Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 123,036 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 |
:: Basic Properties and Concept of Selected Subsequence of Zero Based Finite
:: Sequences
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, SUBSET_1, FUNCT_1, NAT_1, TARSKI, MEMBERED, ORDINAL1,
FINSET_1, RELAT_1, AFINSQ_1, ARYTM_1, ARYTM_3, FINSEQ_1, XXREAL_0,
CARD_1, XBOOLE_0, ORDINAL4, FINSEQ_5, RFINSEQ, JORDAN3, CARD_3, XCMPLX_0,
AFINSQ_2, BINOP_1, SETWISEO, FINSOP_1, FUNCOP_1, BINOP_2, VALUED_0,
FUNCT_2, INT_1, PRGCOR_2, XREAL_0, SEQ_1, SERIES_1, VALUED_1, RAT_1,
SQUARE_1, COMPLEX1, PARTFUN3, PRE_POLY, AMISTD_1, AMISTD_2, REAL_1,
ORDINAL2;
notations TARSKI, XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, CARD_1, NUMBERS,
RELAT_1, FUNCT_1, XCMPLX_0, NAT_1, FINSET_1, XXREAL_0, NAT_D, AFINSQ_1,
SEQ_1, MEMBERED, VALUED_1, RELSET_1, PARTFUN1, FUNCT_2, FUNCOP_1, INT_1,
BINOP_1, BINOP_2, SETWISEO, FINSOP_1, FINSEQ_1, RECDEF_1, VALUED_0,
SERIES_1, RAT_1, PARTFUN3, RFINSEQ, ORDINAL2;
constructors SERIES_1, PARTFUN3, WELLORD2, SETWISEO, FINSOP_1, NAT_D,
RECDEF_1, BINOP_2, RELSET_1, AFINSQ_1, FUNCOP_1, SQUARE_1, BINOP_1,
XTUPLE_0, RFINSEQ, ORDINAL2;
registrations XBOOLE_0, RELAT_1, FUNCT_1, ORDINAL1, FUNCT_2, FINSET_1,
NUMBERS, XXREAL_0, XREAL_0, NAT_1, BINOP_2, CARD_1, FINSEQ_1, AFINSQ_1,
ORDINAL2, RELSET_1, ORDINAL3, VALUED_1, VALUED_0, MEMBERED;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
definitions TARSKI, XBOOLE_0, FUNCT_1;
equalities VALUED_1, BINOP_1, ORDINAL1;
expansions TARSKI, XBOOLE_0, FUNCT_1, BINOP_1, ORDINAL1, FINSEQ_1;
theorems TARSKI, FUNCT_1, NAT_1, ZFMISC_1, RELAT_1, CARD_2, XBOOLE_0,
XBOOLE_1, FINSET_1, ORDINAL1, CARD_1, XREAL_1, AFINSQ_1, XXREAL_0, NAT_2,
FINSEQ_2, WELLORD2, MEMBERED, VALUED_0, VALUED_1, XREAL_0, NAT_D,
SERIES_1, PARTFUN3, BINOP_1, BINOP_2, SETWISEO, FUNCOP_1, FINSOP_1,
FINSEQ_1, FUNCT_2, XCMPLX_0, GRFUNC_1, RAT_1, INT_1, FINSEQ_3, RFINSEQ,
ORDINAL2, FINSEQ_5;
schemes NAT_1, AFINSQ_1, FUNCT_2, BINOP_1;
begin :: Preparation
reserve i,j,k,n,m for Nat,
x,y,z,y1,y2 for object, X,Y,D for set,
p,q for XFinSequence;
Lm1:
for X,Y be finite set,F be Function of X,Y st card X=card Y
holds F is onto iff F is one-to-one
proof
let X,Y be finite set,F be Function of X,Y such that
A1: card X=card Y;
thus F is onto implies F is one-to-one
proof
assume
A2: F is onto;
assume F is not one-to-one;
then consider x1,x2 be object such that
A3: x1 in dom F and
A4: x2 in dom F and
A5: F.x1=F.x2 and
A6: x1<>x2;
reconsider Xx=X\{x1} as finite set;
Y c= F.:Xx
proof
let Fy be object;
assume Fy in Y;
then Fy in rng F by A2,FUNCT_2:def 3;
then consider y being object such that
A7: y in dom F and
A8: F.y=Fy by FUNCT_1:def 3;
now
per cases;
suppose
A9: y=x1;
x2 in Xx by A4,A6,ZFMISC_1:56;
hence thesis by A4,A5,A8,A9,FUNCT_1:def 6;
end;
suppose
y<>x1;
then y in Xx by A7,ZFMISC_1:56;
hence thesis by A7,A8,FUNCT_1:def 6;
end;
end;
hence thesis;
end;
then
A10: Segm card Y c= Segm card Xx by CARD_1:66;
{x1} meets X by A3,ZFMISC_1:48;
then A11:Xx <>X by XBOOLE_1:83;
Xx c< X by A11;
hence thesis by A1,A10,NAT_1:39,CARD_2:48;
end;
thus F is one-to-one implies F is onto
proof
assume F is one-to-one; then
A12: card dom F=card (F.:dom F) by CARD_1:5,CARD_1:33;
assume F is not onto;
then not rng F = Y by FUNCT_2:def 3;
then not Y c= rng F;
then consider y being object such that
A13: y in Y and
A14: not y in rng F;
A15: card rng F <=card (Y\{y}) by A14,NAT_1:43,ZFMISC_1:34;
A16: F.:dom F= rng F by RELAT_1:113;
{y} meets Y by A13,ZFMISC_1:48;
then A17:Y\{y} <>Y by XBOOLE_1:83;
Y\{y} c< Y by A17;
then card (Y\{y})< card Y by CARD_2:48;
hence thesis by A1,A13,A15,A12,A16,FUNCT_2:def 1;
end;
end;
theorem Th1:
x in i implies x is Element of NAT
proof
i c= NAT;
hence thesis;
end;
begin
theorem Th2:
for X0 being finite natural-membered set holds ex n st X0 c= Segm n
proof
let X0 be finite natural-membered set;
consider p being Function such that
A1: rng p = X0 and
A2: dom p in NAT by FINSET_1:def 1;
reconsider np=dom p as Element of NAT by A2;
np=dom p;
then reconsider p as XFinSequence by AFINSQ_1:5;
X0 c= NAT by MEMBERED:6;
then reconsider p as XFinSequence of NAT by A1,RELAT_1:def 19;
defpred P[Nat] means ex n st for i st i in Segm $1 & $1-'1 in
dom p holds p.i in n;
A3: for k st P[k] holds P[k+1]
proof
let k;
assume P[k];
then consider n such that
A4: for i st i in k & k-'1 in dom p holds p.i in n;
per cases;
suppose
A5: k+1-1 <len p;
set m=p.(k);
set m2=max(n,m+1);
k-'1<=k by NAT_D:35;
then k-'1 < len p by A5,XXREAL_0:2;
then
A6: k-'1 in dom p by AFINSQ_1:86;
for i st i in Segm(k+1) & k+1-'1 in dom p holds p.i in Segm m2
proof
let i;
assume that
A7: i in Segm(k+1) and
k+1-'1 in dom p;
A8: i<k+1 by A7,NAT_1:44;
per cases;
suppose
A9: i<k;
set k0=p.i;
i in Segm k by A9,NAT_1:44;
then p.i in Segm n by A4,A6;
then k0<n by NAT_1:44;
hence thesis by NAT_1:44,XXREAL_0:30;
end;
suppose
A10: i>=k;
m<m+1 by XREAL_1:29;
then
A11: m<m2 by XXREAL_0:30;
i<=k by A8,NAT_1:13;
then p.i=m by A10,XXREAL_0:1;
hence thesis by A11,NAT_1:44;
end;
end;
hence thesis;
end;
suppose
A12: k+1-1>=len p;
k+1-'1=k by NAT_D:34;
then
for i st i in (k+1) & (k+1)-'1 in dom p holds p.i in 2
by A12,AFINSQ_1:86;
hence thesis;
end;
end;
for i st i in 0 & 0-'1 in dom p holds p.i in 0;
then
A13: P[0];
for k holds P[k] from NAT_1:sch 2(A13,A3);
then consider n such that
A14: for i st i in Segm len p & len p -'1 in dom p holds p.i in n;
rng p c= Segm n
proof
let y be object;
assume y in rng p;
then consider x being object such that
A15: x in dom p and
A16: y=p.x by FUNCT_1:def 3;
A17: len p -1<len p by XREAL_1:44;
0 < len p by A15;
then (0 qua Element of NAT )+1 <= len p by NAT_1:13;
then len p-'1=len p-1 by XREAL_1:233;
then len p -'1 in dom p by A17,AFINSQ_1:86;
hence thesis by A14,A15,A16;
end;
hence thesis by A1;
end;
theorem Th3: :: from FINSEQ_2:11
x in rng p implies ex
i being Element of NAT st i in dom p & p.i = x
proof
assume x in rng p;
then ex a being object st a in dom p & x = p.a by FUNCT_1:def 3;
hence thesis;
end;
theorem Th4: ::from FINSEQ_2:14
for p st for i st i in dom p holds p.i in D
holds p is XFinSequence of D
proof
let p;
assume
A1: for i st i in dom p holds p.i in D;
rng p c= D
proof
let x be object;
assume x in rng p;
then ex i being Element of NAT st i in dom p & p.i = x by Th3;
hence thesis by A1;
end;
hence thesis by RELAT_1:def 19;
end;
scheme
XSeqLambdaD{i()->Nat,D()->non empty set,F(set)->Element of D()}:
ex p being XFinSequence of D() st len p = i() &
for j st j in i() holds p.j = F(j)
proof
consider z being XFinSequence such that
A1: len z = i() and
A2: for i st i in i() holds z.i = F(i) from
AFINSQ_1:sch 2;
for j be Nat st j in i() holds z.j in D()
proof
let j be Nat;
reconsider j0=j as Element of NAT by ORDINAL1:def 12;
assume j in i();
then z.j0 = F(j0) by A2;
hence thesis;
end;
then reconsider z as XFinSequence of D() by A1,Th4;
take z;
thus len z = i() by A1;
let j be Nat;
thus thesis by A2;
end;
registration
cluster empty natural-valued for XFinSequence;
existence
proof
take the empty XFinSequence of NAT;
thus thesis;
end;
let p be complex-valued Sequence-like Function;
cluster -p -> Sequence-like;
coherence
proof
dom p = dom -p & dom p is ordinal by VALUED_1:8;
hence thesis;
end;
cluster p" -> Sequence-like;
coherence
proof
dom p = dom (p") by VALUED_1:def 7;
hence thesis;
end;
cluster p^2 -> Sequence-like;
coherence
proof
dom p = dom (p^2) by VALUED_1:11;
hence thesis;
end;
cluster abs p -> Sequence-like;
coherence
proof
dom p = dom abs p by VALUED_1:def 11;
hence thesis;
end;
let q be complex-valued Sequence-like Function;
cluster p+q -> Sequence-like;
coherence
proof
dom (p+q)=dom p /\dom q & dom p is ordinal & dom q is ordinal
by VALUED_1:def 1;
hence thesis;
end;
cluster p-q -> Sequence-like;
coherence;
cluster p(#)q -> Sequence-like;
coherence
proof
dom (p(#)q)=dom p /\dom q & dom p is ordinal & dom q is ordinal
by VALUED_1:def 4;
hence thesis;
end;
cluster p/"q -> Sequence-like;
coherence;
end;
registration
let p be complex-valued finite Function;
cluster -p -> finite;
coherence
proof
dom p = dom -p by VALUED_1:8;
hence thesis by FINSET_1:10;
end;
cluster p" -> finite;
coherence
proof
dom p = dom (p") by VALUED_1:def 7;
hence thesis by FINSET_1:10;
end;
cluster p^2 -> finite;
coherence
proof
dom p = dom (p^2) by VALUED_1:11;
hence thesis by FINSET_1:10;
end;
cluster abs p -> finite;
coherence
proof
dom p = dom abs p by VALUED_1:def 11;
hence thesis by FINSET_1:10;
end;
let q be complex-valued Function;
cluster p+q -> finite;
coherence
proof
dom (p+q)=dom p /\dom q by VALUED_1:def 1;
hence thesis by FINSET_1:10;
end;
cluster p-q -> finite;
coherence;
cluster p(#)q -> finite;
coherence
proof
dom (p(#)q)=dom p /\dom q by VALUED_1:def 4;
hence thesis by FINSET_1:10;
end;
cluster p/"q -> finite;
coherence;
cluster q/"p -> finite;
coherence;
end;
registration
let p be complex-valued Sequence-like Function;
let c be Complex;
cluster c+p -> Sequence-like;
coherence
proof
dom p = dom (c+p) by VALUED_1:def 2;
hence thesis;
end;
cluster p-c -> Sequence-like;
coherence;
cluster c(#)p -> Sequence-like;
coherence
proof
dom p = dom (c(#)p) by VALUED_1:def 5;
hence thesis;
end;
end;
registration
let p be complex-valued finite Function;
let c be Complex;
cluster c+p -> finite;
coherence
proof
dom p = dom (c+p) by VALUED_1:def 2;
hence thesis by FINSET_1:10;
end;
cluster p-c -> finite;
coherence;
cluster c(#)p -> finite;
coherence
proof
dom p = dom (c(#)p) by VALUED_1:def 5;
hence thesis by FINSET_1:10;
end;
end;
definition
let p;
func Rev p -> XFinSequence means
:Def1:
len it = len p & for i st i in dom it holds it.i = p.(len p - (i + 1));
existence
proof
deffunc F(Nat) = p.(len p - ($1 + 1));
ex q st len q = len p & for k
st k in len p holds q.k = F(k) from AFINSQ_1:sch 2;
hence thesis;
end;
uniqueness
proof
let f1,f2 be XFinSequence such that
A1: len f1 = len p and
A2: for i st i in dom f1 holds f1.i = p.(len p -(i + 1)) and
A3: len f2 = len p and
A4: for i st i in dom f2 holds f2.i = p.(len p -(i + 1));
now
let i;
assume
A5: i in dom p;
then f1.i = p.(len p - (i + 1)) by A1,A2;
hence f1.i = f2.i by A3,A4,A5;
end;
hence thesis by A1,A3;
end;
end;
theorem Th5: ::from FINSEQ_5:60
dom p = dom Rev p & rng p = rng Rev p
proof
thus
A1: dom p = len p
.= len (Rev p) by Def1
.= dom(Rev p);
A2: len p = len(Rev p) by Def1;
hereby
let x be object;
assume x in rng p;
then consider z being object such that
A3: z in dom p and
A4: p.z = x by FUNCT_1:def 3;
reconsider i=z as Element of NAT by A3;
i+1<=len p by NAT_1:13,A3,AFINSQ_1:86;
then len p -'(i+1)=len p -(i+1) by XREAL_1:233;
then reconsider j = len p - (i + 1) as Element of NAT;
A5: j in len (Rev p) by A2,AFINSQ_1:86,XREAL_1:44;
then (Rev p).j = p.(len p - (j + 1)) by Def1;
hence x in rng(Rev p) by A4,A5,FUNCT_1:def 3;
end;
let x be object;
assume x in rng(Rev p);
then consider z being object such that
A6: z in dom(Rev p) and
A7: (Rev p).z = x by FUNCT_1:def 3;
reconsider i=z as Element of NAT by A6;
i < len p by A2,A6,AFINSQ_1:86;
then i+1<=len p by NAT_1:13;
then len p -'(i+1)=len p -(i+1) by XREAL_1:233;
then reconsider j = len p - (i + 1) as Element of NAT;
len p -(i+1)<len p by XREAL_1:44;
then
A8: j in len (Rev p) by A2,AFINSQ_1:86;
(Rev p).i = p.(len p - (i + 1)) by A6,Def1;
hence thesis by A1,A7,A8,FUNCT_1:def 3;
end;
registration
let D be set, f be XFinSequence of D;
cluster Rev f -> D -valued;
coherence
proof
rng f=rng (Rev f) by Th5;
hence thesis by RELAT_1:def 19;
end;
end;
definition
let p,n;
func p /^ n -> XFinSequence means :Def2:
len it = len p -' n & for m st m in dom it holds it.m = p.(m+n);
existence
proof
thus ex p1 be XFinSequence st len p1 = len p -' n & for m st m in
dom p1 holds p1.m = p.(m+n)
proof
deffunc F(Nat)=p.($1+n);
set k = len p -' n;
consider q such that
A1: len q = k & for m2 be Nat st m2 in k holds q.m2 = F(
m2) from AFINSQ_1:sch 2;
take q;
thus thesis by A1;
end;
end;
uniqueness
proof
let p1,p2 be XFinSequence;
thus (len p1 = len p -' n & for m be Nat st m in dom p1 holds p1.m = p.(m+
n)) & (len p2 = len p -' n & for m be Nat st m in dom p2 holds p2.m = p.(m+n))
implies p1 = p2
proof
assume that
A2: len p1 = len p -' n and
A3: for m st m in dom p1 holds p1.m = p.(m+n) and
A4: len p2 = len p -' n and
A5: for m st m in dom p2 holds p2.m = p.(m+n);
now
let m;
assume
A6: m in dom p1;
then p1.m = p.(m+n) by A3;
hence p1.m = p2.m by A2,A4,A5,A6;
end;
hence thesis by A2,A4;
end;
end;
end;
theorem Th6:
n >= len p implies p/^n={}
proof
assume n>=len p;
then len p-'n=0 by NAT_2:8;
then len (p/^n)=0 by Def2;
hence thesis;
end;
theorem Th7:
n < len p implies len (p/^n) = len p -n
proof
assume n < len p;
then len p-'n=len p-n by XREAL_0:def 2,XREAL_1:48;
hence thesis by Def2;
end;
theorem Th8:
m+n<len p implies (p/^n).m = p.(m+n)
proof
assume
A1: m+n<len p;
then
A2: m<len p-n by XREAL_1:20;
len (p/^n)=len p-n by A1,Th7,NAT_1:12;
hence thesis by Def2,A2,AFINSQ_1:86;
end;
registration
let f be one-to-one XFinSequence, n;
cluster f/^n -> one-to-one;
coherence
proof
let x,y be object;
assume that
A1: x in dom (f/^n) and
A2: y in dom (f/^n) and
A3: (f/^n).x=(f/^n).y;
reconsider nx=x,ny=y as Nat by A1,A2;
A4: nx<len (f/^n) by A1,AFINSQ_1:86;
A5: len (f/^n)=len f-'n by Def2;
A6: ny<len (f/^n) by A2,AFINSQ_1:86;
per cases;
suppose
n<=len f;
then
A7: len f-'n=len f-n by XREAL_1:233;
then
A8: nx+n<len f by A4,A5,XREAL_1:20;
then
A9: nx+n in dom f by AFINSQ_1:86;
A10: ny+n<len f by A6,A5,A7,XREAL_1:20;
then
