File size: 32,484 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
(* ========================================================================= *)
(* Sigma_1 completeness of Robinson's axioms Q.                              *)
(* ========================================================================= *)

let robinson = new_definition
 `robinson =
        (!!0 (!!1 (Suc(V 0) === Suc(V 1) --> V 0 === V 1))) &&
        (!!1 (Not(V 1 === Z) <-> ??0 (V 1 === Suc(V 0)))) &&
        (!!1 (Z ++ V 1 === V 1)) &&
        (!!0 (!!1 (Suc(V 0) ++ V 1 === Suc(V 0 ++ V 1)))) &&
        (!!1 (Z ** V 1 === Z)) &&
        (!!0 (!!1 (Suc(V 0) ** V 1 === V 1 ++ V 0 ** V 1))) &&
        (!!0 (!!1 (V 0 <<= V 1 <-> ??2 (V 0 ++ V 2 === V 1)))) &&
        (!!0 (!!1 (V 0 << V 1 <-> Suc(V 0) <<= V 1)))`;;

(* ------------------------------------------------------------------------- *)
(* Individual "axioms" and their instances.                                  *)
(* ------------------------------------------------------------------------- *)

let [suc_inj; num_cases; add_0; add_suc; mul_0; mul_suc; le_def; lt_def] =
  CONJUNCTS(REWRITE_RULE[META_AND] (GEN_REWRITE_RULE RAND_CONV [robinson]
  (MATCH_MP assume (SET_RULE `robinson IN {robinson}`))));;

let suc_inj' = prove
 (`!s t. {robinson} |-- Suc(s) === Suc(t) --> s === t`,
  REWRITE_TAC[specl_rule [`s:term`; `t:term`] suc_inj]);;

let num_cases' = prove
 (`!t z. ~(z IN FVT t)
           ==> {robinson} |--  (Not(t === Z) <-> ??z (t === Suc(V z)))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `t:term` (MATCH_MP spec num_cases)) THEN
  REWRITE_TAC[formsubst] THEN
  CONV_TAC(ONCE_DEPTH_CONV TERMSUBST_CONV) THEN
  REWRITE_TAC[FV; FVT; SET_RULE `({1} UNION {0}) DELETE 0 = {1} DIFF {0}`] THEN
  REWRITE_TAC[IN_DIFF; IN_SING; UNWIND_THM2; GSYM CONJ_ASSOC; ASSIGN] THEN
  REWRITE_TAC[ARITH_EQ] THEN LET_TAC THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] iff_trans) THEN
  SUBGOAL_THEN `~(z' IN FVT t)` ASSUME_TAC THENL
   [EXPAND_TAC "z'" THEN COND_CASES_TAC THEN
    ASM_SIMP_TAC[SET_RULE `a IN s ==> s UNION {a} = s`;
                 VARIANT_FINITE; FVT_FINITE];
    MATCH_MP_TAC imp_antisym THEN
    ASM_CASES_TAC `z':num = z` THEN ASM_REWRITE_TAC[imp_refl] THEN
    CONJ_TAC THEN MATCH_MP_TAC ichoose THEN
    ASM_REWRITE_TAC[FV; IN_DELETE; IN_UNION; IN_SING; FVT] THEN
    MATCH_MP_TAC gen THEN MATCH_MP_TAC imp_trans THENL
     [EXISTS_TAC `formsubst (z |=> V z') (t === Suc(V z))`;
      EXISTS_TAC `formsubst (z' |=> V z) (t === Suc(V z'))`] THEN
    REWRITE_TAC[iexists] THEN REWRITE_TAC[formsubst] THEN
    ASM_REWRITE_TAC[termsubst; ASSIGN] THEN
    MATCH_MP_TAC(MESON[imp_refl] `p = q ==> A |-- p --> q`) THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC TERMSUBST_TRIVIAL THEN REWRITE_TAC[ASSIGN] THEN
    ASM_MESON_TAC[]]);;

let add_0' = prove
 (`!t. {robinson} |--  Z ++ t === t`,
  REWRITE_TAC[spec_rule `t:term` add_0]);;

let add_suc' = prove
 (`!s t. {robinson} |--  Suc(s) ++ t === Suc(s ++ t)`,
  REWRITE_TAC[specl_rule [`s:term`; `t:term`] add_suc]);;

let mul_0' = prove
 (`!t. {robinson} |--  Z ** t === Z`,
  REWRITE_TAC[spec_rule `t:term` mul_0]);;

let mul_suc' = prove
 (`!s t. {robinson} |--  Suc(s) ** t === t ++ s ** t`,
  REWRITE_TAC[specl_rule [`s:term`; `t:term`] mul_suc]);;

let lt_def' = prove
 (`!s t. {robinson} |--  (s << t <-> Suc(s) <<= t)`,
  REWRITE_TAC[specl_rule [`s:term`; `t:term`] lt_def]);;

