Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 48,310 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
(* ========================================================================= *)
(* Formalization of semantics and basic model theory of first order logic.   *)
(* ========================================================================= *)

let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o
  check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;;

let LIST_UNION = new_recursive_definition list_RECURSION
  `(LIST_UNION [] = {}) /\
   (LIST_UNION (CONS h t) = h UNION (LIST_UNION t))`;;

let LIST_UNION_FINITE = prove
 (`!l. ALL FINITE l ==> FINITE(LIST_UNION l)`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; FINITE_RULES] THEN
  REWRITE_TAC[FINITE_UNION; ALL] THEN ASM_MESON_TAC[]);;

let IN_LIST_UNION = prove
 (`!x l. x IN (LIST_UNION l) <=> EX (\s. x IN s) l`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN
  ASM_REWRITE_TAC[LIST_UNION; EX; NOT_IN_EMPTY; IN_UNION]);;

let LIST_UNION_APPEND = prove
 (`!l1 l2. LIST_UNION(APPEND l1 l2) = (LIST_UNION l1) UNION (LIST_UNION l2)`,
  LIST_INDUCT_TAC THEN
  ASM_REWRITE_TAC[LIST_UNION; APPEND; UNION_EMPTY; GSYM UNION_ASSOC]);;

(* ------------------------------------------------------------------------- *)
(* Nested type of terms.                                                     *)
(* ------------------------------------------------------------------------- *)

let term_raw_INDUCT,term_raw_RECURSION = define_type
  "term = V num | Fn num (term list)";;

(* ------------------------------------------------------------------------- *)
(* Manually extract "nested" version of induction and recursion.             *)
(* One day, this will be automated; it's really pretty trivial.              *)
(* ------------------------------------------------------------------------- *)

let term_INDUCT = prove
 (`!P. (!v. P(V v)) /\ (!s l. ALL P l ==> P(Fn s l)) ==> !t. P t`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`P:term->bool`; `ALL(P:term->bool)`] term_raw_INDUCT) THEN
  ASM_SIMP_TAC[ALL]);;

let term_RECURSION = prove
 (`!f h. ?fn:term->Z.
        (!v. fn(V v) = f v) /\
        (!s l. fn(Fn s l) = h s l (MAP fn l))`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`f:num->Z`; `h:num->(term)list->(Z)list->Z`;
                 `[]:(Z)list`; `\(x:term) (y:term list) (z:Z) (w:Z list).
                                CONS z w`] term_raw_RECURSION) THEN
  REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `mf:(term)list->(Z)list`
        (X_CHOOSE_THEN `fn:term ->Z` STRIP_ASSUME_TAC)) THEN
  EXISTS_TAC `fn:term ->Z` THEN ASM_REWRITE_TAC[] THEN
  GEN_TAC THEN X_GEN_TAC `l:term list` THEN AP_TERM_TAC THEN
  SPEC_TAC(`l:term list`,`l:term list`) THEN
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP]);;

(* ------------------------------------------------------------------------- *)
(* General Skolemizing hack to allow fixed initial parameters in nested      *)
(* recursive defs. Note that (prima facie) variable ones aren't justified.   *)
(* ------------------------------------------------------------------------- *)

let new_nested_recursive_definition ax tm =
  let expat = lhand(snd(strip_forall(hd(conjuncts tm)))) in
  let ev,allargs = strip_comb expat in
  let pargs = butlast allargs in
  let tm' = mk_exists(ev,list_mk_forall(pargs,tm)) in
  let rawprover = prove_recursive_functions_exist ax in
  let eth = prove(tm',
                  REWRITE_TAC[GSYM SKOLEM_THM] THEN
                  REPEAT GEN_TAC THEN
                  W(ACCEPT_TAC o rawprover o snd o dest_exists o snd)) in
  SPECL pargs (new_specification [fst(dest_var ev)] eth);;

(* ------------------------------------------------------------------------- *)
(* Standard consequences.                                                    *)
(* ------------------------------------------------------------------------- *)

let term_INJ = prove_constructors_injective term_RECURSION;;

let term_DISTINCT = prove_constructors_distinct term_RECURSION;;

let term_CASES = prove_cases_thm term_INDUCT;;

(* ------------------------------------------------------------------------- *)
(* Definition of formulas.                                                   *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("-->",(13,"right"));;

let form_INDUCTION,form_RECURSION =
  define_type "form = False
                    | Atom num (term list)
                    | --> form form
                    | !! num form";;

let form_INJ = prove_constructors_injective form_RECURSION;;

let form_DISTINCT = prove_constructors_distinct form_RECURSION;;

let form_CASES = prove_cases_thm form_INDUCTION;;

(* ------------------------------------------------------------------------- *)
(* Definitions of other connectives.                                         *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(14,"right"));;
parse_as_infix("<->",(12,"right"));;

let Not_DEF = new_definition
  `Not p = p --> False`;;

let True_DEF = new_definition
  `True = Not False`;;

let Or_DEF = new_definition
  `p || q = (p --> q) --> q`;;

let And_DEF = new_definition
  `p && q = Not (Not p || Not q)`;;

let Iff_DEF = new_definition
  `(p <-> q) = (p --> q) && (q --> p)`;;

let Exists_DEF = new_definition
  `?? x p = Not(!!x (Not p))`;;

