Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 39,640 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
:: On the Decomposition of the States of SCM
::  by Yasushi Tanaka

environ

 vocabularies NUMBERS, AMI_3, SUBSET_1, AMI_2, AMI_1, STRUCT_0, XBOOLE_0,
      FSM_1, RELAT_1, FUNCT_1, TARSKI, FINSET_1, CARD_1, XXREAL_0, FINSEQ_1,
      GRAPHSP, ARYTM_3, ARYTM_1, INT_1, FUNCT_4, FUNCOP_1, CIRCUIT2, PARTFUN1,
      EXTPRO_1, RECDEF_2, CAT_1, AMISTD_5, COMPOS_1, NAT_1;
 notations TARSKI, XBOOLE_0, XTUPLE_0, SUBSET_1, ORDINAL1, CARD_1, XCMPLX_0,
      DOMAIN_1, RELAT_1, FUNCT_1, FUNCOP_1, PARTFUN1, FUNCT_4, NUMBERS, INT_1,
      NAT_1, RECDEF_2, STRUCT_0, FINSET_1, FINSEQ_1, MEMSTR_0, COMPOS_0,
      SCM_INST, COMPOS_1, EXTPRO_1, AMI_3, XXREAL_0, AMISTD_5;
 constructors DOMAIN_1, FINSEQ_4, AMI_3, PRE_POLY, AMISTD_5, FUNCT_7, RELSET_1;
 registrations XBOOLE_0, SETFAM_1, RELAT_1, FUNCT_1, ORDINAL1, XREAL_0, INT_1,
      AMI_3, FINSET_1, CARD_1, COMPOS_1, EXTPRO_1, FUNCT_4, FUNCOP_1, MEMSTR_0,
      COMPOS_0, XTUPLE_0, FACIRC_1;
 requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;
 definitions EXTPRO_1, FUNCT_1, AMISTD_5;
 equalities EXTPRO_1, AMI_3, FUNCOP_1, AMI_2, MEMSTR_0, SCM_INST;
 theorems AMI_3, GRFUNC_1, TARSKI, FUNCOP_1, FUNCT_4, MEMSTR_0, FUNCT_1,
      ZFMISC_1, ENUMSET1, RELAT_1, XBOOLE_0, XBOOLE_1, PBOOLE, PARTFUN1,
      EXTPRO_1, AMISTD_5, AMI_2, COMPOS_1;

begin

reserve x,y for set;

theorem Th1:
  for dl being Data-Location ex i being Nat st dl = dl.i
proof
  let dl be Data-Location;
  dl in Data-Locations SCM by AMI_2:def 16,AMI_3:27;
  then consider x,y being object such that
A1: x in {1} and
A2: y in NAT and
A3: dl = [x,y] by AMI_3:27,ZFMISC_1:84;
  reconsider k = y as Nat by A2;
  take k;
  thus thesis by A1,A3,TARSKI:def 1;
end;

theorem Th2:
  for dl being Data-Location holds dl <> IC SCM
by Th1,AMI_3:13;

theorem
  for il being Nat, dl being Data-Location
  holds il <> dl
proof
  let il be Nat, dl be Data-Location;
  ex j being Nat st dl = dl.j by Th1;
  hence thesis;
end;

reserve i, j, k for Nat;

theorem
  for s being State of SCM, d being Data-Location
   holds d in dom s
proof
  let s be State of SCM, d be Data-Location;
A1: dom s = the carrier of SCM by PARTFUN1:def 2;
  thus d in dom s by A1;
end;

registration
  cluster Data-Locations SCM -> infinite;
  coherence by AMI_3:27;
end;

reserve I,J,K for Element of Segm 9,
  a,a1 for Nat,
  b,b1,c for Element of Data-Locations SCM;