A11: ny+n in dom f by AFINSQ_1:86;
A12: (f/^n).ny=f.(ny+n) by A10,Th8;
(f/^n).nx=f.(nx+n) by A8,Th8;
then nx+n=ny+n by A3,A9,A12,A11,FUNCT_1:def 4;
hence thesis;
end;
suppose
n>len f;
then f/^n={} by Th6;
hence thesis by A1;
end;
end;
end;
theorem Th9:
rng (p/^n) c= rng p
proof
thus rng (p/^n) c= rng p
proof
let z be object;
assume z in rng (p/^n);
then consider x being object such that
A1: x in dom (p/^n) and
A2: z=(p/^n).x by FUNCT_1:def 3;
reconsider nx=x as Element of NAT by A1;
nx<len (p/^n) by A1,AFINSQ_1:86;
then
A3: nx < len p -' n by Def2;
per cases;
suppose
n<len p;
then len p-'n=len p-n by XREAL_1:233; then
A4: nx+n in dom p by AFINSQ_1:86,A3,XREAL_1:20;
(p/^n).nx=p.(nx+n) by A1,Def2;
hence thesis by A2,A4,FUNCT_1:def 3;
end;
suppose
n>=len p;
then (p/^n)={} by Th6;
hence thesis by A1;
end;
end;
end;
theorem Th10: ::FINSEQ_5:31
p/^0 = p
proof
per cases;
suppose
A1: 0 <len p;
A2: now
let i;
assume i < len(p/^0);
hence (p/^0).i = p.(i+(0 qua Element of NAT)) by Def2,AFINSQ_1:86
.= p.i;
end;
len(p/^0) = len p - 0 by A1,Th7
.= len p;
hence thesis by A2,AFINSQ_1:9;
end;
suppose
A3: 0>=len p;
then p/^0 ={} by Th6;
hence thesis by A3;
end;
end;
theorem Th11: ::FINSEQ_5:39
(p^q)/^(len p + i) = q/^i
proof
A1: len(p^q) = len p + len q by AFINSQ_1:17;
per cases;
suppose
A2: i < len q;
then len p + i < len p + len q by XREAL_1:6;
then len p +i<len (p^q) by AFINSQ_1:17;
then
A3: len((p^q)/^(len p + i)) = len (p^q)-(len p +i) by Th7
.=len q + len p - (len p + i) by AFINSQ_1:17
.= len q - i
.= len(q/^i) by A2,Th7;
now
let k;
assume
A4: k < len(q/^i);
then
A5: k in dom(q/^i) by AFINSQ_1:86;
k < len q -i by A2,A4,Th7;
then
A6: i+k in dom q by AFINSQ_1:86,XREAL_1:20;
k in dom((p^q)/^(len p + i)) by A3,A4,AFINSQ_1:86;
hence ((p^q)/^(len p + i)).k = (p^q).(len p + i + k) by Def2
.= (p^q).(len p + (i+k))
.= q.(i+k) by A6,AFINSQ_1:def 3
.= (q/^i).k by A5,Def2;
end;
hence thesis by A3,AFINSQ_1:9;
end;
suppose
A7: i >= len q;
hence (p^q)/^(len p+i) = {} by Th6,A1,XREAL_1:6
.= q/^i by A7,Th6;
end;
end;
theorem Th12: ::FINSEQ_5:40
(p^q)/^(len p) = q
proof
thus (p^q)/^(len p) = (p^q)/^(len p + (0 qua Element of NAT))
.= q/^0 by Th11
.= q by Th10;
end;
theorem Th13: ::RFINSEQ:21
(p|n)^(p/^n) = p
proof
set pn = p/^n;
now
per cases;
case
A1: len p<=n;
p/^n = {} by A1,Th6;
hence thesis by A1,AFINSQ_1:52;
end;
case
A2: n<len p;
set g=p|n;
A3: len (g) = n by A2,AFINSQ_1:54;
A4: len pn = len p - n by A2,Th7;
A5: now
let m;
assume
A6: m < len p;
now
per cases;
case
m<n;
then
A7: m in Segm n by NAT_1:44;
hence ((p|n)^(p/^n)).m = (p|n).m by A3,AFINSQ_1:def 3
.= p.m by A2,A7,AFINSQ_1:53;
end;
case
n<=m;
then max(0,m-n) = m-n by FINSEQ_2:4;
then reconsider k = m-n as Element of NAT by FINSEQ_2:5;
k< len pn by A4,A6,XREAL_1:9;
then
A8: k in dom pn by AFINSQ_1:86;
m=len (p|n) +k by A3;
hence ((p|n) ^ (p/^n)).m = pn.k by A8,AFINSQ_1:def 3
.= p.(k+n) by A8,Def2
.= p.m;
end;
end;
hence ((p|n) ^ (p/^n)).m = p.m;
end;
len (g^(p/^n)) = n+(len p - n) by A4,A3,AFINSQ_1:17
.= len p;
hence thesis by A5,AFINSQ_1:9;
end;
end;
hence thesis;
end;
registration
let f be XFinSequence;
cluster f|0 -> empty;
coherence;
let n be Nat;
cluster f/^(dom f + n) -> empty;
coherence
proof
len f <= len f + n + 0 by NAT_1:11; then
(len f) - (len f + n) <= 0 by XREAL_1:20; then
(len f) -' (len f + n) = 0 by XREAL_0:def 2; then
len (f/^(dom f + n)) = 0 by Def2;
hence thesis;
end;
reduce f|(len f + n) to f;
reducibility
proof
len f + n >= len f + 0 by XREAL_1:6;
hence thesis by AFINSQ_1:52;
end;
reduce (f|n)^(f/^n) to f;
reducibility by Th13;
end;
registration
let D be set, f be XFinSequence of D, n;
cluster f /^ n -> D -valued;
coherence
proof
deffunc F(Element of NAT)=f.($1+n);
set p = f /^ n;
per cases;
suppose
A1: n<len f;
then reconsider k = len f - n as Nat by NAT_1:21;
A2: len p = k by A1,Th7;
A3: rng p c= rng f
proof
let x be object;
assume x in rng p;
then consider m being Element of NAT such that
A4: m in dom p and
A5: p.m = x by Th3;
m+n<k+n by A2,XREAL_1:6,A4,AFINSQ_1:86;
then
A6: m+n in dom f by AFINSQ_1:86;
p.m = f.(m+n) by A4,Def2;
hence thesis by A5,A6,FUNCT_1:def 3;
end;
for f2 being XFinSequence st rng f2 c= D holds f2 is XFinSequence
of D by RELAT_1:def 19;
hence thesis by A3,XBOOLE_1:1;
end;
suppose
len f <= n;
then f /^ n = <%>D by Th6;
hence thesis;
end;
end;
end;
reserve k1,k2 for Nat;
definition
let p,k1,k2;
func mid(p,k1,k2) -> XFinSequence equals
(p|k2)/^(k1-'1);
coherence;
end;
theorem Th14:
k1>k2 implies mid(p,k1,k2) = {}
proof
set k21=k2;
A1: len (p|k21)<=k21 by AFINSQ_1:55;
assume
A2: k1>k2;
then k1>= (0 qua Nat) +1 by NAT_1:13;
then
A3: k1-'1=k1-1 by XREAL_1:233;
k1>=k2+1 by A2,NAT_1:13;
then k1-1>=k2+1-1 by XREAL_1:9;
hence thesis by A3,A1,Th6,XXREAL_0:2;
end;
theorem
1<=k1 & k2<=len p implies mid(p,k1,k2) = (p/^(k1-'1))|(k2+1-'k1)
proof
assume that
A1: 1<=k1 and
A2: k2<=len p;
set k11=k1,k21=k2;
A3: len (p|k21)=k21 by A2,AFINSQ_1:54;
k1<k1+1 by NAT_1:13;
then k1-1<k1+1-1 by XREAL_1:9;
then
A4: k1-'1<k1 by A1,XREAL_1:233;
per cases;
suppose
A5: k1<=k2;
A6: k2<k2+1 by XREAL_1:29;
then
A7: k2+1-'k1 =k2+1-k1 by A5,XREAL_1:233,XXREAL_0:2
.=k2-(k1-1);
A8: k11-'1=k11-1 by A1,XREAL_1:233;
k11-1<k11 by XREAL_1:44;
then k11-1<k21 by A5,XXREAL_0:2;
then
A9: len (mid(p,k1,k2))=k21-(k11-1) by A3,A8,Th7;
then
A10: len (mid(p,k1,k2))=k21+1-k11;
k1-'1<k2 by A4,A5,XXREAL_0:2;
then k1-'1<len p by A2,XXREAL_0:2;
then len (p/^(k1-'1))=len p -(k1-'1) by Th7;
then
A11: k2+1-'k1<= len (p/^(k1-'1)) by A2,A8,A7,XREAL_1:9;
A12: i<len (mid(p,k1,k2)) implies (mid(p,k1,k2
)).i=((p/^(k1-'1))|(k2+1-'k1)).i
proof
assume
A13: i<len (mid(p,k1,k2));
then
A14: (i+(k11-'1)) in Segm k21 by NAT_1:44,A8,A9,XREAL_1:20;
i+(k1-'1)<k21-(k11-1)+(k1-'1) by A9,A13,XREAL_1:6;
then
A15: i+(k1-'1)<len p by A2,A8,XXREAL_0:2;
i+(k11-1)<k21 by A9,A13,XREAL_1:20;
then
A16: ((p|k21)/^(k11-'1)).i=(p|k21).(i+(k11-'1)) by A3,A8,Th8;
i in k2+1-'k1 by A7,A9,A13,AFINSQ_1:86;
then ((p/^(k1-'1))|(k2+1-'k1)).i=(p/^(k1-'1)).i by A11,AFINSQ_1:53
.=p.(i+(k1-'1)) by A15,Th8;
hence thesis by A2,A16,A14,AFINSQ_1:53;
end;
len ((p/^(k1-'1))|(k2+1-'k1))=k2+1-'k1 by A11,AFINSQ_1:54;
then len (mid(p,k1,k2))= len ((p/^(k1-'1))|(k2+1-'k1)) by A5,A6,A10,
XREAL_1:233,XXREAL_0:2;
hence thesis by A12,AFINSQ_1:9;
end;
suppose
A17: k1>k2;
then k2+1<=k1 by NAT_1:13;
then
A18: k2+1-'k1=0 by NAT_2:8;
mid(p,k1,k2)={} by A17,Th14;
hence thesis by A18;
end;
end;
theorem Th16: :: FINSEQ_8:5
mid(p,1,k)=p|k
proof
1-'1=0 by XREAL_1:232;
hence thesis by Th10;
end;
theorem :: FINSEQ_8:6
len p<=k implies mid(p,1,k)=p
proof
assume
A1: len p<=k;
thus mid(p,1,k)=p|k by Th16
.=p by A1,AFINSQ_1:52;
end;
theorem :: FINSEQ_8:8
mid(p,0,k)=mid(p,1,k)
proof
A1: 0-'1=0 by NAT_2:8;
mid(p,1,k) = (p|k) by Th16;
hence thesis by A1,Th10;
end;
theorem :: FINSEQ_8:9
mid(p^q,len p+1,len p+len q)=q
proof
A1: (len p +1)-'1=len p by NAT_D:34;
len (p^q)=len p + len q by AFINSQ_1:17;
hence thesis by A1,Th12;
end;
registration
let D be set, f be XFinSequence of D, k1,k2;
cluster mid(f,k1,k2) -> D-valued;
coherence;
end;
begin :: Selected Subsequences
definition
let X be finite natural-membered set;
func Sgm0 X -> XFinSequence of NAT means :Def4:
rng it = X & for l,m,k1,k2 being Nat st
l < m & m < len it & k1=it.l & k2=it.m holds k1 < k2;
existence
proof
defpred P[Nat] means for X being set st X c= Segm $1
ex p being XFinSequence of
NAT st rng p = X & for l,m,k1,k2 being Nat st ( l < m & m < len p & k1=p.l & k2
=p.m) holds k1 < k2;
A1: ex k being Nat st X c= Segm k by Th2;
A2: for k being Nat st P[k] holds P[k+1]
proof
let k be Nat such that
A3: for X being set st X c= Segm k
ex p being XFinSequence of NAT
st rng p = X & for l,m,k1,k2 be Nat st l < m & m < len p & k1=p.l & k2=p.m
holds k1 < k2;
let X be set;
assume
A4: X c= Segm(k+1);
now
set Y=X\{k};
assume not X c= k;
then consider x being object such that
A5: x in X and
A6: not x in Segm k;
reconsider n=x as Element of NAT by A4,A5,Th1;
n<k+1 by A4,A5,NAT_1:44;
then
A7: n<=k by NAT_1:13;
not n<k by A6,NAT_1:44;
then
A8: n=k by A7,XXREAL_0:1;
A9: Y c= Segm k
proof
let x be object;
assume
A10: x in Y; then
reconsider m=x as Element of NAT by A4,Th1;
not x in {k} by A10,XBOOLE_0:def 5;
then
A12: m<>k by TARSKI:def 1;
m<k+1 by A4,A10,NAT_1:44;
then m<=k by NAT_1:13;
then m <k by A12,XXREAL_0:1;
hence thesis by NAT_1:44;
end;
then consider p being XFinSequence of NAT such that
A13: rng p = Y and
A14: for l,m,k1,k2 be Nat st l < m & m < len p & k1=p.l & k2=p.m
holds k1 < k2 by A3;
reconsider k as Element of NAT by ORDINAL1:def 12;
consider q being XFinSequence of NAT such that
A15: q=p^<% k %>;
A16: for l,m,k1,k2 be Nat st l < m & m < len q & k1=q.l & k2=q.m holds
k1 < k2
proof
let l,m,k1,k2 be Nat;
assume that
A17: l < m and
A18: m < len q and
A19: k1=q.l and
A20: k2=q.m;
m+1<=len q by A18,NAT_1:13;
then
A21: m<=len q -1 by XREAL_1:19;
then l < len (p^<% k %>) -1 by A15,A17,XXREAL_0:2;
then l < len p + len <% k %> -1 by AFINSQ_1:17;
then l < len p + 1 -1 by AFINSQ_1:34;
then
A22: l in dom p by AFINSQ_1:86;
A23: m<=len q-'1 by A21,XREAL_0:def 2;
A24: now
A25: k1 = p.l by A15,A19,A22,AFINSQ_1:def 3;
assume m <> len q -'1;
then m < len (p^<% k %>) -'1 by A15,A23,XXREAL_0:1;
then m < len p + len <% k %> -'1 by AFINSQ_1:17;
then m < len p + 1 -'1 by AFINSQ_1:34;
then
A26: m < len p by NAT_D:34;
then m in dom p by AFINSQ_1:86;
then k2 = p.m by A15,A20,AFINSQ_1:def 3;
hence thesis by A14,A17,A26,A25;
end;
now
assume m=len q -'1;
then
A27: q.m = (p^<% k %>).((len p + len <% k %>)-'1) by A15,AFINSQ_1:17
.= (p^<% k %>).((len p + 1)-'1) by AFINSQ_1:34
.=(p^<% k %>).(len p) by NAT_D:34
.= k by AFINSQ_1:36;
k1 = p.l by A15,A19,A22,AFINSQ_1:def 3;
then k1 in Y by A13,A22,FUNCT_1:def 3;
hence thesis by A9,A20,A27,NAT_1:44;
end;
hence thesis by A24;
end;
A28: {k} c= X by A5,A8,ZFMISC_1:31;
rng q = rng p \/ rng <% k %> by A15,AFINSQ_1:26
.= Y \/ {k} by A13,AFINSQ_1:33
.= X \/ {k} by XBOOLE_1:39
.= X by A28,XBOOLE_1:12;
hence thesis by A16;
end;
hence thesis by A3;
end;
A29: P[0]
proof
let X be set;
assume
A30: X c= Segm 0;
take <%>(NAT);
thus rng <%>(NAT) = X by A30;
thus thesis;
end;
for k2 being Nat holds P[k2] from NAT_1:sch 2(A29,A2);
hence thesis by A1;
end;
uniqueness
proof
defpred S[XFinSequence] means for X st ex k being Nat st X c= k holds ($1
is XFinSequence of NAT & rng $1 = X & for l,m,k1,k2 being Nat st ( l < m & m <
len $1 & k1=$1.l & k2=$1.m) holds k1 < k2) implies for q being XFinSequence of
NAT st rng q = X & for l,m,k1,k2 being Nat st ( l < m & m < len q & k1=q.l & k2
=q.m) holds k1 < k2 holds q=$1;
let p,q be XFinSequence of NAT such that
A31: rng p = X and
A32: for l,m,k1,k2 being Nat st l < m & m < len p & k1=p.l & k2=p.m
holds k1 < k2 and
A33: rng q = X and
A34: for l,m,k1,k2 being Nat st l < m & m < len q & k1=q.l & k2=q.m
holds k1 < k2;
A35: for p being XFinSequence,x be object st S[p] holds S[p^<% x %>]
proof
let p be XFinSequence,x be object;
assume
A36: S[p];
let X be set;
given k being Nat such that
A37: X c= k;
assume that
A38: p^<% x %> is XFinSequence of NAT and
A39: rng (p^<% x %>) = X and
A40: for l,m,k1,k2 being Nat st l < m & m < len(p^<%x%>) & k1=(p^<%
x %>).l & k2=(p^<% x %>).m holds k1 < k2;
let q be XFinSequence of NAT;
assume that
A41: rng q = X and
A42: for l,m,k1,k2 being Nat st l < m & m < len q & k1=q.l & k2=q.m
holds k1 < k2;
deffunc F(Nat) = q.$1;
len q <> 0
proof
assume len q = 0;
then p^<%x%> = {} by A39,A41,AFINSQ_1:15,RELAT_1:38;
then 0 = len (p^<%x%>)
.= len p + len <%x%> by AFINSQ_1:17
.= 1 + len p by AFINSQ_1:34;
hence contradiction;
end;
then consider n be Nat such that
A43: len q = n+1 by NAT_1:6;
A44: ex m being Nat st m=x & for l being Nat st l in X & l <> x holds l
< m
proof
<%x%> is XFinSequence of NAT by A38,AFINSQ_1:31;
then rng <%x%> c= NAT by RELAT_1:def 19;
then {x} c= NAT by AFINSQ_1:33;
then reconsider m=x as Element of NAT by ZFMISC_1:31;
take m;
thus m=x;
thus for l being Nat st l in X & l <> x holds l < m
proof
len <%x%>=1 by AFINSQ_1:34;
then
A45: m= (p^<%x%>).(len p + len <%x%> -1) by AFINSQ_1:36
.= (p^<%x%>).(len(p^<%x%>) -1) by AFINSQ_1:17;
len(p^<%x %>)<len(p^<%x %>) +1 by XREAL_1:29;
then
A46: len(p^<%x%>)-1 < len(p^<%x %>) by XREAL_1:19;
let l be Nat;
assume that
A47: l in X and
A48: l <> x;
consider y being object such that
A49: y in dom (p^<%x%>) and
A50: l=(p^<%x%>).y by A39,A47,FUNCT_1:def 3;
reconsider k=y as Element of NAT by A49;
k < len (p^<%x%>) by A49,AFINSQ_1:86;
then k < len p + len <%x%> by AFINSQ_1:17;
then k < len p + 1 by AFINSQ_1:34;
then
A51: k<=len p by NAT_1:13;
k <> len p by A48,A50,AFINSQ_1:36;
then k< len p +1-1 by A51,XXREAL_0:1;
then k < len p + len <%x%>-1 by AFINSQ_1:34;
then
A52: k < len(p^<%x%>)-1 by AFINSQ_1:17;
then len(p^<%x %>) -'1=len(p^<%x %>)-1 by XREAL_0:def 2;
hence thesis by A40,A50,A52,A46,A45;
end;
end;
then reconsider m = x as Nat;
A53: not x in rng p
proof
len p + 1 = len p + len <%x%> by AFINSQ_1:34
.= len (p^<%x%>) by AFINSQ_1:17;
then
A54: len p < len (p^<%x%>) by XREAL_1:29;
A55: m = (p^<%x%>).(len p ) by AFINSQ_1:36;
assume x in rng p;
then consider y being object such that
A56: y in dom p and
A57: x=p.y by FUNCT_1:def 3;
reconsider y as Element of NAT by A56;
A58: y < len p by A56,AFINSQ_1:86;
m = (p^<%x%>).y by A56,A57,AFINSQ_1:def 3;
hence contradiction by A40,A58,A54,A55;
end;
A59: for z being object holds z in rng p \/ {x} \ {x} iff z in rng p
proof
let z be object;
thus z in rng p \/ {x} \ {x} implies z in rng p
proof
assume
A60: z in rng p \/ {x} \ {x};
then not z in {x} by XBOOLE_0:def 5;
