Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,740 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
(* ---------------------------------------------------------------------- *)
(* Util *)
(* ---------------------------------------------------------------------- *)
(* ---------------------------------------------------------------------- *)
(* Real Ordered Lists *)
(* ---------------------------------------------------------------------- *)
let real_ordered_list = new_recursive_definition list_RECURSION
`(real_ordered_list [] <=> T) /\
(real_ordered_list (CONS h t) <=>
real_ordered_list t /\
((t = []) \/ (h < HD t)))`;;
let ROL_EMPTY = EQT_ELIM (CONJUNCT1 real_ordered_list);;
let ROL_SING = prove_by_refinement(
`!x. real_ordered_list [x]`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list];
]);;
(* }}} *)
let ROL_TAIL = prove(
`!l. ~(l = []) /\ real_ordered_list l ==> real_ordered_list (TL l)`,
(* {{{ Proof *)
LIST_INDUCT_TAC THEN
MESON_TAC[real_ordered_list;TL];
);;
(* }}} *)
let EL_CONS = prove_by_refinement(
`!l h n. EL n t = EL (SUC n) (CONS h t)`,
(* {{{ Proof *)
[
MESON_TAC[TL;EL];
]);;
(* }}} *)
let NOT_ROL = prove_by_refinement(
`!l. ~(real_ordered_list l) ==> ?n. EL n l >= EL (SUC n) l`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[real_ordered_list];
REWRITE_TAC[real_ordered_list;DE_MORGAN_THM];
STRIP_TAC;
POP_ASSUM (fun x -> POP_ASSUM (fun y -> MP_TAC (MATCH_MP y x)));
STRIP_TAC;
EXISTS_TAC `SUC n`;
ASM_MESON_TAC[EL_CONS];
EXISTS_TAC `0`;
REWRITE_TAC[EL;HD;TL;real_ge];
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC;
]);;
(* }}} *)
let ROL_CONS = prove_by_refinement(
`!h t. real_ordered_list (CONS h t) ==> real_ordered_list t`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC;
]);;
(* }}} *)
let ROL_CONS_CONS = prove_by_refinement(
`!h t. real_ordered_list (CONS h1 (CONS h2 t)) <=>
real_ordered_list (CONS h2 t) /\ h1 < h2`,
(* {{{ Proof *)
[
REPEAT GEN_TAC;
EQ_TAC;
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL;HD];
ASM_MESON_TAC[NOT_CONS_NIL];
ASM_MESON_TAC[HD];
ASM_MESON_TAC[NOT_CONS_NIL];
ASM_MESON_TAC[HD];
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL;HD];
]);;
(* }}} *)
let ROL_APPEND = prove_by_refinement(
`!l1 l2. real_ordered_list (APPEND l1 l2) ==>
real_ordered_list l1 /\ real_ordered_list l2`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
MESON_TAC[APPEND;real_ordered_list];
GEN_TAC;
REWRITE_TAC[APPEND];
STRIP_TAC;
CLAIM `real_ordered_list (APPEND t l2)`;
ASM_MESON_TAC[ROL_CONS];
STRIP_TAC;
CLAIM `real_ordered_list t /\ real_ordered_list l2`;
ASM_MESON_TAC[];
STRIP_TAC;
ASM_REWRITE_TAC[];
CASES_ON `t = []`;
ASM_MESON_TAC[real_ordered_list];
POP_ASSUM MP_TAC;
REWRITE_TAC[NOT_NIL];
STRIP_TAC;
ASM_REWRITE_TAC[ROL_CONS_CONS];
CONJ_TAC;
ASM_MESON_TAC[];
LABEL_ALL_TAC;
USE_THEN "Z-4" MP_TAC;
POP_ASSUM SUBST1_TAC;
REWRITE_TAC[APPEND];
ASM_MESON_TAC[ROL_CONS_CONS];
]);;
(* }}} *)
let ROL_CONS_CONS_LT = prove_by_refinement(
`!h1 h2 t. real_ordered_list (CONS h1 (CONS h2 t)) ==> h1 < h2`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC THEN
ASM_MESON_TAC[NOT_CONS_NIL;HD];
]);;
(* }}} *)
let ROL_INSERT_THM = prove_by_refinement(
`!x l1 l2.