Lm1:
 b is Data-Location
 proof
   b in Data-Locations SCM;
   then reconsider b as Object of SCM;
   b is Data-Location by AMI_2:def 16,AMI_3:27;
  hence thesis;
 end;

theorem
  for l being Instruction of SCM holds InsCode(l) <= 8
proof
  let l be Instruction of SCM;
  l in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
   \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } }
    or l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }
       by AMI_3:27,XBOOLE_0:def 3;
  then
A1: l in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
 or l in { [K,<*a1*>,<*b1*>]
  : K in { 7,8 } } or l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by
XBOOLE_0:def 3;
  per cases by A1,XBOOLE_0:def 3;
  suppose
    l in { [SCM-Halt,{},{}] };
    then l = [SCM-Halt,{},{}] by TARSKI:def 1;
    then l`1_3 = 0;
    hence thesis;
  end;
  suppose
    l in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st l = [J,<*a*>,{}] & J = 6;
    then l`1_3 = 6;
    hence thesis;
  end;
  suppose
    l in { [K,<*a1*>,<*b1*>] : K in { 7,8 } };
    then ex K,a1,b1 st l = [K,<*a1*>,<*b1*>] & K in { 7,8 };
    then l`1_3 in { 7,8 };
    then l`1_3 = 7 or l`1_3 = 8 by TARSKI:def 2;
    hence thesis;
  end;
  suppose
    l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} };
    then ex I,b,c st l = [I,{},<*b,c*>] & I in { 1,2,3,4,5};
    then l`1_3 in { 1,2,3,4,5};
    then l`1_3 = 1 or l`1_3 = 2 or l`1_3 = 3 or l`1_3 = 4 or l`1_3 = 5
     by ENUMSET1:def 3;
    hence thesis;
  end;
end;

reserve a, b for Data-Location,
  loc for Nat;

reserve I,J,K for Element of Segm 9,
  a,a1 for Nat,
  b,b1,c for Element of Data-Locations SCM,
  da,db for Data-Location;

::$CT

theorem
  for ins being Instruction of SCM st InsCode ins = 0 holds ins = halt SCM
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 0;
A2: now
    assume ins in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st ins = [J,<*a*>,{}] & J = 6;
     then InsCode ins = 6;
    hence contradiction by A1;
  end;
  now
    assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} };
    then ex I,b,c st ins = [I,{},<*b,c*>] & I in { 1,2,3,4,5};
    then InsCode ins in { 1,2,3,4,5};
    hence contradiction by A1,ENUMSET1:def 3;
  end;
  then
A3: ins in { [SCM-Halt,{},{}] }
 \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] :
  K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3;
  now
    assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } };
    then ex K,a1,b1 st ins = [K,<*a1*>,<*b1*>] & K in { 7,8 };
    then InsCode ins in {7,8};
    hence contradiction by A1, TARSKI:def 2;
  end;
  then ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
  by A3,XBOOLE_0:def 3;
  then ins in {[SCM-Halt,{},{}]} by A2,XBOOLE_0:def 3;
  then ins = [SCM-Halt,{},{}] by TARSKI:def 1;
  hence thesis by AMI_3:26;
end;

theorem
  for ins being Instruction of SCM st InsCode ins = 1 holds ex da,
  db st ins = da:=db
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 1;
A2: now
    assume ins in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st ins = [J,<*a*>,{}] & J = 6;
    hence contradiction by A1;
  end;
A3: now
    assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } };
    then consider K,a1,b1 such that
A4: ins = [K,<*a1*>,<*b1*>] and
A5: K in { 7,8 };
    InsCode ins = K by A4;
    hence contradiction by A1,A5,TARSKI:def 2;
  end;
  InsCode halt SCM = 0 by COMPOS_1:70;
  then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1;
  then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2,
XBOOLE_0:def 3;
  then
  not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
   \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3;
  then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }
   by AMI_3:27,XBOOLE_0:def 3;
  then consider I,b,c such that
A6: ins = [I,{},<*b,c*>] and
  I in { 1,2,3,4,5};
  reconsider da = b ,db = c as Data-Location by Lm1;
  take da,db;
  thus thesis by A1,A6;
end;

theorem
  for ins being Instruction of SCM st InsCode ins = 2 holds ex da,
  db st ins = AddTo(da,db)
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 2;
A2: now
    assume ins in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st ins = [J,<*a*>,{}] & J = 6;
    hence contradiction by A1;
  end;
A3: now
    assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } };
    then consider K,a1,b1 such that
A4: ins = [K,<*a1*>,<*b1*>] and
A5: K in { 7,8 };
    InsCode ins = K by A4;
    hence contradiction by A1,A5,TARSKI:def 2;
  end;
  InsCode halt SCM = 0 by COMPOS_1:70;
  then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1;
  then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2,
XBOOLE_0:def 3;
  then
  not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
   \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3;
  then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }
   by AMI_3:27,XBOOLE_0:def 3;
  then consider I,b,c such that
A6: ins = [I,{},<*b,c*>] and
  I in { 1,2,3,4,5};
  reconsider da = b ,db = c as Data-Location by Lm1;
  take da,db;
  thus thesis by A1,A6;
end;

