Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 17,754 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
(* ========================================================================= *)
(* Simple universal variant of Bob Solovay's procedure for vector spaces. *)
(* ========================================================================= *)
needs "Multivariate/misc.ml";;
needs "Multivariate/vectors.ml";;
(* ------------------------------------------------------------------------- *)
(* Initial simplification so we just use dot products between vectors. *)
(* ------------------------------------------------------------------------- *)
let VECTOR_SUB_ELIM_THM = prove
(`(--x = --(&1) % x) /\
(x - y = x + --(&1) % y)`,
VECTOR_ARITH_TAC);;
let NORM_ELIM_THM = prove
(`!P t. P (norm t) = !x. &0 <= x /\ (x pow 2 = (t:real^N) dot t) ==> P x`,
GEN_TAC THEN REWRITE_TAC[vector_norm] THEN
MESON_TAC[DOT_POS_LE; SQRT_POW2; SQRT_UNIQUE;
REAL_POW_2; REAL_POW2_ABS; REAL_ABS_POS]);;
let NORM_ELIM_CONV =
let dest_norm tm =
let nm,v = dest_comb tm in
if fst(dest_const nm) <> "vector_norm" then failwith "dest_norm"
else v in
let is_norm = can dest_norm in
fun tm ->
let t = find_term (fun t -> is_norm t && free_in t tm) tm in
let v = dest_norm t in
let w = genvar(type_of t) in
let th1 = ISPECL [mk_abs(w,subst[w,t] tm); v] NORM_ELIM_THM in
CONV_RULE(COMB2_CONV (RAND_CONV BETA_CONV)
(BINDER_CONV(RAND_CONV BETA_CONV))) th1;;
let NORM_ELIM_TAC =
CONV_TAC NORM_ELIM_CONV THEN GEN_TAC;;
let SOLOVAY_TAC =
REWRITE_TAC[orthogonal; GSYM DOT_EQ_0] THEN
REWRITE_TAC[VECTOR_EQ] THEN
REWRITE_TAC[VECTOR_SUB_ELIM_THM] THEN
REWRITE_TAC[NORM_EQ; NORM_LE; NORM_LT; real_gt; real_ge] THEN
REPEAT NORM_ELIM_TAC THEN
REWRITE_TAC[DOT_LADD; DOT_RADD; DOT_LMUL; DOT_RMUL];;
(* ------------------------------------------------------------------------- *)
(* Iterative Gram-Schmidt type process. *)
(* ------------------------------------------------------------------------- *)
let component = new_definition
`component (b:real^N) x = (b dot x) / (b dot b)`;;
let COMPONENT_ORTHOGONAL = prove
(`!b:real^N x. orthogonal b (x - (component b x) % b)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b = vec 0 :real^N` THENL
[ASM_REWRITE_TAC[orthogonal; DOT_LZERO]; ALL_TAC] THEN
ASM_SIMP_TAC[orthogonal; component] THEN
REWRITE_TAC[DOT_RSUB; DOT_RMUL] THEN
ASM_SIMP_TAC[REAL_SUB_REFL; REAL_DIV_RMUL; DOT_EQ_0]);;
let ORTHOGONAL_SUM_LEMMA = prove
(`!cs vs.
ALL (orthogonal x) vs /\ orthogonal x z /\ (LENGTH cs = LENGTH vs)
==> orthogonal x (ITLIST2 (\a v s. a % v + s) cs vs z)`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[NOT_CONS_NIL; NOT_SUC; ITLIST2; LENGTH; ALL] THEN
ASM_SIMP_TAC[ORTHOGONAL_CLAUSES; SUC_INJ]);;
let GRAM_SCHMIDT_LEMMA = prove
(`!w:real^N vs. ?u as.