(* ------------------------------------------------------------------------- *)
(* All ground terms can be evaluated by proof.                               *)
(* ------------------------------------------------------------------------- *)

let SIGMA1_COMPLETE_ADD = prove
 (`!m n. {robinson} |-- numeral m ++ numeral n === numeral(m + n)`,
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; numeral] THEN
  ASM_MESON_TAC[add_0'; add_suc'; axiom_funcong; eq_trans; modusponens]);;

let SIGMA1_COMPLETE_MUL = prove
 (`!m n. {robinson} |-- (numeral m ** numeral n === numeral(m * n))`,
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; numeral] THENL
   [ASM_MESON_TAC[mul_0']; ALL_TAC] THEN
  GEN_TAC THEN MATCH_MP_TAC eq_trans_rule THEN
  EXISTS_TAC `numeral(n) ++ numeral(m * n)` THEN CONJ_TAC THENL
   [ASM_MESON_TAC[mul_suc'; eq_trans_rule; axiom_funcong; imp_trans;
                  modusponens; imp_swap;add_assum; axiom_eqrefl];
    ASM_MESON_TAC[SIGMA1_COMPLETE_ADD; ADD_SYM; eq_trans_rule]]);;

let SIGMA1_COMPLETE_TERM = prove
 (`!v t n. FVT t = {} /\ termval v t = n
           ==> {robinson} |-- (t === numeral n)`,
  let lemma = prove(`(!n. p /\ (x = n) ==> P n) <=> p ==> P x`,MESON_TAC[]) in
  GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[termval;FVT; NOT_INSERT_EMPTY] THEN CONJ_TAC THENL
   [GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[numeral] THEN
    MESON_TAC[axiom_eqrefl; add_assum];
    ALL_TAC] THEN
  REWRITE_TAC[lemma] THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[EMPTY_UNION]) THEN ASM_REWRITE_TAC[numeral] THEN
  MESON_TAC[SIGMA1_COMPLETE_ADD; SIGMA1_COMPLETE_MUL;
            cong_suc; cong_add; cong_mul; eq_trans_rule]);;

(* ------------------------------------------------------------------------- *)
(* Convenient stepping theorems for atoms and other useful lemmas.           *)
(* ------------------------------------------------------------------------- *)

let canonize_clauses =
  let lemma0 = MESON[imp_refl; imp_swap; modusponens; axiom_doubleneg]
    `!A p. A |-- (p --> False) --> False <=> A |-- p`
  and lemma1 = MESON[iff_imp1; iff_imp2; modusponens; imp_trans]
   `A |-- p <-> q
    ==> (A |-- p <=> A |-- q) /\ (A |-- p --> False <=> A |-- q --> False)` in
  itlist (CONJ o MATCH_MP lemma1 o SPEC_ALL)
         [axiom_true; axiom_not; axiom_and; axiom_or; iff_def; axiom_exists]
         lemma0
and false_imp = MESON[imp_truefalse; modusponens]
  `A |-- p /\ A |-- q --> False ==> A |-- (p --> q) --> False`
and true_imp = MESON[axiom_addimp; modusponens; ex_falso; imp_trans]
 `A |-- p --> False \/ A |-- q ==> A |-- p --> q`;;

let CANONIZE_TAC =
  REWRITE_TAC[canonize_clauses; imp_refl] THEN
  REPEAT((MATCH_MP_TAC false_imp THEN CONJ_TAC) ORELSE
         MATCH_MP_TAC true_imp THEN
         REWRITE_TAC[canonize_clauses; imp_refl]);;

let suc_inj_eq = prove
 (`!s t. {robinson} |-- Suc s === Suc t <-> s === t`,
  MESON_TAC[suc_inj'; axiom_funcong; imp_antisym]);;

let suc_le_eq = prove
 (`!s t. {robinson} |-- Suc s <<= Suc t <-> s <<= t`,
  gens_tac [0;1] THEN
  TRANS_TAC iff_trans `??2 (Suc(V 0) ++ V 2 === Suc(V 1))` THEN
  REWRITE_TAC[itlist spec_rule [`Suc(V 1)`; `Suc(V 0)`] le_def] THEN
  TRANS_TAC iff_trans `??2 (V 0 ++ V 2 === V 1)` THEN
  GEN_REWRITE_TAC RAND_CONV [iff_sym] THEN
  REWRITE_TAC[itlist spec_rule [`V 1`; `V 0`] le_def] THEN
  MATCH_MP_TAC exiff THEN
  TRANS_TAC iff_trans `Suc(V 0 ++ V 2) === Suc(V 1)` THEN
  REWRITE_TAC[suc_inj_eq] THEN MATCH_MP_TAC cong_eq THEN
  REWRITE_TAC[axiom_eqrefl; add_suc']);;

let le_iff_lt = prove
 (`!s t. {robinson} |-- s <<= t <-> s << Suc t`,
  REPEAT GEN_TAC THEN TRANS_TAC iff_trans `Suc s <<= Suc t` THEN
  ONCE_REWRITE_TAC[iff_sym] THEN
  REWRITE_TAC[suc_le_eq; lt_def']);;

let suc_lt_eq = prove
 (`!s t. {robinson} |-- Suc s << Suc t <-> s << t`,
  MESON_TAC[iff_sym; iff_trans; le_iff_lt; lt_def']);;

let not_suc_eq_0 = prove
 (`!t. {robinson} |-- Suc t === Z --> False`,
  gen_tac 1 THEN
  SUBGOAL_THEN `{robinson} |-- Not(Suc(V 1) === Z)` MP_TAC THENL
   [ALL_TAC; REWRITE_TAC[canonize_clauses]] THEN
  SUBGOAL_THEN `{robinson} |-- ?? 0 (Suc(V 1) === Suc(V 0))` MP_TAC THENL
   [MATCH_MP_TAC exists_intro THEN EXISTS_TAC `V 1` THEN
    CONV_TAC(RAND_CONV FORMSUBST_CONV) THEN REWRITE_TAC[axiom_eqrefl];
    MESON_TAC[iff_imp2; modusponens; spec_rule `Suc(V 1)` num_cases]]);;