theorem
  for ins being Instruction of SCM st InsCode ins = 3 holds ex da,
  db st ins = SubFrom(da,db)
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 3;
A2: now
    assume ins in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st ins = [J,<*a*>,{}] & J = 6;
    hence contradiction by A1;
  end;
A3: now
    assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } };
    then consider K,a1,b1 such that
A4: ins = [K,<*a1*>,<*b1*>] and
A5: K in { 7,8 };
    InsCode ins = K by A4;
    hence contradiction by A1,A5,TARSKI:def 2;
  end;
  InsCode halt SCM = 0 by COMPOS_1:70;
  then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1;
  then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2,
XBOOLE_0:def 3;
  then
  not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
   \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3;
  then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }
   by AMI_3:27,XBOOLE_0:def 3;
  then consider I,b,c such that
A6: ins = [I,{},<*b,c*>] and
  I in { 1,2,3,4,5};
  reconsider da = b ,db = c as Data-Location by Lm1;
  take da,db;
  thus thesis by A1,A6;
end;

theorem
  for ins being Instruction of SCM st InsCode ins = 4 holds ex da,
  db st ins = MultBy(da,db)
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 4;
A2: now
    assume ins in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st ins = [J,<*a*>,{}] & J = 6;
    hence contradiction by A1;
  end;
A3: now
    assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } };
    then consider K,a1,b1 such that
A4: ins = [K,<*a1*>,<*b1*>] and
A5: K in { 7,8 };
    InsCode ins = K by A4;
    hence contradiction by A1,A5,TARSKI:def 2;
  end;
  InsCode halt SCM = 0 by COMPOS_1:70;
  then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1;
  then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2,
XBOOLE_0:def 3;
  then
  not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
   \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3;
  then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }
   by AMI_3:27,XBOOLE_0:def 3;
  then consider I,b,c such that
A6: ins = [I,{},<*b,c*>] and
  I in { 1,2,3,4,5};
  reconsider da = b ,db = c as Data-Location by Lm1;
  take da,db;
  thus thesis by A1,A6;
end;

theorem
  for ins being Instruction of SCM st InsCode ins = 5 holds ex da,
  db st ins = Divide(da,db)
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 5;
A2: now
    assume ins in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st ins = [J,<*a*>,{}] & J = 6;
    hence contradiction by A1;
  end;
A3: now
    assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } };
    then consider K,a1,b1 such that
A4: ins = [K,<*a1*>,<*b1*>] and
A5: K in { 7,8 };
    InsCode ins = K by A4;
    hence contradiction by A1,A5,TARSKI:def 2;
  end;
  InsCode halt SCM = 0 by COMPOS_1:70;
  then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1;
  then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2,
XBOOLE_0:def 3;
  then
  not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
   \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3;
  then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }
   by AMI_3:27,XBOOLE_0:def 3;
  then consider I,b,c such that
A6: ins = [I,{},<*b,c*>] and
  I in { 1,2,3,4,5};
  reconsider da = b ,db = c as Data-Location by Lm1;
  take da,db;
  thus thesis by A1,A6;
end;

theorem
  for ins being Instruction of SCM st InsCode ins = 6 holds ex loc
  st ins = SCM-goto loc
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 6;
  now
    assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} };
    then consider I,b,c such that
A2: ins = [I,{},<*b,c*>] and
A3: I in { 1,2,3,4,5};
    InsCode ins = I by A2;
    hence contradiction by A1,A3,ENUMSET1:def 3;
  end;
  then
A4: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
 \/ { [K,<*a1*>,<*b1*>] :
  K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3;
  now
    assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } };
    then consider K,a1,b1 such that
A5: ins = [K,<*a1*>,<*b1*>] and
A6: K in { 7,8 };
    InsCode ins = K by A5;
    hence contradiction by A1,A6,TARSKI:def 2;
  end;
  then
A7: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
 by A4,XBOOLE_0:def 3;
  InsCode halt SCM = 0 by COMPOS_1:70;
  then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1;
  then ins in { [J,<*a*>,{}] : J = 6 } by A7,XBOOLE_0:def 3;
  then consider J,a such that
A8: ins = [J,<*a*>,{}] & J = 6;
  reconsider loc = a as Nat;
  take loc;
  thus thesis by A8;
end;