(* ------------------------------------------------------------------------- *)
(* The language of a term, formula and set of formulas.                      *)
(* ------------------------------------------------------------------------- *)

let functions_term = new_recursive_definition term_RECURSION
  `(!v. functions_term (V v) = {}) /\
   (!f l. functions_term (Fn f l) =
        (f,LENGTH l) INSERT (LIST_UNION (MAP functions_term l)))`;;

let functions_form = new_recursive_definition form_RECURSION
  `(functions_form False = {}) /\
   (functions_form (Atom a l) = LIST_UNION (MAP functions_term l)) /\
   (functions_form (p --> q) = (functions_form p) UNION (functions_form q)) /\
   (functions_form (!! x p) = functions_form p)`;;

let predicates_form = new_recursive_definition form_RECURSION
  `(predicates_form False = {}) /\
   (predicates_form (Atom a l) = {(a,LENGTH l)}) /\
   (predicates_form (p --> q) =
        (predicates_form p) UNION (predicates_form q)) /\
   (predicates_form (!! x p) = predicates_form p)`;;

let functions = new_definition
  `functions fms = UNIONS {functions_form f | f IN fms}`;;

let predicates = new_definition
  `predicates fms = UNIONS {predicates_form f | f IN fms}`;;

let language = new_definition
  `language fms = functions fms, predicates fms`;;

let FUNCTIONS_SING = prove
 (`functions {p} = functions_form p`,
  REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY;
              functions; IN_ELIM_THM; IN_UNIONS] THEN
  MESON_TAC[]);;

let LANGUAGE_1 = prove
 (`language {p} = functions_form p,predicates_form p`,
  REWRITE_TAC[language; functions; predicates; PAIR_EQ] THEN
  CONJ_TAC THEN ONCE_REWRITE_TAC[EXTENSION] THEN
  REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Selecting the bits of an interpretation: domain, functions and relations. *)
(* ------------------------------------------------------------------------- *)

let Dom_DEF = new_definition
  `Dom (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = D`;;

let Fun_DEF = new_definition
  `Fun (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = Funs`;;

let Pred_DEF = new_definition
  `Pred (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = Preds`;;

let MODEL_EQ = prove
 (`(M = M') <=> (Dom M = Dom M') /\ (Fun M = Fun M') /\ (Pred M = Pred M')`,
  let detrip = prove(`p = FST(p),FST(SND p),SND(SND p)`,REWRITE_TAC[]) in
  ONCE_REWRITE_TAC[detrip] THEN PURE_REWRITE_TAC[PAIR_EQ; Dom_DEF; Fun_DEF; Pred_DEF] THEN
  REWRITE_TAC[]);;

let MODEL_DECOMP = prove
 (`M = Dom M,Fun M,Pred M`,
  REWRITE_TAC[MODEL_EQ] THEN REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF]);;

(* ------------------------------------------------------------------------- *)
(* Free variables and bound variables.                                       *)
(* ------------------------------------------------------------------------- *)

let FVT = new_recursive_definition term_RECURSION
  `(!x. FVT (V x) = {x}) /\
   (!f l. FVT (Fn f l) = LIST_UNION (MAP FVT l))`;;

let FV = new_recursive_definition form_RECURSION
  `(FV False = {}) /\
   (!a l. FV (Atom a l) = LIST_UNION (MAP FVT l)) /\
   (!p q. FV (p --> q) = FV p UNION FV q) /\
   (!x p. FV (!! x p) = FV p DELETE x)`;;

let BV = new_recursive_definition form_RECURSION
  `(BV False = {}) /\
   (!a l. BV (Atom a l) = {}) /\
   (!p q. BV (p --> q) = BV p UNION BV q) /\
   (!x p. BV (!! x p) = x INSERT BV p)`;;

let FVT_FINITE = prove
 (`!t. FINITE(FVT t)`,
  MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[FVT; FINITE_RULES; FINITE_INSERT] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LIST_UNION_FINITE THEN
  ASM_REWRITE_TAC[ALL_MAP; o_DEF]);;

let FV_FINITE = prove
 (`!p. FINITE(FV p)`,
  MATCH_MP_TAC form_INDUCTION THEN
  ASM_REWRITE_TAC[FV; FINITE_RULES; FINITE_UNION; FINITE_DELETE] THEN
  GEN_TAC THEN MATCH_MP_TAC LIST_UNION_FINITE THEN
  REWRITE_TAC[ALL_MAP; FVT_FINITE; o_DEF; ALL_T]);;

let BV_FINITE = prove
 (`!p. FINITE(BV p)`,
  MATCH_MP_TAC form_INDUCTION THEN
  ASM_REWRITE_TAC[BV; FINITE_RULES; FINITE_UNION; FINITE_INSERT]);;

let FV_EXISTS = prove
 (`FV(??x p) = FV(p) DELETE x`,
  REWRITE_TAC[Exists_DEF; Not_DEF; FV] THEN SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Modifier for a valuation.                                                 *)
(* ------------------------------------------------------------------------- *)

let valmod = new_definition
  `valmod (x,a) v = \y. if y = x then a else v y`;;

let VALMOD_CLAUSES = prove
 (`(!v a k. valmod (k,a) v k = a) /\
   (!v a k x. ~(x = k) ==> (valmod (k,a) v x = v x))`,
  REWRITE_TAC[valmod] THEN REPEAT GEN_TAC THEN
  COND_CASES_TAC THEN ASM_MESON_TAC[]);;

let VALMOD_TRIV = prove
 (`!v x. valmod (x,v x) v = v`,
  REWRITE_TAC[valmod; FUN_EQ_THM] THEN
  REPEAT GEN_TAC THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;

let VALMOD_VALMOD = prove
 (`!v a x b. valmod (x,a) (valmod (x,b) v) = valmod (x,a) v`,
  REPEAT GEN_TAC THEN REWRITE_TAC[valmod] THEN
  REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]));;

(* ------------------------------------------------------------------------- *)
(* Acceptability of a valuation.                                             *)
(* ------------------------------------------------------------------------- *)

let valuation = new_definition
  `valuation(M) v <=> !x:num. v(x) IN Dom(M)`;;

let VALUATION_VALMOD = prove
 (`!M a v. valuation(M) v /\ a IN Dom(M) ==> valuation(M) (valmod (x,a) v)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[valuation; valmod] THEN
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;

let VALUATION_IS_VALMOD = prove
 (`!v x. valmod(x,v x) v = v`,
  REWRITE_TAC[valmod; FUN_EQ_THM] THEN REPEAT GEN_TAC THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Interpretation of terms and formulas w.r.t. interpretation and valuation. *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("satisfies",(10,"right"));;

let termval = new_nested_recursive_definition term_RECURSION
  `(!x. termval M v (V x) = v(x)) /\
   (!f l. termval M v (Fn f l) = Fun(M) f (MAP (termval M v) l))`;;

