LT_SUC] THEN
ASM_MESON_TAC[suc_le_eq; imp_trans; iff_imp1; iff_imp2]);;
let ATOM_LT_FALSE = prove
(`!m n. n <= m ==> {robinson} |-- numeral m << numeral n --> False`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM LT_SUC_LE] THEN
DISCH_THEN(MP_TAC o MATCH_MP ATOM_LE_FALSE) THEN
REWRITE_TAC[numeral] THEN
ASM_MESON_TAC[lt_def'; imp_trans; iff_imp1; iff_imp2]);;
let ATOM_EQ_TRUE = prove
(`!m n. m = n ==> {robinson} |-- numeral m === numeral n`,
MESON_TAC[axiom_eqrefl]);;
let ATOM_LE_TRUE = prove
(`!m n. m <= n ==> {robinson} |-- numeral m <<= numeral n`,
SUBGOAL_THEN `!m n. {robinson} |-- numeral m <<= numeral(m + n)`
MP_TAC THENL [ALL_TAC; MESON_TAC[LE_EXISTS]] THEN
REPEAT GEN_TAC THEN MATCH_MP_TAC modusponens THEN
EXISTS_TAC `?? 2 (numeral m ++ V 2 === numeral(m + n))` THEN
CONJ_TAC THENL
[MP_TAC(itlist spec_rule [`numeral(m + n)`; `numeral m`] le_def) THEN
MESON_TAC[iff_imp2];
MATCH_MP_TAC exists_intro THEN EXISTS_TAC `numeral n` THEN
CONV_TAC(RAND_CONV FORMSUBST_CONV) THEN
REWRITE_TAC[SIGMA1_COMPLETE_ADD]]);;
let ATOM_LT_TRUE = prove
(`!m n. m < n ==> {robinson} |-- numeral m << numeral n`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM LE_SUC_LT] THEN
DISCH_THEN(MP_TAC o MATCH_MP ATOM_LE_TRUE) THEN
REWRITE_TAC[numeral] THEN
ASM_MESON_TAC[lt_def'; modusponens; iff_imp1; iff_imp2]);;
(* ------------------------------------------------------------------------- *)
(* A kind of case analysis rule; might make it induction in case of PA. *)
(* ------------------------------------------------------------------------- *)
let FORMSUBST_FORMSUBST_SAME_NONE = prove
(`!s t x p.
FVT t = {x} /\ FVT s = {}
==> formsubst (x |=> s) (formsubst (x |=> t) p) =
formsubst (x |=> termsubst (x |=> s) t) p`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!y. safe_for y (x |=> termsubst (x |=> s) t)` ASSUME_TAC THENL
[GEN_TAC THEN REWRITE_TAC[SAFE_FOR_ASSIGN; TERMSUBST_FVT; ASSIGN] THEN
ASM SET_TAC[FVT];
ALL_TAC] THEN
MATCH_MP_TAC form_INDUCT THEN
ASM_SIMP_TAC[FORMSUBST_SAFE_FOR; SAFE_FOR_ASSIGN; IN_SING; NOT_IN_EMPTY] THEN
SIMP_TAC[formsubst] THEN
MATCH_MP_TAC(TAUT `(p /\ q /\ r) /\ s ==> p /\ q /\ r /\ s`) THEN
CONJ_TAC THENL
[REPEAT STRIP_TAC THEN BINOP_TAC THEN
REWRITE_TAC[TERMSUBST_TERMSUBST] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[o_DEF; FUN_EQ_THM] THEN X_GEN_TAC `y:num` THEN
REWRITE_TAC[ASSIGN] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[termsubst; ASSIGN];
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`y:num`; `p:form`] THEN DISCH_TAC THEN
(ASM_CASES_TAC `y:num = x` THENL
[ASM_REWRITE_TAC[assign; VALMOD_VALMOD_BASIC] THEN
SIMP_TAC[VALMOD_TRIVIAL; FORMSUBST_TRIV];
SUBGOAL_THEN `!u. (y |-> V y) (x |=> u) = (x |=> u)`
(fun th -> ASM_REWRITE_TAC[th]) THEN
GEN_TAC THEN MATCH_MP_TAC VALMOD_TRIVIAL THEN
ASM_REWRITE_TAC[ASSIGN]])]);;
let num_cases_rule = prove
(`!p x. {robinson} |-- formsubst (x |=> Z) p /\
{robinson} |-- formsubst (x |=> Suc(V x)) p
==> {robinson} |-- p`,