hence thesis by A60,XBOOLE_0:def 3;
end;
assume
A61: z in rng p;
then
A62: z in rng p \/ {x} by XBOOLE_0:def 3;
not z in {x} by A53,A61,TARSKI:def 1;
hence thesis by A62,XBOOLE_0:def 5;
end;
deffunc Q(set) =q.$1;
consider q9 being XFinSequence such that
A63: len q9 = n and
A64: for m be Nat st m in n holds q9.m = Q(m)
from AFINSQ_1:sch 2;
now
let x be object;
assume x in rng q9;
then consider y being object such that
A65: y in dom q9 and
A66: x=q9.y by FUNCT_1:def 3;
reconsider y as Element of NAT by A65;
q.y in NAT;
hence x in NAT by A63,A64,A65,A66;
end;
then rng q9 c= NAT;
then reconsider f=q9 as XFinSequence of NAT by RELAT_1:def 19;
A67: p is XFinSequence of NAT by A38,AFINSQ_1:31;
A68: for m be Nat st m in dom <%x%> holds q.(len q9 + m)
= <%x%>.m
proof
let m be Nat;
assume m in dom <%x%>;
then m in len <%x%>;
then
A69: m in 1 by AFINSQ_1:34;
Segm(0+1)= Segm 0 \/ {0} by AFINSQ_1:2;
then
A70: m=0 by A69,TARSKI:def 1;
q.(len q9 + m) = x
proof
x in {x} by TARSKI:def 1;
then x in rng <%x%> by AFINSQ_1:33;
then x in rng p \/ rng <%x%> by XBOOLE_0:def 3;
then x in rng q by A39,A41,AFINSQ_1:26;
then consider y being object such that
A71: y in dom q and
A72: x=q.y by FUNCT_1:def 3;
reconsider y as Element of NAT by A71;
y+1<=len q by NAT_1:13,A71,AFINSQ_1:86;
then
A73: y <= len q -1 by XREAL_1:19;
len q<len q+1 by XREAL_1:29;
then len q -1 in dom q by A43,AFINSQ_1:86,XREAL_1:19;
then
A74: q.(len q -1) in X by A41,FUNCT_1:def 3;
len q<len q+1 by XREAL_1:29;
then
A75: y <len q -1 & len q -1 < len q or y=len q-1 by A73,XREAL_1:19
,XXREAL_0:1;
set k = q.(len q-1);
consider d being Nat such that
A76: d=x and
A77: for l being Nat st l in X & l<>x holds l<d by A44;
assume q.(len q9 + m) <> x;
then k < d by A43,A63,A70,A77,A74;
hence contradiction by A42,A43,A76,A72,A75;
end;
hence thesis by A70;
end;
A78: dom q = (len q9 + len <%x%>) by A43,A63,AFINSQ_1:34;
then
A79: q9^<%x%> = q by A63,A64,A68,AFINSQ_1:def 3;
A80: not x in rng f
proof
len f + 1 = len f + len <%x%> by AFINSQ_1:34
.= len (f^<%x%>) by AFINSQ_1:17;
then
A81: len f < len (f^<%x%>) by XREAL_1:29;
A82: m = q.(len f) by A79,AFINSQ_1:36;
assume x in rng f;
then consider y being object such that
A83: y in dom f and
A84: x=f.y by FUNCT_1:def 3;
reconsider y as Element of NAT by A83;
A85: y < len f by A83,AFINSQ_1:86;
m = q.y by A63,A64,A83,A84;
hence contradiction by A42,A79,A85,A81,A82;
end;
A86: for z being object holds z in rng f \/ {x} \ {x} iff z in rng f
proof
let z be object;
thus z in rng f \/ {x} \ {x} implies z in rng f
proof
assume
A87: z in rng f \/ {x} \ {x};
then not z in {x} by XBOOLE_0:def 5;
hence thesis by A87,XBOOLE_0:def 3;
end;
assume
A88: z in rng f;
then
A89: z in rng f \/ {x} by XBOOLE_0:def 3;
not z in {x} by A80,A88,TARSKI:def 1;
hence thesis by A89,XBOOLE_0:def 5;
end;
X = rng p \/ rng <%x%> by A39,AFINSQ_1:26
.= rng p \/ {x} by AFINSQ_1:33;
then
A90: rng p = X\{x} by A59,TARSKI:2;
A91: for l,m,k1,k2 being Nat st l < m & m < len p & k1=p.l & k2=p.m
holds k1 < k2
proof
let l,m,k1,k2 be Nat;
assume that
A92: l < m and
A93: m < len p and
A94: k1=p.l and
A95: k2=p.m;
l < len p by A92,A93,XXREAL_0:2;
then l in dom p by AFINSQ_1:86;
then
A96: k1 = (p^<%x%>).l by A94,AFINSQ_1:def 3;
len p < len p + 1 by XREAL_1:29;
then m < len p + 1 by A93,XXREAL_0:2;
then m < len p + len <%x%> by AFINSQ_1:34;
then
A97: m < len (p^<%x%>) by AFINSQ_1:17;
m in dom p by A93,AFINSQ_1:86;
then k2 = (p^<%x%>).m by A95,AFINSQ_1:def 3;
hence thesis by A40,A92,A96,A97;
end;
A98: for l,m,k1,k2 being Nat st l < m & m < len f & k1=f.l & k2=f.m
holds k1 < k2
proof
let l,m,k1,k2 be Nat;
assume that
A99: l < m and
A100: m < len f and
A101: k1=f.l and
A102: k2=f.m;
A103: k2 = q.m by A64,A102,A63,A100,AFINSQ_1:86;
l < n by A63,A99,A100,XXREAL_0:2;
then l in Segm n by NAT_1:44;
then
A104: k1 = q.l by A64,A101;
m < len q by A43,A63,A100,NAT_1:13;
hence thesis by A42,A99,A104,A103;
end;
X = rng f \/ rng <%x%> by A41,A79,AFINSQ_1:26
.= rng f \/ {x} by AFINSQ_1:33;
then
A105: rng f = X\{x} by A86,TARSKI:2;
ex m being Nat st X\{x} c= m by A37,XBOOLE_1:1;
then q9 = p by A36,A91,A67,A90,A98,A105;
hence thesis by A63,A64,A78,A68,AFINSQ_1:def 3;
end;
A106: S[{}];
A107: for p being XFinSequence holds S[p] from AFINSQ_1:sch 3(A106,A35);
ex k being Nat st X c= Segm k by Th2;
hence thesis by A31,A32,A33,A34,A107;
end;
end;
registration
let A be finite natural-membered set;
cluster Sgm0 A -> one-to-one;
coherence
proof
for x,y being object st x in dom(Sgm0 A) & y in dom(Sgm0 A) & (Sgm0(A)).x
= (Sgm0(A)).y & x<>y holds contradiction
proof
let x,y be object;
assume that
A1: x in dom(Sgm0 A) and
A2: y in dom(Sgm0 A) and
A3: (Sgm0(A)).x = (Sgm0(A)).y and
A4: x <> y;
reconsider i = x, j = y as Element of NAT by A1,A2;
per cases by A4,XXREAL_0:1;
suppose
A5: i < j;
j < len(Sgm0 A) by A2,AFINSQ_1:86;
hence contradiction by A3,A5,Def4;
end;
suppose
A6: j < i;
i < len(Sgm0 A) by A1,AFINSQ_1:86;
hence contradiction by A3,A6,Def4;
end;
end;
hence thesis;
end;
end;
theorem Th20: :: FINSEQ_3:44
for A being finite natural-membered set holds len(Sgm0 A) = card A
proof
let A be finite natural-membered set;
rng(Sgm0 A) = A by Def4;
then (len(Sgm0 A)),A are_equipotent by WELLORD2:def 4;
then card A = card((len(Sgm0 A))) by CARD_1:5;
hence thesis;
end;
theorem Th21:
for X,Y being finite natural-membered set st X c= Y & X <> {}
holds (Sgm0 Y).0 <= (Sgm0 X).0
proof
let X,Y be finite natural-membered set;
assume that
A1: X c= Y and
A2: X <> {};
reconsider X0=X as finite set;
0 <> card X0 by A2;
then 0 < len (Sgm0 X) by Th20;
then
A3: 0 in dom (Sgm0 X) by AFINSQ_1:86;
A4: rng (Sgm0 Y)=Y by Def4;
rng (Sgm0 X)=X by Def4;
then (Sgm0 X).0 in X by A3,FUNCT_1:def 3;
then consider x being object such that
A5: x in dom (Sgm0 Y) and
A6: (Sgm0 Y).x=(Sgm0 X).0 by A1,A4,FUNCT_1:def 3;
reconsider nx=x as Nat by A5;
A7: nx <len (Sgm0 Y) by A5,AFINSQ_1:86;
now
per cases;
case
0<>nx;
hence thesis by A6,A7,Def4;
end;
case
0=nx;
hence thesis by A6;
end;
end;
hence thesis;
end;
theorem Th22:
(Sgm0 {n}).0=n
proof
len (Sgm0 {n})=card {n} by Th20;
then 0 in dom (Sgm0 {n}) by AFINSQ_1:86;
then
A1: (Sgm0 {n}).0 in rng (Sgm0 {n}) by FUNCT_1:def 3;
rng (Sgm0 {n})={n} by Def4;
hence thesis by A1,TARSKI:def 1;
end;
definition
let B1,B2 be set;
pred B1 <N< B2 means
for n,m being Nat st n in B1 & m in B2 holds n<m;
end;
definition
let B1,B2 be set;
pred B1 <N= B2 means
for n,m st n in B1 & m in B2 holds n <= m;
end;
theorem Th23:
for B1,B2 being set st B1 <N< B2 holds B1/\B2/\NAT={}
proof
let B1,B2 be set;
assume
A1: B1 <N< B2;
now
set x =the Element of B1/\B2/\NAT;
reconsider nx=x as Nat;
assume B1/\ B2/\NAT <> {};
then
A2: x in B1/\B2 by XBOOLE_0:def 4;
then
A3: nx in B2 by XBOOLE_0:def 4;
nx in B1 by A2,XBOOLE_0:def 4;
hence contradiction by A1,A3;
end;
hence thesis;
end;
theorem
for B1,B2 being finite natural-membered set st B1 <N< B2 holds
B1 misses B2
proof
let B1,B2 be finite natural-membered set;
assume
A1: B1 <N< B2;
now
set x = the Element of B1 /\ B2;
assume a2: B1 meets B2; then
A3: x in B2 by XBOOLE_0:def 4;
x in B1 by a2,XBOOLE_0:def 4;
hence contradiction by A1,A3;
end;
hence thesis;
end;
theorem Th25:
for A,B1,B2 being set st B1 <N< B2 holds A/\ B1 <N< A/\B2
proof
let A,B1,B2 be set;
assume
A1: B1 <N< B2;
for n,m st n in A/\B1 & m in A/\B2 holds n<m
proof
let n,m;
assume that
A2: n in A/\B1 and
A3: m in A/\B2;
A4: m in B2 by A3,XBOOLE_0:def 4;
n in B1 by A2,XBOOLE_0:def 4;
hence thesis by A1,A4;
end;
hence thesis;
end;
theorem
for X,Y being finite natural-membered set st Y <> {} & (ex x being set
st x in X & {x} <N= Y) holds (Sgm0 X).0 <= (Sgm0 Y).0
proof
let X,Y be finite natural-membered set;
assume that
A1: Y <> {} and
A2: ex x being set st x in X & {x} <N= Y;
consider x being set such that
A3: x in X and
A4: {x} <N= Y by A2;
0 <> card Y by A1;
then 0 < len (Sgm0 Y) by Th20;
then
A5: 0 in dom (Sgm0 Y) by AFINSQ_1:86;
rng (Sgm0 Y)=Y by Def4;
then
A6: (Sgm0 Y).0 in Y by A5,FUNCT_1:def 3;
reconsider x0=x as Element of NAT by A3,ORDINAL1:def 12;
set nx=x0;
nx in {x0} by TARSKI:def 1;
then
A7: nx<=(Sgm0 Y).0 by A4,A6;
{x0} c= X
by A3,TARSKI:def 1;
then
A8: (Sgm0 X).0 <= (Sgm0 {x0}).0 by Th21;
(Sgm0 {x0}).0=nx by Th22;
hence thesis by A8,A7,XXREAL_0:2;
end;
theorem Th27:
for X0,Y0 being finite natural-membered set st
X0 <N< Y0 & i < (card X0) holds
rng((Sgm0 (X0\/Y0))|(card X0))=X0 &
((Sgm0 (X0\/Y0))|(card X0)).i = (Sgm0 (X0 \/ Y0)).i
proof
let X0,Y0 be finite natural-membered set;
assume that
A1: X0 <N< Y0 and
A2: i < card X0;
A3: i in Segm card X0 by A2,NAT_1:44;
set f=(Sgm0 (X0\/Y0))|(card X0);
set f0=(Sgm0 (X0\/Y0));
set Z={ v where v is Element of X0 \/Y0: ex k2 being Nat st v=f.k2 & k2 in
card X0};
A4: X0 c= X0 \/ Y0 by XBOOLE_1:7;
A5: len (Sgm0 (X0\/Y0))=card (X0\/Y0) by Th20;
then
A6: len f=card X0 by A4,AFINSQ_1:54,NAT_1:43;
A7: Z c= rng f
proof
let y being object;
assume y in Z;
then
ex v0 being Element of X0 \/Y0 st y=v0 & ex k2 being Nat st v0=f.k2
& k2 in card X0;
hence thesis by A6,FUNCT_1:def 3;
end;
then reconsider Z0=Z as finite set;
f is one-to-one by FUNCT_1:52;
then
A8: dom f,(f.:(dom f)) are_equipotent by CARD_1:33;
A9: f.:(dom f)=rng f by RELAT_1:113;
A10: len f0=card (X0 \/Y0) by Th20;
A11: rng f0=X0 \/Y0 by Def4;
A12: rng f c= Z
proof
let y being object;
assume
A13: y in rng f;
then consider x being object such that
A14: x in dom f and
A15: y=f.x by FUNCT_1:def 3;
reconsider y0=y as Element of (X0 \/Y0) by Def4,A13;
ex k2 being Nat st y0=f.k2 & k2 in card X0 by A14,A15;
hence thesis;
end;
then rng f=Z by A7;
then card Z=card (len f) by A8,A9,CARD_1:5;
then
A16: card Z= card X0 by A5,A4,AFINSQ_1:54,NAT_1:43;
A17: X0 \/ Y0 <> {} by A2,CARD_1:27,XBOOLE_1:15;
A18: now
assume that
A19: not Z c= X0 and
A20: not X0 c= Z;
consider v1 being object such that
A21: v1 in Z and
A22: not v1 in X0 by A19;
consider v10 being Element of X0 \/Y0 such that
A23: v1=v10 and
A24: ex k2 being Nat st v10=f.k2 & k2 in card X0 by A21;
A25: v10 in Y0 by A17,A22,A23,XBOOLE_0:def 3;
reconsider nv10 =v10 as Nat;
consider v2 being object such that
A26: v2 in X0 and
A27: not v2 in Z by A20;
X0 c= X0\/Y0 by XBOOLE_1:7;
then consider x2 being object such that
A28: x2 in dom f0 and
A29: v2=f0.x2 by A11,A26,FUNCT_1:def 3;
reconsider x20=x2 as Nat by A28;
reconsider nv2 =v2 as Nat by A29;
A30: x20<len f0 by A28,AFINSQ_1:86;
A31: now
assume x20 < card X0;
then
A32: x20 in Segm card X0 by NAT_1:44;
card X0 <= card (X0 \/Y0) by NAT_1:43,XBOOLE_1:7;
then card X0 <= len f0 by Th20;
then f.x20=f0.x20 by A32,AFINSQ_1:53;
hence contradiction by A4,A26,A27,A29,A32;
end;
consider k20 being Nat such that
A33: v10=f.k20 and
A34: k20 in card X0 by A24;
card X0 <= len f0 by A10,NAT_1:43,XBOOLE_1:7;
then
A35: f.k20=f0.k20 by A34,AFINSQ_1:53;
k20<len f by A6,A34,AFINSQ_1:86;
then k20<x20 by A6,A31,XXREAL_0:2;
then nv10<nv2 by A33,A29,A35,A30,Def4;
hence contradiction by A1,A26,A25;
end;
A36: now
per cases by A18;
case
Z0 c= X0;
hence Z0=X0 by A16,CARD_2:102;
end;
case
X0 c=Z0;
hence Z0=X0 by A16,CARD_2:102;
end;
end;
card X0 <= len f0 by A5,NAT_1:43,XBOOLE_1:7;
hence thesis by A12,A7,A36,A3,AFINSQ_1:53;
end;
theorem
for X,Y being finite natural-membered set st
X <N< Y & i in card (X) holds (Sgm0 (X\/Y)).i in X
proof
let X,Y be finite natural-membered set;
assume that
A1: X <N< Y and
A2: i in card (X);
set f=(Sgm0 (X\/Y))|(card X);
set f0=(Sgm0 (X\/Y));
set Z={ v where v is Element of X \/Y: ex k2 being Nat st v=f.k2 & k2 in
card X};
A3: rng f0=X \/Y by Def4;
len (Sgm0 (X\/Y))=card (X\/Y) by Th20;
then
A4: card X <= len (Sgm0 (X\/Y)) by NAT_1:43,XBOOLE_1:7;
then
A5: len f=card X by AFINSQ_1:54;
A6: Z c= rng f
proof
let y being object;
assume y in Z;
then
ex v0 being Element of X \/Y st y=v0 & ex k2 being Nat st v0=f.k2 &
k2 in card X;
hence thesis by A5,FUNCT_1:def 3;
end;
then reconsider Z0=Z as finite set;
rng f c= Z
proof
let y being object;
assume
A7: y in rng f;
then consider x being object such that
A8: x in dom f and
A9: y=f.x by FUNCT_1:def 3;
reconsider y0=y as Element of X\/Y by A7,Def4;
ex k2 being Nat st y0=f.k2 & k2 in card X by A8,A9;
hence thesis;
end;
then
A10: rng f=Z by A6;
A11: X \/ Y <> {} by A2,CARD_1:27,XBOOLE_1:15;
A12: now
assume that
A13: not Z c= X and
A14: not X c= Z;
consider v1 being object such that
A15: v1 in Z and
A16: not v1 in X by A13;
consider v10 being Element of X \/Y such that
A17: v1=v10 and
A18: ex k2 being Nat st v10=f.k2 & k2 in card X by A15;
A19: v10 in Y by A11,A16,A17,XBOOLE_0:def 3;
reconsider nv10 =v10 as Nat;
consider v2 being object such that
A20: v2 in X and
A21: not v2 in Z by A14;
X c= X\/Y by XBOOLE_1:7;
then consider x2 being object such that
A22: x2 in dom f0 and
A23: v2=f0.x2 by A3,A20,FUNCT_1:def 3;
reconsider x20=x2 as Nat by A22;
now
assume x20 < card X;
then
A24: x20 in Segm card X by NAT_1:44;
card X <= card (X \/Y) by NAT_1:43,XBOOLE_1:7;
then card X <= len f0 by Th20;
then f.x20=f0.x20 by A24,AFINSQ_1:53;
hence contradiction by A5,A10,A21,A23,A24,FUNCT_1:def 3;
end;
then
A25: len f <=x20 by A4,AFINSQ_1:54;
consider k20 being Nat such that
A26: v10=f.k20 and
A27: k20 in card X by A18;
A28: f.k20=f0.k20 by A4,A27,AFINSQ_1:53;
reconsider nv2 =v2 as Nat by A23;
k20<len f by A5,A27,AFINSQ_1:86;
then
A29: k20<x20 by A25,XXREAL_0:2;
x20<len f0 by A22,AFINSQ_1:86;
then nv10<nv2 by A26,A23,A29,A28,Def4;
hence contradiction by A1,A20,A19;
end;
f is one-to-one by FUNCT_1:52;
then
A30: dom f,(f.:(dom f)) are_equipotent by CARD_1:33;
f.:(dom f)=rng f by RELAT_1:113;
