Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 48,310 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 |
(* ========================================================================= *)
(* Formalization of semantics and basic model theory of first order logic. *)
(* ========================================================================= *)
let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o
check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;;
let LIST_UNION = new_recursive_definition list_RECURSION
`(LIST_UNION [] = {}) /\
(LIST_UNION (CONS h t) = h UNION (LIST_UNION t))`;;
let LIST_UNION_FINITE = prove
(`!l. ALL FINITE l ==> FINITE(LIST_UNION l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; FINITE_RULES] THEN
REWRITE_TAC[FINITE_UNION; ALL] THEN ASM_MESON_TAC[]);;
let IN_LIST_UNION = prove
(`!x l. x IN (LIST_UNION l) <=> EX (\s. x IN s) l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LIST_UNION; EX; NOT_IN_EMPTY; IN_UNION]);;
let LIST_UNION_APPEND = prove
(`!l1 l2. LIST_UNION(APPEND l1 l2) = (LIST_UNION l1) UNION (LIST_UNION l2)`,
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LIST_UNION; APPEND; UNION_EMPTY; GSYM UNION_ASSOC]);;
(* ------------------------------------------------------------------------- *)
(* Nested type of terms. *)
(* ------------------------------------------------------------------------- *)
let term_raw_INDUCT,term_raw_RECURSION = define_type
"term = V num | Fn num (term list)";;
(* ------------------------------------------------------------------------- *)
(* Manually extract "nested" version of induction and recursion. *)
(* One day, this will be automated; it's really pretty trivial. *)
(* ------------------------------------------------------------------------- *)
let term_INDUCT = prove
(`!P. (!v. P(V v)) /\ (!s l. ALL P l ==> P(Fn s l)) ==> !t. P t`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`P:term->bool`; `ALL(P:term->bool)`] term_raw_INDUCT) THEN
ASM_SIMP_TAC[ALL]);;
let term_RECURSION = prove
(`!f h. ?fn:term->Z.
(!v. fn(V v) = f v) /\
(!s l. fn(Fn s l) = h s l (MAP fn l))`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`f:num->Z`; `h:num->(term)list->(Z)list->Z`;
`[]:(Z)list`; `\(x:term) (y:term list) (z:Z) (w:Z list).
CONS z w`] term_raw_RECURSION) THEN
REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `mf:(term)list->(Z)list`
(X_CHOOSE_THEN `fn:term ->Z` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `fn:term ->Z` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN X_GEN_TAC `l:term list` THEN AP_TERM_TAC THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP]);;
(* ------------------------------------------------------------------------- *)
(* General Skolemizing hack to allow fixed initial parameters in nested *)
(* recursive defs. Note that (prima facie) variable ones aren't justified. *)
(* ------------------------------------------------------------------------- *)
let new_nested_recursive_definition ax tm =
let expat = lhand(snd(strip_forall(hd(conjuncts tm)))) in
let ev,allargs = strip_comb expat in
let pargs = butlast allargs in
let tm' = mk_exists(ev,list_mk_forall(pargs,tm)) in
let rawprover = prove_recursive_functions_exist ax in
let eth = prove(tm',
REWRITE_TAC[GSYM SKOLEM_THM] THEN
REPEAT GEN_TAC THEN
W(ACCEPT_TAC o rawprover o snd o dest_exists o snd)) in
SPECL pargs (new_specification [fst(dest_var ev)] eth);;
(* ------------------------------------------------------------------------- *)
(* Standard consequences. *)
(* ------------------------------------------------------------------------- *)
let term_INJ = prove_constructors_injective term_RECURSION;;
let term_DISTINCT = prove_constructors_distinct term_RECURSION;;
let term_CASES = prove_cases_thm term_INDUCT;;
(* ------------------------------------------------------------------------- *)
(* Definition of formulas. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("-->",(13,"right"));;
let form_INDUCTION,form_RECURSION =
define_type "form = False
| Atom num (term list)
| --> form form
| !! num form";;
let form_INJ = prove_constructors_injective form_RECURSION;;
let form_DISTINCT = prove_constructors_distinct form_RECURSION;;
let form_CASES = prove_cases_thm form_INDUCTION;;
(* ------------------------------------------------------------------------- *)
(* Definitions of other connectives. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(14,"right"));;
parse_as_infix("<->",(12,"right"));;
let Not_DEF = new_definition
`Not p = p --> False`;;
let True_DEF = new_definition
`True = Not False`;;
let Or_DEF = new_definition
`p || q = (p --> q) --> q`;;
let And_DEF = new_definition
`p && q = Not (Not p || Not q)`;;
let Iff_DEF = new_definition
`(p <-> q) = (p --> q) && (q --> p)`;;
let Exists_DEF = new_definition
`?? x p = Not(!!x (Not p))`;;
(* ------------------------------------------------------------------------- *)