let lemma = prove
(`!A p x t. A |-- formsubst (x |=> t) p ==> A |-- V x === t --> p`,
REPEAT GEN_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] modusponens) THEN
MATCH_MP_TAC imp_swap THEN
GEN_REWRITE_TAC (funpow 3 RAND_CONV) [GSYM FORMSUBST_TRIV] THEN
CONV_TAC(funpow 3 RAND_CONV(SUBS_CONV[SYM(SPEC `x:num` ASSIGN_TRIV)])) THEN
TRANS_TAC imp_trans `t === V x` THEN REWRITE_TAC[isubst; eq_sym]) in
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM FORMSUBST_TRIV] THEN
CONV_TAC(RAND_CONV(SUBS_CONV[SYM(SPEC `x:num` ASSIGN_TRIV)])) THEN
SUBGOAL_THEN `?z. ~(z = x) /\ ~(z IN VARS p)` STRIP_ASSUME_TAC THENL
[EXISTS_TAC `VARIANT(x INSERT VARS p)` THEN
REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM IN_INSERT] THEN
MATCH_MP_TAC NOT_IN_VARIANT THEN
SIMP_TAC[VARS_FINITE; FINITE_INSERT; SUBSET_REFL];
ALL_TAC] THEN
FIRST_X_ASSUM(fun th ->
ONCE_REWRITE_TAC[GSYM(MATCH_MP FORMSUBST_TWICE th)]) THEN
SUBGOAL_THEN `~(x IN FV(formsubst (x |=> V z) p))` MP_TAC THENL
[REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN; NOT_EXISTS_THM] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT] THEN
ASM SET_TAC[];
ALL_TAC] THEN
SPEC_TAC(`formsubst (x |=> V z) p`,`p:form`) THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC spec THEN MATCH_MP_TAC gen THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP lemma) THEN
DISCH_THEN(MP_TAC o SPEC `x:num` o MATCH_MP gen) THEN
DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] ichoose)) THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP lemma) THEN ASM_REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(MP_TAC o MATCH_MP ante_disj) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] modusponens) THEN
MP_TAC(ISPECL [`V z`; `x:num`] num_cases') THEN
ASM_REWRITE_TAC[FVT; IN_SING] THEN
DISCH_THEN(MP_TAC o MATCH_MP iff_imp1) THEN
REWRITE_TAC[canonize_clauses] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] imp_trans) THEN
MESON_TAC[imp_swap; axiom_not; iff_imp1; imp_trans]);;
(* ------------------------------------------------------------------------- *)
(* Now full Sigma-1 completeness. *)
(* ------------------------------------------------------------------------- *)
let SIGMAPI1_COMPLETE = prove
(`!v p b. sigmapi b 1 p /\ closed p
==> (b /\ holds v p ==> {robinson} |-- p) /\
(~b /\ ~holds v p ==> {robinson} |-- p --> False)`,
let lemma1 = prove
(`!x n p. (!m. m < n ==> {robinson} |-- formsubst (x |=> numeral m) p)
==> {robinson} |-- !!x (V x << numeral n --> p)`,
GEN_TAC THEN INDUCT_TAC THEN X_GEN_TAC `p:form` THEN DISCH_TAC THEN
REWRITE_TAC[numeral] THENL
[ASM_MESON_TAC[gen; imp_trans; ex_falso; not_lt_0]; ALL_TAC] THEN
MATCH_MP_TAC gen THEN MATCH_MP_TAC num_cases_rule THEN
EXISTS_TAC `x:num` THEN CONJ_TAC THENL
[ONCE_REWRITE_TAC[formsubst] THEN MATCH_MP_TAC add_assum THEN
REWRITE_TAC[GSYM numeral] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[formsubst; termsubst; TERMSUBST_NUMERAL; ASSIGN] THEN