let holds = new_recursive_definition form_RECURSION
  `(holds M v False <=> F) /\
   (!a l. holds M v (Atom a l) <=> Pred(M) a (MAP (termval M v) l)) /\
   (!p q. holds M v (p --> q) <=> holds M v p ==> holds M v q) /\
   (!x p. holds M v (!! x p) <=>
                !a. a IN Dom(M) ==> holds M (valmod (x,a) v) p)`;;

let hold = new_definition
  `hold M v fms <=> !p. p IN fms ==> holds M v p`;;

let satisfies = new_definition
  `M satisfies fms <=> !v p. valuation(M) v /\ p IN fms ==> holds M v p`;;

let SATISFIES_1 = prove
 (`M satisfies {p} <=> !v. valuation(M) v ==> holds M v p`,
  REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Clauses for derived constructs.                                           *)
(* ------------------------------------------------------------------------- *)

let HOLDS = prove
 (`(holds M v False <=> F) /\
   (holds M v True <=> T) /\
   (!a l. holds M v (Atom a l) <=> Pred(M) a (MAP (termval M v) l)) /\
   (!p. holds M v (Not p) <=> ~(holds M v p)) /\
   (!p q. holds M v (p || q) <=> holds M v p \/ holds M v q) /\
   (!p q. holds M v (p && q) <=> holds M v p /\ holds M v q) /\
   (!p q. holds M v (p --> q) <=> holds M v p ==> holds M v q) /\
   (!p q. holds M v (p <-> q) <=> (holds M v p = holds M v q)) /\
   (!x p. holds M v (!! x p) <=>
                !a. a IN Dom(M) ==> holds M (valmod (x,a) v) p) /\
   (!x p. holds M v (?? x p) <=>
                ?a. a IN Dom(M) /\ holds M (valmod (x,a) v) p)`,
  REWRITE_TAC[Not_DEF; True_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; holds] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Prove that only values given to free variables by the valuation matter.   *)
(* ------------------------------------------------------------------------- *)

let TERMVAL_VALUATION = prove
 (`!M t (v:num->A) v'.
        (!x. x IN (FVT t) ==> (v'(x) = v(x)))
             ==> (termval M v' t = termval M v t)`,
  let lemma = prove
   (`!l t x. x IN FVT t /\ MEM t l
             ==>  x IN LIST_UNION (MAP FVT l)`,
    LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION; MEM] THEN
    ASM_MESON_TAC[]) in
  GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[FVT; termval] THEN CONJ_TAC THENL
   [REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[];
    GEN_TAC THEN LIST_INDUCT_TAC THEN
    REWRITE_TAC[ALL; LIST_UNION; MAP; IN_UNION] THEN
    REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[CONS_11] THEN
    CONJ_TAC THENL
     [FIRST_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN
      FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
      MATCH_MP_TAC MAP_EQ THEN MATCH_MP_TAC ALL_IMP THEN
      EXISTS_TAC `\t. !(v:num->A) v'.
                (!x. x IN FVT t ==> (v' x = v x))
                ==> (termval M v' t :A = termval M v t)` THEN
      ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[lemma]]]);;

let HOLDS_VALUATION = prove
 (`!M p (v:num->A) v'.
      (!x. x IN (FV p) ==> (v'(x) = v(x)))
             ==> (holds M v' p <=> holds M v p)`,
  GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[FV; HOLDS; IN_UNION; IN_DELETE] THEN
  REPEAT CONJ_TAC THENL
   [GEN_TAC THEN X_GEN_TAC `l:term list` THEN
    REPEAT STRIP_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN
    SPEC_TAC(`l:term list`,`l:term list`) THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION] THEN
    ASM_MESON_TAC[TERMVAL_VALUATION];
    MESON_TAC[];
    X_GEN_TAC `p:num` THEN
    REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    X_GEN_TAC `x:num` THEN ASM_CASES_TAC `x:num = p` THEN
    ASM_REWRITE_TAC[valmod] THEN ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Note that these are delicate given the fixed type of interpretations.     *)
(* ------------------------------------------------------------------------- *)

let satisfiable = new_definition
  `satisfiable (U:A->bool) fms <=>
   ?M:(A->bool)#(num->A list->A)#(num->A list->bool).
        ~(Dom M = {}) /\ M satisfies fms`;;

let valid = new_definition
  `valid (U:A->bool) fms <=>
   !M:(A->bool)#(num->A list->A)#(num->A list->bool).
        M satisfies fms`;;

let entails = new_definition
  `entails (U:A->bool) A p <=>
   !(M:(A->bool)#(num->A list->A)#(num->A list->bool)) v.
        hold M v A ==> holds M v p`;;

let equivalent = new_definition
  `equivalent (U:A->bool) p q <=>
   !(M:(A->bool)#(num->A list->A)#(num->A list->bool)) v.
        holds M v p <=> holds M v q`;;

(* ------------------------------------------------------------------------- *)
(* Quality of being an interpretation for a language.                        *)
(* ------------------------------------------------------------------------- *)

let interpretation = new_definition
  `interpretation (fns:(num#num)->bool,preds:(num#num)->bool) M <=>
     !f l. (f,LENGTH l) IN fns /\ ALL (\x. x IN Dom(M)) l
           ==> (Fun(M) f l) IN Dom(M)`;;


let INTERPRETATION_TERMVAL = prove
 (`!any:num#num->bool M v t.
        interpretation (functions_term t,any) M /\
        valuation(M) v
        ==> termval M v t IN Dom(M)`,
  GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[interpretation] THEN
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval] THEN CONJ_TAC THENL
   [REWRITE_TAC[valuation] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[];
    REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[LENGTH_MAP; functions_term; IN_INSERT] THEN
    REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[o_DEF] THEN
    MATCH_MP_TAC ALL_IMP THEN
    FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN
    ASM_REWRITE_TAC[] THEN GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN
    REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[functions_term] THEN
    REWRITE_TAC[IN_INSERT] THEN DISJ2_TAC THEN
    UNDISCH_TAC `MEM (x:term) l` THEN
    SPEC_TAC(`l:term list`,`l:term list`) THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN
    REWRITE_TAC[LIST_UNION; MAP; IN_UNION] THEN ASM_MESON_TAC[]]);;