then
A31: card Z=card (len f)by A10,A30,CARD_1:5;
then
A32: card Z=card X by A4,AFINSQ_1:54;
A33: now
per cases by A12;
case
Z0 c= X;
hence Z0=X by A4,A31,CARD_2:102,AFINSQ_1:54;
end;
case
X c=Z0;
hence Z0=X by A32,CARD_2:102;
end;
end;
f.i=f0.i by A2,A4,AFINSQ_1:53;
hence thesis by A2,A5,A10,A33,FUNCT_1:def 3;
end;
theorem Th29:
for X,Y being finite natural-membered set st X <N<
Y & i< len (Sgm0 X) holds (Sgm0 X).i = (Sgm0 (X \/ Y)).i
proof
let X,Y be finite natural-membered set;
assume that
A1: X <N< Y and
A2: i< len (Sgm0 X);
reconsider h=(Sgm0 (X \/ Y))|(len (Sgm0 X)) as XFinSequence of NAT;
A3: len (Sgm0 X)=card X by Th20;
then
A4: h.i=(Sgm0 (X \/ Y)).i by A1,A2,Th27;
Segm card X c= Segm card (X \/ Y) by CARD_1:11,XBOOLE_1:7;
then
A5: card X <= card (X \/ Y) by NAT_1:39;
then card X <= len (Sgm0 (X \/ Y)) by Th20;
then
A6: len (Sgm0 X) <= len (Sgm0 (X \/ Y)) by Th20;
A7: len (Sgm0 (X \/ Y))=card (X \/Y) by Th20;
then
A8: len h=len (Sgm0 X) by A5,A3,AFINSQ_1:54;
A9: len h=card X by A5,A3,A7,AFINSQ_1:54;
A10: for l,m,k1,k2 being Nat st l < m & m < len h & k1=h.l & k2=h.m holds k1
< k2
proof
let l,m,k1,k2 be Nat;
assume that
A11: l < m and
A12: m < len h and
A13: k1=h.l and
A14: k2=h.m;
A15: m<len (Sgm0 (X \/ Y)) by A8,A6,A12,XXREAL_0:2;
l < card X by A9,A11,A12,XXREAL_0:2;
then
A16: h.l= (Sgm0 (X \/ Y)).l by A1,A3,Th27;
h.m=(Sgm0 (X \/ Y)).m by A1,A3,A8,A12,Th27;
hence thesis by A11,A13,A14,A16,A15,Def4;
end;
rng h=X by A1,A2,A3,Th27;
hence thesis by A10,A4,Def4;
end;
theorem Th30:
for X0,Y0 being finite natural-membered set st X0
<N< Y0 & i < (card Y0) holds rng((Sgm0 (X0\/Y0))/^(card X0))=Y0 & ((Sgm0 (X0\/
Y0))/^(card X0)).i = (Sgm0 (X0 \/ Y0)).(i+(card X0))
proof
let X0,Y0 be finite natural-membered set;
assume that
A1: X0 <N< Y0 and
A2: i < card Y0;
consider n being Nat such that
A3: Y0 c= Segm n by Th2;
X0/\Y0=(X0/\(Y0/\NAT)) by A3,XBOOLE_1:1,28
.= (X0/\Y0/\NAT) by XBOOLE_1:16
.={} by A1,Th23;
then
A4: X0 misses Y0;
set f=(Sgm0 (X0\/Y0))/^(card X0);
set f0=(Sgm0 (X0\/Y0));
set Z={ v where v is Element of X0 \/Y0: ex k2 being Nat st v=f.k2 & k2 in
card Y0};
A5: dom f,(f.:(dom f)) are_equipotent by CARD_1:33;
A6: rng f0=X0 \/Y0 by Def4;
A7: len (Sgm0 (X0\/Y0))=card (X0\/Y0) by Th20;
then
A8: card X0 <= len (Sgm0 (X0\/Y0)) by NAT_1:43,XBOOLE_1:7;
A9: len f=len f0 -' (card X0) by Def2
.=len f0 - (card X0) by A8,XREAL_1:233;
A10: (X0\/Y0)\X0=(X0\X0)\/(Y0\X0) by XBOOLE_1:42
.={} \/ (Y0\X0) by XBOOLE_1:37
.=Y0 by A4,XBOOLE_1:83;
then
A11: len f=card Y0 by A7,A9,CARD_2:44,XBOOLE_1:7;
A12: Z c= rng f
proof
let y being object;
assume y in Z;
then
ex v0 being Element of X0 \/Y0 st y=v0 & ex k2 being Nat st v0=f.k2
& k2 in card Y0;
hence thesis by A11,FUNCT_1:def 3;
end;
then reconsider Z0=Z as finite set;
A13: f.:(dom f)=rng f by RELAT_1:113;
A14: rng f c= rng (Sgm0 (X0\/Y0)) by Th9;
A15: rng f c= Z
proof
let y be object;
assume
A16: y in rng f;
then consider x being object such that
A17: x in dom f and
A18: y=f.x by FUNCT_1:def 3;
reconsider y0=y as Element of X0\/Y0 by A14,A16,Def4;
ex k2 being Nat st y0=f.(k2) & k2 in card Y0 by A11,A17,A18;
hence thesis;
end;
then rng f=Z by A12;
then card Z=card (len f) by A5,A13,CARD_1:5;
then
A19: card Z=card Y0 by A7,A9,A10,CARD_2:44,XBOOLE_1:7;
len f0=card (X0 \/Y0) by Th20;
then
A20: len f0=(card X0)+(card Y0) by A4,CARD_2:40;
A21: X0 \/ Y0 <> {} by A2,CARD_1:27,XBOOLE_1:15;
A22: now
assume that
A23: not Z c= Y0 and
A24: not Y0 c= Z;
consider v2 being object such that
A25: v2 in Y0 and
A26: not v2 in Z by A24;
Y0 c= X0\/Y0 by XBOOLE_1:7;
then consider x2 being object such that
A27: x2 in dom f0 and
A28: v2=f0.x2 by A6,A25,FUNCT_1:def 3;
consider v1 being object such that
A29: v1 in Z and
A30: not v1 in Y0 by A23;
consider v10 being Element of X0 \/Y0 such that
A31: v1=v10 and
A32: ex k2 being Nat st v10=f.k2 & k2 in Segm card Y0 by A29;
A33: v10 in X0 by A21,A30,A31,XBOOLE_0:def 3;
reconsider nv10 =v10 as Nat;
reconsider nv2 =v2 as Nat by A28;
consider k20 being Nat such that
A34: v10=f.k20 and
A35: k20 in Segm card Y0 by A32;
A36: k20+card X0<len f0 by A20,XREAL_1:6,A35,NAT_1:44;
then
A37: f.k20=f0.(k20+card X0) by Th8;
reconsider x20=x2 as Nat by A27;
set nx20=x20 -' (card X0);
A38: v2 in X0 \/Y0 by A6,A27,A28,FUNCT_1:def 3;
A39: now
assume
A40: x20 >= card X0;
then
A41: x20-'card X0=x20-card X0 by XREAL_1:233;
x20<card X0 +card Y0 by A20,A27,AFINSQ_1:86;
then x20-card X0 < card X0 +card Y0 -card X0 by XREAL_1:9;
then
A42: nx20<card Y0 by A40,XREAL_1:233;
then
A43: nx20 in Segm card Y0 by NAT_1:44;
nx20+(card X0)<len f0 by A20,A42,XREAL_1:6;
then f.nx20=f0.x20 by A41,Th8;
hence contradiction by A26,A28,A38,A43;
end;
card X0 <=(card X0)+k20 by NAT_1:12;
then k20+card X0 >x20 by A39,XXREAL_0:2;
then nv10>nv2 by A34,A28,A36,A37,Def4;
hence contradiction by A1,A25,A33;
end;
A44: now
per cases by A22;
case
Z0 c= Y0;
hence Z0=Y0 by A19,CARD_2:102;
end;
case
Y0 c=Z0;
hence Z0=Y0 by A19,CARD_2:102;
end;
end;
i+card X0 < len f0 by A2,A9,A11,XREAL_1:20;
hence thesis by A15,A12,A44,Th8;
end;
theorem Th31:
for X,Y being finite natural-membered set st X <N< Y
& i< len (Sgm0 Y) holds (Sgm0 Y).i = (Sgm0 (X \/ Y)).(i+len (Sgm0 X))
proof
let X,Y be finite natural-membered set;
assume that
A1: X <N< Y and
A2: i< len (Sgm0 Y);
consider m being Nat such that
A3: Y c= Segm m by Th2;
reconsider h=(Sgm0 (X \/ Y))/^(len (Sgm0 X)) as XFinSequence of NAT;
A4: len (Sgm0 X)=card X by Th20;
A5: len (Sgm0 Y)=card Y by Th20;
then
A6: h.i=(Sgm0 (X \/ Y)).(i+card X) by A1,A2,A4,Th30;
A7: len (Sgm0 (X \/ Y))=card (X \/Y) by Th20;
X/\Y=(X/\(Y/\NAT)) by A3,XBOOLE_1:1,28
.= (X/\Y/\NAT) by XBOOLE_1:16
.={} by A1,Th23;
then X misses Y;
then
A8: card Y +card X=card (X\/Y) by CARD_2:40;
len h=len ((Sgm0 (X \/ Y))) -' len (Sgm0 X) by Def2
.= card (X) + card Y -' card X by A8,A7,Th20
.= card Y by NAT_D:34
.= len (Sgm0 Y) by Th20;
then
A9: len h=card Y by Th20;
A10: for l,m,k1,k2 being Nat st l < m & m < len h & k1=h.l & k2=h.m holds k1
< k2
proof
let l,m,k1,k2 be Nat;
assume that
A11: l < m and
A12: m < len h and
A13: k1=h.l and
A14: k2=h.m;
A15: m+card X <len (Sgm0 (X \/ Y)) by A8,A7,A9,A12,XREAL_1:6;
set m3=m+card X;
set l3=l+card X;
A16: l3<m3 by A11,XREAL_1:6;
l < card Y by A9,A11,A12,XXREAL_0:2;
then
A17: h.l= (Sgm0 (X \/ Y)).(l+card X) by A1,A4,Th30;
h.m=(Sgm0 (X \/ Y)).(m+card X) by A1,A4,A9,A12,Th30;
hence thesis by A13,A14,A17,A15,A16,Def4;
end;
rng h=Y by A1,A2,A4,A5,Th30;
hence thesis by A4,A10,A6,Def4;
end;
theorem Th32:
for X,Y being finite natural-membered set st Y <> {} & X <N< Y
holds (Sgm0 Y).0 = (Sgm0 (X \/ Y)).(len (Sgm0 X))
proof
let X,Y be finite natural-membered set;
assume that
A1: Y <> {} and
A2: X <N< Y;
card Y <> 0 by A1;
then 0<len (Sgm0 Y) by Th20;
then
(Sgm0 Y).0 = (Sgm0 (X \/ Y)).((0 qua Element of NAT)+len (Sgm0 X)) by A2,Th31
;
hence thesis;
end;
theorem Th33: ::from FINSEQ_3:46
for l,m,n,k being Nat,X being finite natural-membered set st k <
l & m < len(Sgm0 X) & (Sgm0(X)).m = k & (Sgm0(X)).n = l holds m < n
proof
let l,m,n,k be Nat,X being finite natural-membered set;
assume that
A1: k < l and
A2: m < len(Sgm0 X) and
A3: (Sgm0(X)).m = k and
A4: (Sgm0(X)).n = l and
A5: not m < n;
n < m by A1,A3,A4,A5,XXREAL_0:1;
hence thesis by A1,A2,A3,A4,Def4;
end;
theorem Th34:
for X,Y being finite natural-membered set st X <> {} & X <N< Y
holds (Sgm0 X).0 = (Sgm0 (X \/ Y)).0
proof
let X,Y be finite natural-membered set;
assume that
A1: X <> {} and
A2: X <N< Y;
card X <> 0 by A1;
then 0<len (Sgm0 X) by Th20;
hence thesis by A2,Th29;
end;
theorem Th35: ::from FINSEQ_3
for X,Y being finite natural-membered set holds
X <N< Y iff Sgm0(X \/Y) = Sgm0(X) ^ Sgm0(Y)
proof
let X,Y be finite natural-membered set;
set p = Sgm0 X;
set q = Sgm0 Y;
set r = Sgm0(X \/ Y);
thus X <N< Y implies Sgm0(X \/ Y) = Sgm0(X) ^ Sgm0(Y)
proof
defpred P[Nat] means $1 in dom p implies r.$1 = p.$1;
reconsider X1 = X, Y1 = Y as finite set;
assume
A1: X <N< Y;
X /\ Y = {}
proof
set x =the Element of X /\ Y;
A2: X = rng p by Def4;
assume
A3: not thesis;
then x in X by XBOOLE_0:def 4;
then reconsider m = x as Element of NAT by A2;
A4: m in Y by A3,XBOOLE_0:def 4;
m in X by A3,XBOOLE_0:def 4;
hence thesis by A1,A4;
end;
then
A5: X misses Y;
A6: len r = card(X1 \/ Y1) by Th20
.= card X1 + card Y1 by A5,CARD_2:40
.= len p + card Y1 by Th20
.= len p + len q by Th20;
A7: now
let k;
assume
A8: P[k];
thus P[k+1]
proof
set m = r.(k + 1);
set n = p.(k + 1);
assume
A9: k + 1 in dom p;
then n in rng p by FUNCT_1:def 3;
then
A10: n in X by Def4;
len p <= len r by A6,NAT_1:12;
then
A11: Segm(len p) c= Segm(len r) by NAT_1:39;
then m in rng r by A9,FUNCT_1:def 3;
then
A12: m in X \/ Y by Def4;
assume
A13: m <> n;
now
per cases;
suppose
A14: k in dom p;
set m1 = r.k;
set n1 = p.k;
now
per cases by A13,XXREAL_0:1;
suppose
A15: m < n;
then not m in Y by A1,A10;
then m in X by A12,XBOOLE_0:def 3;
then m in rng p by Def4;
then consider x being object such that
A16: x in dom p and
A17: p.x = m by FUNCT_1:def 3;
reconsider x as Element of NAT by A16;
x < len p by A16,AFINSQ_1:86;
then
A18: x < k + 1 by A15,A17,Th33;
A19: k < k + 1 by XREAL_1:29;
k + 1 < len r by A9,A11,AFINSQ_1:86;
then
A20: n1 < m by A8,A14,A19,Def4;
k < len p by A14,AFINSQ_1:86;
then k < x by A17,A20,Th33;
hence contradiction by A18,NAT_1:13;
end;
suppose
A21: n < m;
n in X \/ Y by A10,XBOOLE_0:def 3;
then n in rng r by Def4;
then consider x being object such that
A22: x in dom r and
A23: r.x = n by FUNCT_1:def 3;
reconsider x as Element of NAT by A22;
x < len r by A22,AFINSQ_1:86;
then
A24: x < k + 1 by A21,A23,Th33;
A25: k < k + 1 by XREAL_1:29;
k + 1 < len p by A9,AFINSQ_1:86;
then
A26: m1 < n by A8,A14,A25,Def4;
k < len r by A11,A14,AFINSQ_1:86;
then k < x by A23,A26,Th33;
hence contradiction by A24,NAT_1:13;
end;
end;
hence contradiction;
end;
suppose
A27: not k in dom p;
A28: k < k + 1 by XREAL_1:29;
len p <= k by A27,AFINSQ_1:86;
then len p < k + 1 by A28,XXREAL_0:2;
hence contradiction by A9,AFINSQ_1:86;
end;
end;
hence contradiction;
end;
end;
0<len p implies X1<>{} by Th20,CARD_1:27;
then
A29: P[0] by A1,Th34;
A30: for k holds P[k] from NAT_1:sch 2(A29,A7);
defpred P[Nat] means $1 in dom q implies r.(len p + $1) = q.$1;
A31: now
let k;
assume
A32: P[k];
thus P[k+1]
proof
set n = q.(k + 1);
set a = len p + (k + 1);
set m = r.a;
assume
A33: k + 1 in dom q;
then q.(k + 1) in rng q by FUNCT_1:def 3;
then
A34: n in Y by Def4;
k + 1 <len q by A33,AFINSQ_1:86;
then
A35: a < len r by A6,XREAL_1:6;
then
A36: a in dom r by AFINSQ_1:86;
then r.a in rng r by FUNCT_1:def 3;
then
A37: m in X \/ Y by Def4;
A38: now
A39: len p <= len r by A6,NAT_1:12;
assume m in X;
then m in rng p by Def4;
then consider x being object such that
A40: x in dom p and
A41: p.x = m by FUNCT_1:def 3;
reconsider x as Element of NAT by A40;
x < len p by A40,AFINSQ_1:86;
then x < len r by A39,XXREAL_0:2;
then
A42: x in dom r by AFINSQ_1:86;
r.x = r.a by A30,A40,A41;
then x = a by A36,A42,FUNCT_1:def 4;
then len p + (k + 1) <= len p + (0 qua Element of NAT) by A40,
AFINSQ_1:86;
hence contradiction by XREAL_1:29;
end;
assume
A43: r.(len p + (k + 1)) <> q.(k + 1);
now
per cases;
suppose
A44: k in dom q;
set m1 = r.(len p + k);
set n1 = q.k;
A45: k < len q by A44,AFINSQ_1:86;
now
per cases by A43,XXREAL_0:1;
suppose
A46: m < n;
m in Y by A37,A38,XBOOLE_0:def 3;
then m in rng q by Def4;
then consider x being object such that
A47: x in dom q and
A48: q.x = m by FUNCT_1:def 3;
reconsider x as Element of NAT by A47;
x < len q by A47,AFINSQ_1:86;
then
A49: x < k + 1 by A46,A48,Th33;
len p + k < len p + k + 1 by XREAL_1:29;
then
A50: n1 < m by A32,A35,A44,Def4;
k < len q by A44,AFINSQ_1:86;
then k < x by A48,A50,Th33;
hence contradiction by A49,NAT_1:13;
end;
suppose
A51: n < m;
n in X \/ Y by A34,XBOOLE_0:def 3;
then n in rng r by Def4;
then consider x being object such that
A52: x in dom r and
A53: r.x = n by FUNCT_1:def 3;
reconsider x as Element of NAT by A52;
x < len r by A52,AFINSQ_1:86;
then
A54: x < len p + k + 1 by A51,A53,Th33;
A55: k < k + 1 by XREAL_1:29;
k + 1 < len q by A33,AFINSQ_1:86;
then
A56: m1 < n by A32,A44,A55,Def4;
len p + k < len r by A6,A45,XREAL_1:6;
then len p + k < x by A53,A56,Th33;
hence contradiction by A54,NAT_1:13;
end;
end;
hence contradiction;
end;
suppose
A57: not k in dom q;
A58: k < k + 1 by XREAL_1:29;
len q <= k by A57,AFINSQ_1:86;
hence contradiction by A33,AFINSQ_1:86,A58,XXREAL_0:2;
end;
end;
hence contradiction;
end;
end;
len q>0 implies Y <>{} by Th20,CARD_1:27;
then
A59: P[0] by A1,Th32;
for k holds P[k] from NAT_1:sch 2(A59,A31);
hence thesis by A6,A30,AFINSQ_1:def 3;
end;
assume
A60: Sgm0(X \/ Y) = Sgm0(X) ^ Sgm0(Y);
let m,n be Nat;
assume that
A61: m in X and
A62: n in Y;
n in rng q by A62,Def4;
then consider y being object such that
A63: y in dom q and
A64: q.y = n by FUNCT_1:def 3;
reconsider y as Element of NAT by A63;
A65: n = r.(len p + y) by A60,A63,A64,AFINSQ_1:def 3;
y < len q by A63,AFINSQ_1:86;
then len p + y < len p + len q by XREAL_1:6;
then
A66: len p + y < len r by A60,AFINSQ_1:17;
A67: len p<=len p+y by NAT_1:12;
m in rng(Sgm0 X) by A61,Def4;
then consider x being object such that
A68: x in dom p and
A69: p.x = m by FUNCT_1:def 3;
reconsider x as Element of NAT by A68;
x < len p by A68,AFINSQ_1:86;
then
A70: x < len p + y by A67,XXREAL_0:2;
m = r.x by A60,A68,A69,AFINSQ_1:def 3;
hence thesis by A65,A70,A66,Def4;
end;
definition
let f be XFinSequence;
let B be set;
::Following is a subsequence selected from f by B.