TRANS_TAC imp_trans `V x << numeral n` THEN
CONJ_TAC THENL [MESON_TAC[suc_lt_eq; iff_imp1]; ALL_TAC] THEN
MATCH_MP_TAC spec_var THEN EXISTS_TAC `x:num` THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
X_GEN_TAC `m:num` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `SUC m`) THEN
ASM_REWRITE_TAC[LT_SUC] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
W(MP_TAC o PART_MATCH (lhs o rand) FORMSUBST_FORMSUBST_SAME_NONE o
rand o snd) THEN
REWRITE_TAC[FVT; FVT_NUMERAL] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[termsubst; ASSIGN; numeral]) in
let lemma2 = prove
(`!x n p. (!m. m <= n ==> {robinson} |-- formsubst (x |=> numeral m) p)
==> {robinson} |-- !!x (V x <<= numeral n --> p)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`x:num`; `SUC n`; `p:form`] lemma1) THEN
ASM_REWRITE_TAC[LT_SUC_LE] THEN DISCH_TAC THEN MATCH_MP_TAC gen THEN
FIRST_ASSUM(MP_TAC o MATCH_MP spec_var) THEN REWRITE_TAC[numeral] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
MESON_TAC[iff_imp1; le_iff_lt]) in
let lemma3 = prove
(`!v x t p.
FVT t = {} /\
(!m. m < termval v t
==> {robinson} |-- formsubst (x |=> numeral m) p)
==> {robinson} |-- !!x (V x << t --> p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC gen THEN
FIRST_ASSUM(MP_TAC o MATCH_MP spec_var o MATCH_MP lemma1) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
MATCH_MP_TAC iff_imp1 THEN MATCH_MP_TAC cong_lt THEN
REWRITE_TAC[axiom_eqrefl] THEN MATCH_MP_TAC SIGMA1_COMPLETE_TERM THEN
ASM_MESON_TAC[])
and lemma4 = prove
(`!v x t p.
FVT t = {} /\
(!m. m <= termval v t
==> {robinson} |-- formsubst (x |=> numeral m) p)
==> {robinson} |-- !!x (V x <<= t --> p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC gen THEN
FIRST_ASSUM(MP_TAC o MATCH_MP spec_var o MATCH_MP lemma2) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
MATCH_MP_TAC iff_imp1 THEN MATCH_MP_TAC cong_le THEN
REWRITE_TAC[axiom_eqrefl] THEN MATCH_MP_TAC SIGMA1_COMPLETE_TERM THEN
ASM_MESON_TAC[])
and lemma5 = prove
(`!A x p q. A |-- !!x (p --> Not q) ==> A |-- !!x (Not(p && q))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC gen THEN
FIRST_ASSUM(MP_TAC o MATCH_MP spec_var) THEN
REWRITE_TAC[canonize_clauses] THEN
MESON_TAC[imp_trans; axiom_not; iff_imp1; iff_imp2]) in
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[closed] THEN
WF_INDUCT_TAC `complexity p` THEN
POP_ASSUM MP_TAC THEN SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[SIGMAPI_CLAUSES; complexity; ARITH] THEN
REWRITE_TAC[MESON[] `(if p then q else F) <=> p /\ q`] THEN
ONCE_REWRITE_TAC
[TAUT `a /\ b /\ c /\ d /\ e /\ f /\ g /\ h /\ i /\ j /\ k /\ l <=>
(a /\ b) /\ (c /\ d /\ e) /\ f /\ (g /\ h /\ i /\ j) /\ (k /\ l)`] THEN
CONJ_TAC THENL
[CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[holds] THEN
MESON_TAC[imp_refl; truth];
ALL_TAC] THEN
CONJ_TAC THENL
[REPEAT CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`s:term`; `t:term`] THEN
DISCH_THEN(K ALL_TAC) THEN X_GEN_TAC `b:bool` THEN