let INTERPRETATION_SUBLANGUAGE = prove
 (`!M funs1 funs2 preds1 preds2.
        funs2 SUBSET funs1
        ==> interpretation (funs1,preds1) M
            ==> interpretation (funs2,preds2) M`,
  GEN_TAC THEN REWRITE_TAC[interpretation; SUBSET] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Substitution in terms.                                                    *)
(* ------------------------------------------------------------------------- *)

let termsubst = new_nested_recursive_definition term_RECURSION
 `(!x. termsubst v (V x) = v(x)) /\
  (!f l. termsubst v (Fn f l) = Fn f (MAP (termsubst v) l))`;;

let TERMSUBST_TERMVAL = prove
 (`!M. (Fun(M) = Fn) ==> !v t. termsubst v t = termval M v t`,
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  ASM_REWRITE_TAC[termsubst; termval] THEN REPEAT STRIP_TAC THEN
  AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[]);;

let TERMVAL_TRIV = prove
 (`!M. (Fun(M) = Fn) ==> !t. termval M V t = t`,
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  ASM_REWRITE_TAC[termval] THEN REPEAT STRIP_TAC THEN
  AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;

let TERMVAL_TERMSUBST = prove
 (`!M v i t. termval M v (termsubst i t) = termval M (termval M v o i) t`,
  GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; termsubst; o_THM] THEN
  REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN
  MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);;

let TERMSUBST_TERMSUBST = prove
 (`!i j t. termsubst j (termsubst i t) = termsubst (termsubst j o i) t`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[termsubst; o_THM] THEN REWRITE_TAC[GSYM MAP_o] THEN
  REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
  MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);;

let TERMSUBST_TRIV = prove
 (`!t. termsubst V t = t`,
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN
  REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
  MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;

let TERMSUBST_VALUATION = prove
 (`!t v v'. (!x. x IN (FVT t) ==> (v'(x) = v(x)))
            ==> (termsubst v' t = termsubst v t)`,
  MP_TAC(ISPEC `Dom(a,Fn,b),Fn,Pred(a,Fn,b)` TERMSUBST_TERMVAL) THEN
  REWRITE_TAC[Fun_DEF] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
  REWRITE_TAC[TERMVAL_VALUATION]);;

let TERMSUBST_FVT = prove
 (`!t i. FVT(termsubst i t) = {x | ?y. y IN FVT(t) /\ x IN FVT(i y)}`,
  let lemma1 = prove
   (`{x | ?y. y IN (s UNION t) /\ P x y} =
     {x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`,
    REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[FVT; termsubst] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN
    MESON_TAC[];
    LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL
     [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; SUBSET; IN_ELIM_THM]; ALL_TAC] THEN
    REWRITE_TAC[ALL] THEN STRIP_TAC THEN X_GEN_TAC `i:num->term` THEN
    REWRITE_TAC[lemma1] THEN BINOP_TAC THEN ASM_REWRITE_TAC[] THEN
    SPEC_TAC(`i:num->term`,`i:num->term`) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Choice of a new variable.                                                 *)
(* ------------------------------------------------------------------------- *)

let MAX_SYM = prove
 (`!x y. MAX x y = MAX y x`,
  ARITH_TAC);;

let MAX_ASSOC = prove
 (`!x y z. MAX x (MAX y z) = MAX (MAX x y) z`,
  ARITH_TAC);;

let SETMAX = new_definition
  `SETMAX s = ITSET MAX s 0`;;

let VARIANT = new_definition
  `VARIANT s = SETMAX s + 1`;;

let SETMAX_LEMMA = prove
 (`(SETMAX {} = 0) /\
   (!x s. FINITE s ==>
           (SETMAX (x INSERT s) = if x IN s then SETMAX s
                                  else MAX x (SETMAX s)))`,
  REWRITE_TAC[SETMAX] THEN MATCH_MP_TAC FINITE_RECURSION THEN
  REWRITE_TAC[MAX] THEN REPEAT GEN_TAC THEN
  MAP_EVERY ASM_CASES_TAC
   [`x:num <= s`; `y:num <= s`; `x:num <= y`; `y <= x`] THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LE_CASES; LE_TRANS; LE_ANTISYM]);;

let SETMAX_MEMBER = prove
 (`!s. FINITE s ==> !x. x IN s ==> x <= SETMAX s`,
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[NOT_IN_EMPTY; IN_INSERT] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  ASM_SIMP_TAC [SETMAX_LEMMA] THEN
  ASM_REWRITE_TAC[MAX] THEN
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[LE_REFL] THEN
  ASM_MESON_TAC[LE_CASES; LE_TRANS]);;

let SETMAX_THM = prove
 (`(SETMAX {} = 0) /\
   (!x s. FINITE s ==>
           (SETMAX (x INSERT s) = MAX x (SETMAX s)))`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC [SETMAX_LEMMA] THEN
  COND_CASES_TAC THEN REWRITE_TAC[MAX] THEN
  COND_CASES_TAC THEN ASM_MESON_TAC[SETMAX_MEMBER]);;

let SETMAX_UNION = prove
 (`!s t. FINITE(s UNION t)
         ==> (SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`,
  let lemma = prove(`(x INSERT s) UNION t = x INSERT (s UNION t)`,SET_TAC[]) in
  SUBGOAL_THEN `!t. FINITE(t) ==> !s. FINITE(s) ==>
                        (SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`
   (fun th -> MESON_TAC[th; FINITE_UNION]) THEN
  GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[UNION_EMPTY; SETMAX_THM] THEN CONJ_TAC THENL
   [REWRITE_TAC[MAX; LE_0]; ALL_TAC] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[lemma] THEN
  ASM_SIMP_TAC [SETMAX_THM; FINITE_UNION] THEN
  REWRITE_TAC[MAX_ASSOC]);;

let VARIANT_FINITE = prove
 (`!s:num->bool. FINITE(s) ==> ~(VARIANT(s) IN s)`,
  REWRITE_TAC[VARIANT] THEN
  MESON_TAC[SETMAX_MEMBER; ARITH_RULE `~(x + 1 <= x)`]);;

let VARIANT_THM = prove
 (`!p. ~(VARIANT(FV p) IN FV(p))`,
  GEN_TAC THEN MATCH_MP_TAC VARIANT_FINITE THEN REWRITE_TAC[FV_FINITE]);;