func SubXFinS (f,B) -> XFinSequence equals
f*Sgm0(B /\ Segm len f);
coherence
proof
B/\ Segm len f c= dom f by XBOOLE_1:17;
then rng Sgm0(B/\ Segm len f) c= dom f by Def4;
hence thesis by AFINSQ_1:10;
end;
end;
theorem Th36:
for B being set holds len SubXFinS (p,B)=
card (B/\ Segm(len p)) &
for i st i < len SubXFinS (p,B) holds SubXFinS
(p,B).i=p.((Sgm0 (B/\ Segm(len p))).i)
proof
let B be set;
B/\ Segm len p c= dom p by XBOOLE_1:17;
then rng Sgm0(B/\ Segm len p) c= dom p by Def4;
then dom SubXFinS (p,B) = len Sgm0(B/\ Segm len p) by RELAT_1:27
.= card(B/\ Segm len p) by Th20;
hence len SubXFinS (p,B)=card (B/\ Segm len p);
let i;
assume i < len SubXFinS (p,B);
hence thesis by FUNCT_1:12,AFINSQ_1:86;
end;
registration
let D be set;
let f be XFinSequence of D, B be set;
cluster SubXFinS(f,B) -> D-valued;
coherence;
end;
registration
let p;
cluster SubXFinS (p,{}) -> empty;
coherence
proof
len (SubXFinS (p,{})) =card {} by Th36;
hence thesis;
end;
end;
registration
let B be set;
cluster SubXFinS ({},B) -> empty;
coherence;
end;
:: AFINSQ_2:48 => AFINSQ_2:83
reserve D for non empty set,
F,G for XFinSequence of D,
b for BinOp of D,
d,d1,d2 for Element of D;
scheme
Sch5{D()->set, P[set]}: for F be XFinSequence of D() holds P[F]
provided
A1: P[<%>D()] and
A2: for F be XFinSequence of D(),d be Element of D() st P[F] holds P[F^<%d%>]
proof
defpred R[set] means for F be XFinSequence of D() st len F = $1 holds P[F];
A3: for n st R[n] holds R[n+1]
proof
let n such that
A4: for F be XFinSequence of D() st len F=n holds P[F];
let F be XFinSequence of D();
assume
A5: len F = n + 1;
then F <>{};
then consider G be XFinSequence, d be object such that
A6: F = G^<%d%> by AFINSQ_1:40;
reconsider G,dd=<%d%> as XFinSequence of D() by A6,AFINSQ_1:31;
A7:rng dd c= D() & rng dd = {d} & d in {d}
by AFINSQ_1:33,TARSKI:def 1;
len dd = 1 by AFINSQ_1:34;
then len F = len G + 1 by A6,AFINSQ_1:17;
hence thesis by A2,A4,A5,A6,A7;
end;
let F be XFinSequence of D();
A8: len F=len F;
card X = {} implies X = {};
then
A9: R[0] by A1;
for n holds R[n] from NAT_1:sch 2(A9,A3);
hence thesis by A8;
end;
definition
let D;
let F be XFinSequence;
assume A1:F is D-valued;
let b;
assume A2: b is having_a_unity or len F >= 1;
func b "**" F -> Element of D means :Def8: :: STIRL2_1:def 3
it = the_unity_wrt b if b is having_a_unity & len F = 0
otherwise ex f be sequence of D st f.0 = F.0 &
(for n st n+1 < len F holds f.(n + 1) = b.(f.n,F.(n + 1))) &
it = f.(len F-1);
existence
proof
now
per cases;
suppose
len F = 0;
hence thesis by A2;
end;
suppose
A3: len F <> 0;
defpred P[Nat] means for F st len F = $1 & len F <> 0 ex d
be Element of D,f be sequence of D st f.0 = F.0 & (for n st n+1 < len F
holds f.(n + 1) = b.(f.n,F.(n + 1))) & d = f.(len F-1);
A4: for k st P[k] holds P[k + 1]
proof
let k such that
A5: P[k];
let F such that
A6: len F = k + 1 and
len F <> 0;
set G = F|k;
A7: k < k+1 by NAT_1:13;
then
A8: len G = k by A6,AFINSQ_1:11;
now
per cases;
suppose
A9: len G = 0;
then 0 in dom F by A6,A8,CARD_1:49,TARSKI:def 1;
then
A10: F.0 in rng F by FUNCT_1:def 3;
reconsider f = NAT --> F.0 as sequence of D by A10,
FUNCOP_1:45;
take d = f.0,f;
thus f.0 = F.0 by FUNCOP_1:7;
thus for n st n+1 < len F holds f.(n + 1) = b.(f.n,F.(n + 1)) by
A6,A8,A9,NAT_1:14;
k<k+1 by NAT_1:13;
hence d = f.(len F-1) by A6,A9,AFINSQ_1:11;
end;
suppose
A11: len G <> 0;
k < len F by A6,NAT_1:13;
then k in dom F by AFINSQ_1:86;
then
A12: F.k in rng F by FUNCT_1:def 3;
reconsider d1 = F.k as Element of D by A12;
A13: 0 in len G by A11,AFINSQ_1:86;
consider d be Element of D,f be sequence of D such that
A14: f.0 = G.0 and
A15: for n st n+1<len G holds f.(n + 1)=b.(f.n,G.(n + 1)) and
A16: d = f.(len G-1) by A5,A6,A7,A11,AFINSQ_1:11;
deffunc F(Element of NAT) = f.$1;
reconsider K=k as Element of NAT by ORDINAL1:def 12;
consider h be sequence of D such that
A17: h.K = b.(d,d1) and
A18: for n be Element of NAT st n <> K holds h.n = F(n) from
FUNCT_2:sch 6;
take a = h.k, h;
h.0=f.0 by A8,A11,A18;
hence h.0 =F.0 by A14,A13,FUNCT_1:47;
thus for n st n+1 < len F holds h.(n + 1) = b.(h.n,F.(n + 1))
proof
let n;
assume n+1 < len F;
then
A19: n+1 <= len G by A6,A8,NAT_1:13;
now
per cases by A19,XXREAL_0:1;
suppose
A20: n+1 = len G;
then
A21: n<k by A8,NAT_1:13;
n+1=k & n in NAT by A6,A7,A20,AFINSQ_1:11,ORDINAL1:def 12;
hence thesis by A16,A17,A18,A20,A21;
end;
suppose
A22: n+1 < len G; then
A23: G.(n+1)=F.(n+1) by FUNCT_1:47,AFINSQ_1:86;
n<=n+1 & n in NAT by NAT_1:11,ORDINAL1:def 12;
then
A24: f.n=h.n by A8,A18,A22;
f.(n+1)=h.(n+1) by A8,A18,A22;
hence thesis by A15,A22,A23,A24;
end;
end;
hence thesis;
end;
thus a = h.(len F-1) by A6;
end;
end;
hence thesis;
end;
A25: P[0];
for k holds P[k] from NAT_1:sch 2(A25,A4);
hence thesis by A1,A3;
end;
end;
hence thesis;
end;
uniqueness
proof
let d1,d2 be Element of D;
thus b is having_a_unity & len F=0 & d1 = the_unity_wrt b & d2 =
the_unity_wrt b implies d1 = d2;
A26: (len F-1) +1 =len F;
assume not b is having_a_unity or len F <> 0;
then 0< len F by A2;
then
A27: len F-1 is Element of NAT by NAT_1:20;
given f1 be sequence of D such that
A28: f1.0 = F.0 and
A29: for n st n+1<len F holds f1.(n + 1) = b.(f1.n,F.(n + 1)) and
A30: d1 = f1.(len F-1);
given f2 be sequence of D such that
A31: f2.0 = F.0 and
A32: for n st n+1<len F holds f2.(n + 1) = b.(f2.n,F.(n + 1)) and
A33: d2 = f2.(len F-1);
defpred P[Nat] means $1+1 <= len F implies f1.$1 = f2.$1;
A34: P[n] implies P[n + 1]
proof
assume A35: P[n];
assume (n+1)+1 <= len F;
then
A36: n+1<len F by NAT_1:13;
then f2.(n+1)=b.(f2.n,F.(n+1)) by A32;
hence thesis by A29,A35,A36;
end;
A37: P[0] by A28,A31;
for n holds P[n] from NAT_1:sch 2(A37,A34);
hence thesis by A30,A33,A26,A27;
end;
consistency;
end;
theorem Th37:
b "**" <%d%> = d
proof
len<%d%> = 1 by AFINSQ_1:33;
then ex f be sequence of D st f.0=<%d%>.0& (for n st n+1 < len <%d%>
holds f.(n+1) = b.(f.n,<%d%>.(n+1)))& b "**" <%d%>=f.(1-1) by Def8;
hence thesis;
end;
reconsider zz=0 as Nat;
theorem Th38:
b "**" <%d1,d2%> = b.(d1,d2)
proof
len <%d1,d2%>=2 by AFINSQ_1:38;
then consider f be sequence of D such that
A1: f.0 = <%d1,d2%>.0 and
A2: for n st n+1 < 2 holds f.(n + 1) = b.(f.n,<%d1,d2%>.(n + 1)) and
A3: b "**" <%d1,d2%> = f.(2-1) by Def8;
f.(zz+1)=b.(f.zz,<%d1,d2%>.(zz+1)) by A2;
hence thesis by A1,A3;
end;
theorem Th39:
b "**" <%d,d1,d2%> = b.(b.(d,d1),d2)
proof
set F=<%d,d1,d2%>;
len F=3 by AFINSQ_1:39;
then consider f be sequence of D such that
A1: f.0 = F.0 and
A2: for n st n+1 < 3 holds f.(n + 1) = b.(f.n,F.(n + 1)) and
A3: b "**" F = f.(3-1) by Def8;
A4: f.(1+1)=b.(f.1,F.(1+1)) by A2;
f.(zz+1)=b.(f.zz,F.(zz+1)) by A2;
hence thesis by A1,A3,A4;
end;
theorem Th40: :: STIRL2_1:45
b is having_a_unity or len F > 0 implies b "**" (F ^ <% d %>) =
b.(b "**" F,d)
proof
assume
A1: b is having_a_unity or len F > 0;
now
per cases;
suppose
A2: len F<zz+1;
then
A3: F={} by NAT_1:13;
A4: b "**" (F ^<% d %>)=d by Th37,A3;
len F=0 by A2,NAT_1:13;
then b "**" F = the_unity_wrt b by A1,Def8;
hence thesis by A1,A2,A4,NAT_1:13,SETWISEO:15;
end;
suppose
A5: len F>=1;
set G = F ^ <% d %>;
reconsider lenF1=len F-1 as Element of NAT by A5,NAT_1:21;
A6: G.(len F)=d by AFINSQ_1:36;
A7: len G=len F+len <%d%> by AFINSQ_1:17
.=len F+1 by AFINSQ_1:33;
then 1 <= len G by NAT_1:12;
then consider f1 be sequence of D such that
A8: f1.0 = G.0 and
A9: for n st n+1 < len G holds f1.(n+1)=b.(f1.n,G.(n+1)) and
A10: b "**" G = f1.(len G-1) by Def8;
consider f be sequence of D such that
A11: f.0 = F.0 and
A12: for n st n+1 < len F holds f.(n+1)=b.(f.n,F.(n+1)) and
A13: b "**" F = f.(len F-1) by A5,Def8;
defpred P[Nat] means $1+1 < len G implies f.$1 = f1.$1;
A14: P[n] implies P[n + 1]
proof
assume
A15: P[n];
set n1=n+1;
assume
A16: n1+1<len G; then
A17: f1.n1=b.(f1.n,G.(n+1)) by A9,NAT_1:13;
A18: (n1+1)+(-1)<(len F+1)+(-1) by A7,A16,XREAL_1:8;
then
A19: n1 in len F by AFINSQ_1:86;
f.n1=b.(f.n,F.n1) by A12,A18;
hence thesis by A15,A16,A17,A19,AFINSQ_1:def 3,NAT_1:13;
end;
0 in len F by A5,AFINSQ_1:86;
then
A20: P[0] by A11,A8,AFINSQ_1:def 3;
A21: for n holds P[n] from NAT_1:sch 2(A20,A14);
A22: lenF1+1<len G by A7,NAT_1:13;
then b "**" G = b.(f1.(lenF1),G.(lenF1+1)) by A7,A9,A10;
hence thesis by A13,A21,A22,A6;
end;
end;
hence thesis;
end;
::$CT
theorem Th41: :: STIRL2_1:47
b is associative & (b is having_a_unity or len F >= 1 & len G >= 1)
implies b "**" (F ^ G) = b.(b "**" F,b "**" G)
proof
defpred P[XFinSequence of D] means for F,b st b is associative & (b is
having_a_unity or len F >= 1 & len $1 >= 1) holds b "**" (F^$1)=b.(b "**" F,b
"**" $1);
A1: for G,d st P[G] holds P[G ^ <%d%>]
proof
let G,d such that
A2: P[G];
let F,b such that
A3: b is associative and
A4: b is having_a_unity or len F >= 1 & len(G ^ <% d %>) >= 1;
now
per cases;
suppose
A5: len G<>0;
then
b is having_a_unity or len F>=1&len (F^G)=len F+len G & len F+len
G >len F+zz by A4,AFINSQ_1:17,XREAL_1:8;
then b.(b "**" (F ^ G),d)=b "**" ((F ^ G)^<%d%>) by Th40;
then
A6: b "**" (F ^ (G ^ <% d %>)) = b.(b "**" (F ^ G),d) by AFINSQ_1:27;
len G>=1 by A5,NAT_1:14;
then b "**" (F ^ (G ^ <% d %>))=b.(b.(b "**" F,b "**" G),d) by A2,A3,A4
,A6
.= b.(b "**" F,b.(b "**" G,d)) by A3
.= b.(b "**" F,b "**" (G ^ <% d %>)) by A5,Th40;
hence thesis;
end;
suppose
len G=0;
then
A7: G = {};
hence b "**" (F ^(G ^ <% d %>))
= b "**"(F^({}^<% d %>))
.= b "**"(F^<% d %>)
.= b.(b "**" F,d) by A4,Th40
.= b.(b "**" F,b "**" ({}^<%d%>)) by Th37
.= b.(b "**" F,b "**" (G ^ <% d %>)) by A7;
end;
end;
hence thesis;
end;
A8: P[<%>D]
proof
let F,b;
assume that
b is associative and
A9: b is having_a_unity or len F >= 1 & len <%>D >= 1;
thus b "**" (F ^ <%>D) = b "**" (F^{})
.= b.(b "**" F,the_unity_wrt b) by A9,SETWISEO:15
.= b.(b "**" F,b "**" <%>D) by A9,Def8,CARD_1:27;
end;
for G holds P[G] from Sch5(A8,A1);
hence thesis;
end;
theorem Th42: :: CARD_FIN:42
n in dom F & (b is having_a_unity or n <> 0 ) implies
b.(b "**" F|n, F.n) = b "**" F|(n+1)
proof
assume that
A1: n in dom F and
A2: b is having_a_unity or n <> 0;
len F>n by A1,AFINSQ_1:86;
then
A3: len (F|n)=n by AFINSQ_1:54;
defpred P[Nat] means $1 in dom F & (b is having_a_unity or len (F
|$1) >= 1) implies b.(b "**" F|$1, F.$1) = b "**" F|($1+1);
A4: for k st P[k] holds P[k+1]
proof
let k such that P[k];
set k1=k+1;
set Fk1=F|k1;
set Fk2=F|(k1+1);
assume that
A5: k1 in dom F and
A6: b is having_a_unity or len Fk1 >= 1;
0 < len F by A5;
then
A7: 0 in dom F by AFINSQ_1:86;
0 in Segm k1 by NAT_1:44;
then 0 in dom F/\k1 by A7,XBOOLE_0:def 4;
then 0 in dom Fk1 by RELAT_1:61;
then
A8: Fk1.0=F.0 by FUNCT_1:47;
A9: k<k1 by NAT_1:13;
k1<k1+1 by NAT_1:13;
then k1 in Segm(k1+1) by NAT_1:44;
then
A10: k1 in dom F/\(k1+1) by A5,XBOOLE_0:def 4;
A12: k1 < len F by A5,AFINSQ_1:86;
then
A13: len Fk1=k1 by AFINSQ_1:54;
then consider f1 be sequence of D such that
A14: f1.0 = Fk1.0 and
A15: for n st n+1 < len Fk1 holds f1.(n+1) = b.(f1.n,Fk1.(n + 1)) and
A16: b "**" Fk1= f1.(k1-1) by A6,Def8;
k1+1 <=dom F by A12,NAT_1:13;
then
A17: len Fk2=k1+1 by AFINSQ_1:54;
then b is having_a_unity or len Fk2 >= 1 by A6,A13,NAT_1:13;
then consider f2 be sequence of D such that
A18: f2.0 = Fk2.0 and
A19: for n st n+1 < len Fk2 holds f2.(n+1) = b.(f2.n,Fk2.(n+1)) and
A20: b "**" Fk2= f2.((k1+1)-1) by A17,Def8;
defpred R[Nat] means $1 < k1 implies f1.$1=f2.$1;
A21: for m st R[m] holds R[m+1]
proof
let m such that
A22: R[m];
set m1=m+1;
assume
A23: m1 < k1;
k1< len F by A5,AFINSQ_1:86;
then m1 < len F by A23,XXREAL_0:2;
then
A24: m1 in dom F by AFINSQ_1:86;
m1 <k1+1 by A23,NAT_1:13;
then m1 in Segm(k1+1) by NAT_1:44;
then m1 in dom F/\Segm(k1+1) by A24,XBOOLE_0:def 4;
then m1 in dom Fk2 by RELAT_1:61;
then
A25: Fk2.m1 = F.m1 by FUNCT_1:47;
m1 in Segm k1 by A23,NAT_1:44;
then m1 in dom F/\Segm k1 by A24,XBOOLE_0:def 4;
then m1 in dom Fk1 by RELAT_1:61;
then
A26: Fk1.m1 = F.m1 by FUNCT_1:47;
m1 < len Fk2 by A17,A23,NAT_1:13;
then f2.m1 = b.(f1.m,Fk1.m1) by A19,A22,A23,A26,A25,NAT_1:13;
hence thesis by A13,A15,A23;
end;
0 in Segm(k1+1) by NAT_1:44;
then 0 in dom F/\(k1+1) by A7,XBOOLE_0:def 4;
then 0 in dom Fk2 by RELAT_1:61;
then
A27: R[0] by A14,A18,A8,FUNCT_1:47;
for m holds R[m] from NAT_1:sch 2(A27,A21);
then
A28: dom F/\(k1+1)=dom Fk2 & f1.k=f2.k by A9,RELAT_1:61;
k1<k1+1 by NAT_1:13;
then f2.k1 = b.(f2.k,Fk2.k1) by A17,A19;
hence thesis by A16,A20,A10,A28,FUNCT_1:47;
end;
A29: P[0]
proof
assume that
A30: 0 in dom F and
A31: b is having_a_unity or len (F|(0 qua Ordinal)) >= 1;
A32: F.0 in rng F by A30,FUNCT_1:def 3;
len F>0 by A30;
then
A33: len (F|1)=1 by AFINSQ_1:54,NAT_1:14;
then
A34: (F|1)=<%(F|1).0%> by AFINSQ_1:34;
0 in Segm 1 by NAT_1:44;
then
A35: F.0=(F|1).0 by A33,FUNCT_1:47;
len (F|(0 qua Ordinal))=0;
then b "**" F|(0 qua Ordinal)=the_unity_wrt b by A31,Def8;
then b.(b "**" F|(0 qua Ordinal), F.0)=F.0 by A31,A32,SETWISEO:15;
hence thesis by A32,A34,A35,Th37;
end;
for k holds P[k] from NAT_1:sch 2(A29,A4);
hence thesis by A1,A2,A3,NAT_1:14;
end;
theorem Th43: :: CARD_FIN:47
b is having_a_unity or len F >= 1 implies b "**" F = b "**" (XFS2FS F)
proof
assume
A1: b is having_a_unity or len F >= 1;
per cases by A1;
suppose
A2: len F >=1;
set FS=XFS2FS F;
len F=len FS by AFINSQ_1:def 9;
then consider f be sequence of D such that
A3: f.1 = FS.1 and
A4: for n be Nat st 0<>n & n<len F holds
f.(n+1) = b.(f.n,FS.(n+1)) and
A5: b "**" FS = f.(len F) by A2,FINSOP_1:def 1;
consider xf be sequence of D such that
A6: xf.0 = F.0 and
A7: for n
st n+1 < len F holds xf.(n + 1) = b.(xf.n,F.(n + 1)) and
A8: b "**" F = xf.(len F-1) by A2,Def8;
defpred P[Nat] means $1 < len F implies xf.$1=f.($1+1);
A9: for n st P[n] holds P[n+1]
proof
let n such that
A10: P[n];
set n1=n+1;
set n2=n1+1;
assume
A11: n1 < len F;
then zz+1<=n2 & n2 <=len F by NAT_1:13;
then
A12: F.(n2-'1)=FS.n2 by AFINSQ_1:def 9;
xf.n1 = b.(xf.n,F.n1) & f.(n1+1) = b.(f.n1,FS.(n1+1)) by A7,A4,A11;