REWRITE_TAC[FV; EMPTY_UNION] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`v:num->num`; `t:term`; `termval v t`]
SIGMA1_COMPLETE_TERM) THEN
MP_TAC(ISPECL [`v:num->num`; `s:term`; `termval v s`]
SIGMA1_COMPLETE_TERM) THEN
ASM_REWRITE_TAC[IMP_IMP] THENL
[DISCH_THEN(MP_TAC o MATCH_MP cong_eq);
DISCH_THEN(MP_TAC o MATCH_MP cong_lt);
DISCH_THEN(MP_TAC o MATCH_MP cong_le)] THEN
STRIP_TAC THEN REWRITE_TAC[holds; NOT_LE; NOT_LT] THEN
(REPEAT STRIP_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o
MATCH_MP(REWRITE_RULE[IMP_CONJ] modusponens) o MATCH_MP iff_imp2);
FIRST_X_ASSUM(MATCH_MP_TAC o
MATCH_MP(REWRITE_RULE[IMP_CONJ] imp_trans) o MATCH_MP iff_imp1)]) THEN
ASM_SIMP_TAC[ATOM_EQ_FALSE; ATOM_EQ_TRUE; ATOM_LT_FALSE; ATOM_LT_TRUE;
ATOM_LE_FALSE; ATOM_LE_TRUE];
ALL_TAC] THEN
CONJ_TAC THENL
[X_GEN_TAC `p:form` THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `p:form`) THEN
ANTS_TAC THENL [ARITH_TAC; DISCH_TAC] THEN
X_GEN_TAC `b:bool` THEN REWRITE_TAC[FV] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `~b`) THEN ASM_REWRITE_TAC[holds] THEN
BOOL_CASES_TAC `b:bool` THEN CANONIZE_TAC THEN ASM_MESON_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL
[REPEAT CONJ_TAC THEN
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_TAC THEN X_GEN_TAC `b:bool` THEN REWRITE_TAC[FV; EMPTY_UNION] THEN
STRIP_TAC THEN FIRST_X_ASSUM(fun th ->
MP_TAC(SPEC `p:form` th) THEN MP_TAC(SPEC `q:form` th)) THEN
(ANTS_TAC THENL [ARITH_TAC; ALL_TAC]) THEN
ONCE_REWRITE_TAC[TAUT `p ==> q ==> r <=> q ==> p ==> r`] THEN
(ANTS_TAC THENL [ARITH_TAC; ASM_REWRITE_TAC[IMP_IMP]]) THEN
ASM_REWRITE_TAC[holds; canonize_clauses] THENL
[DISCH_THEN(CONJUNCTS_THEN(MP_TAC o SPEC `b:bool`));
DISCH_THEN(CONJUNCTS_THEN(MP_TAC o SPEC `b:bool`));
DISCH_THEN(CONJUNCTS_THEN2
(MP_TAC o SPEC `~b`) (MP_TAC o SPEC `b:bool`));
DISCH_THEN(CONJUNCTS_THEN(fun th ->
MP_TAC(SPEC `~b` th) THEN MP_TAC(SPEC `b:bool` th)))] THEN
ASM_REWRITE_TAC[] THEN BOOL_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN CANONIZE_TAC THEN
TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT
`~(p <=> q) ==> (p /\ ~q ==> r) /\ (~p /\ q ==> s) ==> r \/ s`)) THEN
REPEAT STRIP_TAC THEN CANONIZE_TAC) THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[canonize_clauses; holds] THEN
DISCH_TAC THEN X_GEN_TAC `b:bool` THENL
[BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; FV] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`q:form`; `t:term`] THEN DISCH_THEN
(CONJUNCTS_THEN2 (DISJ_CASES_THEN SUBST_ALL_TAC) ASSUME_TAC) THEN
REWRITE_TAC[SIGMAPI_CLAUSES; FV; holds] THEN
(ASM_CASES_TAC `FVT t = {}` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
(ASM_CASES_TAC `FV(q) SUBSET {x}` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o CONJUNCT2)) THEN
ABBREV_TAC `n = termval v t` THEN
ASM_SIMP_TAC[TERMVAL_VALMOD_OTHER; termval; VALMOD] THENL
[DISCH_TAC THEN MATCH_MP_TAC lemma3;
DISCH_TAC THEN MATCH_MP_TAC lemma4] THEN