let not_suc_le_0 = prove
 (`!t. {robinson} |-- Suc t <<= Z --> False`,
  X_GEN_TAC `s:term` THEN
  SUBGOAL_THEN `{robinson} |-- !!0 (Suc(V 0) <<= Z --> False)` MP_TAC THENL
   [ALL_TAC; DISCH_THEN(ACCEPT_TAC o spec_rule `s:term`)] THEN
  MATCH_MP_TAC gen THEN
  SUBGOAL_THEN `{robinson} |-- ?? 2 (Suc (V 0) ++ V 2 === Z) --> False`
  MP_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
    MATCH_MP_TAC iff_imp1 THEN
    ACCEPT_TAC(itlist spec_rule [`Z`; `Suc(V 0)`] le_def)] THEN
  MATCH_MP_TAC ichoose THEN REWRITE_TAC[FV; NOT_IN_EMPTY] THEN
  MATCH_MP_TAC gen THEN TRANS_TAC imp_trans `Suc(V 0 ++ V 2) === Z` THEN
  REWRITE_TAC[not_suc_eq_0] THEN MATCH_MP_TAC iff_imp1 THEN
  MATCH_MP_TAC cong_eq THEN REWRITE_TAC[axiom_eqrefl] THEN
  REWRITE_TAC[add_suc']);;

let not_lt_0 = prove
 (`!t. {robinson} |-- t << Z --> False`,
  MESON_TAC[not_suc_le_0; lt_def'; imp_trans; iff_imp1]);;

(* ------------------------------------------------------------------------- *)
(* Evaluation of atoms built from numerals by proof.                         *)
(* ------------------------------------------------------------------------- *)

let add_0_right = prove
 (`!n. {robinson} |-- numeral n ++ Z === numeral n`,
  GEN_TAC THEN MP_TAC(ISPECL [`n:num`; `0`] SIGMA1_COMPLETE_ADD) THEN
  REWRITE_TAC[numeral; ADD_CLAUSES]);;

let ATOM_EQ_FALSE = prove
 (`!m n. ~(m = n) ==> {robinson} |-- numeral m === numeral n --> False`,
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN CONJ_TAC THENL
   [MESON_TAC[eq_sym; imp_trans]; ALL_TAC] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT] THEN INDUCT_TAC THEN
  REWRITE_TAC[numeral; not_suc_eq_0; LT_SUC; SUC_INJ] THEN
  ASM_MESON_TAC[suc_inj_eq; imp_trans; iff_imp1; iff_imp2]);;

let ATOM_LE_FALSE = prove
 (`!m n. n < m ==> {robinson} |-- numeral m <<= numeral n --> False`,
  INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT] THEN
  INDUCT_TAC THEN REWRITE_TAC[numeral; not_suc_le_0; LT_SUC] THEN
  ASM_MESON_TAC[suc_le_eq; imp_trans; iff_imp1; iff_imp2]);;

let ATOM_LT_FALSE = prove
 (`!m n. n <= m ==> {robinson} |-- numeral m << numeral n --> False`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM LT_SUC_LE] THEN
  DISCH_THEN(MP_TAC o MATCH_MP ATOM_LE_FALSE) THEN
  REWRITE_TAC[numeral] THEN
  ASM_MESON_TAC[lt_def'; imp_trans; iff_imp1; iff_imp2]);;

let ATOM_EQ_TRUE = prove
 (`!m n. m = n ==> {robinson} |-- numeral m === numeral n`,
  MESON_TAC[axiom_eqrefl]);;

let ATOM_LE_TRUE = prove
 (`!m n. m <= n ==> {robinson} |-- numeral m <<= numeral n`,
  SUBGOAL_THEN `!m n. {robinson} |-- numeral m <<= numeral(m + n)`
  MP_TAC THENL [ALL_TAC; MESON_TAC[LE_EXISTS]] THEN
  REPEAT GEN_TAC THEN MATCH_MP_TAC modusponens THEN
  EXISTS_TAC `?? 2 (numeral m ++ V 2 === numeral(m + n))` THEN
  CONJ_TAC THENL
   [MP_TAC(itlist spec_rule [`numeral(m + n)`; `numeral m`] le_def) THEN
    MESON_TAC[iff_imp2];
    MATCH_MP_TAC exists_intro THEN EXISTS_TAC `numeral n` THEN
    CONV_TAC(RAND_CONV FORMSUBST_CONV) THEN
    REWRITE_TAC[SIGMA1_COMPLETE_ADD]]);;

let ATOM_LT_TRUE = prove
 (`!m n. m < n ==> {robinson} |-- numeral m << numeral n`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM LE_SUC_LT] THEN
  DISCH_THEN(MP_TAC o MATCH_MP ATOM_LE_TRUE) THEN
  REWRITE_TAC[numeral] THEN
  ASM_MESON_TAC[lt_def'; modusponens; iff_imp1; iff_imp2]);;