hence thesis by A10,A11,A12,NAT_1:13,NAT_D:34;
end;
reconsider L1=len F-1 as Element of NAT by A2,NAT_1:21;
A13: L1<L1+1 by NAT_1:13;
A14: P[0]
proof
assume 0 <len F;
then zz+1<=len F by NAT_1:13;
then F.(1-'1)=FS.1 by AFINSQ_1:def 9;
hence thesis by A6,A3,XREAL_1:232;
end;
for n holds P[n] from NAT_1:sch 2(A14,A9);
hence thesis by A8,A5,A13;
end;
suppose
A15: b is having_a_unity & len F<1;
then len F<=zz+1;
then
A16: len F=0 by A15,NAT_1:8;
then len F=len (XFS2FS F) & b "**" F=the_unity_wrt b
by A15,Def8,AFINSQ_1:def 9;
hence thesis by A15,A16,FINSOP_1:def 1;
end;
end;
theorem Th44: ::CARD_FIN:43
for P be Permutation of dom F st b is commutative associative &
(b is having_a_unity or len F >= 1) &
G = F * P holds b "**" F = b "**" G
proof
let P be Permutation of dom F such that
A1: b is commutative associative and
A2: b is having_a_unity or len F >= 1 and
A3: G = F * P;
set xF=XFS2FS F;
A4: b is having_a_unity or len xF >= 1 by A2,AFINSQ_1:def 9;
set xG=XFS2FS G;
defpred p[object,object] means for n st $1=n holds $2=P.(n-1)+1;
dom F=len F;
then reconsider d=dom F as Element of NAT;
A6: for x being object st x in Seg d ex y being object st y in Seg d & p[x,y]
proof
let x be object such that
A7: x in Seg d;
reconsider x9=x as Element of NAT by A7;
1+zz<=x9 by A7,FINSEQ_1:1;
then reconsider x91=x9-1 as Element of NAT by NAT_1:21;
A8: x91+1<= d by A7,FINSEQ_1:1;
then x91 <d by NAT_1:13;
then
A9: x91 in Segm d by NAT_1:44;
take (P.x91)+1;
dom F=dom P by A8,FUNCT_2:def 1;
then P.x91 in rng P by A9,FUNCT_1:def 3;
then P.x91 < d by AFINSQ_1:86;
then zz+1<=(P.x91)+1 & (P.x91)+1 <=d by NAT_1:13;
hence thesis by FINSEQ_1:1;
end;
consider P9 be Function of Seg d,Seg d such that
A10: for x being object st x in Seg d holds p[x,P9.x] from FUNCT_2:sch 1(A6);
now
let x1,x2 be object such that
A11: x1 in dom P9 and
A12: x2 in dom P9 and
A13: P9.x1=P9.x2;
dom P9=Seg d by FUNCT_2:52;
then reconsider X1=x1,X2=x2 as Element of NAT by A11,A12;
1+zz<=X1 & 1+zz<=X2 by A11,A12,FINSEQ_1:1;
then reconsider X19=X1-1,X29=X2-1 as Element of NAT by NAT_1:21;
A14: X19<X19+1 & X1 <=d by A11,FINSEQ_1:1,NAT_1:13;
then
A15: dom P=dom F by FUNCT_2:def 1;
X29<X29+1 & X2<=d by A12,FINSEQ_1:1,NAT_1:13;
then X29<d by XXREAL_0:2;
then
A16: X29 in dom P by A15,AFINSQ_1:86;
X19<d by A14,XXREAL_0:2;
then
A17: X19 in dom P by A15,AFINSQ_1:86;
P9.X1=P.X19+1 by A10,A11;
then (P.X19+1)-1=(P.X29+1)-1 by A10,A12,A13;
then X1-1+1=X2-1+1 by A17,A16,FUNCT_1:def 4;
hence x1=x2;
end;
then
A18: P9 is one-to-one;
card Seg d=card Seg d;
then
A19: P9 is one-to-one onto by A18,Lm1;
len xF =len F by AFINSQ_1:def 9;
then dom xF= Seg len F by FINSEQ_1:def 3;
then reconsider P9 as Permutation of dom xF by A19;
A20: dom P9= Seg d & dom xG=Seg len xG by FINSEQ_1:def 3,FUNCT_2:52;
rng P9 c= dom xF;
then
A21: dom (xF* P9)=dom P9 by RELAT_1:27;
rng P c= dom F;
then dom (F*P)=dom P by RELAT_1:27;
then
A22: dom G= dom F by A3,FUNCT_2:52;
A24: for x9 be object st x9 in dom xG holds xG.x9 = (xF*P9).x9
proof
let x9 be object such that
A25: x9 in dom xG;
reconsider x=x9 as Element of NAT by A25;
A26: dom xG=Seg len xG by FINSEQ_1:def 3;
then
A27: 1<=x by A25,FINSEQ_1:1;
then
A28: x-'1=x-1 by XREAL_1:233;
0<x by A25,A26,FINSEQ_1:1;
then reconsider x1=x-1 as Element of NAT by NAT_1:20;
A29: dom xF=Seg len xF by FINSEQ_1:def 3;
A30: len xG=len G by AFINSQ_1:def 9;
then
A31: P.(x-1)+1=P9.x & x in dom P9 by A10,A22,A25,A26,FUNCT_2:52;
then
A32: P.(x-1)+1 in rng P9 by FUNCT_1:def 3;
A33: x<=len F by A22,A25,A26,A30,FINSEQ_1:1;
then
A34: xG.x=(F*P).(x-'1) by A3,A22,A27,AFINSQ_1:def 9;
len xF=len F by AFINSQ_1:def 9;
then
A35: P.(x-1)+1<=len F by A32,A29,FINSEQ_1:1;
x1<x1+1 & x-'1=x1 by A27,NAT_1:13,XREAL_1:233;
then x-'1 < len G by A22,A33,XXREAL_0:2;
then x-'1 in dom G by AFINSQ_1:86;
then
A36: P.(x-'1)+1-'1=P.(x-'1) & (F*P).(x-'1)=F.(P.(x-'1)) by A3,FUNCT_1:12
,NAT_D:34;
1<=P.(x-1)+1 by A32,A29,FINSEQ_1:1;
then (F*P).(x-'1)=xF.((P.(x-1)+1)) by A35,A28,A36,AFINSQ_1:def 9;
hence thesis by A31,A34,FUNCT_1:13;
end;
len xG=len F by A22,AFINSQ_1:def 9;
then xG=xF* P9 by A24,A21,A20;
then
A37: b "**"xG=b"**"xF by A1,A4,FINSOP_1:7;
b "**"xG=b "**" G by A2,A22,Th43;
hence thesis by A2,A37,Th43;
end;
theorem :: CARD_FIN:62
for bFG be XFinSequence of D st b is commutative associative &
(b is having_a_unity or len F >= 1) &
len F=len G & len F=len bFG &
(for n st n in dom bFG holds bFG.n=b.(F.n,G.n))
holds b "**" F^G = b "**" bFG
proof
let bFG be XFinSequence of D such that
A1: b is commutative associative and
A2: b is having_a_unity or len F >= 1 and
A3: len F=len G and
A4: len F=len bFG and
A5: for n st n in dom bFG holds bFG.n=b.(F.n,G.n);
set xG=XFS2FS G;
set xF=XFS2FS F;
A6: b "**" F=b "**" xF & b "**" G=b "**" xG by A2,A3,Th43;
set xb=XFS2FS bFG;
A7: len xb=len bFG by AFINSQ_1:def 9;
A8: for k be Nat st k in dom xb holds xb.k = b.(xF.k,xG.k)
proof
let k be Nat such that
A9: k in dom xb;
k in Seg len xb by A9,FINSEQ_1:def 3;
then k>=1 by FINSEQ_1:1;
then reconsider k1=k-1 as Element of NAT by NAT_1:21;
A10: k in Seg len xb by A9,FINSEQ_1:def 3;
then
A11: 1<=k by FINSEQ_1:1;
then
A12: k1=k-'1 by XREAL_1:233;
k in Seg len xb by A9,FINSEQ_1:def 3;
then k1<k1+1 & k<=len xb by FINSEQ_1:1,NAT_1:13;
then k1<len xb by XXREAL_0:2;
then k1 in dom bFG by A7,AFINSQ_1:86;
then
A13: bFG.k1=b.(F.k1,G.k1) by A5;
A14: k<= len bFG by A7,A10,FINSEQ_1:1;
then bFG.(k-'1)=xb.k & F.(k-'1)=xF.k by A4,A11,AFINSQ_1:def 9;
hence thesis by A3,A4,A11,A14,A13,A12,AFINSQ_1:def 9;
end;
len xF=len F & len G=len xG by AFINSQ_1:def 9;
then b "**" xb=b.(b "**" xF,b "**" xG) by A1,A2,A3,A4,A7,A8,FINSOP_1:9;
then b "**" bFG = b.(b "**" F,b "**" G) by A2,A4,A6,Th43;
hence thesis by A1,A2,A3,Th41;
end;
theorem Th46:
for D1,D2 be non empty set
for b1 be BinOp of D1,b2 be BinOp of D2 st
len F >= 1 &
D c= D1 /\ D2 &
for x,y st x in D & y in D holds b1.(x,y)=b2.(x,y) & b1.(x,y) in D
holds b1 "**" F = b2 "**" F
proof
let D1,D2 be non empty set;
let b1 be BinOp of D1,b2 be BinOp of D2 such that
A1: len F >= 1 and
A2: D c= D1 /\ D2 and
A3: for x,y st x in D & y in D holds b1.(x,y) = b2.(x,y) & b1.(x,y) in D;
D1/\D2 c= D1 & D1/\D2 c= D2 by XBOOLE_1:17;
then A4:D c= D1 & D c= D2 by A2;
rng F c= D1 & rng F c= D2 by A4;
then A5:F is D1-valued & F is D2-valued by RELAT_1:def 19;
then consider F1 be sequence of D1 such that
A6: F1.0 = F.0 and
A7: for n st n+1 < len F holds F1.(n + 1) = b1.(F1.n,F.(n + 1)) and
A8: b1 "**" F = F1.(len F-1) by A1,Def8;
consider F2 be sequence of D2 such that
A9: F2.0 = F.0 and
A10: for n st n+1 < len F holds F2.(n + 1) = b2.(F2.n,F.(n + 1)) and
A11: b2 "**" F = F2.(len F-1) by A1,Def8,A5;
defpred P[Nat] means $1 < len F implies F1.$1 = F2.$1 & F1.$1 in D;
0 in dom F by A1,AFINSQ_1:86;
then F.0 in rng F by FUNCT_1:def 3;
then
A12:P[0] by A6,A9;
A13: P[n] implies P[n+1]
proof
assume A14:P[n];
assume A15:n+1 < len F;
then n+1 in dom F & n < len F by NAT_1:13,AFINSQ_1:86;
then A16:F.(n+1) in rng F & n in dom F by FUNCT_1:def 3,AFINSQ_1:86;
A17:F1.(n + 1) = b1.(F1.n,F.(n + 1)) by A7,A15;
then F1.(n + 1)= b2.(F2.n,F.(n + 1)) by A3,A16,A14,AFINSQ_1:86
.=F2.(n+1) by A10,A15;
hence thesis by A16,A14,A17,A3,AFINSQ_1:86;
end;
reconsider l1=len F-1 as Element of NAT by A1,NAT_1:21;
A18:l1 < l1+1 by NAT_1:13;
P[n] from NAT_1:sch 2(A12,A13);
hence thesis by A8,A11,A18;
end;
reserve F for XFinSequence,
rF,rF1,rF2 for real-valued XFinSequence,
r for Real,
cF,cF1,cF2 for complex-valued XFinSequence,
c,c1,c2 for Complex;
Lm2:cF is COMPLEX -valued
proof
rng cF c= COMPLEX by VALUED_0:def 1;
hence thesis by RELAT_1:def 19;
end;
Lm3:rF is REAL -valued
proof
rng rF c= REAL by VALUED_0:def 3;
hence thesis by RELAT_1:def 19;
end;
definition
let F;
func Sum F ->Element of COMPLEX equals
addcomplex "**" F;
coherence;
end;
registration
let f be empty complex-valued XFinSequence;
cluster Sum f -> zero;
coherence
proof
f is COMPLEX-valued & len f = 0 by Lm2;
hence thesis by Def8,BINOP_2:1;
end;
end;
theorem Th47:
F is real-valued implies Sum F = addreal "**" F
proof
assume A1:F is real-valued;
then rng F c= REAL by VALUED_0:def 3;
then A2:F is REAL-valued by RELAT_1:def 19;
rng F c= COMPLEX by A1,MEMBERED:1;
then A3:F is COMPLEX-valued by RELAT_1:def 19;
per cases by NAT_1:14;
suppose A4:len F=0;
hence addreal "**" F = 0 by Def8,A2,BINOP_2:2
.= Sum F by Def8,A3,A4,BINOP_2:1;
end;
suppose A5:len F>=1;
A6: REAL = REAL /\ COMPLEX by MEMBERED:1,XBOOLE_1:28;
now let x,y;assume x in REAL & y in REAL;
then reconsider X=x,Y=y as Element of REAL;
addreal.(x,y) = X+Y by BINOP_2:def 9;
hence addreal.(x,y) =addcomplex.(x,y) & addreal.(x,y) in REAL
by BINOP_2:def 3,XREAL_0:def 1;
end;
hence thesis by Th46,A5,A6,A2;
end;
end;
theorem Th48:
F is RAT-valued implies Sum F = addrat "**" F
proof
assume A1:F is RAT-valued;
rng F c= COMPLEX by A1,MEMBERED:1;
then A2:F is COMPLEX-valued by RELAT_1:def 19;
per cases by NAT_1:14;
suppose A3:len F=0;
hence addrat "**" F = 0 by Def8,A1,BINOP_2:3
.= Sum F by Def8,A2,A3,BINOP_2:1;
end;
suppose A4:len F>=1;
A5: RAT = RAT /\ COMPLEX by MEMBERED:1,XBOOLE_1:28;
now let x,y;assume x in RAT & y in RAT;
then reconsider X=x,Y=y as Element of RAT;
addrat.(x,y) = X+Y by BINOP_2:def 15;
hence addrat.(x,y) =addcomplex.(x,y) & addrat.(x,y) in RAT
by BINOP_2:def 3,RAT_1:def 2;
end;
hence thesis by Th46,A4,A5,A1;
end;
end;
theorem Th49:
F is INT-valued implies Sum F = addint "**" F
proof
assume A1:F is INT-valued;
rng F c= COMPLEX by A1,MEMBERED:1;
then A2:F is COMPLEX-valued by RELAT_1:def 19;
per cases by NAT_1:14;
suppose A3:len F=0;
hence addint "**" F = 0 by Def8,A1,BINOP_2:4
.= Sum F by Def8,A2,A3,BINOP_2:1;
end;
suppose A4:len F>=1;
A5: INT = INT /\ COMPLEX by MEMBERED:1,XBOOLE_1:28;
now let x,y;assume x in INT & y in INT;
then reconsider X=x,Y=y as Element of INT;
addint.(x,y) = X+Y by BINOP_2:def 20;
hence addint.(x,y) =addcomplex.(x,y) & addint.(x,y) in INT
by BINOP_2:def 3, INT_1:def 2;
end;
hence thesis by Th46,A4,A5,A1;
end;
end;
theorem Th50:
F is natural-valued implies Sum F = addnat "**" F
proof
assume A1:F is natural-valued;
then rng F c= NAT by VALUED_0:def 6;
then A2:F is NAT-valued by RELAT_1:def 19;
rng F c= COMPLEX by A1,MEMBERED:1;
then A3:F is COMPLEX-valued by RELAT_1:def 19;
per cases by NAT_1:14;
suppose A4:len F=0;
hence addnat "**" F = 0 by Def8,A2,BINOP_2:5
.= Sum F by Def8,A3,A4,BINOP_2:1;
end;
suppose A5:len F>=1;
A6: NAT = NAT /\ COMPLEX by MEMBERED:1,XBOOLE_1:28;
now let x,y;assume x in NAT & y in NAT;
then reconsider X=x,Y=y as Element of NAT;
addnat.(x,y) = X+Y by BINOP_2:def 23;
hence addnat.(x,y) =addcomplex.(x,y) & addnat.(x,y) in NAT
by BINOP_2:def 3;
end;
hence thesis by Th46,A5,A6,A2;
end;
end;
registration
let F be real-valued XFinSequence;
cluster Sum F -> real;
coherence
proof
Sum F = addreal "**" F by Th47;
hence thesis;
end;
end;
registration
let F be RAT-valued XFinSequence;
cluster Sum F -> rational;
coherence
proof
Sum F = addrat "**" F by Th48;
hence thesis;
end;
end;
registration
let F be INT-valued XFinSequence;
cluster Sum F -> integer;
coherence
proof
Sum F = addint "**" F by Th49;
hence thesis;
end;
end;
registration
let F be natural-valued XFinSequence;
cluster Sum F -> natural;
coherence
proof
Sum F = addnat "**" F by Th50;
hence thesis;
end;
end;
registration
cluster natural-valued -> nonnegative-yielding for Relation;
coherence
proof
let R be Relation;
assume R is natural-valued;
then for r be Real st r in rng R holds r >=0;
hence thesis by PARTFUN3:def 4;
end;
end;
theorem
cF = {} implies Sum cF = 0;
theorem
Sum <%c%> = c
proof
c in COMPLEX by XCMPLX_0:def 2;
hence thesis by Th37;
end;
theorem
Sum <%c1,c2%> = c1 + c2
proof
c1 in COMPLEX & c2 in COMPLEX by XCMPLX_0:def 2;
then addcomplex "**" <%c1,c2%> = addcomplex.(c1,c2) by Th38
.= c1+c2 by BINOP_2:def 3;
hence thesis;
end;
theorem Th54: :: RLVECT_1:58 NUMERAL1:1
Sum(cF1^cF2)=Sum(cF1)+Sum(cF2)
proof
A1: cF1 is COMPLEX -valued & cF2 is COMPLEX -valued by Lm2;
thus Sum(cF1^cF2)=addcomplex.(Sum(cF1),Sum(cF2)) by Th41,A1
.= Sum(cF1)+Sum(cF2) by BINOP_2:def 3;
end;
theorem :: NUMERAL1:2
for S being Real_Sequence st rF=S|(n+1) holds Sum rF = Partial_Sums(S).n
proof
let S be Real_Sequence;
A1:rF is REAL -valued by Lm3;
n+1 c= NAT;
then
A2: n+1 c= dom S by FUNCT_2:def 1;
assume
A3: rF=S|(n+1);
then dom rF = dom S /\ (n+1) by RELAT_1:61;
then
A4: dom rF = n+1 by A2,XBOOLE_1:28;
then consider f be sequence of REAL such that
A5: f.0 = rF.0 and
A6: for m be Nat st m+1 < len rF holds f.(m + 1) = addreal.(f.m,rF.(m + 1)) and
A7: addreal "**" rF = f.(len rF-1) by Def8,A1;
defpred P[Nat] means $1 in dom rF implies f.$1=Partial_Sums(S).$1;
A8: now
let k;
assume
A9: P[k];
thus P[k+1]
proof
assume
A10: k+1 in dom rF;
then
A11: k+1 < len rF by AFINSQ_1:86;
then
A12: k<len rF by NAT_1:13;
thus f.(k+1)= addreal.(f.k,rF.(k + 1)) by A6,A11
.= (f.k)+rF.(k + 1) by BINOP_2:def 9
.= (f.k)+S.(k+1) by A3,A10,FUNCT_1:47
.= Partial_Sums(S).(k+1) by A9,A12,AFINSQ_1:86,SERIES_1:def 1;
end;
end;
Partial_Sums(S).0=S.0 by SERIES_1:def 1;
then
A13: P[0] by A3,A5,FUNCT_1:47;
A14: n in Segm(n+1) by NAT_1:45;
for m holds P[m] from NAT_1:sch 2(A13,A8);
hence Partial_Sums(S).n=f.n by A4,A14
.= Sum rF by Th47,A7,A4;
end;
theorem Th56: :: NUMERAL1:4
len rF1 = len rF2 &
(for i st i in dom rF1 holds rF1.i<=rF2.i) implies
Sum rF1 <= Sum rF2
proof
set d=rF1,e=rF2;
assume that
A1: len d = len e and
A2: for i st i in dom d holds d.i<=e.i;
reconsider d,e as XFinSequence of REAL by Lm3;
A3: Sum d = addreal "**" d & Sum e = addreal "**" e by Th47;
per cases by NAT_1:14;
suppose A4:len d >=1;
consider f being sequence of REAL such that
A5: f.0 = d.0 and
A6: for n st n+1 < len d holds f.(n + 1) = addreal.
(f.n,d.(n + 1)) and
A7: Sum d = f.(len d-1) by A4,Def8,A3;
consider g being sequence of REAL such that
A8: g.0 = e.0 and
A9: for n st n+1 < len e holds g.(n + 1) = addreal.