EXISTS_TAC `v:num->num` THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `formsubst (x |=> numeral m) q`) THEN
REWRITE_TAC[complexity; COMPLEXITY_FORMSUBST] THEN
(ANTS_TAC THENL [ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `T`)]) THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[SIGMAPI_FORMSUBST] THEN
REWRITE_TAC[FORMSUBST_FV; ASSIGN] THEN
REPLICATE_TAC 2 (ONCE_REWRITE_TAC[COND_RAND]) THEN
REWRITE_TAC[FVT_NUMERAL; NOT_IN_EMPTY; FVT; IN_SING] THEN
(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HOLDS_FORMSUBST] THEN
MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN
X_GEN_TAC `y:num` THEN
(ASM_CASES_TAC `y:num = x` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
ASM_REWRITE_TAC[o_DEF; ASSIGN; VALMOD; TERMVAL_NUMERAL];
STRIP_TAC THEN REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC imp_trans THEN
EXISTS_TAC `formsubst (x |=> numeral n) p` THEN REWRITE_TAC[ispec] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `formsubst (x |=> numeral n) p`) THEN
REWRITE_TAC[COMPLEXITY_FORMSUBST; ARITH_RULE `n < n + 1`] THEN
DISCH_THEN(MP_TAC o SPEC `F`) THEN
ASM_SIMP_TAC[SIGMAPI_FORMSUBST; IMP_IMP] THEN
DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL
[UNDISCH_TAC `FV (!! x p) = {}` THEN
REWRITE_TAC[FV; FORMSUBST_FV; SET_RULE
`s DELETE a = {} <=> s = {} \/ s = {a}`] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[NOT_IN_EMPTY; IN_SING; EMPTY_GSPEC;
ASSIGN; UNWIND_THM2; FVT_NUMERAL];
UNDISCH_TAC `~holds((x |-> n) v) p` THEN
REWRITE_TAC[HOLDS_FORMSUBST; CONTRAPOS_THM] THEN
MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN
RULE_ASSUM_TAC(REWRITE_RULE[FV]) THEN X_GEN_TAC `y:num` THEN
ASM_CASES_TAC `y:num = x` THENL [ALL_TAC; ASM SET_TAC[]] THEN
ASM_REWRITE_TAC[o_THM; ASSIGN; VALMOD; TERMVAL_NUMERAL]]];
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[FV] THEN STRIP_TAC THEN
DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `formsubst (x |=> numeral n) (Not p)`) THEN
REWRITE_TAC[COMPLEXITY_FORMSUBST; complexity] THEN
ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `F`)] THEN
ASM_SIMP_TAC[IMP_IMP; SIGMAPI_CLAUSES; SIGMAPI_FORMSUBST] THEN
ANTS_TAC THENL
[REWRITE_TAC[FORMSUBST_FV; ASSIGN] THEN
REPLICATE_TAC 2 (ONCE_REWRITE_TAC[COND_RAND]) THEN
REWRITE_TAC[FVT_NUMERAL; NOT_IN_EMPTY; FVT; FV; IN_SING] THEN
(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
UNDISCH_TAC `holds ((x |-> n) v) p` THEN
REWRITE_TAC[formsubst; holds; HOLDS_FORMSUBST] THEN
MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN
RULE_ASSUM_TAC(REWRITE_RULE[FV]) THEN X_GEN_TAC `y:num` THEN
ASM_CASES_TAC `y:num = x` THENL [ALL_TAC; ASM SET_TAC[]] THEN
ASM_REWRITE_TAC[o_THM; ASSIGN; VALMOD; TERMVAL_NUMERAL];
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
REWRITE_TAC[ispec]];
REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; FV] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`q:form`; `t:term`] THEN DISCH_THEN
(CONJUNCTS_THEN2 (DISJ_CASES_THEN SUBST_ALL_TAC) ASSUME_TAC) THEN