(* The language of a term, formula and set of formulas. *)
(* ------------------------------------------------------------------------- *)
let functions_term = new_recursive_definition term_RECURSION
`(!v. functions_term (V v) = {}) /\
(!f l. functions_term (Fn f l) =
(f,LENGTH l) INSERT (LIST_UNION (MAP functions_term l)))`;;
let functions_form = new_recursive_definition form_RECURSION
`(functions_form False = {}) /\
(functions_form (Atom a l) = LIST_UNION (MAP functions_term l)) /\
(functions_form (p --> q) = (functions_form p) UNION (functions_form q)) /\
(functions_form (!! x p) = functions_form p)`;;
let predicates_form = new_recursive_definition form_RECURSION
`(predicates_form False = {}) /\
(predicates_form (Atom a l) = {(a,LENGTH l)}) /\
(predicates_form (p --> q) =
(predicates_form p) UNION (predicates_form q)) /\
(predicates_form (!! x p) = predicates_form p)`;;
let functions = new_definition
`functions fms = UNIONS {functions_form f | f IN fms}`;;
let predicates = new_definition
`predicates fms = UNIONS {predicates_form f | f IN fms}`;;
let language = new_definition
`language fms = functions fms, predicates fms`;;
let FUNCTIONS_SING = prove
(`functions {p} = functions_form p`,
REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY;
functions; IN_ELIM_THM; IN_UNIONS] THEN
MESON_TAC[]);;
let LANGUAGE_1 = prove
(`language {p} = functions_form p,predicates_form p`,
REWRITE_TAC[language; functions; predicates; PAIR_EQ] THEN
CONJ_TAC THEN ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Selecting the bits of an interpretation: domain, functions and relations. *)
(* ------------------------------------------------------------------------- *)
let Dom_DEF = new_definition
`Dom (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = D`;;
let Fun_DEF = new_definition
`Fun (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = Funs`;;
let Pred_DEF = new_definition
`Pred (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = Preds`;;
let MODEL_EQ = prove
(`(M = M') <=> (Dom M = Dom M') /\ (Fun M = Fun M') /\ (Pred M = Pred M')`,
let detrip = prove(`p = FST(p),FST(SND p),SND(SND p)`,REWRITE_TAC[]) in
ONCE_REWRITE_TAC[detrip] THEN PURE_REWRITE_TAC[PAIR_EQ; Dom_DEF; Fun_DEF; Pred_DEF] THEN
REWRITE_TAC[]);;
let MODEL_DECOMP = prove
(`M = Dom M,Fun M,Pred M`,
REWRITE_TAC[MODEL_EQ] THEN REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF]);;
(* ------------------------------------------------------------------------- *)
(* Free variables and bound variables. *)
(* ------------------------------------------------------------------------- *)
let FVT = new_recursive_definition term_RECURSION
`(!x. FVT (V x) = {x}) /\
(!f l. FVT (Fn f l) = LIST_UNION (MAP FVT l))`;;
let FV = new_recursive_definition form_RECURSION
`(FV False = {}) /\
(!a l. FV (Atom a l) = LIST_UNION (MAP FVT l)) /\
(!p q. FV (p --> q) = FV p UNION FV q) /\
(!x p. FV (!! x p) = FV p DELETE x)`;;
let BV = new_recursive_definition form_RECURSION
`(BV False = {}) /\
(!a l. BV (Atom a l) = {}) /\
(!p q. BV (p --> q) = BV p UNION BV q) /\
(!x p. BV (!! x p) = x INSERT BV p)`;;
let FVT_FINITE = prove
(`!t. FINITE(FVT t)`,
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[FVT; FINITE_RULES; FINITE_INSERT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIST_UNION_FINITE THEN
ASM_REWRITE_TAC[ALL_MAP; o_DEF]);;
let FV_FINITE = prove
(`!p. FINITE(FV p)`,
MATCH_MP_TAC form_INDUCTION THEN
ASM_REWRITE_TAC[FV; FINITE_RULES; FINITE_UNION; FINITE_DELETE] THEN
GEN_TAC THEN MATCH_MP_TAC LIST_UNION_FINITE THEN
REWRITE_TAC[ALL_MAP; FVT_FINITE; o_DEF; ALL_T]);;
let BV_FINITE = prove
(`!p. FINITE(BV p)`,
MATCH_MP_TAC form_INDUCTION THEN
ASM_REWRITE_TAC[BV; FINITE_RULES; FINITE_UNION; FINITE_INSERT]);;
let FV_EXISTS = prove
(`FV(??x p) = FV(p) DELETE x`,
REWRITE_TAC[Exists_DEF; Not_DEF; FV] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Modifier for a valuation. *)
(* ------------------------------------------------------------------------- *)
let valmod = new_definition
`valmod (x,a) v = \y. if y = x then a else v y`;;
let VALMOD_CLAUSES = prove
(`(!v a k. valmod (k,a) v k = a) /\
(!v a k x. ~(x = k) ==> (valmod (k,a) v x = v x))`,
REWRITE_TAC[valmod] THEN REPEAT GEN_TAC THEN
COND_CASES_TAC THEN ASM_MESON_TAC[]);;
let VALMOD_TRIV = prove
(`!v x. valmod (x,v x) v = v`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN
REPEAT GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;
let VALMOD_VALMOD = prove
(`!v a x b. valmod (x,a) (valmod (x,b) v) = valmod (x,a) v`,
REPEAT GEN_TAC THEN REWRITE_TAC[valmod] THEN
REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]));;
(* ------------------------------------------------------------------------- *)
(* Acceptability of a valuation. *)
(* ------------------------------------------------------------------------- *)
let valuation = new_definition
`valuation(M) v <=> !x:num. v(x) IN Dom(M)`;;
let VALUATION_VALMOD = prove