(g.n,e.(n + 1)) and
A10: Sum e = g.(len e-1) by A4,A1,Def8,A3;
defpred P[Nat] means $1 in dom d implies f.$1 <= g.$1;
A11: now
let i;
assume
A12: P[i];
thus P[i+1]
proof
assume
A13: i+1 in dom d;
then
A14: i+1 < len d by AFINSQ_1:86;
then
A15: i < len d by NAT_1:13;
A16: d.(i+1) <= e.(i+1) by A2,A13;
A17: f.(i+1) = addreal.(f.i,d.(i + 1)) by A6,A14
.= f.i + d.(i+1) by BINOP_2:def 9;
g.(i+1) = addreal.(g.i,e.(i + 1)) by A1,A9,A14
.= g.i + e.(i+1) by BINOP_2:def 9;
hence thesis by A12,A15,A17,A16,AFINSQ_1:86,XREAL_1:7;
end;
end;
reconsider ld=len d-1 as Element of NAT by A4,NAT_1:21;
len d-1 < len d - 0 by XREAL_1:10;
then
A18: ld in len d by AFINSQ_1:86;
A19: P[0] by A2,A5,A8;
for i holds P[i] from NAT_1:sch 2(A19,A11);
hence thesis by A1,A7,A10,A18;
end;
suppose len d=0;
then Sum d = the_unity_wrt addreal & Sum e = the_unity_wrt addreal
by Def8,A3,A1;
hence thesis;
end;
end;
theorem Th57:
Sum (n-->c) = n*c
proof
set Fn= n-->c;
reconsider Fn as XFinSequence of COMPLEX by Lm2;
A1:dom Fn = n by FUNCOP_1:13;
now
per cases;
suppose
dom Fn=0;
hence thesis by A1;
end;
suppose
A2: dom Fn>0;
then consider f be sequence of COMPLEX such that
A3: f.0 = Fn.0 and
A4: for k st k+1 < len Fn holds
f.(k + 1) = addcomplex.(f.k,Fn.(k + 1)) and
A5: Sum Fn= f.(len Fn-1) by Def8;
defpred P[Nat] means $1 < len Fn implies f.$1 =($1+1)*c;
A6: for m st P[m] holds P[m+1]
proof
let m such that
A7: P[m];
assume
A8: m + 1 < len Fn;
then f.(m+1)=addcomplex.(f.m,Fn.(m+1)) by A4;
then
A9: f.(m + 1) = f.m + Fn.(m+1) by BINOP_2:def 3;
Fn.(m+1) = c by A1,FUNCOP_1:7,A8,AFINSQ_1:86;
hence thesis by A7,A8,A9,NAT_1:13;
end;
reconsider lenFn1=len Fn -1 as Element of NAT by A2,NAT_1:20;
A10: lenFn1<lenFn1+1 by NAT_1:13;
A11: P[0] by A3,A1,FUNCOP_1:7,AFINSQ_1:86;
for m holds P[m] from NAT_1:sch 2(A11,A6);
hence thesis by A5,A10,A1;
end;
end;
hence thesis;
end;
theorem :: STIRL2_1:50
(for n st n in dom rF holds rF.n <= r) implies
Sum rF <= len rF * r
proof
set L= len rF-->r;
assume A1:n in dom rF implies rF.n <= r;
A2:len L=len rF by FUNCOP_1:13;
now let n;assume n in dom rF;
then rF.n <= r & L.n = r by A1,FUNCOP_1:7;
hence rF.n <= L.n;
end;
then Sum rF <= Sum L by Th56,A2;
hence thesis by Th57;
end;
theorem :: STIRL2_1:51
(for n st n in dom rF holds rF.n >= r) implies
Sum rF >= len rF *r
proof
set L=len rF-->r;
assume A1:n in dom rF implies rF.n >= r;
A2:len L=len rF by FUNCOP_1:13;
now let n;assume n in dom rF;
then rF.n >= r & L.n = r by A1,FUNCOP_1:7;
hence rF.n >= L.n;
end;
then Sum rF >= Sum L by Th56,A2;
hence thesis by Th57;
end;
theorem Th60: :: STIRL2_1:52
rF is nonnegative-yielding & len rF > 0 &
(ex x st x in dom rF & rF.x = r) implies Sum rF >= r
proof
assume that
A1:rF is nonnegative-yielding and
A2: len rF > 0 and
A3: ex x st x in dom rF & rF.x = r;
consider x such that
A4: x in dom rF and
A5: rF.x = r by A3;
reconsider lenrF1=len rF-1 as Element of NAT by A2,NAT_1:20;
A6: dom rF=lenrF1+1;
reconsider x as Element of NAT by A4;
A7: lenrF1 < lenrF1+1 by NAT_1:13;
A8: x < len rF by A4,AFINSQ_1:86;
then
A9: x<=lenrF1 by A6,NAT_1:13;
rF is REAL-valued by Lm3;then
consider f be sequence of REAL such that
A10: f.0 = rF.0 and
A11: for n st n+1 < len rF holds f.(n + 1) = addreal.(f.n,rF.(n + 1)) and
A12: addreal "**" rF= f.(len rF-1) by Def8,A2;
defpred P[Nat] means $1 < x implies f.$1 >= 0;
0 in len rF by A2,AFINSQ_1:86;
then rF.0 in rng rF by FUNCT_1:def 3;
then
A13:P[0] by A1,A10,PARTFUN3:def 4;
A14:P[n] implies P[n+1]
proof
assume A15:P[n];
assume A16:n+1 < x;
then n < x & n+1 < len rF by A8,NAT_1:13,XXREAL_0:2;
then A17:f.(n + 1) = addreal.(f.n,rF.(n + 1)) & f.n >=0 & n+1 in dom rF
by A11,A15,AFINSQ_1:86;
then rF.(n+1) in rng rF by FUNCT_1:def 3;
then rF.(n+1) >=0 by A1,PARTFUN3:def 4;
then f.n+rF.(n + 1) >=zz+zz by A16,A15,NAT_1:13;
hence thesis by A17,BINOP_2:def 9;
end;
A18:P[n] from NAT_1:sch 2(A13,A14);
defpred P[Nat] means x <= $1 & $1 < len rF implies f.$1 >= r;
now
per cases;
suppose
A19: x=0;
assume that
x <= x and
x < len rF;
thus f.x>=r by A5,A10,A19;
end;
suppose
x>0;
then reconsider x1=x-1 as Element of NAT by NAT_1:20;
assume that
x <= x and
A20: x < len rF;
A21: x1 <x1+1 by NAT_1:13;
x1+1 < len rF by A20;
then f.x = addreal.(f.x1,rF.x) by A11;
then f.x=f.x1+rF.x & f.x1 >=0
by A21,A18,BINOP_2:def 9;
then f.x>=r+(0 qua Real) by A5,XREAL_1:7;
hence f.x>=r;
end;
end;
then
A22: P[x];
A23: for m be Nat st m>=x & P[m] holds P[m+1]
proof
let m be Nat such that
A24: m>=x and
A25: P[m];
reconsider m1 = m as Element of NAT by ORDINAL1:def 12;
assume that
x <= m+1 and
A26: m+1 < len rF;
m+1 in dom rF by A26,AFINSQ_1:86;
then A27:rF.(m+1) in rng rF by FUNCT_1:def 3;
f.(m1 + 1) = addreal.(f.m1,rF.(m1 + 1)) by A11,A26;
then f.(m1+1)=f.m1+rF.(m1+1) & rF.(m1+1) >=0
by A27,A1,BINOP_2:def 9,PARTFUN3:def 4;
then f.(m+1) >= r+(0 qua Real) by A24,A25,A26,NAT_1:13,XREAL_1:7;
hence thesis;
end;
for m be Nat st m>=x holds P[m] from NAT_1:sch 8(A22,A23);
then addreal "**" rF >= r by A12,A9,A7;
hence thesis by Th47;
end;
theorem Th61: :: STIRL2_1:53
rF is nonnegative-yielding implies
(Sum rF=0 iff (len rF=0 or rF = len rF --> 0))
proof
assume A1:
rF is nonnegative-yielding;
hereby
assume
A2: Sum rF=0;
assume
A3: len rF <>0;
set L=len rF -->0;
assume rF <> len rF -->0;
then consider k such that
A4: k in dom L & L.k <> rF.k by AFINSQ_1:8,FUNCOP_1:13;
rF.k in rng rF by A4,FUNCT_1:def 3;
then L.k = 0 & rF.k >=0 by A4,A1,FUNCOP_1:7,PARTFUN3:def 4;
hence contradiction by A2,Th60,A1,A4,A3;
end;
A5:rF is COMPLEX-valued by Lm2;
assume len rF=0 or rF= len rF -->0 ;
then Sum rF = 0 or Sum rF = len rF *0 by A5,Th57,Def8,BINOP_2:1;
hence thesis;
end;
theorem Th62:
c(#)cF|n = (c(#)cF)|n
proof
set ccF=c(#)cF;
set cFn = cF|n;
A1:len ccF = len cF & len (c(#)cFn) = len cFn by VALUED_1:def 5;
per cases;
suppose A2:n <= len cF;
then A3:len(cFn) = n & len (ccF|n)=n by A1,AFINSQ_1:54;
now let i;
assume i < len (c(#)cFn);
then A4: i in dom (c(#)cFn) by AFINSQ_1:86;
thus (c(#)cFn).i = c* (cFn.i) by VALUED_1:6
.= c* (cF.i) by A4,A2,AFINSQ_1:53
.=ccF.i by VALUED_1:6
.=(ccF|n).i by A4,A1,A2,AFINSQ_1:53;
end;
hence thesis by A1,A3,AFINSQ_1:9;
end;
suppose n > len cF;
then cF|n= cF & ccF|n=ccF by A1,AFINSQ_1:52;
hence thesis;
end;
end;
theorem
c * Sum cF = Sum (c(#)cF)
proof
defpred P[Nat] means for cF st len cF=$1 holds
c * Sum cF = Sum (c(#)cF);
A1: for k st P[k] holds P[k+1]
proof
let k such that
A2: P[k];
A3: k<k+1 by NAT_1:13;
let cF such that
A4: len cF=k+1;
set cF1 = c(#)cF;
A5: dom cF=dom cF1 by VALUED_1:def 5;
reconsider cF,cF1 as XFinSequence of COMPLEX by Lm2;
A6: cF|(k+1)=cF by A4;
A7: len (cF|k)=k by A3,AFINSQ_1:11,A4;
k<k+1 by NAT_1:13;
then
A8: k in dom cF by A4,AFINSQ_1:86;
then addcomplex.
(addcomplex "**" cF|k, cF.k) = addcomplex "**" cF|(k+1) by Th42;
then
A9: Sum cF=Sum (cF|k)+cF.k by A6,BINOP_2:def 3;
A10: c * Sum (cF|k)= Sum (c(#)(cF|k)) by A2,A7
.= Sum(cF1|k) by Th62;
A11: c*cF.k=cF1.k by VALUED_1:6;
A12: cF1|(k+1)=cF1 by A4,A5;
addcomplex.(addcomplex "**" cF1|k,cF1.k)
=addcomplex "**" cF1|(k+1) by A5,A8,Th42;
then Sum cF1=Sum (cF1|k)+cF1.k by A12,BINOP_2:def 3;
hence thesis by A9,A11,A10;
end;
A13: P[0]
proof
let cF such that
A14: len cF=0;
set cF1 = c(#)cF;
reconsider cF,cF1 as XFinSequence of COMPLEX by Lm2;
A15: addcomplex "**" cF=0 by Def8,BINOP_2:1,A14;
len cF1=0 by A14,VALUED_1:def 5;
hence thesis by A15,Def8,BINOP_2:1;
end;
for k holds P[k] from NAT_1:sch 2(A13,A1);
then P[len cF];
hence thesis;
end;
theorem Th64: :: CARD_FIN:44
n in dom cF implies Sum (cF|n) + cF.n = Sum (cF|(n+1))
proof
assume
A1: n in dom cF;
reconsider cF as XFinSequence of COMPLEX by Lm2;
addcomplex.(addcomplex "**" cF|n, cF.n) = addcomplex "**" cF|(n+1)
by Th42,A1;
hence thesis by BINOP_2:def 3;
end;
theorem Th65: ::CARD_FIN:13
for f be Function st
f.y=x & y in dom f holds {y}\/(f|(dom f\{y}))"{x}=f"{x}
proof
let f be Function;
assume that
A1: f.y=x and
A2: y in dom f;
set d=dom f\{y};
A3: (f|d)"{x} c= f"{x}
proof
let x1 be object such that
A4: x1 in (f|d)"{x};
A5: (f|d).x1 in {x} by A4,FUNCT_1:def 7;
A6: x1 in dom (f|d) by A4,FUNCT_1:def 7;
then dom (f|d)=dom f/\d & f.x1=(f|d).x1 by FUNCT_1:47,RELAT_1:61;
hence thesis by A6,A5,FUNCT_1:def 7;
end;
A7: f"{x} c= {y}\/(f|d)"{x}
proof
let x1 be object such that
A8: x1 in f"{x};
x1 in dom f & not x1 in {y} or x1=y by A8,FUNCT_1:def 7,TARSKI:def 1;
then x1 in dom f & x1 in d & dom (f|d)=dom f/\d or x1=y by RELAT_1:61
,XBOOLE_0:def 5;
then x1 in dom (f|d) or x1=y by XBOOLE_0:def 4;
then x1 in dom (f|d) & f.x1=(f|d).x1 & f.x1 in {x} or x1 in {y} by A8,
FUNCT_1:47,def 7,TARSKI:def 1;
then x1 in (f|d)"{x} or x1 in {y} by FUNCT_1:def 7;
hence thesis by XBOOLE_0:def 3;
end;
{y} c= f"{x}
proof
let z be object;
assume z in {y};
then
A9: z=y by TARSKI:def 1;
f.y in {x} by A1,TARSKI:def 1;
hence thesis by A2,A9,FUNCT_1:def 7;
end;
hence thesis by A7,A3,XBOOLE_1:8;
end;
theorem Th66: :: CARD_FIN:15
for x,y being object
for f be Function st f.y<>x holds (f|(dom f\{y}))"{x}=f"{x}
proof let x,y be object;
let f be Function;
set d=dom f\{y};
assume
A1: f.y<>x;
A2: f"{x} c= (f|d)"{x}
proof
A3: dom (f|d)=dom f/\d by RELAT_1:61;
let x1 be object such that
A4: x1 in f"{x};
A5: f.x1 in {x} by A4,FUNCT_1:def 7;
f.x1 in {x} by A4,FUNCT_1:def 7;
then f.x1=x by TARSKI:def 1;
then
A6: not x1 in {y} by A1,TARSKI:def 1;
x1 in dom f by A4,FUNCT_1:def 7;
then x1 in d by A6,XBOOLE_0:def 5;
then
A7: x1 in dom (f|d) by A3,XBOOLE_0:def 4;
then f.x1=(f|d).x1 by FUNCT_1:47;
hence thesis by A7,A5,FUNCT_1:def 7;
end;
(f|d)"{x} c= f"{x}
proof
let x1 be object such that
A8: x1 in (f|d)"{x};
A9: (f|d).x1 in {x} by A8,FUNCT_1:def 7;
A10: x1 in dom (f|d) by A8,FUNCT_1:def 7;
then dom (f|d)=dom f/\d & f.x1=(f|d).x1 by FUNCT_1:47,RELAT_1:61;
hence thesis by A10,A9,FUNCT_1:def 7;
end;
hence thesis by A2;
end;
theorem :: CATALAN2:45
rng cF c= {0,c} implies Sum cF = c * card (cF"{c})
proof
defpred P[Nat] means for cF,c st len cF=$1 &
rng cF c= {0,c} holds Sum cF = c* card (cF"{c});
assume
A1: rng cF c= {0,c};
A2: for k st P[k] holds P[k+1]
proof
let k such that
A3: P[k];
let F be complex-valued XFinSequence,
c be Complex such that
A4: len F=k+1 and
A5: rng F c= {0,c};
per cases;
suppose
A6: c <>0;
( not k in k)& Segm k \/ {k}= Segm(k+1) by AFINSQ_1:2;
then
A7: dom F\{k}=k by A4,ZFMISC_1:117;
k <k+1 by NAT_1:13;
then k in dom F by A4,AFINSQ_1:86;
then
A8: F.k in rng F by FUNCT_1:def 3;
per cases by A5,A8,TARSKI:def 2;
suppose
A9: F.k=0;
A10: F|(k+1)=F by A4;
A11: k <k+1 by NAT_1:13; then
A12: Sum (F|k) + (0 qua Real)= Sum F by A9,A10,Th64,A4,AFINSQ_1:86;
A13: len (F|k)=k by A4,A11,AFINSQ_1:54;
rng (F|k) c= rng F & (F|k)"{c}=F"{c} by A6,A7,A9,Th66;
hence thesis by A3,A5,A13,A12,XBOOLE_1:1;
end;
suppose
A14: F.k=c;
set Fk=(F|k)"{c};
not k in k;
then not k in dom (F|k);
then
A15: not k in Fk by FUNCT_1:def 7;
A16: k <k+1 by NAT_1:13;
then
A17: k in dom F by A4,AFINSQ_1:86;
rng (F| k) c= rng F & len (F|k)= k by A4,A16,AFINSQ_1:54;
then
A18: Sum (F|k)=c* card ((F|k)"{c}) by A3,A5,XBOOLE_1:1;
F|(k+1)=F by A4;
then
A19: Sum (F|k)+ c = Sum F by A14,A17,Th64;
{k}\/Fk=F"{c} by A7,A14,A17,Th65;
then (card Fk)+1=card (F"{c}) by A15,CARD_2:41;
hence thesis by A18,A19;
end;
end;
suppose
A20: c = 0;
for x being object st x in dom F holds F.x = 0
proof
let x be object;
assume x in dom F;
then F.x in rng F by FUNCT_1:def 3;
hence thesis by A5,A20,TARSKI:def 2;
end;
then F = dom F --> 0 by FUNCOP_1:11;
then Sum F = len F*0 by Th61;
hence thesis by A20;
end;
end;
A21: P[0]
proof
let F be complex-valued XFinSequence,
c be Complex such that
A22: len F=0 and
rng F c= {0,c};
F"{c} c= 0 & F={} by A22,RELAT_1:132;
then card (F"{c})=0 & Sum F =0;
hence thesis;
end;
for k holds P[k] from NAT_1:sch 2(A21,A2);
then P[len cF];
hence thesis by A1;
end;
theorem :: CATALAN2:48
Sum cF = Sum Rev cF
proof
cF is COMPLEX-valued by Lm2;then
reconsider Fr2 = cF,Fr1 = Rev cF as XFinSequence of COMPLEX;
A1: len Fr1=len Fr2 by Def1;
defpred P[object,object] means for i st i=$1 holds $2=len Fr1-(1+i);
A2: card len Fr1 =card len Fr1;
A3: for x being object st x in len Fr1
ex y being object st y in len Fr1 & P[x,y]
proof
let x be object such that
A4: x in len Fr1;
reconsider k=x as Element of NAT by Th1,A4;
k+1 <= len Fr1 by NAT_1:13,A4,AFINSQ_1:86;
then
A5: len Fr1-'(1+k)=len Fr1-(1+k) by XREAL_1:233;
take len Fr1-'(1+k);
len Fr1 +zz< len Fr1 +(1+k) by XREAL_1:8;
then len Fr1-(1+k) < len Fr1+(1+k)-(1+k) by XREAL_1:9;
hence thesis by A5,AFINSQ_1:86;
end;
consider P be Function of len Fr1,len Fr1 such that
A6: for x being object st x in len Fr1 holds P[x,P.x] from FUNCT_2:sch 1(A3);
for x1,x2 be object
st x1 in len Fr1 & x2 in len Fr1 & P.x1 = P.x2 holds x1 = x2
proof
let x1,x2 be object such that
A7: x1 in len Fr1 and
A8: x2 in len Fr1 and
A9: P.x1 = P.x2;
reconsider i=x1,j=x2 as Element of NAT by A7,A8,Th1;
A10: P.x2=len Fr1-(1+j) by A6,A8;
P.x1=len Fr1-(1+i) by A6,A7;
hence thesis by A9,A10;
end;
then
A11: P is one-to-one by FUNCT_2:56;
then P is onto by A2,Lm1;
then reconsider P as Permutation of dom Fr1 by A11;
A12: now
let x be object such that
A13: x in dom Fr1;
reconsider k=x as Element of NAT by A13;
P.k=len Fr1-(1+k) by A6,A13;
hence Fr1.x=Fr2.(P.x) by A1,Def1,A13;
end;
A14: now
let x be object such that
A15: x in dom Fr1;
x in dom P by A15,FUNCT_2:52;
then P.x in rng P by FUNCT_1:3;
hence x in dom P & P.x in dom Fr2 by A1,A15,FUNCT_2:52;
end;
for x being object st x in dom P & P.x in dom Fr2 holds x in dom Fr1;
then Fr1 = Fr2 * P by A14,A12,FUNCT_1:10;
hence thesis by A1,Th44;
end;
theorem Th69:
for f be Function,p,q,fp,fq be XFinSequence st
rng p c= dom f & rng q c= dom f & fp = f*p & fq = f*q
holds fp ^ fq = f*(p^q)
proof
let f be Function,p,q,fp,fq be XFinSequence such that
A1: rng p c= dom f & rng q c= dom f & fp = f*p & fq = f*q;
set pq=p^q;
A2:rng pq = rng p \/rng q by AFINSQ_1:26;
then A3:dom (f*pq)=dom pq by A1,RELAT_1:27,XBOOLE_1:8;
reconsider fpq = f*pq as XFinSequence by A2,A1,AFINSQ_1:10,XBOOLE_1:8;
A4:dom fp=dom p & dom fq = dom q by A1,RELAT_1:27;
A5:dom pq=len p+len q & dom (fp^fq) = len fp+len fq by AFINSQ_1:def 3;
A6:len fpq = len (fp^fq) by A2,A1,A4,A5,RELAT_1:27,XBOOLE_1:8;
k < len fpq implies (fp^fq).k = fpq.k
proof
assume A7:k< len fpq;
then A8:k in dom fpq by AFINSQ_1:86;
per cases;
suppose k < len p;
then k in dom p by AFINSQ_1:86;
then pq.k = p.k & fp.k = f.(p.k) & (fp^fq).k =fp.k
by A1,A4,AFINSQ_1:def 3,FUNCT_1:13;
hence thesis by A8,FUNCT_1:12;
end;
suppose A9:k >= len p;
then reconsider kp=k-len p as Element of NAT by NAT_1:21;
len p + kp < len p+len q by A5,A2,A1,A7,RELAT_1:27,XBOOLE_1:8;
then
kp < len q by XREAL_1:7;
then pq.k = q.kp & (fp^fq).k = fq.kp & fq.kp = f.(q.kp)
by A7,A1,A3,A4,A5,A9,AFINSQ_1:18,FUNCT_1:13,AFINSQ_1:86;
hence thesis by A8,FUNCT_1:12;
end;
end;
hence thesis by A6,AFINSQ_1:9;
end;
theorem
for B1,B2 being finite natural-membered set st
B1 <N< B2 holds
Sum (SubXFinS(cF,B1\/B2))=Sum (SubXFinS(cF,B1))+Sum(SubXFinS(cF,B2))
proof
let B1,B2 be finite natural-membered set such that A1: B1 <N< B2;
set B12=B1\/B2;
set B12L=B12/\len cF;
set B1L=B1/\len cF;
set B2L=B2/\len cF;
B1L\/B2L=B12L by XBOOLE_1:23;
then A3:Sgm0(B12L) = Sgm0(B1L) ^ Sgm0(B2L) by Th35,A1,Th25;
rng Sgm0(B1L) = B1L & rng Sgm0(B2L) = B2L by Def4;
then rng Sgm0(B1L) c= dom cF & rng Sgm0(B2L) c= dom cF by XBOOLE_1:17;
then SubXFinS (cF,B1) ^ SubXFinS (cF,B2) = SubXFinS (cF,B12) by A3,Th69;
hence thesis by Th54;
end;
:: missing, 2010.05.15, A.T.