REWRITE_TAC[SIGMAPI_CLAUSES; FV; holds] THEN
(ASM_CASES_TAC `FVT t = {}` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
(ASM_CASES_TAC `FV(q) SUBSET {x}` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o CONJUNCT2)) THEN
ABBREV_TAC `n = termval v t` THEN
ASM_SIMP_TAC[TERMVAL_VALMOD_OTHER; termval; VALMOD] THEN
REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`] THEN
DISCH_TAC THEN MATCH_MP_TAC lemma5 THENL
[MATCH_MP_TAC lemma3; MATCH_MP_TAC lemma4] THEN
EXISTS_TAC `v:num->num` THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `formsubst (x |=> numeral m) (Not q)`) THEN
REWRITE_TAC[complexity; COMPLEXITY_FORMSUBST] THEN
(ANTS_TAC THENL [ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `T`)]) THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[SIGMAPI_FORMSUBST; SIGMAPI_CLAUSES] THEN
REWRITE_TAC[FORMSUBST_FV; FV; ASSIGN] THEN
REPLICATE_TAC 2 (ONCE_REWRITE_TAC[COND_RAND]) THEN
REWRITE_TAC[FVT_NUMERAL; NOT_IN_EMPTY; FVT; IN_SING] THEN
(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HOLDS_FORMSUBST; holds; CONTRAPOS_THM] THEN
MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN
X_GEN_TAC `y:num` THEN
(ASM_CASES_TAC `y:num = x` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
ASM_REWRITE_TAC[o_DEF; ASSIGN; VALMOD; TERMVAL_NUMERAL]]]);;
(* ------------------------------------------------------------------------- *)
(* Hence a nice alternative form of Goedel's theorem for any consistent *)
(* sigma_1-definable axioms A that extend (i.e. prove) the Robinson axioms. *)
(* ------------------------------------------------------------------------- *)
let G1_ROBINSON = prove
(`!A. definable_by (SIGMA 1) (IMAGE gform A) /\
consistent A /\ A |-- robinson
==> ?G. PI 1 G /\
closed G /\
true G /\
~(A |-- G) /\
(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC G1_TRAD THEN
ASM_REWRITE_TAC[complete_for; INTER; IN_ELIM_THM] THEN
X_GEN_TAC `p:form` THEN REWRITE_TAC[IN; true_def] THEN STRIP_TAC THEN
MATCH_MP_TAC modusponens THEN EXISTS_TAC `robinson` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC PROVES_MONO THEN
EXISTS_TAC `{}:form->bool` THEN REWRITE_TAC[EMPTY_SUBSET] THEN
W(MP_TAC o PART_MATCH (lhs o rand) DEDUCTION o snd) THEN
MP_TAC(ISPECL [`I:num->num`; `p:form`; `T`] SIGMAPI1_COMPLETE) THEN
ASM_REWRITE_TAC[GSYM SIGMA] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[robinson; closed; FV; FVT] THEN
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* More metaproperties of axioms systems now we have some derived rules. *)
(* ------------------------------------------------------------------------- *)
let complete = new_definition
`complete A <=> !p. closed p ==> A |-- p \/ A |-- Not p`;;
let sound = new_definition
`sound A <=> !p. A |-- p ==> true p`;;
let semcomplete = new_definition
`semcomplete A <=> !p. true p ==> A |-- p`;;
let generalize = new_definition
`generalize vs p = ITLIST (!!) vs p`;;
let closure = new_definition
`closure p = generalize (list_of_set(FV p)) p`;;