theorem
  for ins being Instruction of SCM st InsCode ins = 7 holds ex loc
  ,da st ins = da=0_goto loc
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 7;
A2: now
    assume ins in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st ins = [J,<*a*>,{}] & J = 6;
    hence contradiction by A1;
  end;
  now
    assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} };
    then consider I,b,c such that
A3: ins = [I,{},<*b,c*>] and
A4: I in { 1,2,3,4,5};
    InsCode ins = I by A3;
    hence contradiction by A1,A4,ENUMSET1:def 3;
  end;
  then
A5: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
 \/ { [K,<*a1*>,<*b1*>] :
  K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3;
  InsCode halt SCM = 0 by COMPOS_1:70;
  then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1;
  then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2,
XBOOLE_0:def 3;
  then ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A5,XBOOLE_0:def 3;
  then consider K,a1,b1 such that
A6: ins = [K,<*a1*>,<*b1*>] and
  K in { 7,8 };
  reconsider da = b1 as Data-Location by Lm1;
  reconsider loc = a1 as Nat;
  take loc,da;
  thus thesis by A1,A6;
end;

theorem
  for ins being Instruction of SCM st InsCode ins = 8 holds ex loc
  ,da st ins = da>0_goto loc
proof
  let ins be Instruction of SCM such that
A1: InsCode ins = 8;
A2: now
    assume ins in { [J,<*a*>,{}] : J = 6 };
    then ex J,a st ins = [J,<*a*>,{}] & J = 6;
    hence contradiction by A1;
  end;
  now
    assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} };
    then consider I,b,c such that
A3: ins = [I,{},<*b,c*>] and
A4: I in { 1,2,3,4,5};
    InsCode ins = I by A3;
    hence contradiction by A1,A4,ENUMSET1:def 3;
  end;
  then
A5: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 }
    \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3;
  InsCode halt SCM = 0 by COMPOS_1:70;
  then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1;
  then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2,
XBOOLE_0:def 3;
  then ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A5,XBOOLE_0:def 3;
  then consider K,a1,b1 such that
A6: ins = [K,<*a1*>,<*b1*>] and
  K in { 7,8 };
  reconsider da = b1 as Data-Location by Lm1;
  reconsider loc = a1 as Nat;
  take loc,da;
  thus thesis by A1,A6;
end;

begin :: Finite partial states of SCM

theorem
  for s being State of SCM, iloc being Nat, a
  being Data-Location holds s.a = (s +* Start-At(iloc,SCM)).a
proof
  let s be State of SCM, iloc be Nat, a be
  Data-Location;
  a in the carrier of SCM;
  then a in dom s by PARTFUN1:def 2;
  then
A1: dom (Start-At(iloc,SCM)) = {IC SCM} &
 a in dom s \/ dom (Start-At(iloc,SCM)) by XBOOLE_0:def 3;
  a <> IC SCM by Th2;
  then not a in {IC SCM} by TARSKI:def 1;
  hence thesis by A1,FUNCT_4:def 1;
end;