(`!M a v. valuation(M) v /\ a IN Dom(M) ==> valuation(M) (valmod (x,a) v)`,
REPEAT GEN_TAC THEN REWRITE_TAC[valuation; valmod] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;
let VALUATION_IS_VALMOD = prove
(`!v x. valmod(x,v x) v = v`,
REWRITE_TAC[valmod; FUN_EQ_THM] THEN REPEAT GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Interpretation of terms and formulas w.r.t. interpretation and valuation. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("satisfies",(10,"right"));;
let termval = new_nested_recursive_definition term_RECURSION
`(!x. termval M v (V x) = v(x)) /\
(!f l. termval M v (Fn f l) = Fun(M) f (MAP (termval M v) l))`;;
let holds = new_recursive_definition form_RECURSION
`(holds M v False <=> F) /\
(!a l. holds M v (Atom a l) <=> Pred(M) a (MAP (termval M v) l)) /\
(!p q. holds M v (p --> q) <=> holds M v p ==> holds M v q) /\
(!x p. holds M v (!! x p) <=>
!a. a IN Dom(M) ==> holds M (valmod (x,a) v) p)`;;
let hold = new_definition
`hold M v fms <=> !p. p IN fms ==> holds M v p`;;
let satisfies = new_definition
`M satisfies fms <=> !v p. valuation(M) v /\ p IN fms ==> holds M v p`;;
let SATISFIES_1 = prove
(`M satisfies {p} <=> !v. valuation(M) v ==> holds M v p`,
REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Clauses for derived constructs. *)
(* ------------------------------------------------------------------------- *)
let HOLDS = prove
(`(holds M v False <=> F) /\
(holds M v True <=> T) /\
(!a l. holds M v (Atom a l) <=> Pred(M) a (MAP (termval M v) l)) /\
(!p. holds M v (Not p) <=> ~(holds M v p)) /\
(!p q. holds M v (p || q) <=> holds M v p \/ holds M v q) /\
(!p q. holds M v (p && q) <=> holds M v p /\ holds M v q) /\
(!p q. holds M v (p --> q) <=> holds M v p ==> holds M v q) /\
(!p q. holds M v (p <-> q) <=> (holds M v p = holds M v q)) /\
(!x p. holds M v (!! x p) <=>
!a. a IN Dom(M) ==> holds M (valmod (x,a) v) p) /\
(!x p. holds M v (?? x p) <=>
?a. a IN Dom(M) /\ holds M (valmod (x,a) v) p)`,
REWRITE_TAC[Not_DEF; True_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; holds] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Prove that only values given to free variables by the valuation matter. *)
(* ------------------------------------------------------------------------- *)
let TERMVAL_VALUATION = prove
(`!M t (v:num->A) v'.
(!x. x IN (FVT t) ==> (v'(x) = v(x)))
==> (termval M v' t = termval M v t)`,
let lemma = prove
(`!l t x. x IN FVT t /\ MEM t l
==> x IN LIST_UNION (MAP FVT l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION; MEM] THEN
ASM_MESON_TAC[]) in
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[FVT; termval] THEN CONJ_TAC THENL
[REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[];
GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL; LIST_UNION; MAP; IN_UNION] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[CONS_11] THEN
CONJ_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC MAP_EQ THEN MATCH_MP_TAC ALL_IMP THEN
EXISTS_TAC `\t. !(v:num->A) v'.
(!x. x IN FVT t ==> (v' x = v x))
==> (termval M v' t :A = termval M v t)` THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[lemma]]]);;
let HOLDS_VALUATION = prove
(`!M p (v:num->A) v'.
(!x. x IN (FV p) ==> (v'(x) = v(x)))
==> (holds M v' p <=> holds M v p)`,
GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[FV; HOLDS; IN_UNION; IN_DELETE] THEN
REPEAT CONJ_TAC THENL
[GEN_TAC THEN X_GEN_TAC `l:term list` THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION] THEN
ASM_MESON_TAC[TERMVAL_VALUATION];
MESON_TAC[];
X_GEN_TAC `p:num` THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
X_GEN_TAC `x:num` THEN ASM_CASES_TAC `x:num = p` THEN
ASM_REWRITE_TAC[valmod] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Note that these are delicate given the fixed type of interpretations. *)
(* ------------------------------------------------------------------------- *)
let satisfiable = new_definition
`satisfiable (U:A->bool) fms <=>
?M:(A->bool)#(num->A list->A)#(num->A list->bool).
~(Dom M = {}) /\ M satisfies fms`;;
let valid = new_definition
`valid (U:A->bool) fms <=>
!M:(A->bool)#(num->A list->A)#(num->A list->bool).
M satisfies fms`;;
let entails = new_definition
`entails (U:A->bool) A p <=>
!(M:(A->bool)#(num->A list->A)#(num->A list->bool)) v.
hold M v A ==> holds M v p`;;
let equivalent = new_definition
`equivalent (U:A->bool) p q <=>
!(M:(A->bool)#(num->A list->A)#(num->A list->bool)) v.
holds M v p <=> holds M v q`;;
(* ------------------------------------------------------------------------- *)
(* Quality of being an interpretation for a language. *)
(* ------------------------------------------------------------------------- *)
let interpretation = new_definition
`interpretation (fns:(num#num)->bool,preds:(num#num)->bool) M <=>
!f l. (f,LENGTH l) IN fns /\ ALL (\x. x IN Dom(M)) l
==> (Fun(M) f l) IN Dom(M)`;;
let INTERPRETATION_TERMVAL = prove
(`!any:num#num->bool M v t.