real_ordered_list l1 /\ real_ordered_list l2 /\
~(l1 = []) /\ ~(l2 = []) /\ LAST l1 < x /\ x < HD l2 ==>
real_ordered_list (APPEND l1 (CONS x l2))`,
(* {{{ Proof *)
[
GEN_TAC;
LIST_INDUCT_TAC;
REWRITE_TAC[APPEND];
CASES_ON `t = []`;
ASM_REWRITE_TAC[APPEND;LAST_SING;NOT_CONS_NIL];
REPEAT STRIP_TAC;
ASM_REWRITE_TAC[ROL_CONS_CONS;real_ordered_list];
POP_ASSUM MP_TAC;
REWRITE_TAC[NOT_NIL];
STRIP_TAC;
ASM_REWRITE_TAC[];
REPEAT STRIP_TAC;
CLAIM `real_ordered_list (APPEND t (CONS x l2))`;
REWRITE_ASSUMS[TAUT `(p ==> q ==> r) <=> (p /\ q ==> r)`];
FIRST_ASSUM MATCH_MP_TAC;
REPEAT STRIP_TAC;
ASM_MESON_TAC[ROL_CONS];
FIRST_ASSUM MATCH_ACCEPT_TAC;
ASM_MESON_TAC[NOT_CONS_NIL];
ASM_MESON_TAC[NOT_CONS_NIL];
ASM_MESON_TAC[LAST_CONS;NOT_CONS_NIL];
FIRST_ASSUM MATCH_ACCEPT_TAC;
ASM_REWRITE_TAC[];
LABEL_ALL_TAC;
USE_THEN "Z-3" (SUBST1_TAC o GSYM);
REWRITE_TAC[APPEND];
STRIP_TAC;
REWRITE_TAC[ROL_CONS_CONS];
STRIP_TAC;
FIRST_ASSUM MATCH_ACCEPT_TAC;
ASM_MESON_TAC[ROL_CONS_CONS];
]);;
(* }}} *)
let ROL_INSERT_FRONT_THM = prove_by_refinement(
`!x l. real_ordered_list l /\ ~(l = []) /\ x < HD l ==>
real_ordered_list (CONS x l)`,
(* {{{ Proof *)
[
REWRITE_TAC[NOT_NIL;AND_IMP_THM];
REPEAT STRIP_TAC;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[ROL_CONS_CONS;HD];
]);;
(* }}} *)
let ROL_CONS_CONS_DELETE = prove_by_refinement(
`!h1 h2 t. real_ordered_list (CONS h1 (CONS h2 t)) ==>
real_ordered_list (CONS h1 t)`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[];
ASM_MESON_TAC[NOT_CONS_NIL];
REWRITE_ASSUMS[HD];
ASM_MESON_TAC[REAL_LT_TRANS];
]);;
(* }}} *)
let LAST_CONS_LT = prove_by_refinement(
`!x t h. real_ordered_list (CONS h t) /\ LAST (CONS h t) < x ==> h < x`,
(* {{{ Proof *)
[
GEN_TAC;
LIST_INDUCT_TAC;
REWRITE_TAC[LAST];
REPEAT STRIP_TAC;
REPEAT STRIP_TAC;
FIRST_ASSUM MATCH_MP_TAC;
CONJ_TAC;
ASM_MESON_TAC[ROL_CONS_CONS_DELETE];
CASES_ON `t = []`;
ASM_REWRITE_TAC[LAST];
ASM_MESON_TAC[LAST;ROL_CONS_CONS;REAL_LT_TRANS];
ASM_MESON_TAC[LAST_CONS;ROL_CONS_CONS_DELETE;LAST_CONS_CONS];
]);;
(* }}} *)
let ROL_INSERT_BACK_THM = prove_by_refinement(
`!x l. real_ordered_list l /\ ~(l = []) /\ LAST l < x ==>
real_ordered_list (APPEND l [x])`,
(* {{{ Proof *)
[
STRIP_TAC;
LIST_INDUCT_TAC;
REWRITE_TAC[APPEND;ROL_SING];
LABEL_ALL_TAC;
STRIP_TAC;
CASES_ON `t = []`;
ASM_REWRITE_TAC[APPEND;ROL_CONS_CONS;ROL_SING];
ASM_MESON_TAC[LAST;COND_CLAUSES];
PROVE_ASSUM_ANTECEDENT_TAC 0;
REPEAT STRIP_TAC;
ASM_MESON_TAC[ROL_CONS];
ASM_MESON_TAC[];
ASM_MESON_TAC[LAST_CONS];
REWRITE_TAC[APPEND];
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC;
FIRST_ASSUM MATCH_ACCEPT_TAC;
DISJ2_TAC;
REWRITE_ASSUMS[NOT_NIL];
LABEL_ALL_TAC;
USE_IASSUM 2 MP_TAC;
STRIP_TAC;
ASM_REWRITE_TAC[HD_APPEND];
ASM_MESON_TAC[ROL_CONS_CONS];
]);;
(* }}} *)
(*
CHOP_REAL_LIST 1 `[&1; &2; &3]` --> |- [&1; &2; &3] = APPEND [&1; &2] [&3]
let n,l = 1,`[&1; &2; &3]`
*)
let CHOP_REAL_LIST n l =
let l' = dest_list l in
let l1',l2' = chop_list n l' in
let l1,l2 = mk_list (l1',real_ty),mk_list (l2',real_ty) in
let tm = mk_binop rappend l1 l2 in
GSYM (REWRITE_CONV [APPEND] tm);;
(*
ROL_CHOP_LT 2
let n = 1
*)