(* ------------------------------------------------------------------------- *)
(* Substitution in formulas.                                                 *)
(* ------------------------------------------------------------------------- *)

let formsubst = new_recursive_definition form_RECURSION
  `(formsubst v False = False) /\
   (formsubst v (Atom p l) = Atom p (MAP (termsubst v) l)) /\
   (formsubst v (q --> r) = (formsubst v q --> formsubst v r)) /\
   (formsubst v (!!x q) =
        let v' = valmod (x,V x) v in
        let z = if ?y. y IN FV(!!x q) /\ x IN FVT(v'(y))
                then VARIANT(FV(formsubst v' q)) else x in
        !!z (formsubst (valmod (x,V(z)) v) q))`;;

let FORMSUBST_TRIV = prove
 (`!p. formsubst V p = p`,
  MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN
    REWRITE_TAC[TERMSUBST_TRIV; ALL_T];
    REWRITE_TAC[VALMOD_TRIV; LET_DEF; LET_END_DEF] THEN
    REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; FV; IN_DELETE] THEN
    REWRITE_TAC[GSYM CONJ_ASSOC; EQ_SYM_EQ; TAUT `~(~p /\ p)`] THEN
    ASM_REWRITE_TAC[VALMOD_TRIV]]);;

let FORMSUBST_VALUATION = prove
 (`!p v v'. (!x. x IN (FV p) ==> (v'(x) = v(x)))
            ==> (formsubst v' p = formsubst v p)`,
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[FV; formsubst; IN_UNION; IN_DELETE] THEN
  REPEAT CONJ_TAC THENL
   [GEN_TAC THEN X_GEN_TAC `l:term list` THEN
    REPEAT STRIP_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN
    SPEC_TAC(`l:term list`,`l:term list`) THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION] THEN
    ASM_MESON_TAC[TERMSUBST_VALUATION];
    MESON_TAC[];
    X_GEN_TAC `p:num` THEN REPEAT STRIP_TAC THEN
    REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
    SUBGOAL_THEN
     `(?y. (y IN FV a1 /\ ~(y = p)) /\ p IN FVT (valmod (p,V p) v' y)) <=>
      (?y. (y IN FV a1 /\ ~(y = p)) /\ p IN FVT (valmod (p,V p) v y))`
    SUBST1_TAC THENL
     [AP_TERM_TAC THEN ABS_TAC THEN
      MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
      DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
      REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[VALMOD_VALMOD] THENL
     [BINOP_TAC THENL
       [AP_TERM_TAC THEN AP_TERM_TAC THEN
        FIRST_ASSUM MATCH_MP_TAC THEN
        GEN_TAC THEN REWRITE_TAC[valmod] THEN
        COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
        FIRST_ASSUM MATCH_MP_TAC THEN
        X_GEN_TAC `x:num` THEN DISCH_TAC THEN
        REWRITE_TAC[valmod] THEN
        COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
         [ALL_TAC; ASM_MESON_TAC[]] THEN
        AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
        FIRST_ASSUM MATCH_MP_TAC THEN
        X_GEN_TAC `y:num` THEN REWRITE_TAC[] THEN
        COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
        ASM_MESON_TAC[]];
      AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
      GEN_TAC THEN REWRITE_TAC[valmod] THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
      ASM_MESON_TAC[]]]);;

let FORMSUBST_FV = prove
 (`!p i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}`,
  let lemma1 = prove
   (`{x | ?y. y IN (s UNION t) /\ P x y} =
     {x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`,
    REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[formsubst; FV] THEN REPEAT CONJ_TAC THENL
   [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM];
    REWRITE_TAC[GSYM MAP_o; o_DEF; TERMSUBST_FVT] THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; MAP] THEN
    ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION] THEN
    MESON_TAC[];
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION] THEN
    MESON_TAC[];
    REPEAT STRIP_TAC THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
    COND_CASES_TAC THEN REWRITE_TAC[FV; VALMOD_VALMOD] THENL
     [MP_TAC(SPEC `formsubst (valmod (a0,V a0) i) a1` VARIANT_THM) THEN
      ABBREV_TAC `a0' = VARIANT (FV (formsubst (valmod (a0,V a0) i) a1))`;
      ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN
    REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
    REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
    DISCH_THEN(MP_TAC o SPEC `y:num`) THEN
    REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; IN_DELETE] THEN
    MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Important lemmas about substitution and renaming.                         *)
(* ------------------------------------------------------------------------- *)

let HOLDS_FORMSUBST = prove
 (`!p i v. holds M (v:num->A) (formsubst i p) <=>
           holds M (termval M v o i) p`,
  MATCH_MP_TAC form_INDUCTION THEN
  ASM_REWRITE_TAC[formsubst; holds] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN
    REWRITE_TAC[o_THM; TERMVAL_TERMSUBST; ALL_T]; ALL_TAC] THEN
  REWRITE_TAC[LET_DEF; LET_END_DEF; HOLDS] THEN
  AP_TERM_TAC THEN ABS_TAC THEN
  MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN
  DISCH_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VALMOD_VALMOD] THEN
  MATCH_MP_TAC HOLDS_VALUATION THEN
  X_GEN_TAC `x:num` THEN DISCH_TAC THEN
  REWRITE_TAC[o_THM; valmod] THEN
  (COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM valmod] THENL
   [REWRITE_TAC[termval; valmod]; ALL_TAC]) THEN
  MATCH_MP_TAC TERMVAL_VALUATION THEN
  X_GEN_TAC `y:num` THEN DISCH_TAC THEN
  ONCE_REWRITE_TAC[valmod] THEN ASM_REWRITE_TAC[] THEN
  COND_CASES_TAC THEN REWRITE_TAC[] THENL
   [FIRST_X_ASSUM(ASSUME_TAC o SYM) THEN
    SUBGOAL_THEN `~(y IN FV(formsubst (valmod (a0,V a0) i) a1))`
    MP_TAC THENL [EXPAND_TAC "y" THEN REWRITE_TAC[VARIANT_THM]; ALL_TAC] THEN
    REWRITE_TAC[FORMSUBST_FV] THEN REWRITE_TAC[IN_ELIM_THM] THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN
    DISCH_THEN(MP_TAC o SPEC `x:num`) THEN
    ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[];
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
    DISCH_THEN(MP_TAC o SPEC `x:num`) THEN
    ASM_REWRITE_TAC[FV; IN_DELETE] THEN
    REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN
    ASM_MESON_TAC[]]);;