(* ------------------------------------------------------------------------- *)
(* A kind of case analysis rule; might make it induction in case of PA.      *)
(* ------------------------------------------------------------------------- *)

let FORMSUBST_FORMSUBST_SAME_NONE = prove
 (`!s t x p.
        FVT t = {x} /\ FVT s = {}
        ==> formsubst (x |=> s) (formsubst (x |=> t) p) =
            formsubst (x |=> termsubst (x |=> s) t) p`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `!y. safe_for y (x |=> termsubst (x |=> s) t)` ASSUME_TAC THENL
   [GEN_TAC THEN REWRITE_TAC[SAFE_FOR_ASSIGN; TERMSUBST_FVT; ASSIGN] THEN
    ASM SET_TAC[FVT];
    ALL_TAC] THEN
  MATCH_MP_TAC form_INDUCT THEN
  ASM_SIMP_TAC[FORMSUBST_SAFE_FOR; SAFE_FOR_ASSIGN; IN_SING; NOT_IN_EMPTY] THEN
  SIMP_TAC[formsubst] THEN
  MATCH_MP_TAC(TAUT `(p /\ q /\ r) /\ s ==> p /\ q /\ r /\ s`) THEN
  CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN BINOP_TAC THEN
    REWRITE_TAC[TERMSUBST_TERMSUBST] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[o_DEF; FUN_EQ_THM] THEN X_GEN_TAC `y:num` THEN
    REWRITE_TAC[ASSIGN] THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[termsubst; ASSIGN];
    CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`y:num`; `p:form`] THEN DISCH_TAC THEN
    (ASM_CASES_TAC `y:num = x` THENL
     [ASM_REWRITE_TAC[assign; VALMOD_VALMOD_BASIC] THEN
      SIMP_TAC[VALMOD_TRIVIAL; FORMSUBST_TRIV];
      SUBGOAL_THEN `!u. (y |-> V y) (x |=> u) = (x |=> u)`
       (fun th -> ASM_REWRITE_TAC[th]) THEN
      GEN_TAC THEN MATCH_MP_TAC VALMOD_TRIVIAL THEN
      ASM_REWRITE_TAC[ASSIGN]])]);;

let num_cases_rule = prove
 (`!p x. {robinson} |-- formsubst (x |=> Z) p /\
         {robinson} |-- formsubst (x |=> Suc(V x)) p
         ==> {robinson} |-- p`,
  let lemma = prove
   (`!A p x t. A |-- formsubst (x |=> t) p ==> A |-- V x === t --> p`,
    REPEAT GEN_TAC THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] modusponens) THEN
    MATCH_MP_TAC imp_swap THEN
    GEN_REWRITE_TAC (funpow 3 RAND_CONV) [GSYM FORMSUBST_TRIV] THEN
    CONV_TAC(funpow 3 RAND_CONV(SUBS_CONV[SYM(SPEC `x:num` ASSIGN_TRIV)])) THEN
    TRANS_TAC imp_trans `t === V x` THEN REWRITE_TAC[isubst; eq_sym]) in
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM FORMSUBST_TRIV] THEN
  CONV_TAC(RAND_CONV(SUBS_CONV[SYM(SPEC `x:num` ASSIGN_TRIV)])) THEN
  SUBGOAL_THEN `?z. ~(z = x) /\ ~(z IN VARS p)` STRIP_ASSUME_TAC THENL
   [EXISTS_TAC `VARIANT(x INSERT VARS p)` THEN
    REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM IN_INSERT] THEN
    MATCH_MP_TAC NOT_IN_VARIANT THEN
    SIMP_TAC[VARS_FINITE; FINITE_INSERT; SUBSET_REFL];
    ALL_TAC] THEN
  FIRST_X_ASSUM(fun th ->
   ONCE_REWRITE_TAC[GSYM(MATCH_MP FORMSUBST_TWICE th)]) THEN
  SUBGOAL_THEN `~(x IN FV(formsubst (x |=> V z) p))` MP_TAC THENL
   [REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN; NOT_EXISTS_THM] THEN
    GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT] THEN
    ASM SET_TAC[];
    ALL_TAC] THEN
  SPEC_TAC(`formsubst (x |=> V z) p`,`p:form`) THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC spec THEN MATCH_MP_TAC gen THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP lemma) THEN
  DISCH_THEN(MP_TAC o SPEC `x:num` o MATCH_MP gen) THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] ichoose)) THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP lemma) THEN ASM_REWRITE_TAC[IMP_IMP] THEN
  DISCH_THEN(MP_TAC o MATCH_MP ante_disj) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] modusponens) THEN
  MP_TAC(ISPECL [`V z`; `x:num`] num_cases') THEN
  ASM_REWRITE_TAC[FVT; IN_SING] THEN
  DISCH_THEN(MP_TAC o MATCH_MP iff_imp1) THEN
  REWRITE_TAC[canonize_clauses] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] imp_trans) THEN
  MESON_TAC[imp_swap; axiom_not; iff_imp1; imp_trans]);;