ALL (orthogonal u) vs /\ (LENGTH as = LENGTH vs) /\
(w = ITLIST2 (\a v s. a % v + s) as vs u)`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC list_INDUCT THEN
SIMP_TAC[ALL; LENGTH; ITLIST2; LENGTH_EQ_NIL] THEN CONJ_TAC THENL
[X_GEN_TAC `w:real^N` THEN EXISTS_TAC `w:real^N` THEN
EXISTS_TAC `[]:real list` THEN REWRITE_TAC[ITLIST2];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`v:real^N`; `vs:(real^N)list`] THEN
REWRITE_TAC[LENGTH_EQ_CONS] THEN DISCH_TAC THEN X_GEN_TAC `w:real^N` THEN
FIRST_X_ASSUM(fun th ->
MP_TAC(SPEC `w:real^N` th) THEN MP_TAC(SPEC `v:real^N` th)) THEN
DISCH_THEN(X_CHOOSE_THEN `z:real^N` (X_CHOOSE_THEN `cs:real list`
(STRIP_ASSUME_TAC o GSYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `u:real^N` (X_CHOOSE_THEN `as:real list`
(STRIP_ASSUME_TAC o GSYM))) THEN
MP_TAC(ISPECL [`z:real^N`; `u:real^N`] COMPONENT_ORTHOGONAL) THEN
ABBREV_TAC `k = component z (u:real^N)` THEN
ABBREV_TAC `x = u - k % z :real^N` THEN DISCH_TAC THEN
MAP_EVERY EXISTS_TAC
[`x:real^N`; `CONS k (MAP2 (\a c. a - k * c) as cs)`] THEN
REWRITE_TAC[CONS_11; RIGHT_EXISTS_AND_THM; GSYM CONJ_ASSOC; UNWIND_THM1] THEN
SUBGOAL_THEN `ALL (orthogonal(x:real^N)) vs` ASSUME_TAC THENL
[UNDISCH_TAC `ALL (orthogonal(z:real^N)) vs` THEN
UNDISCH_TAC `ALL (orthogonal(u:real^N)) vs` THEN
REWRITE_TAC[IMP_IMP; AND_ALL] THEN
MATCH_MP_TAC MONO_ALL THEN REWRITE_TAC[] THEN
EXPAND_TAC "x" THEN SIMP_TAC[ORTHOGONAL_CLAUSES];
ALL_TAC] THEN
REPEAT CONJ_TAC THENL
[EXPAND_TAC "v" THEN MATCH_MP_TAC ORTHOGONAL_SUM_LEMMA THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[ORTHOGONAL_SYM];
FIRST_ASSUM ACCEPT_TAC;
ASM_MESON_TAC[LENGTH_MAP2];
ALL_TAC] THEN
REWRITE_TAC[ITLIST2; VECTOR_ARITH `(a = b + c:real^N) = (c = a - b)`] THEN
MAP_EVERY EXPAND_TAC ["v"; "w"; "x"] THEN
UNDISCH_TAC `LENGTH(vs:(real^N)list) = LENGTH(cs:real list)` THEN
UNDISCH_TAC `LENGTH(vs:(real^N)list) = LENGTH(as:real list)` THEN
REWRITE_TAC[IMP_CONJ] THEN
MAP_EVERY (fun v -> SPEC_TAC(v,v))
[`vs:(real^N)list`; `cs:real list`; `as:real list`] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[NOT_CONS_NIL; NOT_SUC; ITLIST2; LENGTH; ALL; SUC_INJ; MAP2] THEN
ASM_SIMP_TAC[] THEN REPEAT DISCH_TAC THEN VECTOR_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Hence this is a simple equality. *)
(* ------------------------------------------------------------------------- *)
let SOLOVAY_LEMMA = prove
(`!P vs. (!w:real^N. P w vs) =
(!as u. ALL (orthogonal u) vs /\ (LENGTH as = LENGTH vs)
==> P (ITLIST2 (\a v s. a % v + s) as vs u) vs)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN
X_GEN_TAC `w:real^N` THEN
MP_TAC(ISPECL [`w:real^N`; `vs:(real^N)list`] GRAM_SCHMIDT_LEMMA) THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Set up the specific instances to get rid of list stuff. *)
(* ------------------------------------------------------------------------- *)
let FORALL_LENGTH_CLAUSES = prove
(`((!l. (LENGTH l = 0) ==> P l) = P []) /\
((!l. (LENGTH l = SUC n) ==> P l) =
(!h t. (LENGTH t = n) ==> P (CONS h t)))`,