let HOLDS_FORMSUBST1 = prove
 (`!x t p v. holds M (v:num->A) (formsubst (valmod (x,t) V) p) <=>
             holds M (valmod (x,termval M v t) v) p`,
  REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST] THEN
  MATCH_MP_TAC HOLDS_VALUATION THEN
  X_GEN_TAC `y:num` THEN DISCH_TAC THEN
  REWRITE_TAC[valmod; o_THM] THEN
  COND_CASES_TAC THEN REWRITE_TAC[termval]);;

let HOLDS_RENAME = prove
 (`!x y p v. holds M (v:num->A) (formsubst (valmod (x,V y) V) p) <=>
             holds M (valmod (x,v(y)) v) p`,
  REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN
  MATCH_MP_TAC HOLDS_VALUATION THEN REWRITE_TAC[termval]);;

let HOLDS_ALPHA_FORALL = prove
 (`!x y p v. ~(y IN FV(!!x p))
             ==> (holds M v (!!y (formsubst (valmod (x,V y) V) p)) <=>
                  holds M (v:num->A) (!!x p))`,
  REWRITE_TAC[FV; IN_DELETE] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN
  AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
  MATCH_MP_TAC HOLDS_VALUATION THEN
  GEN_TAC THEN REWRITE_TAC[valmod; termval; o_THM] THEN
  COND_CASES_TAC THEN REWRITE_TAC[valmod; termval] THEN
  COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);;

let HOLDS_ALPHA_EXISTS = prove
 (`!x y p v. ~(y IN FV(??x p))
              ==> (holds M v (??y (formsubst (valmod (x,V y) V) p)) <=>
                   holds M (v:num->A) (??x p))`,
  REWRITE_TAC[FV; Exists_DEF; Not_DEF; IN_DELETE; UNION_EMPTY] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN
  AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
  AP_TERM_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN
  GEN_TAC THEN REWRITE_TAC[valmod; termval; o_THM] THEN
  COND_CASES_TAC THEN REWRITE_TAC[valmod; termval] THEN
  COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);;

let FORMSUBST_RENAME = prove
 (`!p x y. FV(formsubst (valmod (x,V y) V) p) DELETE y =
           (FV(p) DELETE x) DELETE y`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[FORMSUBST_FV] THEN
  REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN
  GEN_TAC THEN REWRITE_TAC[valmod] THEN
  CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
  REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Analogous theorems for the logical language.                              *)
(* ------------------------------------------------------------------------- *)

let TERMSUBST_FUNCTIONS_TERM = prove
 (`!t i. functions_term(termsubst i t) =
         functions_term t UNION
         {x | ?y. y IN FVT(t) /\ x IN functions_term(i y)}`,
  let lemma1 = prove
   (`{x | ?y. y IN (s UNION t) /\ P x y} =
     {x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`,
    REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in
  let lemma2 = prove
   (`(s = a UNION c) /\ (t = b UNION d)
     ==> (s UNION t = (a UNION b) UNION (c UNION d))`,
    SET_TAC[]) in
  MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[functions_term; termsubst; FVT] THEN CONJ_TAC THENL
   [REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN
    MESON_TAC[]; ALL_TAC] THEN
  GEN_TAC THEN SUBGOAL_THEN
   `!l.
     ALL
     (\t. !i. functions_term (termsubst i t) =
              functions_term t UNION
              {x | ?y. y IN FVT t /\ x IN functions_term (i y)}) l
     ==> (!i. LIST_UNION (MAP functions_term (MAP (termsubst i) l)) =
              LIST_UNION (MAP functions_term l) UNION
              {x | ?y. y IN LIST_UNION (MAP FVT l) /\
                       x IN functions_term (i y)})`
  ASSUME_TAC THENL
   [ALL_TAC;
    GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN(fun th -> REWRITE_TAC[th])) THEN
    REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION; LENGTH_MAP; DISJ_ACI]] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL
     [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INSERT; SUBSET;
                  IN_ELIM_THM; IN_UNION];
      ALL_TAC] THEN
  REWRITE_TAC[ALL] THEN STRIP_TAC THEN X_GEN_TAC `i:num->term` THEN
  REWRITE_TAC[lemma1; LENGTH; LENGTH_MAP] THEN
  MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[LENGTH_MAP]) THEN
  SPEC_TAC(`i:num->term`,`i:num->term`) THEN
  FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;

let FORMSUBST_FUNCTIONS_FORM = prove
 (`!p i. functions_form(formsubst i p) =
         functions_form p UNION
         {x | ?y. y IN FV(p) /\ x IN functions_term(i y)}`,
  let lemma1 = prove
   (`{x | ?y. y IN (s UNION t) /\ P x y} =
     {x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`,
    REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in
  let lemma2 = prove
   (`(a UNION b) UNION (c UNION d) = (a UNION c) UNION (b UNION d)`,
    REWRITE_TAC[EXTENSION; IN_UNION; DISJ_ACI]) in
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[formsubst; functions_form; FV] THEN REPEAT CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN
    REWRITE_TAC[EXTENSION; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM];
    LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL
     [REWRITE_TAC[NOT_IN_EMPTY; EXTENSION; IN_UNION; IN_ELIM_THM];
      ALL_TAC] THEN
    X_GEN_TAC `i:num->term` THEN REWRITE_TAC[lemma1] THEN
    ONCE_REWRITE_TAC[lemma2] THEN
    BINOP_TAC THEN ASM_REWRITE_TAC[TERMSUBST_FUNCTIONS_TERM];
    REWRITE_TAC[lemma1] THEN REPEAT STRIP_TAC THEN
    ONCE_REWRITE_TAC[lemma2] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[functions_form; LET_DEF; LET_END_DEF; VALMOD_VALMOD] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[valmod] THEN
  CONV_TAC(DEPTH_CONV COND_ELIM_CONV) THEN
  REWRITE_TAC[functions_term; NOT_IN_EMPTY; IN_INSERT; IN_DELETE] THEN
  REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN
  REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN
  GEN_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
  ASM_CASES_TAC `y:num = a0` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[]);;