(* ------------------------------------------------------------------------- *)
(* Now full Sigma-1 completeness.                                            *)
(* ------------------------------------------------------------------------- *)

let SIGMAPI1_COMPLETE = prove
 (`!v p b. sigmapi b 1 p /\ closed p
           ==> (b /\ holds v p ==> {robinson} |-- p) /\
               (~b /\ ~holds v p ==> {robinson} |-- p --> False)`,
  let lemma1 = prove
   (`!x n p. (!m. m < n ==> {robinson} |-- formsubst (x |=> numeral m) p)
             ==> {robinson} |-- !!x (V x << numeral n --> p)`,
    GEN_TAC THEN INDUCT_TAC THEN X_GEN_TAC `p:form` THEN DISCH_TAC THEN
    REWRITE_TAC[numeral] THENL
     [ASM_MESON_TAC[gen; imp_trans; ex_falso; not_lt_0]; ALL_TAC] THEN
    MATCH_MP_TAC gen THEN MATCH_MP_TAC num_cases_rule THEN
    EXISTS_TAC `x:num`  THEN CONJ_TAC THENL
     [ONCE_REWRITE_TAC[formsubst] THEN MATCH_MP_TAC add_assum THEN
      REWRITE_TAC[GSYM numeral] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ARITH_TAC;
      ALL_TAC] THEN
    REWRITE_TAC[formsubst; termsubst; TERMSUBST_NUMERAL; ASSIGN] THEN
    TRANS_TAC imp_trans `V x << numeral n` THEN
    CONJ_TAC THENL [MESON_TAC[suc_lt_eq; iff_imp1]; ALL_TAC] THEN
    MATCH_MP_TAC spec_var THEN EXISTS_TAC `x:num` THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN
    X_GEN_TAC `m:num` THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `SUC m`) THEN
    ASM_REWRITE_TAC[LT_SUC] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
    W(MP_TAC o PART_MATCH (lhs o rand) FORMSUBST_FORMSUBST_SAME_NONE o
      rand o snd) THEN
    REWRITE_TAC[FVT; FVT_NUMERAL] THEN DISCH_THEN SUBST1_TAC THEN
    REWRITE_TAC[termsubst; ASSIGN; numeral]) in
  let lemma2 = prove
   (`!x n p. (!m. m <= n ==> {robinson} |-- formsubst (x |=> numeral m) p)
             ==> {robinson} |-- !!x (V x <<= numeral n --> p)`,
    REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL [`x:num`; `SUC n`; `p:form`] lemma1) THEN
    ASM_REWRITE_TAC[LT_SUC_LE] THEN DISCH_TAC THEN MATCH_MP_TAC gen THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP spec_var) THEN REWRITE_TAC[numeral] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
    MESON_TAC[iff_imp1; le_iff_lt]) in
  let lemma3 = prove
   (`!v x t p.
          FVT t = {} /\
          (!m. m < termval v t
               ==> {robinson} |-- formsubst (x |=> numeral m) p)
          ==> {robinson} |-- !!x (V x << t --> p)`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC gen THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP spec_var o MATCH_MP lemma1) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
    MATCH_MP_TAC iff_imp1 THEN MATCH_MP_TAC cong_lt THEN
    REWRITE_TAC[axiom_eqrefl] THEN MATCH_MP_TAC SIGMA1_COMPLETE_TERM THEN
    ASM_MESON_TAC[])
  and lemma4 = prove
   (`!v x t p.
          FVT t = {} /\
          (!m. m <= termval v t
               ==> {robinson} |-- formsubst (x |=> numeral m) p)
          ==> {robinson} |-- !!x (V x <<= t --> p)`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC gen THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP spec_var o MATCH_MP lemma2) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
    MATCH_MP_TAC iff_imp1 THEN MATCH_MP_TAC cong_le THEN
    REWRITE_TAC[axiom_eqrefl] THEN MATCH_MP_TAC SIGMA1_COMPLETE_TERM THEN
    ASM_MESON_TAC[])
  and lemma5 = prove
   (`!A x p q. A |-- !!x (p --> Not q) ==> A |-- !!x (Not(p && q))`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC gen THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP spec_var) THEN
    REWRITE_TAC[canonize_clauses] THEN
    MESON_TAC[imp_trans; axiom_not; iff_imp1; iff_imp2]) in
  GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[closed] THEN
  WF_INDUCT_TAC `complexity p` THEN
  POP_ASSUM MP_TAC THEN SPEC_TAC(`p:form`,`p:form`) THEN
  MATCH_MP_TAC form_INDUCT THEN
  REWRITE_TAC[SIGMAPI_CLAUSES; complexity; ARITH] THEN
  REWRITE_TAC[MESON[] `(if p then q else F) <=> p /\ q`] THEN
  ONCE_REWRITE_TAC
   [TAUT `a /\ b /\ c /\ d /\ e /\ f /\ g /\ h /\ i /\ j /\ k /\ l <=>
       (a /\ b) /\ (c /\ d /\ e) /\ f /\ (g /\ h /\ i /\ j) /\ (k /\ l)`] THEN
  CONJ_TAC THENL
   [CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[holds] THEN