MESON_TAC[LENGTH; LENGTH_EQ_NIL; NOT_SUC; LENGTH_EQ_CONS]);;
let ORTHOGONAL_SIMP_CLAUSES = prove
(`orthogonal u x
==> (u dot x = &0) /\ (x dot u = &0) /\
(u dot (a % x) = &0) /\ ((a % x) dot u = &0) /\
(u dot (a % x + y) = u dot y) /\ ((a % x + y) dot u = y dot u) /\
(u dot (y + a % x) = u dot y) /\ ((y + a % x) dot u = y dot u)`,
SIMP_TAC[orthogonal; DOT_LADD; DOT_RADD; DOT_LMUL; DOT_RMUL] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [DOT_SYM] THEN
SIMP_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_ADD_LID; REAL_ADD_RID]);;
(* ------------------------------------------------------------------------- *)
(* A nicer proforma version. *)
(* ------------------------------------------------------------------------- *)
let ITLIST2_0_LEMMA = prove
(`!u as vs. ITLIST2 (\a v s. a % v + s) as vs u =
ITLIST2 (\a v s. a % v + s) as vs (vec 0) + u`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ITLIST2_DEF; VECTOR_ADD_LID] THEN
ASM_REWRITE_TAC[VECTOR_ADD_ASSOC]);;
let SOLOVAY_PROFORMA_EQ = prove
(`(!w:real^N. P (MAP ((dot) w) (CONS w vs)) vs) =
(!u. ALL (orthogonal u) vs
==> !as. (LENGTH as = LENGTH vs)
==> P (CONS
((ITLIST2 (\a v s. a % v + s) as vs (vec 0)) dot
(ITLIST2 (\a v s. a % v + s) as vs (vec 0)) +
u dot u)
(MAP ((dot)
(ITLIST2 (\a v s. a % v + s) as vs (vec 0)))
vs))
vs)`,
MP_TAC(ISPEC `\w:real^N vs. P (MAP ((dot) w) (CONS w vs)) vs :bool`
SOLOVAY_LEMMA) THEN
REWRITE_TAC[] THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `u:real^N` THEN REWRITE_TAC[] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `as:(real)list` THEN REWRITE_TAC[IMP_IMP] THEN
MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a ==> b <=> a ==> c)`) THEN
STRIP_TAC THEN REWRITE_TAC[MAP] THEN BINOP_TAC THEN
REWRITE_TAC[CONS_11] THEN ONCE_REWRITE_TAC[ITLIST2_0_LEMMA] THEN
REWRITE_TAC[VECTOR_ADD_RID] THEN
REWRITE_TAC[VECTOR_ARITH
`(a + u) dot (a + u) = a dot a + &2 * (u dot a) + u dot u`] THEN
REWRITE_TAC[REAL_ARITH `(a + &2 * b + c = a + c) <=> (b = &0)`] THEN
GEN_REWRITE_TAC (RAND_CONV o BINOP_CONV o LAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[DOT_LADD] THEN CONJ_TAC THENL
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
SPEC_TAC(`vs:(real^N)list`,`vs:(real^N)list`) THEN
SPEC_TAC(`as:(real)list`,`as:(real)list`) THEN
REPEAT LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN
REWRITE_TAC[ALL; ITLIST2; DOT_RZERO; SUC_INJ] THEN
ASM_SIMP_TAC[DOT_RADD] THEN
REWRITE_TAC[REAL_ADD_RID; DOT_RMUL] THEN
SIMP_TAC[orthogonal] THEN REWRITE_TAC[REAL_MUL_RZERO];
MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[REAL_ARITH `(a + b = a) <=> (b = &0)`] THEN
MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `orthogonal (u:real^N)` THEN
ASM_REWRITE_TAC[] THEN SIMP_TAC[orthogonal]]);;
(* ------------------------------------------------------------------------- *)
(* The implication that we normally use. *)
(* ------------------------------------------------------------------------- *)
let SOLOVAY_PROFORMA = prove
(`!P vs.