interpretation (functions_term t,any) M /\
valuation(M) v
==> termval M v t IN Dom(M)`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[interpretation] THEN
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval] THEN CONJ_TAC THENL
[REWRITE_TAC[valuation] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[];
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[LENGTH_MAP; functions_term; IN_INSERT] THEN
REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[o_DEF] THEN
MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN
ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[functions_term] THEN
REWRITE_TAC[IN_INSERT] THEN DISJ2_TAC THEN
UNDISCH_TAC `MEM (x:term) l` THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN
REWRITE_TAC[LIST_UNION; MAP; IN_UNION] THEN ASM_MESON_TAC[]]);;
let INTERPRETATION_SUBLANGUAGE = prove
(`!M funs1 funs2 preds1 preds2.
funs2 SUBSET funs1
==> interpretation (funs1,preds1) M
==> interpretation (funs2,preds2) M`,
GEN_TAC THEN REWRITE_TAC[interpretation; SUBSET] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Substitution in terms. *)
(* ------------------------------------------------------------------------- *)
let termsubst = new_nested_recursive_definition term_RECURSION
`(!x. termsubst v (V x) = v(x)) /\
(!f l. termsubst v (Fn f l) = Fn f (MAP (termsubst v) l))`;;
let TERMSUBST_TERMVAL = prove
(`!M. (Fun(M) = Fn) ==> !v t. termsubst v t = termval M v t`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
ASM_REWRITE_TAC[termsubst; termval] THEN REPEAT STRIP_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[]);;
let TERMVAL_TRIV = prove
(`!M. (Fun(M) = Fn) ==> !t. termval M V t = t`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC term_INDUCT THEN
ASM_REWRITE_TAC[termval] THEN REPEAT STRIP_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;
let TERMVAL_TERMSUBST = prove
(`!M v i t. termval M v (termsubst i t) = termval M (termval M v o i) t`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; termsubst; o_THM] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN
MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);;
let TERMSUBST_TERMSUBST = prove
(`!i j t. termsubst j (termsubst i t) = termsubst (termsubst j o i) t`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termsubst; o_THM] THEN REWRITE_TAC[GSYM MAP_o] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);;
let TERMSUBST_TRIV = prove
(`!t. termsubst V t = t`,
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;
let TERMSUBST_VALUATION = prove
(`!t v v'. (!x. x IN (FVT t) ==> (v'(x) = v(x)))
==> (termsubst v' t = termsubst v t)`,
MP_TAC(ISPEC `Dom(a,Fn,b),Fn,Pred(a,Fn,b)` TERMSUBST_TERMVAL) THEN
REWRITE_TAC[Fun_DEF] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
REWRITE_TAC[TERMVAL_VALUATION]);;
let TERMSUBST_FVT = prove
(`!t i. FVT(termsubst i t) = {x | ?y. y IN FVT(t) /\ x IN FVT(i y)}`,
let lemma1 = prove
(`{x | ?y. y IN (s UNION t) /\ P x y} =
{x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`,
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[FVT; termsubst] THEN
CONJ_TAC THENL
[REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN
MESON_TAC[];
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL
[REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; SUBSET; IN_ELIM_THM]; ALL_TAC] THEN
REWRITE_TAC[ALL] THEN STRIP_TAC THEN X_GEN_TAC `i:num->term` THEN
REWRITE_TAC[lemma1] THEN BINOP_TAC THEN ASM_REWRITE_TAC[] THEN
SPEC_TAC(`i:num->term`,`i:num->term`) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Choice of a new variable. *)
(* ------------------------------------------------------------------------- *)
let MAX_SYM = prove
(`!x y. MAX x y = MAX y x`,
ARITH_TAC);;
let MAX_ASSOC = prove
(`!x y z. MAX x (MAX y z) = MAX (MAX x y) z`,
ARITH_TAC);;
let SETMAX = new_definition
`SETMAX s = ITSET MAX s 0`;;
let VARIANT = new_definition
`VARIANT s = SETMAX s + 1`;;
let SETMAX_LEMMA = prove
(`(SETMAX {} = 0) /\
(!x s. FINITE s ==>
(SETMAX (x INSERT s) = if x IN s then SETMAX s
else MAX x (SETMAX s)))`,
REWRITE_TAC[SETMAX] THEN MATCH_MP_TAC FINITE_RECURSION THEN
REWRITE_TAC[MAX] THEN REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC
[`x:num <= s`; `y:num <= s`; `x:num <= y`; `y <= x`] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LE_CASES; LE_TRANS; LE_ANTISYM]);;
let SETMAX_MEMBER = prove
(`!s. FINITE s ==> !x. x IN s ==> x <= SETMAX s`,
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[NOT_IN_EMPTY; IN_INSERT] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
ASM_SIMP_TAC [SETMAX_LEMMA] THEN
ASM_REWRITE_TAC[MAX] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[LE_REFL] THEN
ASM_MESON_TAC[LE_CASES; LE_TRANS]);;
let SETMAX_THM = prove
(`(SETMAX {} = 0) /\
(!x s. FINITE s ==>
(SETMAX (x INSERT s) = MAX x (SETMAX s)))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC [SETMAX_LEMMA] THEN
COND_CASES_TAC THEN REWRITE_TAC[MAX] THEN
COND_CASES_TAC THEN ASM_MESON_TAC[SETMAX_MEMBER]);;
let SETMAX_UNION = prove
(`!s t. FINITE(s UNION t)
==> (SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`,
let lemma = prove(`(x INSERT s) UNION t = x INSERT (s UNION t)`,SET_TAC[]) in
SUBGOAL_THEN `!t. FINITE(t) ==> !s. FINITE(s) ==>
(SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`