let ROL_CHOP_LT n thm =
let thm' = funpow (n - 1) (MATCH_MP ROL_CONS) thm in
CONJUNCT2 (PURE_REWRITE_RULE[ROL_CONS_CONS] thm');;
let t1 = prove_by_refinement(
`real_ordered_list [&1; &2; &3; &4]`,
[
REWRITE_TAC[HD;real_ordered_list];
REAL_ARITH_TAC;
]);;
(*
ROL_CHOP_LIST 2 |- real_ordered_list [&1; &2; &3; &4] -->
|- real_ordered_list [&1; &2; &3],
|- real_ordered_list [&4],
|- &3 < &4
let thm = ASSUME `real_ordered_list [&1; &2; &3; &4]`
let n = 2
ROL_CHOP_LIST 2 thm
*)
let ROL_CHOP_LIST n thm =
let _,l = dest_comb (concl thm) in
let lthm = CHOP_REAL_LIST n l in
let thm' = REWRITE_RULE[lthm] thm in
let thm'' = MATCH_MP ROL_APPEND thm' in
let [lthm;rthm] = CONJUNCTS thm'' in
let lt_thm = ROL_CHOP_LT n thm in
lthm,rthm,lt_thm;;
(*
rol_insert (|- x1 < x4 /\ x4 < x2)
(|- real_ordered_list [x1; x2; x3]) -->
(|- real_ordered_list [x1; x4; x2; x3]);
rol_insert (|- &2 < &5 /\ &5 < &6) (|- real_ordered_list [&1; &2; &6]) -->
(|- real_ordered_list [&1; &2; &5; &6]);
rol_insert (|- x4 < x1)
(|- real_ordered_list [x1; x2; x3]) -->
(|- real_ordered_list [x4; x1; x2; x3]);
rol_insert (|- x1 < x4)
(|- real_ordered_list [x1; x2; x3]) -->
(|- real_ordered_list [x1; x2; x3; x4]);
*)
let lem1 = prove(
`!e x l. e < x /\ (LAST l = e) ==> LAST l < x`,
MESON_TAC[]);;
let ROL_INSERT_MIDDLE place_thm rol_thm =
let [pl1;pl2] = CONJUNCTS place_thm in
let list = snd(dest_comb(concl rol_thm)) in
let new_x,slot =
let ltl,ltr = dest_conj (concl place_thm) in
let x1,x4 = dest_binop rlt ltl in
let _,x2 = dest_binop rlt ltr in
let n = (index x1 (dest_list list)) + 1 in
x4,n in
let lthm,rthm,lt_thm = ROL_CHOP_LIST slot rol_thm in
let llist = snd(dest_comb(concl lthm)) in
let hllist = hd (dest_list llist) in
let tllist = mk_rlist (tl (dest_list llist)) in
let rlist = snd(dest_comb(concl rthm)) in
let hrlist = hd (dest_list rlist) in
let trlist = mk_rlist (tl (dest_list rlist)) in
let gthm = REWRITE_RULE[AND_IMP_THM] ROL_INSERT_THM in
let a1 = lthm in
let a2 = rthm in
let a3 = ISPECL [hllist;tllist] NOT_CONS_NIL in
let a4 = ISPECL [hrlist;trlist] NOT_CONS_NIL in
let l,r = dest_binop rlt (concl pl1) in
let a5_aux = prove(mk_eq (mk_comb(rlast,llist),l),REWRITE_TAC[LAST;COND_CLAUSES;NOT_CONS_NIL]) in
let a5 = MATCH_MPL [ISPECL [l;r;llist] (REWRITE_RULE[AND_IMP_THM] lem1);pl1;a5_aux] in
let a6_aux = ISPECL [trlist;hrlist] (GEN_ALL HD) in
let a6 = CONV_RULE (RAND_CONV (ONCE_REWRITE_CONV[GSYM a6_aux])) pl2 in
let thm = MATCH_MPL [gthm;a1;a2;a3;a4;a5;a6] in
REWRITE_RULE[APPEND] thm;;
(*
ROL_INSERT_MIDDLE (ASSUME `x1 < x4 /\ x4 < x2`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
ROL_INSERT_MIDDLE (ASSUME `x1 < x6 /\ x6 < x2`)
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);;
ROL_INSERT_MIDDLE (ASSUME `x2 < x6 /\ x6 < x3`)
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);;
ROL_INSERT_MIDDLE (ASSUME `x4 < x6 /\ x6 < x5`)
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);;
ROL_INSERT_MIDDLE (ASSUME `x2 < x4 /\ x4 < x3`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
*)
let ROL_INSERT_FRONT place_thm rol_thm =
let _,rlist = dest_comb (concl rol_thm) in