(!c. &0 <= c
==> !as. (LENGTH as = LENGTH vs)
==> P (CONS ((ITLIST2 (\a v s. a % v + s) as vs (vec 0)) dot
(ITLIST2 (\a v s. a % v + s) as vs (vec 0)) + c)
(MAP ((dot)
(ITLIST2 (\a v s. a % v + s) as vs (vec 0)))
vs))
vs)
==> !w:real^N. P (MAP ((dot) w) (CONS w vs)) vs`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC RAND_CONV [SOLOVAY_PROFORMA_EQ] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[DOT_POS_LE]);;
(* ------------------------------------------------------------------------- *)
(* Automatically set up an implication for n (+1 eliminated) quantifier. *)
(* ------------------------------------------------------------------------- *)
let SOLOVAY_RULE =
let v_tm = `v:(real^N)list` and d_tm = `d:real list`
and elv_tm = `EL:num->(real^N)list->real^N`
and eld_tm = `EL:num->(real)list->real`
and rn_ty = `:real^N`
and rewr_rule = REWRITE_RULE
[MAP; EL; HD; TL; LENGTH; FORALL_LENGTH_CLAUSES;
ITLIST2; VECTOR_ADD_RID; VECTOR_ADD_LID; DOT_LZERO]
and sewr_rule = PURE_ONCE_REWRITE_RULE[DOT_SYM] in
fun n ->
let args =
map (fun i -> mk_comb(mk_comb(elv_tm,mk_small_numeral i),v_tm))
(0--(n-1)) @
map (fun i -> mk_comb(mk_comb(eld_tm,mk_small_numeral i),d_tm))
(1--n) @
[mk_comb(mk_comb(eld_tm,mk_small_numeral 0),d_tm)] in
let pty = itlist (mk_fun_ty o type_of) args bool_ty in
let p_tm = list_mk_abs([d_tm;v_tm],list_mk_comb(mk_var("P",pty),args))
and vs = make_args "v" [] (replicate rn_ty n) in
let th1 = ISPECL [p_tm; mk_list(vs,rn_ty)] SOLOVAY_PROFORMA in
let th2 = rewr_rule(CONV_RULE(TOP_DEPTH_CONV num_CONV) th1) in
let th3 = sewr_rule th2 in
itlist (fun v -> MATCH_MP MONO_FORALL o GEN v) vs th3;;
(* ------------------------------------------------------------------------- *)
(* Now instantiate it to some special cases. *)
(* ------------------------------------------------------------------------- *)
let MK_SOLOVAY_PROFORMA =
let preths = map SOLOVAY_RULE (0--9) in
fun n -> if n < 10 then el n preths else SOLOVAY_RULE n;;
(* ------------------------------------------------------------------------- *)
(* Apply it to a goal. *)
(* ------------------------------------------------------------------------- *)
let is_vector_ty ty =
match ty with
Tyapp("cart",[Tyapp("real",[]);_]) -> true
| _ -> false;;
let SOLOVAY_REDUCE_TAC (asl,w) =
let avs = sort (<) (filter (is_vector_ty o type_of) (frees w)) in
(REWRITE_TAC[DOT_SYM] THEN
MAP_EVERY (fun v -> SPEC_TAC(v,v)) (rev avs) THEN
MATCH_MP_TAC(MK_SOLOVAY_PROFORMA (length avs - 1)) THEN
REWRITE_TAC[DOT_LADD; DOT_LMUL; DOT_RADD; DOT_RMUL; DOT_LZERO;
DOT_RZERO] THEN
REPEAT GEN_TAC) (asl,w);;
(* ------------------------------------------------------------------------- *)
(* Overall tactic. *)
(* ------------------------------------------------------------------------- *)
let SOLOVAY_VECTOR_TAC =
REWRITE_TAC[dist; real_gt; real_ge; NORM_LT; NORM_LE; GSYM DOT_POS_LT] THEN
REPEAT GEN_TAC THEN SOLOVAY_TAC THEN
REWRITE_TAC[DOT_LZERO; DOT_RZERO] THEN
REPEAT SOLOVAY_REDUCE_TAC THEN
REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_MUL_LID; REAL_MUL_RID;
REAL_ADD_LID; REAL_ADD_RID] THEN
REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM; GSYM CONJ_ASSOC] THEN
REPEAT GEN_TAC THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG;
REAL_MUL_LID; REAL_MUL_RID; GSYM real_sub];;
(* ------------------------------------------------------------------------- *)
(* An example where REAL_RING then works. *)
(* ------------------------------------------------------------------------- *)
let PYTHAGORAS = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B)
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_RING);;
(*** Actually in this case we can fairly easily do things manually, though
we do need to explicitly use symmetry of the dot product.