let FORMSUBST_FUNCTIONS_FORM_1 = prove
 (`!x t p. x IN FV(p)
           ==> (functions_form(formsubst (valmod (x,t) V) p) =
                functions_form p UNION functions_term t)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN
  REWRITE_TAC[valmod] THEN
  CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
  REWRITE_TAC[functions_term; NOT_IN_EMPTY] THEN
  AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* And of course we never change the predicates.                             *)
(* ------------------------------------------------------------------------- *)

let FORMSUBST_PREDICATES = prove
 (`!p i. predicates_form(formsubst i p) = predicates_form p`,
  MATCH_MP_TAC form_INDUCTION THEN
  REWRITE_TAC[predicates_form; formsubst; LET_DEF; LET_END_DEF] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP]);;

(* ------------------------------------------------------------------------- *)
(* Special case of renaming preserves language.                              *)
(* ------------------------------------------------------------------------- *)

let FORMSUBST_LANGUAGE_RENAME = prove
 (`language {(formsubst (valmod (x,V y) V) p)} = language {p}`,
  REWRITE_TAC[LANGUAGE_1; FORMSUBST_PREDICATES; FORMSUBST_FUNCTIONS_FORM] THEN
  REWRITE_TAC[PAIR_EQ] THEN
  REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN
  REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
  REWRITE_TAC[functions_term; NOT_IN_EMPTY] THEN
  REWRITE_TAC[TAUT `~p /\ p <=> F`]);;

(* ------------------------------------------------------------------------- *)
(* Invariance under change of language.                                      *)
(* ------------------------------------------------------------------------- *)

let TERMVAL_FUNCTIONS = prove
 (`!M t. (!f zs. (f,LENGTH zs) IN functions_term t
                 ==> (Fun(M) f zs = Fun(M') f zs))
         ==> !v:num->A. termval M v t = termval M' v t`,
  GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[termval; functions_term] THEN
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `MAP (termval M (v:num->A)) l =
                 MAP (termval M' v) l`
  SUBST1_TAC THENL
   [MATCH_MP_TAC MAP_EQ THEN
    MATCH_MP_TAC ALL_IMP THEN
    FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN
    ASM_REWRITE_TAC[] THEN
    GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(fun th -> SPEC_TAC(`v:num->A`,`v:num->A`) THEN
                         MATCH_MP_TAC th) THEN
    REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[IN_INSERT] THEN DISJ2_TAC THEN
    UNDISCH_TAC `MEM (x:term) l` THEN
    SPEC_TAC(`l:term list`,`l:term list`) THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN
    REWRITE_TAC[LIST_UNION; MAP; IN_UNION] THEN ASM_MESON_TAC[];
    FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN
    REWRITE_TAC[LENGTH_MAP]]);;

let HOLDS_FUNCTIONS = prove
 (`!M M' p. (Dom(M) = Dom(M')) /\
            (!P zs. Pred(M) P zs = Pred(M') P zs) /\
            (!f zs. (f,LENGTH zs) IN functions_form p
                    ==> (Fun(M) f zs = Fun(M') f zs))
            ==> !v:num->A. holds M v p <=> holds M' v p`,
  GEN_TAC THEN GEN_TAC THEN
  REWRITE_TAC[IMP_CONJ] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [AP_TERM_TAC THEN
    UNDISCH_TAC `!f zs.
           f,LENGTH zs IN functions_form (Atom a0 a1)
           ==> (Fun M f zs :A = Fun M' f zs)` THEN
    REWRITE_TAC[functions_form] THEN
    SPEC_TAC(`a1:term list`,`a1:term list`) THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; MAP; NOT_IN_EMPTY] THEN
    REWRITE_TAC[IN_UNION; CONS_11] THEN REPEAT STRIP_TAC THENL
     [SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC TERMVAL_FUNCTIONS THEN
      REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
      FIRST_ASSUM MATCH_MP_TAC THEN
      REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]];
    BINOP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[functions_form; IN_UNION];
    AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
    SPEC_TAC(`valmod (a0,a) (v:num->A)`,`v:num->A`) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[functions_form]]);;

let HOLDS_PREDICATES = prove
 (`!M M' p. (Dom(M) = Dom(M')) /\
            (!f zs. Fun(M) f zs = Fun(M') f zs) /\
            (!P zs. (P,LENGTH zs) IN predicates_form p
                    ==> (Pred(M) P zs = Pred(M') P zs))
            ==> !v:num->A. holds M v p <=> holds M' v p`,
  GEN_TAC THEN GEN_TAC THEN
  REWRITE_TAC[IMP_CONJ] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN
  REWRITE_TAC[predicates_form; IN_INSERT; NOT_IN_EMPTY; IN_UNION] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [SUBGOAL_THEN
     `MAP (termval M' (v:num->A)) a1 = MAP (termval M (v:num->A)) a1`
    SUBST1_TAC THENL
     [MATCH_MP_TAC MAP_EQ THEN
      SUBGOAL_THEN `!x. termval M' (v:num->A) x = termval M (v:num->A) x`
       (fun th -> REWRITE_TAC[th; ALL_T]) THEN
      GEN_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN
      MATCH_MP_TAC TERMVAL_FUNCTIONS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[LENGTH_MAP];
    ASM_MESON_TAC[];
    AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
    SPEC_TAC(`valmod (a0,a) (v:num->A)`,`v:num->A`) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Triviality of universal closure.                                          *)
(* ------------------------------------------------------------------------- *)

let HOLDS_UCLOSE = prove
 (`!M x p. (!v:num->A. valuation(M) v ==> holds M v (!!x p)) <=>
           (Dom M = EMPTY) \/ !v. valuation(M) v ==> holds M v p`,
  REPEAT GEN_TAC THEN REWRITE_TAC[holds] THEN
  ASM_CASES_TAC `Dom(M):A->bool = EMPTY` THEN
  ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
  ASM_MESON_TAC[VALUATION_IS_VALMOD; VALUATION_VALMOD; valuation]);;