theorem Th71:
b is having_a_unity implies b "**" <%>D = the_unity_wrt b
proof
A1: len <%>D = 0;
assume b is having_a_unity;
hence thesis by A1,Def8;
end;
definition
let D be set, F be XFinSequence of D^omega;
func FlattenSeq F -> Element of D^omega means
:Def10:
ex g being BinOp of D^omega st
(for p, q being Element of D^omega holds g.(p,q) = p^q) & it = g "**" F;
existence
proof
deffunc F(Element of D^omega,Element of D^omega) = $1^$2;
consider g being BinOp of D^omega such that
A1: for a, b being Element of D^omega holds g.(a,b) = F(a,b)
from BINOP_1:sch 4;
take g "**" F, g;
thus thesis by A1;
end;
uniqueness
proof
let it1, it2 be Element of D^omega;
given g1 being BinOp of D^omega such that
A2: for p, q being Element of D^omega holds g1.(p,q) = p^q and
A3: it1 = g1 "**" F;
given g2 being BinOp of D^omega such that
A4: for p, q being Element of D^omega holds g2.(p,q) = p^q and
A5: it2 = g2 "**" F;
now
let a, b be Element of D^omega;
thus g1.(a,b) = a^b by A2
.= g2.(a,b) by A4;
end;
hence thesis by A3,A5,BINOP_1:2;
end;
end;
theorem
for D being set, d be Element of D^omega holds FlattenSeq <%d%> = d
proof
let D be set, d be Element of D^omega;
ex g being BinOp of D^omega st
(for p, q being Element of D^omega holds g.(p,q) = p^q) &
FlattenSeq <%d%> = g "**" <% d %> by Def10;
hence thesis by Th37;
end;
theorem
for D being set holds FlattenSeq <%>(D^omega) = <%>D
proof
let D be set;
consider g being BinOp of D^omega such that
A1: for d1,d2 being Element of D^omega holds g.(d1,d2) = d1^d2 and
A2: FlattenSeq <%>(D^omega) = g "**" <%>(D^omega) by Def10;
A3: {} is Element of D^omega by AFINSQ_1:43;
reconsider p = {} as Element of D^omega by AFINSQ_1:43;
now
let a be Element of D^omega;
thus g.({},a) = {} ^ a by A1,A3
.= a;
thus g.(a,{}) = a ^ {} by A1,A3
.= a;
end;
then
A4: p is_a_unity_wrt g by BINOP_1:3;
then g "**" <%>(D^omega) = the_unity_wrt g by Th71,SETWISEO:def 2;
hence thesis by A2,A4,BINOP_1:def 8;
end;
theorem Th74:
for D being set, F,G be XFinSequence of D^omega holds
FlattenSeq (F ^ G) = FlattenSeq F ^ FlattenSeq G
proof
let D be set, F,G be XFinSequence of D^omega;
consider g being BinOp of D^omega such that
A1: for d1,d2 being Element of D^omega holds g.(d1,d2) = d1^d2 and
A2: FlattenSeq (F ^ G) = g "**" F ^ G by Def10;
now
let a,b,c be Element of D^omega;
thus g.(a,g.(b,c)) = a ^ g.(b,c) by A1
.= a ^ (b ^ c) by A1
.= a ^ b ^ c by AFINSQ_1:27
.= g.(a,b) ^ c by A1
.= g.(g.(a,b),c) by A1;
end;
then
A3: g is associative;
A4: {} is Element of D^omega by AFINSQ_1:43;
reconsider p = {} as Element of D^omega by AFINSQ_1:43;
now
let a be Element of D^omega;
thus g.({},a) = {} ^ a by A1,A4
.= a;
thus g.(a,{}) = a ^ {} by A1,A4
.= a;
end;
then p is_a_unity_wrt g by BINOP_1:3;
then g is having_a_unity or len F >= 1 & len G >= 1 by SETWISEO:def 2;
hence FlattenSeq (F ^ G) = g.(g "**" F,g "**" G) by A2,A3,Th41
.= (g "**" F) ^ (g "**" G) by A1
.= FlattenSeq F ^ (g "**" G) by A1,Def10
.= FlattenSeq F ^ FlattenSeq G by A1,Def10;
end;
theorem
for D being set, p,q be Element of D^omega holds FlattenSeq <% p,q %> = p ^ q
proof
let D be set, p,q be Element of D^omega;
consider g being BinOp of D^omega such that
A1: for d1,d2 being Element of D^omega holds g.(d1,d2) = d1^d2 and
A2: FlattenSeq <% p,q %> = g "**" <% p,q %> by Def10;
thus FlattenSeq <% p,q %> = g.(p,q) by A2,Th38
.= p ^ q by A1;
end;
theorem
for D being set, p,q,r be Element of D^omega holds
FlattenSeq <% p,q,r %> = p ^ q ^ r
proof
let D be set, p,q,r be Element of D^omega;
consider g being BinOp of D^omega such that
A1: for d1,d2 being Element of D^omega holds g.(d1,d2) = d1^d2 and
A2: FlattenSeq <% p,q,r %> = g "**" <% p,q,r %> by Def10;
thus FlattenSeq <% p,q,r %> = g.(g.(p,q),r) by A2,Th39
.= g.(p,q) ^ r by A1
.= p ^ q ^ r by A1;
end;
theorem Th77:
p c= q implies p ^ (q /^ len p) = q
proof assume
A1: p c= q;
A2: len p + len (q /^ len p)
= len p + (len q -' len p) by Def2
.= len q + len p -' len p by A1,NAT_1:43,NAT_D:38
.= dom q by NAT_D:34;
A3: for k st k in dom p holds q.k=p.k by A1,GRFUNC_1:2;
for k st k in dom(q /^ len p) holds q.(len p + k) = (q /^ len p).k
by Def2;
hence p ^ (q /^ len p) = q by A2,A3,AFINSQ_1:def 3;
end;
reserve r,s for XFinSequence;
theorem Th78:
p c= q implies ex r st p^r = q
proof
assume
A1: p c= q;
take r = q /^ len p;
thus p^r = q by A1,Th77;
end;
theorem Th79:
for p,q being XFinSequence of D st p c= q
ex r being XFinSequence of D st p^r = q
proof
let p,q being XFinSequence of D;
assume p c= q;
then consider r such that
A1: p^r = q by Th78;
reconsider r as XFinSequence of D by A1,AFINSQ_1:31;
take r;
thus thesis by A1;
end;
theorem
q c= r implies p^q c= p^r
proof
assume q c= r;
then consider s such that
A1: q^s = r by Th78;
p^q c= p^q^s by AFINSQ_1:74;
hence thesis by A1,AFINSQ_1:27;
end;
theorem
for D being set, F,G be XFinSequence of D^omega holds
F c= G implies FlattenSeq F c= FlattenSeq G
proof
let D be set, F,G be XFinSequence of D^omega;
assume F c= G;
then consider F9 being XFinSequence of D^omega such that
A1: F ^ F9 = G by Th79;
FlattenSeq F ^ FlattenSeq F9 = FlattenSeq G by A1,Th74;
hence thesis by AFINSQ_1:74;
end;
registration let p; let q be non empty XFinSequence;
cluster p^q -> non empty;
coherence by AFINSQ_1:30;
cluster q^p -> non empty;
coherence by AFINSQ_1:30;
end;
theorem
CutLastLoc(p^<%x%>) = p
proof set q = CutLastLoc(p^<%x%>);
A1: len(p^<%x%>) -' 1 = len p + 1 -' 1 by AFINSQ_1:75
.= len p by NAT_D:34;
A2: dom(p^<%x%>) = len(p^<%x%>)
.= Segm(len p + 1) by AFINSQ_1:75
.= Segm len p \/ {len p} by AFINSQ_1:2;
A3: not len p in dom p;
LastLoc(p^<%x%>) = len(p^<%x%>) -' 1 by AFINSQ_1:70;
hence
A4: dom q = dom(p^<%x%>) \ {len p} by A1,VALUED_1:36
.= dom p by A2,A3,ZFMISC_1:117;
let y be object;
assume
A5: y in dom q;
A6: p c= p^<%x%> by AFINSQ_1:74;
thus q.y = (p^<%x%>).y by A5,GRFUNC_1:2
.= p.y by A5,A4,A6,GRFUNC_1:2;
end;
:: generalizes BALLOT_1:1 to empty D
theorem Th17:
for D being set, p being XFinSequence of D, n being Nat
holds XFS2FS(p|n) = (XFS2FS p)|n & XFS2FS(p/^n) = (XFS2FS p)/^n
proof
let D be set, p be XFinSequence of D, n be Nat;
:: first part
thus XFS2FS(p|n) = (XFS2FS p)|n
proof
A1: now
let x be object;
hereby
assume A2: x in dom XFS2FS(p|n);
then reconsider m1 = x as Nat;
A3: 1 <= m1 & m1 <= len XFS2FS(p|n) by A2, FINSEQ_3:25;
then reconsider m = m1 - 1 as Nat by INT_1:74;
m+1 in dom XFS2FS(p|n) by A2;
then m in dom(p|n) by AFINSQ_1:95;
then A4: m in dom p & m in n by RELAT_1:57;
then A5: m+1 in dom XFS2FS p by AFINSQ_1:95;
m in Segm n by A4;
then m < n by NAT_1:44;
then m+1 <= n by NAT_1:13;
then x in dom((XFS2FS p)|Seg n) by A3, A5, FINSEQ_1:1, RELAT_1:57;
hence x in dom((XFS2FS p)|n) by FINSEQ_1:def 15;
end;
assume x in dom((XFS2FS p)|n);
then x in dom((XFS2FS p)|Seg n) by FINSEQ_1:def 15;
then A6: x in dom XFS2FS p & x in Seg n by RELAT_1:57;
then reconsider m1 = x as Nat;
A7: 1 <= m1 & m1 <= n by A6, FINSEQ_1:1;
then reconsider m = m1-1 as Nat by INT_1:74;
m+1 in dom XFS2FS p by A6;
then A8: m in dom p by AFINSQ_1:95;
m+1 <= n by A7;
then m < n by NAT_1:13;
then m in Segm n by NAT_1:44;
then m in dom(p|n) by A8, RELAT_1:57;
then m+1 in dom XFS2FS(p|n) by AFINSQ_1:95;
hence x in dom XFS2FS(p|n);
end;
for k being Nat st k in dom XFS2FS(p|n)
holds (XFS2FS(p|n)).k = ((XFS2FS p)|n).k
proof
let k be Nat;
assume A9: k in dom XFS2FS(p|n);
then A10: 1 <= k & k <= len XFS2FS(p|n) by FINSEQ_3:25;
then reconsider m = k-1 as Nat by INT_1:74;
m+1 in dom XFS2FS(p|n) by A9;
then A11: m in dom(p|n) by AFINSQ_1:95;
then m in Segm len(p|n);
then m < len(p|n) by NAT_1:44;
then A12: m+1 <= len(p|n) by NAT_1:13;
Segm len(p|n) c= Segm len p by RELAT_1:60;
then len(p|n) <= len p by NAT_1:39;
then A13: k <= len p by A12, XXREAL_0:2;
m in Segm n by A11;
then m < n by NAT_1:44;
then m+1 <= n by NAT_1:13;
then A14: k in Seg n by A10, FINSEQ_1:1;
thus (XFS2FS(p|n)).k = (p|n).(m+1-'1) by A10, A12, AFINSQ_1:def 9
.= (p|n).m by NAT_D:34
.= p.m by A11, FUNCT_1:47
.= p.(m+1-'1) by NAT_D:34
.= (XFS2FS p).k by A10, A13, AFINSQ_1:def 9
.= ((XFS2FS p)|Seg n).k by A14, FUNCT_1:49
.= ((XFS2FS p)|n).k by FINSEQ_1:def 15;
end;
hence XFS2FS(p|n) = (XFS2FS p)|n by A1, TARSKI:2;
end;
:: second part
per cases;
suppose A15: len p <= n;
then p/^n = {} by Th6;
then A16: XFS2FS(p/^n) = {};
len((XFS2FS p)/^n) = 0
proof
per cases by A15, XXREAL_0:1;
suppose len p < n;
then A17: len p - n < n-n by XREAL_1:14;
thus len((XFS2FS p)/^n) = len XFS2FS p -' n by RFINSEQ:29
.= len p -' n by AFINSQ_1:def 9
.= 0 by A17, XREAL_0:def 2;
end;
suppose A18: len p = n;
thus len((XFS2FS p)/^n) = len XFS2FS p -' n by RFINSEQ:29
.= 0 + len p -' n by AFINSQ_1:def 9
.= 0 by A18, NAT_D:34;
end;
end;
hence thesis by A16;
end;
suppose A19: n < len p;
then A20: n <= len XFS2FS p by AFINSQ_1:def 9;
A21: len XFS2FS(p/^n) = len(p/^n) by AFINSQ_1:def 9
.= len p -' n by Def2
.= len XFS2FS p -' n by AFINSQ_1:def 9
.= len((XFS2FS p)/^n) by RFINSEQ:29;
now
let k be Nat;
assume A22: 1 <= k & k <= len XFS2FS(p/^n);
then A23: 1 <= k & k <= len(p/^n) by AFINSQ_1:def 9;
then reconsider m = k-1 as Nat by INT_1:74;
m+1 <= len(p/^n) by A23;
then m < len(p/^n) by NAT_1:13;
then m in Segm len(p/^n) by NAT_1:44;
then A24: m in dom(p/^n);
A25: k in dom((XFS2FS p)/^n) by A21, A22, FINSEQ_3:25;
A26: 1+0 <= k+n by A23, XREAL_1:7;
k <= len p - n by A19, A23, Th7;
then A27: k+n <= len p - n + n by XREAL_1:6;
thus (XFS2FS(p/^n)).k = (p/^n).(m+1-'1) by A23, AFINSQ_1:def 9
.= (p/^n).m by NAT_D:34
.= p.(m+n) by A24, Def2
.= p.(n+m+1-'1) by NAT_D:34
.= (XFS2FS p).(k+n) by A26, A27, AFINSQ_1:def 9
.= ((XFS2FS p)/^n).k by A20, A25, RFINSEQ:def 1;
end;
hence thesis by A21;
end;
end;
theorem Th5: :: from BALLOT_1:5
for D being set
for d be FinSequence of D holds XFS2FS (FS2XFS d) = d
proof
let D be set;
let d be FinSequence of D;
set Xd=FS2XFS d;
A1: len d = len Xd by AFINSQ_1:def 8;
A2: len Xd = len XFS2FS Xd by AFINSQ_1:def 9;
now let i such that
A3: 1 <= i and
A4: i <= len d;
reconsider i1=i-1 as Nat by A3,NAT_1:21;
A5: i1+1 = i;
A6: i-'1 = i1 by XREAL_0:def 2;
thus d.i = Xd.i1 by A4,A5,NAT_1:13,AFINSQ_1:def 8
.= (XFS2FS Xd).i by A3,A4,A6,A1,AFINSQ_1:def 9;
end;
hence thesis by A1,A2;
end;
registration
let D be set, f be FinSequence of D;
reduce XFS2FS (FS2XFS f) to f;
reducibility by Th5;
end;
theorem
for D being set, p being FinSequence of D, n being Nat
holds (FS2XFS p)|n = FS2XFS(p|n) & (FS2XFS p)/^n = FS2XFS(p/^n)
proof
let D be set, p be FinSequence of D, n be Nat;
thus (FS2XFS p)|n = FS2XFS XFS2FS((FS2XFS p)|n)
.= FS2XFS((XFS2FS FS2XFS p)|n) by Th17
.= FS2XFS(p|n);
thus (FS2XFS p)/^n = FS2XFS XFS2FS((FS2XFS p)/^n)
.= FS2XFS((XFS2FS FS2XFS p)/^n) by Th17
.= FS2XFS(p/^n);
end;
:: analogous theorem of FINSEQ_5:34
theorem
for D being set, p being one-to-one XFinSequence of D, n being Nat
holds rng(p|n) misses rng(p/^n)
proof
let D be set, p be one-to-one XFinSequence of D, n be Nat;
rng((XFS2FS p)|n) misses rng((XFS2FS p)/^n) by FINSEQ_5:34;
then rng((XFS2FS p)|n) misses rng(XFS2FS(p/^n)) by Th17;
then rng(XFS2FS(p|n)) misses rng(XFS2FS(p/^n)) by Th17;
then rng(XFS2FS(p|n)) misses rng(p/^n) by AFINSQ_1:97;
hence rng(p|n) misses rng(p/^n) by AFINSQ_1:97;
end;
registration
cluster finite for Ordinal-Sequence;
existence
proof
reconsider f = 0 --> omega as Ordinal-Sequence;
take f;
thus thesis;
end;
end;
registration
let A be finite Ordinal-Sequence, n be Nat;
cluster A /^ n -> Ordinal-yielding;
coherence
proof
consider a being Ordinal such that
A1: rng A c= a by ORDINAL2:def 4;
rng(A /^ n) c= rng A by Th9;
hence thesis by A1, XBOOLE_1:1, ORDINAL2:def 4;
end;
end;
|