let PYTHAGORAS = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B)
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`,
REWRITE_TAC[NORM_POW_2; orthogonal; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN
CONV_TAC REAL_RING);;
***)
(* ------------------------------------------------------------------------- *)
(* Examples. *)
(* ------------------------------------------------------------------------- *)
needs "Examples/sos.ml";;
let EXAMPLE_1 = prove
(`!x y:real^N. x dot y <= norm x * norm y`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
let EXAMPLE_2 = prove
(`!x y:real^N. a % (x + y) = a % x + a % y`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
(*** Takes a few minutes but does work
let EXAMPLE_3 = prove
(`!x y:real^N. norm (x + y) <= norm x + norm y`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
****)
let EXAMPLE_4 = prove
(`!x y z. x dot (y + z) = (x dot y) + (x dot z)`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
let EXAMPLE_5 = prove
(`!x y. (x dot x = &0) ==> (x dot y = &0)`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
(* ------------------------------------------------------------------------- *)
(* This is NORM_INCREASES_ONLINE. *)
(* ------------------------------------------------------------------------- *)
g `!a d:real^N.
~(d = vec 0) ==> norm (a + d) > norm a \/ norm (a - d) > norm a`;;
time e SOLOVAY_VECTOR_TAC;;
time e (CONV_TAC REAL_SOS);;
(* ------------------------------------------------------------------------- *)
(* DIST_INCREASES_ONLINE *)
(* ------------------------------------------------------------------------- *)
g `!b a d:real^N.
~(d = vec 0) ==> dist(a,b + d) > dist(a,b) \/ dist(a,b - d) > dist(a,b)`;;
time e SOLOVAY_VECTOR_TAC;;
time e (CONV_TAC REAL_SOS);;
(* ------------------------------------------------------------------------- *)
(* This one doesn't seem to work easily, but I think it does eventually. *)
(* ------------------------------------------------------------------------- *)
(****
let EXAMPLE_6 = prove
(`!a x. norm(a % x) = abs(a) * norm x`;;
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
****)
let EXAMPLE_7 = prove
(`!x. abs(norm x) = norm x`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
(*** But this is (at least) really slow
let EXAMPLE_8 = prove
(`!x y. abs(norm(x) - norm(y)) <= abs(norm(x - y))`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
****)
(* ------------------------------------------------------------------------- *)
(* One from separating hyperplanes with a richer structure. *)
(* ------------------------------------------------------------------------- *)
needs "Rqe/make.ml";;
let EXAMPLE_9 = prove
(`!x:real^N y. x dot y > &0 ==> ?u. &0 < u /\ norm(u % y - x) < norm x`,
SOLOVAY_VECTOR_TAC THEN
W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
CONV_TAC REAL_QELIM_CONV);;
(* ------------------------------------------------------------------------- *)
(* Even richer set of quantifier alternations. *)
(* ------------------------------------------------------------------------- *)
let EXAMPLE_10 = prove
(`!x:real^N y.
x dot y > &0
==> ?u. &0 < u /\
!v. &0 < v /\ v <= u ==> norm(v % y - x) < norm x`,
SOLOVAY_VECTOR_TAC THEN
W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
CONV_TAC REAL_QELIM_CONV);;
|