(fun th -> MESON_TAC[th; FINITE_UNION]) THEN
GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[UNION_EMPTY; SETMAX_THM] THEN CONJ_TAC THENL
[REWRITE_TAC[MAX; LE_0]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[lemma] THEN
ASM_SIMP_TAC [SETMAX_THM; FINITE_UNION] THEN
REWRITE_TAC[MAX_ASSOC]);;
let VARIANT_FINITE = prove
(`!s:num->bool. FINITE(s) ==> ~(VARIANT(s) IN s)`,
REWRITE_TAC[VARIANT] THEN
MESON_TAC[SETMAX_MEMBER; ARITH_RULE `~(x + 1 <= x)`]);;
let VARIANT_THM = prove
(`!p. ~(VARIANT(FV p) IN FV(p))`,
GEN_TAC THEN MATCH_MP_TAC VARIANT_FINITE THEN REWRITE_TAC[FV_FINITE]);;
(* ------------------------------------------------------------------------- *)
(* Substitution in formulas. *)
(* ------------------------------------------------------------------------- *)
let formsubst = new_recursive_definition form_RECURSION
`(formsubst v False = False) /\
(formsubst v (Atom p l) = Atom p (MAP (termsubst v) l)) /\
(formsubst v (q --> r) = (formsubst v q --> formsubst v r)) /\
(formsubst v (!!x q) =
let v' = valmod (x,V x) v in
let z = if ?y. y IN FV(!!x q) /\ x IN FVT(v'(y))
then VARIANT(FV(formsubst v' q)) else x in
!!z (formsubst (valmod (x,V(z)) v) q))`;;
let FORMSUBST_TRIV = prove
(`!p. formsubst V p = p`,
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN
REWRITE_TAC[TERMSUBST_TRIV; ALL_T];
REWRITE_TAC[VALMOD_TRIV; LET_DEF; LET_END_DEF] THEN
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; FV; IN_DELETE] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; EQ_SYM_EQ; TAUT `~(~p /\ p)`] THEN
ASM_REWRITE_TAC[VALMOD_TRIV]]);;
let FORMSUBST_VALUATION = prove
(`!p v v'. (!x. x IN (FV p) ==> (v'(x) = v(x)))
==> (formsubst v' p = formsubst v p)`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[FV; formsubst; IN_UNION; IN_DELETE] THEN
REPEAT CONJ_TAC THENL
[GEN_TAC THEN X_GEN_TAC `l:term list` THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION] THEN
ASM_MESON_TAC[TERMSUBST_VALUATION];
MESON_TAC[];
X_GEN_TAC `p:num` THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
SUBGOAL_THEN
`(?y. (y IN FV a1 /\ ~(y = p)) /\ p IN FVT (valmod (p,V p) v' y)) <=>
(?y. (y IN FV a1 /\ ~(y = p)) /\ p IN FVT (valmod (p,V p) v y))`
SUBST1_TAC THENL
[AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[VALMOD_VALMOD] THENL
[BINOP_TAC THENL
[AP_TERM_TAC THEN AP_TERM_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
GEN_TAC THEN REWRITE_TAC[valmod] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
FIRST_ASSUM MATCH_MP_TAC THEN
X_GEN_TAC `x:num` THEN DISCH_TAC THEN
REWRITE_TAC[valmod] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
X_GEN_TAC `y:num` THEN REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]];
AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
GEN_TAC THEN REWRITE_TAC[valmod] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]]]);;
let FORMSUBST_FV = prove
(`!p i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}`,
let lemma1 = prove
(`{x | ?y. y IN (s UNION t) /\ P x y} =
{x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`,
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[formsubst; FV] THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM];
REWRITE_TAC[GSYM MAP_o; o_DEF; TERMSUBST_FVT] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; MAP] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION] THEN
MESON_TAC[];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION] THEN
MESON_TAC[];
REPEAT STRIP_TAC THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
COND_CASES_TAC THEN REWRITE_TAC[FV; VALMOD_VALMOD] THENL
[MP_TAC(SPEC `formsubst (valmod (a0,V a0) i) a1` VARIANT_THM) THEN
ABBREV_TAC `a0' = VARIANT (FV (formsubst (valmod (a0,V a0) i) a1))`;
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
DISCH_THEN(MP_TAC o SPEC `y:num`) THEN
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; IN_DELETE] THEN
MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Important lemmas about substitution and renaming. *)
(* ------------------------------------------------------------------------- *)
let HOLDS_FORMSUBST = prove
(`!p i v. holds M (v:num->A) (formsubst i p) <=>
holds M (termval M v o i) p`,
MATCH_MP_TAC form_INDUCTION THEN
ASM_REWRITE_TAC[formsubst; holds] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[o_THM; TERMVAL_TERMSUBST; ALL_T]; ALL_TAC] THEN
REWRITE_TAC[LET_DEF; LET_END_DEF; HOLDS] THEN
AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN
DISCH_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VALMOD_VALMOD] THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
X_GEN_TAC `x:num` THEN DISCH_TAC THEN
REWRITE_TAC[o_THM; valmod] THEN
(COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM valmod] THENL
[REWRITE_TAC[termval; valmod]; ALL_TAC]) THEN
MATCH_MP_TAC TERMVAL_VALUATION THEN
X_GEN_TAC `y:num` THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[valmod] THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THENL
[FIRST_X_ASSUM(ASSUME_TAC o SYM) THEN
SUBGOAL_THEN `~(y IN FV(formsubst (valmod (a0,V a0) i) a1))`
MP_TAC THENL [EXPAND_TAC "y" THEN REWRITE_TAC[VARIANT_THM]; ALL_TAC] THEN
REWRITE_TAC[FORMSUBST_FV] THEN REWRITE_TAC[IN_ELIM_THM] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
DISCH_THEN(MP_TAC o SPEC `x:num`) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[];