let TRUE_GENERALIZE = prove
(`!vs p. true(generalize vs p) <=> true p`,
REWRITE_TAC[generalize; true_def] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; holds] THEN GEN_TAC THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
MESON_TAC[VALMOD_REPEAT]);;
let PROVABLE_GENERALIZE = prove
(`!A p vs. A |-- generalize vs p <=> A |-- p`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[generalize] THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ITLIST] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
MESON_TAC[spec; gen; FORMSUBST_TRIV; ASSIGN_TRIV]);;
let FV_GENERALIZE = prove
(`!p vs. FV(generalize vs p) = FV(p) DIFF (set_of_list vs)`,
GEN_TAC THEN REWRITE_TAC[generalize] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[set_of_list; DIFF_EMPTY; ITLIST] THEN
ASM_REWRITE_TAC[FV] THEN SET_TAC[]);;
let CLOSED_CLOSURE = prove
(`!p. closed(closure p)`,
REWRITE_TAC[closed; closure; FV_GENERALIZE] THEN
SIMP_TAC[SET_OF_LIST_OF_SET; FV_FINITE; DIFF_EQ_EMPTY]);;
let TRUE_CLOSURE = prove
(`!p. true(closure p) <=> true p`,
REWRITE_TAC[closure; TRUE_GENERALIZE]);;
let PROVABLE_CLOSURE = prove
(`!A p. A |-- closure p <=> A |-- p`,
REWRITE_TAC[closure; PROVABLE_GENERALIZE]);;
let DEFINABLE_DEFINABLE_BY = prove
(`definable = definable_by (\x. T)`,
REWRITE_TAC[FUN_EQ_THM; definable; definable_by]);;
let DEFINABLE_ONEVAR = prove
(`definable s <=> ?p x. (FV p = {x}) /\ !v. holds v p <=> (v x) IN s`,
REWRITE_TAC[definable] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
DISCH_THEN(X_CHOOSE_THEN `p:form` (X_CHOOSE_TAC `x:num`)) THEN
EXISTS_TAC `(V x === V x) && formsubst (\y. if y = x then V x else Z) p` THEN
EXISTS_TAC `x:num` THEN
ASM_REWRITE_TAC[HOLDS_FORMSUBST; FORMSUBST_FV; FV; holds] THEN
REWRITE_TAC[COND_RAND; EXTENSION; IN_ELIM_THM; IN_SING; FVT; IN_UNION;
COND_EXPAND; NOT_IN_EMPTY; o_THM; termval] THEN
MESON_TAC[]);;
let CLOSED_TRUE_OR_FALSE = prove
(`!p. closed p ==> true p \/ true(Not p)`,
REWRITE_TAC[closed; true_def; holds] THEN REPEAT STRIP_TAC THEN
ASM_MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);;
let SEMCOMPLETE_IMP_COMPLETE = prove
(`!A. semcomplete A ==> complete A`,
REWRITE_TAC[semcomplete; complete] THEN MESON_TAC[CLOSED_TRUE_OR_FALSE]);;
let SOUND_CLOSED = prove
(`sound A <=> !p. closed p /\ A |-- p ==> true p`,
REWRITE_TAC[sound] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
MESON_TAC[TRUE_CLOSURE; PROVABLE_CLOSURE; CLOSED_CLOSURE]);;
let SOUND_IMP_CONSISTENT = prove
(`!A. sound A ==> consistent A`,
REWRITE_TAC[sound; consistent; CONSISTENT_ALT] THEN
SUBGOAL_THEN `~(true False)` (fun th -> MESON_TAC[th]) THEN
REWRITE_TAC[true_def; holds]);;
let SEMCOMPLETE_SOUND_EQ_CONSISTENT = prove
(`!A. semcomplete A ==> (sound A <=> consistent A)`,
REWRITE_TAC[semcomplete] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN
REWRITE_TAC[SOUND_IMP_CONSISTENT] THEN
REWRITE_TAC[consistent; SOUND_CLOSED] THEN
ASM_MESON_TAC[CLOSED_TRUE_OR_FALSE]);;
|