    MESON_TAC[imp_refl; truth];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [REPEAT CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`s:term`; `t:term`] THEN
    DISCH_THEN(K ALL_TAC) THEN X_GEN_TAC `b:bool` THEN
    REWRITE_TAC[FV; EMPTY_UNION] THEN STRIP_TAC THEN
    MP_TAC(ISPECL [`v:num->num`; `t:term`; `termval v t`]
        SIGMA1_COMPLETE_TERM) THEN
    MP_TAC(ISPECL [`v:num->num`; `s:term`; `termval v s`]
        SIGMA1_COMPLETE_TERM) THEN
    ASM_REWRITE_TAC[IMP_IMP] THENL
     [DISCH_THEN(MP_TAC o MATCH_MP cong_eq);
      DISCH_THEN(MP_TAC o MATCH_MP cong_lt);
      DISCH_THEN(MP_TAC o MATCH_MP cong_le)] THEN
    STRIP_TAC THEN REWRITE_TAC[holds; NOT_LE; NOT_LT] THEN
    (REPEAT STRIP_TAC THENL
      [FIRST_X_ASSUM(MATCH_MP_TAC o
         MATCH_MP(REWRITE_RULE[IMP_CONJ] modusponens) o MATCH_MP iff_imp2);
       FIRST_X_ASSUM(MATCH_MP_TAC o
         MATCH_MP(REWRITE_RULE[IMP_CONJ] imp_trans) o MATCH_MP iff_imp1)]) THEN
    ASM_SIMP_TAC[ATOM_EQ_FALSE; ATOM_EQ_TRUE; ATOM_LT_FALSE; ATOM_LT_TRUE;
                 ATOM_LE_FALSE; ATOM_LE_TRUE];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [X_GEN_TAC `p:form` THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `p:form`) THEN
    ANTS_TAC THENL [ARITH_TAC; DISCH_TAC] THEN
    X_GEN_TAC `b:bool` THEN REWRITE_TAC[FV] THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `~b`) THEN ASM_REWRITE_TAC[holds] THEN
    BOOL_CASES_TAC `b:bool` THEN CANONIZE_TAC THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [REPEAT CONJ_TAC THEN
    MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_TAC THEN  X_GEN_TAC `b:bool` THEN REWRITE_TAC[FV; EMPTY_UNION] THEN
    STRIP_TAC THEN FIRST_X_ASSUM(fun th ->
     MP_TAC(SPEC `p:form` th) THEN MP_TAC(SPEC `q:form` th)) THEN
    (ANTS_TAC THENL [ARITH_TAC; ALL_TAC]) THEN
    ONCE_REWRITE_TAC[TAUT `p ==> q ==> r <=> q ==> p ==> r`] THEN
    (ANTS_TAC THENL [ARITH_TAC; ASM_REWRITE_TAC[IMP_IMP]]) THEN
    ASM_REWRITE_TAC[holds; canonize_clauses] THENL
     [DISCH_THEN(CONJUNCTS_THEN(MP_TAC o SPEC `b:bool`));
      DISCH_THEN(CONJUNCTS_THEN(MP_TAC o SPEC `b:bool`));
      DISCH_THEN(CONJUNCTS_THEN2
       (MP_TAC o SPEC `~b`) (MP_TAC o SPEC `b:bool`));
      DISCH_THEN(CONJUNCTS_THEN(fun th ->
        MP_TAC(SPEC `~b` th) THEN MP_TAC(SPEC `b:bool` th)))] THEN
    ASM_REWRITE_TAC[] THEN BOOL_CASES_TAC `b:bool` THEN
    ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN CANONIZE_TAC THEN
    TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT
         `~(p <=> q) ==> (p /\ ~q ==> r) /\ (~p /\ q ==> s) ==> r \/ s`)) THEN
        REPEAT STRIP_TAC THEN CANONIZE_TAC) THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
  DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[canonize_clauses; holds] THEN
  DISCH_TAC THEN X_GEN_TAC `b:bool` THENL
   [BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THENL
     [REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; FV] THEN
      ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
      MAP_EVERY X_GEN_TAC [`q:form`; `t:term`] THEN DISCH_THEN
       (CONJUNCTS_THEN2 (DISJ_CASES_THEN SUBST_ALL_TAC) ASSUME_TAC) THEN
      REWRITE_TAC[SIGMAPI_CLAUSES; FV; holds] THEN
      (ASM_CASES_TAC `FVT t = {}` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
      (ASM_CASES_TAC `FV(q) SUBSET {x}` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o CONJUNCT2)) THEN
      ABBREV_TAC `n = termval v t` THEN
      ASM_SIMP_TAC[TERMVAL_VALMOD_OTHER; termval; VALMOD] THENL
       [DISCH_TAC THEN MATCH_MP_TAC lemma3;
        DISCH_TAC THEN MATCH_MP_TAC lemma4] THEN
      EXISTS_TAC `v:num->num` THEN
      ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `formsubst (x |=> numeral m) q`) THEN
      REWRITE_TAC[complexity; COMPLEXITY_FORMSUBST] THEN
      (ANTS_TAC THENL [ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `T`)]) THEN
      REWRITE_TAC[IMP_IMP] THEN DISCH_THEN MATCH_MP_TAC THEN
      ASM_SIMP_TAC[SIGMAPI_FORMSUBST] THEN
      REWRITE_TAC[FORMSUBST_FV; ASSIGN] THEN
      REPLICATE_TAC 2 (ONCE_REWRITE_TAC[COND_RAND]) THEN
      REWRITE_TAC[FVT_NUMERAL; NOT_IN_EMPTY; FVT; IN_SING] THEN
      (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[HOLDS_FORMSUBST] THEN
      MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN