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
DISCH_THEN(MP_TAC o SPEC `x:num`) THEN
ASM_REWRITE_TAC[FV; IN_DELETE] THEN
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[]]);;
let HOLDS_FORMSUBST1 = prove
(`!x t p v. holds M (v:num->A) (formsubst (valmod (x,t) V) p) <=>
holds M (valmod (x,termval M v t) v) p`,
REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST] THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
X_GEN_TAC `y:num` THEN DISCH_TAC THEN
REWRITE_TAC[valmod; o_THM] THEN
COND_CASES_TAC THEN REWRITE_TAC[termval]);;
let HOLDS_RENAME = prove
(`!x y p v. holds M (v:num->A) (formsubst (valmod (x,V y) V) p) <=>
holds M (valmod (x,v(y)) v) p`,
REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN
MATCH_MP_TAC HOLDS_VALUATION THEN REWRITE_TAC[termval]);;
let HOLDS_ALPHA_FORALL = prove
(`!x y p v. ~(y IN FV(!!x p))
==> (holds M v (!!y (formsubst (valmod (x,V y) V) p)) <=>
holds M (v:num->A) (!!x p))`,
REWRITE_TAC[FV; IN_DELETE] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
GEN_TAC THEN REWRITE_TAC[valmod; termval; o_THM] THEN
COND_CASES_TAC THEN REWRITE_TAC[valmod; termval] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let HOLDS_ALPHA_EXISTS = prove
(`!x y p v. ~(y IN FV(??x p))
==> (holds M v (??y (formsubst (valmod (x,V y) V) p)) <=>
holds M (v:num->A) (??x p))`,
REWRITE_TAC[FV; Exists_DEF; Not_DEF; IN_DELETE; UNION_EMPTY] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN
GEN_TAC THEN REWRITE_TAC[valmod; termval; o_THM] THEN
COND_CASES_TAC THEN REWRITE_TAC[valmod; termval] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let FORMSUBST_RENAME = prove
(`!p x y. FV(formsubst (valmod (x,V y) V) p) DELETE y =
(FV(p) DELETE x) DELETE y`,
REPEAT STRIP_TAC THEN REWRITE_TAC[FORMSUBST_FV] THEN
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN
GEN_TAC THEN REWRITE_TAC[valmod] THEN
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Analogous theorems for the logical language. *)
(* ------------------------------------------------------------------------- *)
let TERMSUBST_FUNCTIONS_TERM = prove
(`!t i. functions_term(termsubst i t) =
functions_term t UNION
{x | ?y. y IN FVT(t) /\ x IN functions_term(i y)}`,
let lemma1 = prove
(`{x | ?y. y IN (s UNION t) /\ P x y} =
{x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`,
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in
let lemma2 = prove
(`(s = a UNION c) /\ (t = b UNION d)
==> (s UNION t = (a UNION b) UNION (c UNION d))`,
SET_TAC[]) in
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[functions_term; termsubst; FVT] THEN CONJ_TAC THENL
[REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN
MESON_TAC[]; ALL_TAC] THEN
GEN_TAC THEN SUBGOAL_THEN
`!l.
ALL
(\t. !i. functions_term (termsubst i t) =
functions_term t UNION
{x | ?y. y IN FVT t /\ x IN functions_term (i y)}) l
==> (!i. LIST_UNION (MAP functions_term (MAP (termsubst i) l)) =
LIST_UNION (MAP functions_term l) UNION
{x | ?y. y IN LIST_UNION (MAP FVT l) /\
x IN functions_term (i y)})`
ASSUME_TAC THENL
[ALL_TAC;
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN(fun th -> REWRITE_TAC[th])) THEN
REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION; LENGTH_MAP; DISJ_ACI]] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL
[REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INSERT; SUBSET;
IN_ELIM_THM; IN_UNION];
ALL_TAC] THEN
REWRITE_TAC[ALL] THEN STRIP_TAC THEN X_GEN_TAC `i:num->term` THEN
REWRITE_TAC[lemma1; LENGTH; LENGTH_MAP] THEN
MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[LENGTH_MAP]) THEN
SPEC_TAC(`i:num->term`,`i:num->term`) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
let FORMSUBST_FUNCTIONS_FORM = prove
(`!p i. functions_form(formsubst i p) =
functions_form p UNION
{x | ?y. y IN FV(p) /\ x IN functions_term(i y)}`,
let lemma1 = prove
(`{x | ?y. y IN (s UNION t) /\ P x y} =
{x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`,
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in
let lemma2 = prove
(`(a UNION b) UNION (c UNION d) = (a UNION c) UNION (b UNION d)`,
REWRITE_TAC[EXTENSION; IN_UNION; DISJ_ACI]) in
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[formsubst; functions_form; FV] THEN REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN
REWRITE_TAC[EXTENSION; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM];
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL
[REWRITE_TAC[NOT_IN_EMPTY; EXTENSION; IN_UNION; IN_ELIM_THM];
ALL_TAC] THEN
X_GEN_TAC `i:num->term` THEN REWRITE_TAC[lemma1] THEN
ONCE_REWRITE_TAC[lemma2] THEN
BINOP_TAC THEN ASM_REWRITE_TAC[TERMSUBST_FUNCTIONS_TERM];
REWRITE_TAC[lemma1] THEN REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[lemma2] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[functions_form; LET_DEF; LET_END_DEF; VALMOD_VALMOD] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[valmod] THEN
CONV_TAC(DEPTH_CONV COND_ELIM_CONV) THEN
REWRITE_TAC[functions_term; NOT_IN_EMPTY; IN_INSERT; IN_DELETE] THEN
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN
GEN_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
ASM_CASES_TAC `y:num = a0` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]);;
let FORMSUBST_FUNCTIONS_FORM_1 = prove
(`!x t p. x IN FV(p)