let h,t = hd (dest_list rlist),mk_rlist (tl (dest_list rlist)) in
let imp_thm = ISPECL [h;t] (GSYM ROL_CONS_CONS) in
let imp_thm' = REWRITE_RULE[AND_IMP_THM] (fst (EQ_IMP_RULE imp_thm)) in
MATCH_MPL[imp_thm';rol_thm;place_thm];;
(*
ROL_INSERT_FRONT (ASSUME `x4 < x1`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
ROL_INSERT_FRONT (ASSUME `x4 < x1`)
(ASSUME `real_ordered_list [x1]`);;
*)
let ROL_INSERT_BACK place_thm rol_thm =
let _,rlist = dest_comb (concl rol_thm) in
let rlist' = dest_list rlist in
let h,t = hd rlist',mk_rlist (tl rlist') in
let lst = last rlist' in
let b,x = dest_binop rlt (concl place_thm) in
let imp_thm = REWRITE_RULE[AND_IMP_THM]
(ISPECL [x;rlist] ROL_INSERT_BACK_THM) in
let a1 = rol_thm in
let a2 = ISPECL [h;t] NOT_CONS_NIL in
let a3_aux = prove(mk_eq (mk_comb(rlast,rlist),lst),
REWRITE_TAC[LAST;COND_CLAUSES;NOT_CONS_NIL]) in
let a3 = MATCH_MPL [ISPECL [lst;x;rlist]
(REWRITE_RULE[AND_IMP_THM] lem1);place_thm;a3_aux] in
REWRITE_RULE[APPEND] (MATCH_MPL[imp_thm;a1;a2;a3]);;
(*
ROL_INSERT_BACK (ASSUME `x3 < x4`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
*)
let ROL_INSERT place_thm rol_thm =
let place_thm' = REWRITE_RULE[real_gt] place_thm in
if is_conj (concl place_thm') then ROL_INSERT_MIDDLE place_thm' rol_thm
else
let _,rlist = dest_comb (concl rol_thm) in
let rlist' = dest_list rlist in
let h = hd rlist' in
let l,r = dest_binop rlt (concl place_thm') in
if r = h then ROL_INSERT_FRONT place_thm' rol_thm
else ROL_INSERT_BACK place_thm' rol_thm;;
(*
let k00 = ROL_INSERT (ASSUME `x1 < x4 /\ x4 < x2`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
rol_thms k00
PARTITION_LINE_CONV `[x1; x4; x2; x3:real]`
ROL_INSERT (ASSUME `x4 < x1`)
(ASSUME `real_ordered_list [x1]`);;
ROL_INSERT (ASSUME `x3 < x4`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
*)
(*
rol_thms |- real_ordered_list [x;y;z]
--->
|- x < y; |- y < z
*)
let rol_thms rol_thm =
let thm = REWRITE_RULE[real_ordered_list;NOT_CONS_NIL;HD] rol_thm in
rev(CONJUNCTS thm);;
(*
let rol_thm = ASSUME `real_ordered_list [x;y;z]`
rol_thms rol_thm
*)
let lem = prove(`!x. ?y. y = x`,MESON_TAC[]);;
let rec interleave l1 l2 =
match l1 with
[] -> l2
| h::t ->
match l2 with
[] -> l1
| h1::t1 -> h::h1::(interleave t t1);;
let lem0 = prove(`?x:real. T`,MESON_TAC[]);;
let lem1 = prove_by_refinement(
`!x. (?y. y < x) /\ (?y. y = x) /\ (?y. x < y)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
EXISTS_TAC `x - &1`;
REAL_ARITH_TAC;
MESON_TAC[];
EXISTS_TAC `x + &1`;
REAL_ARITH_TAC;
]);;
(* }}} *)
let rol_nonempty_thms rol_thm =
let pts = dest_list (snd(dest_comb(concl rol_thm))) in
if length pts = 0 then [lem0] else
if length pts = 1 then CONJUNCTS (ISPEC (hd pts) lem1) else
let rthms = rol_thms rol_thm in
let pt_thms = map (C ISPEC lem) pts in
let left_thm = ISPEC (hd pts) REAL_GT_EXISTS in
let right_thm = ISPEC (last pts) REAL_LT_EXISTS in
let int_thms = map (MATCH_MP REAL_DENSE) rthms in
let thms = interleave pt_thms int_thms in
left_thm::thms @ [right_thm];;
(*
rol_nonempty_thms (ASSUME `real_ordered_list [y]`)
*)
let lem0 = prove_by_refinement(