      X_GEN_TAC `y:num` THEN
      (ASM_CASES_TAC `y:num = x` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
      ASM_REWRITE_TAC[o_DEF; ASSIGN; VALMOD; TERMVAL_NUMERAL];
      STRIP_TAC THEN REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN
      X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC imp_trans THEN
      EXISTS_TAC `formsubst (x |=> numeral n) p` THEN REWRITE_TAC[ispec] THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `formsubst (x |=> numeral n) p`) THEN
      REWRITE_TAC[COMPLEXITY_FORMSUBST; ARITH_RULE `n < n + 1`] THEN
      DISCH_THEN(MP_TAC o SPEC `F`) THEN
      ASM_SIMP_TAC[SIGMAPI_FORMSUBST; IMP_IMP] THEN
      DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL
       [UNDISCH_TAC `FV (!! x p) = {}` THEN
        REWRITE_TAC[FV; FORMSUBST_FV; SET_RULE
         `s DELETE a = {} <=> s = {} \/ s = {a}`] THEN STRIP_TAC THEN
        ASM_REWRITE_TAC[NOT_IN_EMPTY; IN_SING; EMPTY_GSPEC;
                        ASSIGN; UNWIND_THM2; FVT_NUMERAL];
        UNDISCH_TAC `~holds((x |-> n) v) p` THEN
        REWRITE_TAC[HOLDS_FORMSUBST; CONTRAPOS_THM] THEN
        MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN
        RULE_ASSUM_TAC(REWRITE_RULE[FV]) THEN X_GEN_TAC `y:num` THEN
        ASM_CASES_TAC `y:num = x` THENL [ALL_TAC; ASM SET_TAC[]] THEN
        ASM_REWRITE_TAC[o_THM; ASSIGN; VALMOD; TERMVAL_NUMERAL]]];
    BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THENL
     [REWRITE_TAC[FV] THEN STRIP_TAC THEN
      DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `formsubst (x |=> numeral n) (Not p)`) THEN
      REWRITE_TAC[COMPLEXITY_FORMSUBST; complexity] THEN
      ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `F`)] THEN
      ASM_SIMP_TAC[IMP_IMP; SIGMAPI_CLAUSES; SIGMAPI_FORMSUBST] THEN
      ANTS_TAC THENL
       [REWRITE_TAC[FORMSUBST_FV; ASSIGN] THEN
        REPLICATE_TAC 2 (ONCE_REWRITE_TAC[COND_RAND]) THEN
        REWRITE_TAC[FVT_NUMERAL; NOT_IN_EMPTY; FVT; FV; IN_SING] THEN
        (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
        UNDISCH_TAC `holds ((x |-> n) v) p` THEN
        REWRITE_TAC[formsubst; holds; HOLDS_FORMSUBST] THEN
        MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN
        RULE_ASSUM_TAC(REWRITE_RULE[FV]) THEN X_GEN_TAC `y:num` THEN
        ASM_CASES_TAC `y:num = x` THENL [ALL_TAC; ASM SET_TAC[]] THEN
        ASM_REWRITE_TAC[o_THM; ASSIGN; VALMOD; TERMVAL_NUMERAL];
        MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] imp_trans) THEN
        REWRITE_TAC[ispec]];
      REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; FV] THEN
      ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
      MAP_EVERY X_GEN_TAC [`q:form`; `t:term`] THEN DISCH_THEN
       (CONJUNCTS_THEN2 (DISJ_CASES_THEN SUBST_ALL_TAC) ASSUME_TAC) THEN
      REWRITE_TAC[SIGMAPI_CLAUSES; FV; holds] THEN
      (ASM_CASES_TAC `FVT t = {}` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
      (ASM_CASES_TAC `FV(q) SUBSET {x}` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o CONJUNCT2)) THEN
      ABBREV_TAC `n = termval v t` THEN
      ASM_SIMP_TAC[TERMVAL_VALMOD_OTHER; termval; VALMOD] THEN
      REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`] THEN
      DISCH_TAC THEN MATCH_MP_TAC lemma5 THENL
       [MATCH_MP_TAC lemma3; MATCH_MP_TAC lemma4] THEN
      EXISTS_TAC `v:num->num` THEN
      ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `formsubst (x |=> numeral m) (Not q)`) THEN
      REWRITE_TAC[complexity; COMPLEXITY_FORMSUBST] THEN
      (ANTS_TAC THENL [ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `T`)]) THEN
      REWRITE_TAC[IMP_IMP] THEN DISCH_THEN MATCH_MP_TAC THEN
      ASM_SIMP_TAC[SIGMAPI_FORMSUBST; SIGMAPI_CLAUSES] THEN
      REWRITE_TAC[FORMSUBST_FV; FV; ASSIGN] THEN
      REPLICATE_TAC 2 (ONCE_REWRITE_TAC[COND_RAND]) THEN
      REWRITE_TAC[FVT_NUMERAL; NOT_IN_EMPTY; FVT; IN_SING] THEN
      (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[HOLDS_FORMSUBST; holds; CONTRAPOS_THM] THEN
      MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN
      X_GEN_TAC `y:num` THEN
      (ASM_CASES_TAC `y:num = x` THENL [ALL_TAC; ASM SET_TAC[]]) THEN
      ASM_REWRITE_TAC[o_DEF; ASSIGN; VALMOD; TERMVAL_NUMERAL]]]);;