==> (functions_form(formsubst (valmod (x,t) V) p) =
functions_form p UNION functions_term t)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN
REWRITE_TAC[valmod] THEN
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
REWRITE_TAC[functions_term; NOT_IN_EMPTY] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* And of course we never change the predicates. *)
(* ------------------------------------------------------------------------- *)
let FORMSUBST_PREDICATES = prove
(`!p i. predicates_form(formsubst i p) = predicates_form p`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[predicates_form; formsubst; LET_DEF; LET_END_DEF] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP]);;
(* ------------------------------------------------------------------------- *)
(* Special case of renaming preserves language. *)
(* ------------------------------------------------------------------------- *)
let FORMSUBST_LANGUAGE_RENAME = prove
(`language {(formsubst (valmod (x,V y) V) p)} = language {p}`,
REWRITE_TAC[LANGUAGE_1; FORMSUBST_PREDICATES; FORMSUBST_FUNCTIONS_FORM] THEN
REWRITE_TAC[PAIR_EQ] THEN
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN
REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
REWRITE_TAC[functions_term; NOT_IN_EMPTY] THEN
REWRITE_TAC[TAUT `~p /\ p <=> F`]);;
(* ------------------------------------------------------------------------- *)
(* Invariance under change of language. *)
(* ------------------------------------------------------------------------- *)
let TERMVAL_FUNCTIONS = prove
(`!M t. (!f zs. (f,LENGTH zs) IN functions_term t
==> (Fun(M) f zs = Fun(M') f zs))
==> !v:num->A. termval M v t = termval M' v t`,
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; functions_term] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `MAP (termval M (v:num->A)) l =
MAP (termval M' v) l`
SUBST1_TAC THENL
[MATCH_MP_TAC MAP_EQ THEN
MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN
ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(fun th -> SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC th) THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[IN_INSERT] THEN DISJ2_TAC THEN
UNDISCH_TAC `MEM (x:term) l` THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN
REWRITE_TAC[LIST_UNION; MAP; IN_UNION] THEN ASM_MESON_TAC[];
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN
REWRITE_TAC[LENGTH_MAP]]);;
let HOLDS_FUNCTIONS = prove
(`!M M' p. (Dom(M) = Dom(M')) /\
(!P zs. Pred(M) P zs = Pred(M') P zs) /\
(!f zs. (f,LENGTH zs) IN functions_form p
==> (Fun(M) f zs = Fun(M') f zs))
==> !v:num->A. holds M v p <=> holds M' v p`,
GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[AP_TERM_TAC THEN
UNDISCH_TAC `!f zs.
f,LENGTH zs IN functions_form (Atom a0 a1)
==> (Fun M f zs :A = Fun M' f zs)` THEN
REWRITE_TAC[functions_form] THEN
SPEC_TAC(`a1:term list`,`a1:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; MAP; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION; CONS_11] THEN REPEAT STRIP_TAC THENL
[SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC TERMVAL_FUNCTIONS THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
FIRST_ASSUM MATCH_MP_TAC THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]];
BINOP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN
FIRST_ASSUM MATCH_MP_TAC THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[functions_form; IN_UNION];
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
SPEC_TAC(`valmod (a0,a) (v:num->A)`,`v:num->A`) THEN
FIRST_ASSUM MATCH_MP_TAC THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[functions_form]]);;
let HOLDS_PREDICATES = prove
(`!M M' p. (Dom(M) = Dom(M')) /\
(!f zs. Fun(M) f zs = Fun(M') f zs) /\
(!P zs. (P,LENGTH zs) IN predicates_form p
==> (Pred(M) P zs = Pred(M') P zs))
==> !v:num->A. holds M v p <=> holds M' v p`,
GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN
REWRITE_TAC[predicates_form; IN_INSERT; NOT_IN_EMPTY; IN_UNION] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[SUBGOAL_THEN
`MAP (termval M' (v:num->A)) a1 = MAP (termval M (v:num->A)) a1`
SUBST1_TAC THENL
[MATCH_MP_TAC MAP_EQ THEN
SUBGOAL_THEN `!x. termval M' (v:num->A) x = termval M (v:num->A) x`
(fun th -> REWRITE_TAC[th; ALL_T]) THEN
GEN_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC TERMVAL_FUNCTIONS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[LENGTH_MAP];
ASM_MESON_TAC[];
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
SPEC_TAC(`valmod (a0,a) (v:num->A)`,`v:num->A`) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Triviality of universal closure. *)
(* ------------------------------------------------------------------------- *)
let HOLDS_UCLOSE = prove
(`!M x p. (!v:num->A. valuation(M) v ==> holds M v (!!x p)) <=>
(Dom M = EMPTY) \/ !v. valuation(M) v ==> holds M v p`,
REPEAT GEN_TAC THEN REWRITE_TAC[holds] THEN
ASM_CASES_TAC `Dom(M):A->bool = EMPTY` THEN
ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
ASM_MESON_TAC[VALUATION_IS_VALMOD; VALUATION_VALMOD; valuation]);;
(* ------------------------------------------------------------------------- *)
(* Sort of trivial upward LS theorem without equality. *)
(* ------------------------------------------------------------------------- *)
let MODEL_DUPLICATE = prove
(`!M fns preds D.