`real_ordered_list []`,
(* {{{ Proof *)
[REWRITE_TAC[real_ordered_list]]);;
(* }}} *)
let lem1 = prove_by_refinement(
`!x y. x < y ==> real_ordered_list [x; y]`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list;NOT_CONS_NIL;HD];
]);;
(* }}} *)
let lem2 = prove_by_refinement(
`!x y. x < y ==> real_ordered_list (CONS y t) ==>
real_ordered_list (CONS x (CONS y t))`,
(* {{{ Proof *)
[
ASM_MESON_TAC[real_ordered_list;NOT_CONS_NIL;HD;TL];
]);;
(* }}} *)
let mk_rol ord_thms =
match ord_thms with
[] -> lem0
| [x] -> MATCH_MP lem1 x
| h1::h2::rest ->
itlist (fun x y -> MATCH_MPL[lem2;x;y]) (butlast ord_thms) (MATCH_MP lem1 (last ord_thms));;
(*
let k0 = rol_thms (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`)
mk_rol k0
*)
let real_nil = `[]:real list`;;
let ROL_NIL = prove
(`real_ordered_list ([]:real list)`,
REWRITE_TAC[real_ordered_list]);;
let ROL_REMOVE x rol_thm =
let list = dest_list (snd (dest_comb (concl rol_thm))) in
if length list = 0 then failwith "ROL_REMOVE: 0"
else if length list = 1 then
if x = hd list then ROL_NIL
else failwith "ROL_REMOVE: Not an elem"
else if length list = 2 then
let l::r::[] = list in
if l = x then ISPEC r ROL_SING
else if r = x then ISPEC l ROL_SING
else failwith "ROL_REMOVE: Not an elem"
else
let ord_thms = rol_thms rol_thm in
let partition_fun thm =
let l,r = dest_binop rlt (concl thm) in
not (x = l) && not (x = r) in
let ord_thms',elim_thms = partition partition_fun ord_thms in
if length elim_thms = 1 then mk_rol ord_thms' else
let [xy_thm; yz_thm] = elim_thms in
let connect_thm = MATCH_MP REAL_LT_TRANS (CONJ xy_thm yz_thm) in
let rec insert xz_thm thms =
match thms with
[] -> [connect_thm]
| h::t ->
let l,r = dest_binop rlt (concl h) in
let l1,r1 = dest_binop rlt (concl xz_thm) in
if (r1 = l) then xz_thm::h::t else h::insert xz_thm t in
let ord_thms'' = insert connect_thm ord_thms' in
mk_rol ord_thms'';;
(*
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1]`)
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1; x3]`)
ROL_REMOVE `x3:real` (ASSUME `real_ordered_list [x1; x3]`)
ROL_REMOVE `x3:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`)
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`)
ROL_REMOVE `x5:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`)
ROL_REMOVE `-- &1` (ASSUME `real_ordered_list [-- &1; &0; &1]`)
let rol_thm = (ASSUME `real_ordered_list [-- &1; &0; &1]`)
let x = `&0`
*)
let lem = prove(
`!y x. x < y \/ (x = y) \/ y < x`,
(* {{{ Proof *)
REAL_ARITH_TAC);;
(* }}} *)
let lem2 = prove(
`!x y z. y < z ==> (y < x <=> (y < x /\ x < z) \/ (x = z) \/ z < x)`,
(* {{{ Proof *)
REAL_ARITH_TAC);;
(* }}} *)
let ROL_COVERS rol_thm =
let pts = dest_list (snd(dest_comb(concl rol_thm))) in
if length pts = 1 then ISPEC (hd pts) lem else
let thms = rol_thms rol_thm in
let thms' = map (MATCH_MP lem2) thms in
let base = ISPEC (hd pts) lem in
itlist (fun x y -> ONCE_REWRITE_RULE[MATCH_MP lem2 x] y) (rev thms) base;;
(*
ROL_COVERS (ASSUME `real_ordered_list [x; y; z]`)
ROL_COVERS (ASSUME `real_ordered_list [x; y]`)
ROL_COVERS (ASSUME `real_ordered_list [x]`)
*)
|