(* ------------------------------------------------------------------------- *)
(* Hence a nice alternative form of Goedel's theorem for any consistent      *)
(* sigma_1-definable axioms A that extend (i.e. prove) the Robinson axioms.  *)
(* ------------------------------------------------------------------------- *)

let G1_ROBINSON = prove
 (`!A. definable_by (SIGMA 1) (IMAGE gform A) /\
       consistent A /\ A |-- robinson
       ==> ?G. PI 1 G /\
               closed G /\
               true G /\
               ~(A |-- G) /\
               (sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC G1_TRAD THEN
  ASM_REWRITE_TAC[complete_for; INTER; IN_ELIM_THM] THEN
  X_GEN_TAC `p:form` THEN REWRITE_TAC[IN; true_def] THEN STRIP_TAC THEN
  MATCH_MP_TAC modusponens THEN EXISTS_TAC `robinson` THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC PROVES_MONO THEN
  EXISTS_TAC `{}:form->bool` THEN REWRITE_TAC[EMPTY_SUBSET] THEN
  W(MP_TAC o PART_MATCH (lhs o rand) DEDUCTION o snd) THEN
  MP_TAC(ISPECL [`I:num->num`; `p:form`; `T`] SIGMAPI1_COMPLETE) THEN
  ASM_REWRITE_TAC[GSYM SIGMA] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[robinson; closed; FV; FVT] THEN
  SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* More metaproperties of axioms systems now we have some derived rules.     *)
(* ------------------------------------------------------------------------- *)

let complete = new_definition
  `complete A <=> !p. closed p ==> A |-- p \/ A |-- Not p`;;

let sound = new_definition
  `sound A <=> !p. A |-- p ==> true p`;;

let semcomplete = new_definition
  `semcomplete A <=> !p. true p ==> A |-- p`;;

let generalize = new_definition
  `generalize vs p = ITLIST (!!) vs p`;;

let closure = new_definition
  `closure p = generalize (list_of_set(FV p)) p`;;

let TRUE_GENERALIZE = prove
 (`!vs p. true(generalize vs p) <=> true p`,
  REWRITE_TAC[generalize; true_def] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; holds] THEN GEN_TAC THEN
  FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
  MESON_TAC[VALMOD_REPEAT]);;

let PROVABLE_GENERALIZE = prove
 (`!A p vs. A |-- generalize vs p <=> A |-- p`,
  GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[generalize] THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[ITLIST] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
  MESON_TAC[spec; gen; FORMSUBST_TRIV; ASSIGN_TRIV]);;

let FV_GENERALIZE = prove
 (`!p vs. FV(generalize vs p) = FV(p) DIFF (set_of_list vs)`,
  GEN_TAC THEN REWRITE_TAC[generalize] THEN
   LIST_INDUCT_TAC THEN REWRITE_TAC[set_of_list; DIFF_EMPTY; ITLIST] THEN
   ASM_REWRITE_TAC[FV] THEN SET_TAC[]);;

let CLOSED_CLOSURE = prove
 (`!p. closed(closure p)`,
  REWRITE_TAC[closed; closure; FV_GENERALIZE] THEN
  SIMP_TAC[SET_OF_LIST_OF_SET; FV_FINITE; DIFF_EQ_EMPTY]);;

let TRUE_CLOSURE = prove
 (`!p. true(closure p) <=> true p`,
  REWRITE_TAC[closure; TRUE_GENERALIZE]);;

let PROVABLE_CLOSURE = prove
 (`!A p. A |-- closure p <=> A |-- p`,
  REWRITE_TAC[closure; PROVABLE_GENERALIZE]);;

let DEFINABLE_DEFINABLE_BY = prove
 (`definable = definable_by (\x. T)`,
  REWRITE_TAC[FUN_EQ_THM; definable; definable_by]);;

let DEFINABLE_ONEVAR = prove
 (`definable s <=> ?p x. (FV p = {x}) /\ !v. holds v p <=> (v x) IN s`,
  REWRITE_TAC[definable] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:form` (X_CHOOSE_TAC `x:num`)) THEN
  EXISTS_TAC `(V x === V x) && formsubst (\y. if y = x then V x else Z) p` THEN
  EXISTS_TAC `x:num` THEN
  ASM_REWRITE_TAC[HOLDS_FORMSUBST; FORMSUBST_FV; FV; holds] THEN
  REWRITE_TAC[COND_RAND; EXTENSION; IN_ELIM_THM; IN_SING; FVT; IN_UNION;
              COND_EXPAND; NOT_IN_EMPTY; o_THM; termval] THEN
  MESON_TAC[]);;

let CLOSED_TRUE_OR_FALSE = prove
 (`!p. closed p ==> true p \/ true(Not p)`,
  REWRITE_TAC[closed; true_def; holds] THEN REPEAT STRIP_TAC THEN
  ASM_MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);;

let SEMCOMPLETE_IMP_COMPLETE = prove
 (`!A. semcomplete A ==> complete A`,
  REWRITE_TAC[semcomplete; complete] THEN MESON_TAC[CLOSED_TRUE_OR_FALSE]);;

let SOUND_CLOSED = prove
 (`sound A <=> !p. closed p /\ A |-- p ==> true p`,
  REWRITE_TAC[sound] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  MESON_TAC[TRUE_CLOSURE; PROVABLE_CLOSURE; CLOSED_CLOSURE]);;

let SOUND_IMP_CONSISTENT = prove
 (`!A. sound A ==> consistent A`,
  REWRITE_TAC[sound; consistent; CONSISTENT_ALT] THEN
  SUBGOAL_THEN `~(true False)` (fun th -> MESON_TAC[th]) THEN
  REWRITE_TAC[true_def; holds]);;

let SEMCOMPLETE_SOUND_EQ_CONSISTENT = prove
 (`!A. semcomplete A ==> (sound A <=> consistent A)`,
  REWRITE_TAC[semcomplete] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN
  REWRITE_TAC[SOUND_IMP_CONSISTENT] THEN
  REWRITE_TAC[consistent; SOUND_CLOSED] THEN
  ASM_MESON_TAC[CLOSED_TRUE_OR_FALSE]);;