interpretation(fns,preds) M /\
(Dom(M) SUBSET D) /\
~(Dom(M):A->bool = {})
==> ?M'. interpretation(fns,preds) M' /\
(Dom(M') = D) /\
!s. functions s SUBSET fns /\
predicates s SUBSET preds
==> (M' satisfies s <=> M satisfies s)`,
REPEAT STRIP_TAC THEN
ABBREV_TAC `i = \x. if x IN Dom(M) then x else @z:A. z IN Dom(M)` THEN
ABBREV_TAC `M' = (D:A->bool,
(\f args. Fun(M) f (MAP (i:A->A) args)),
(\P args. Pred(M) P (MAP i args)))` THEN
W(EXISTS_TAC o fst o dest_exists o snd) THEN
SUBGOAL_THEN `!x. (i:A->A) x IN Dom(M)` ASSUME_TAC THENL
[X_GEN_TAC `x:A` THEN EXPAND_TAC "i" THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC SELECT_CONV THEN
UNDISCH_TAC `~(Dom(M) = ({}:A->bool))` THEN
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM]; ALL_TAC] THEN
MATCH_MP_TAC(TAUT `b /\ (b ==> a /\ c) ==> a /\ b /\ c`) THEN
CONJ_TAC THENL [EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF]; ALL_TAC] THEN
DISCH_TAC THEN CONJ_TAC THENL
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [interpretation]) THEN
ASM_REWRITE_TAC[interpretation] THEN
EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP] THEN
UNDISCH_TAC `ALL (\x:A. x IN D) l` THEN
REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC MONO_ALL THEN
ASM_REWRITE_TAC[o_THM]; ALL_TAC] THEN
SUBGOAL_THEN
`!t. functions_term t SUBSET fns
==> !v:num->A. (i:A->A) (termval M' v t) = termval M (i o v) t`
ASSUME_TAC THENL
[MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; o_THM] THEN
EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF] THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM MAP_o] THEN
MAP_EVERY X_GEN_TAC [`P:num`; `args:term list`] THEN
REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT] THEN
REWRITE_TAC[GSYM EX_MEM; GSYM ALL_MEM] THEN DISCH_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `(P:num,LENGTH(args:term list)) IN fns` ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!t. MEM t args ==> functions_term t SUBSET fns`
ASSUME_TAC THENL
[REWRITE_TAC[SUBSET] THEN ASM_MESON_TAC[MEM_MAP]; ALL_TAC] THEN
SUBGOAL_THEN
`!t. MEM t args
==> !v:num->A. (i:A->A) (termval M' v t) = termval M (i o v) t`
ASSUME_TAC THENL
[ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN
X_GEN_TAC `v:num->A` THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `Fun M P (MAP ((i:A->A) o termval M' (v:num->A)) args)` THEN
CONJ_TAC THENL
[FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV) [SYM th]) THEN
SUBGOAL_THEN `Fun M P (MAP ((i:A->A) o termval M' (v:num->A)) args) IN
Dom(M)`
(fun th -> REWRITE_TAC[th]) THEN
FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [interpretation]) THEN
ASM_REWRITE_TAC[LENGTH_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN
REWRITE_TAC[MEM_MAP; o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[GSYM ALL_MEM; o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`!p. functions_form p SUBSET fns
==> !v:num->A. holds M' v p <=> holds M ((i:A->A) o v) p`
ASSUME_TAC THENL
[MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds; functions_form] THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[SUBSET; IN_LIST_UNION; GSYM EX_MEM; MEM_MAP] THEN
REPEAT STRIP_TAC THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Pred_DEF] THEN
ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN
MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM] THEN
REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[SUBSET];
REWRITE_TAC[SUBSET; IN_UNION] THEN MESON_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `v:num->A` THEN
SUBGOAL_THEN
`!a. i o valmod (x,a) (v:num->A) = valmod (x,i(a)) ((i:A->A) o v)`
(fun th -> REWRITE_TAC[th])
THENL
[REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM];
ALL_TAC] THEN
SUBGOAL_THEN `!x:A. x IN Dom(M) ==> (i x = x)` MP_TAC THENL
[EXPAND_TAC "i" THEN SIMP_TAC[]; ALL_TAC] THEN
ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN
X_GEN_TAC `s:form->bool` THEN STRIP_TAC THEN REWRITE_TAC[satisfies] THEN
REWRITE_TAC[valuation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN
ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `p:form` THEN
ASM_CASES_TAC `p:form IN s` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `functions_form p SUBSET fns` ASSUME_TAC THENL
[UNDISCH_TAC `functions s SUBSET fns` THEN
REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THENL
[DISCH_TAC THEN SUBGOAL_THEN `v:num->A = i o v` SUBST1_TAC THENL
[EXPAND_TAC "i" THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SUBSET];
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[o_THM]]);;
|