(* ------------------------------------------------------------------------- *)
(* Sort of trivial upward LS theorem without equality.                       *)
(* ------------------------------------------------------------------------- *)

let MODEL_DUPLICATE = prove
 (`!M fns preds D.
        interpretation(fns,preds) M /\
        (Dom(M) SUBSET D) /\
        ~(Dom(M):A->bool = {})
        ==> ?M'. interpretation(fns,preds) M' /\
                 (Dom(M') = D) /\
                 !s. functions s SUBSET fns /\
                     predicates s SUBSET preds
                     ==> (M' satisfies s <=> M satisfies s)`,
  REPEAT STRIP_TAC THEN
  ABBREV_TAC `i = \x. if x IN Dom(M) then x else @z:A. z IN Dom(M)` THEN
  ABBREV_TAC `M' = (D:A->bool,
                   (\f args. Fun(M) f (MAP (i:A->A) args)),
                   (\P args. Pred(M) P (MAP i args)))` THEN
  W(EXISTS_TAC o fst o dest_exists o snd) THEN
  SUBGOAL_THEN `!x. (i:A->A) x IN Dom(M)` ASSUME_TAC THENL
   [X_GEN_TAC `x:A` THEN EXPAND_TAC "i" THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC SELECT_CONV THEN
    UNDISCH_TAC `~(Dom(M) = ({}:A->bool))` THEN
    REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM]; ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `b /\ (b ==> a /\ c) ==> a /\ b /\ c`) THEN
  CONJ_TAC THENL [EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF]; ALL_TAC] THEN
  DISCH_TAC THEN CONJ_TAC THENL
   [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [interpretation]) THEN
    ASM_REWRITE_TAC[interpretation] THEN
    EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF] THEN
    REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP] THEN
    UNDISCH_TAC `ALL (\x:A. x IN D) l` THEN
    REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC MONO_ALL THEN
    ASM_REWRITE_TAC[o_THM]; ALL_TAC] THEN
  SUBGOAL_THEN
   `!t. functions_term t SUBSET fns
        ==> !v:num->A. (i:A->A) (termval M' v t) = termval M (i o v) t`
  ASSUME_TAC THENL
   [MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; o_THM] THEN
    EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF] THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[GSYM MAP_o] THEN
    MAP_EVERY X_GEN_TAC [`P:num`; `args:term list`] THEN
    REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT] THEN
    REWRITE_TAC[GSYM EX_MEM; GSYM ALL_MEM] THEN DISCH_TAC THEN DISCH_TAC THEN
    SUBGOAL_THEN `(P:num,LENGTH(args:term list)) IN fns` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `!t. MEM t args ==> functions_term t SUBSET fns`
    ASSUME_TAC THENL
     [REWRITE_TAC[SUBSET] THEN ASM_MESON_TAC[MEM_MAP]; ALL_TAC] THEN
    SUBGOAL_THEN
     `!t. MEM t args
          ==> !v:num->A. (i:A->A) (termval M' v t) = termval M (i o v) t`
    ASSUME_TAC THENL
     [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN
    X_GEN_TAC `v:num->A` THEN MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `Fun M P (MAP ((i:A->A) o termval M' (v:num->A)) args)` THEN
    CONJ_TAC THENL
     [FIRST_ASSUM(fun th ->
        GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV) [SYM th]) THEN
      SUBGOAL_THEN `Fun M P (MAP ((i:A->A) o termval M' (v:num->A)) args) IN
                    Dom(M)`
        (fun th -> REWRITE_TAC[th]) THEN
      FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [interpretation]) THEN
      ASM_REWRITE_TAC[LENGTH_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN
      REWRITE_TAC[MEM_MAP; o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
    REWRITE_TAC[GSYM ALL_MEM; o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN
   `!p. functions_form p SUBSET fns
        ==> !v:num->A. holds M' v p <=> holds M ((i:A->A) o v) p`
  ASSUME_TAC THENL
   [MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds; functions_form] THEN
    REPEAT CONJ_TAC THENL
     [REWRITE_TAC[SUBSET; IN_LIST_UNION; GSYM EX_MEM; MEM_MAP] THEN
      REPEAT STRIP_TAC THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Pred_DEF] THEN
      ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN
      MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM] THEN
      REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[SUBSET];
      REWRITE_TAC[SUBSET; IN_UNION] THEN MESON_TAC[];
      ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
    DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
    ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `v:num->A` THEN
    SUBGOAL_THEN
     `!a. i o valmod (x,a) (v:num->A) = valmod (x,i(a)) ((i:A->A) o v)`
     (fun th -> REWRITE_TAC[th])
    THENL
     [REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN
      REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM];
      ALL_TAC] THEN
    SUBGOAL_THEN `!x:A. x IN Dom(M) ==> (i x = x)` MP_TAC THENL
     [EXPAND_TAC "i" THEN SIMP_TAC[]; ALL_TAC] THEN
    ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN
  X_GEN_TAC `s:form->bool` THEN STRIP_TAC THEN REWRITE_TAC[satisfies] THEN
  REWRITE_TAC[valuation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN
  ASM_REWRITE_TAC[] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN AP_TERM_TAC THEN
  GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `p:form` THEN
  ASM_CASES_TAC `p:form IN s` THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `functions_form p SUBSET fns` ASSUME_TAC THENL
   [UNDISCH_TAC `functions s SUBSET fns` THEN
    REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN
    ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_SIMP_TAC[] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THENL
   [DISCH_TAC THEN SUBGOAL_THEN `v:num->A = i o v` SUBST1_TAC THENL
     [EXPAND_TAC "i" THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
      ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SUBSET];
    DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[o_THM]]);;