begin :: Autonomic finite partial states of SCM

registration
 cluster SCM -> IC-recognized;
 coherence
  proof
   for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
   for p being q-autonomic
    FinPartState of SCM st DataPart p <> {}
     holds IC SCM in dom p
   proof
    let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
    let p be q-autonomic FinPartState of SCM;
    assume DataPart p <> {};
     then
A1:  dom DataPart p <> {};
    assume
A2:  not IC SCM in dom p;
    then dom p misses {IC SCM} by ZFMISC_1:50;
    then
A3: dom p /\ {IC SCM} = {} by XBOOLE_0:def 7;
  p is not q-autonomic
  proof
    set il = the Element of (NAT \ dom q);
    set d2 = the Element of Data-Locations SCM \ dom p;
    set d1 = the Element of dom DataPart p;
A4: d1 in dom DataPart p by A1;
    DataPart p c=  p by MEMSTR_0:12;
    then
A5:  dom DataPart p c= dom  p by RELAT_1:11;
    dom DataPart p c= the carrier of SCM by RELAT_1:def 18;
    then reconsider d1 as Element of SCM by A4;
    not Data-Locations SCM c= dom p;
    then
A6: Data-Locations SCM \ dom p <> {} by XBOOLE_1:37;
    then d2 in Data-Locations SCM by XBOOLE_0:def 5;
    then reconsider d2 as Data-Location by AMI_2:def 16,AMI_3:27;
A7: not d2 in dom p by A6,XBOOLE_0:def 5;
    then
A8:  dom p misses {d2} by ZFMISC_1:50;
    not NAT c= dom q;
    then
A9: (NAT) \ dom q <> {} by XBOOLE_1:37;
    then reconsider il as Element of NAT by XBOOLE_0:def 5;
A10: not il in dom q by A9,XBOOLE_0:def 5;
    dom DataPart p c= Data-Locations SCM by RELAT_1:58;
    then reconsider d1 as Data-Location by A4,AMI_2:def 16,AMI_3:27;
    set p2 = p +* (( d2.--> 1) +* Start-At(il,SCM));
    set p1 = p +* (( d2.--> 0) +* Start-At(il,SCM));
    set q2 = q +* (il .--> (d1:=d2));
    set q1 = q +* (il .--> (d1:=d2));
    consider s1 being State of SCM such that
A11: p1 c= s1 by PBOOLE:141;
    consider S1 being Instruction-Sequence of SCM
       such that
A12: q1 c= S1 by PBOOLE:145;
A13: dom p misses {d2} by A7,ZFMISC_1:50;
A14: dom (( d2.--> 1) +* Start-At(il,SCM))
      = dom ( d2.--> 1) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1;
    consider s2 being State of SCM such that
A15: p2 c= s2 by PBOOLE:141;
    consider S2 being Instruction-Sequence of SCM
    such that
A16: q2 c= S2 by PBOOLE:145;
A17:  dom  p c= the carrier of SCM by RELAT_1:def 18;
    dom ( Comput(S2,s2,1)) = the carrier of SCM by PARTFUN1:def 2;
    then
A18: dom ( Comput(S2,s2,1)|dom  p) = dom  p
 by A17,RELAT_1:62;
A19: dom ( Comput(S1,s1,1)) = the carrier of SCM by PARTFUN1:def 2;
A20: dom ( Comput(S1,s1,1)|dom  p) = dom  p
 by A17,A19,RELAT_1:62;
A21: dom p2 = dom p \/ dom (( d2.--> 1) +* Start-At(il,SCM)) by FUNCT_4:def 1;
A22: dom q2 = dom q \/ dom ((il .--> (d1:=d2))) by FUNCT_4:def 1;
A24: IC SCM in dom (Start-At(il,SCM)) by TARSKI:def 1;
    then
A25: IC SCM in dom (( d2.--> 1) +* Start-At(il,SCM)) by A14,XBOOLE_0:def 3;
    then IC SCM in dom p2 by A21,XBOOLE_0:def 3;
    then
A26: IC s2 = p2.IC SCM by A15,GRFUNC_1:2
      .= (( d2.--> 1) +* Start-At(il,SCM)).IC SCM by A25,FUNCT_4:13
      .= (Start-At(il,SCM)).IC SCM by A24,FUNCT_4:13
      .= il by FUNCOP_1:72;
    d2 <> IC SCM by Th2;
    then
A27: not d2 in dom (Start-At(il,SCM)) by TARSKI:def 1;
    d2 in dom ( d2.--> 1) by TARSKI:def 1;
    then
A28: d2 in dom (( d2.--> 1) +* Start-At(il,SCM)) by A14,XBOOLE_0:def 3;
    then d2 in dom p2 by A21,XBOOLE_0:def 3;
    then
A29: s2.d2 = p2.d2 by A15,GRFUNC_1:2
      .= (( d2.--> 1) +* Start-At(il,SCM)).d2 by A28,FUNCT_4:13
      .= (( d2.--> 1)).d2 by A27,FUNCT_4:11
      .= 1 by FUNCOP_1:72;
A31:  il in dom (il .--> (d1:=d2)) by TARSKI:def 1;
    then il in dom q2 by A22,XBOOLE_0:def 3;
    then
A32: S2.il = q2.il by A16,GRFUNC_1:2
      .= (il .--> (d1:=d2)).il by A31,FUNCT_4:13
      .=(d1:=d2) by FUNCOP_1:72;
A33:  (S2)/.IC s2 = S2.IC s2 by PBOOLE:143;
A34: Comput(S2,s2,0+1).d1
 = (Following(S2,Comput(S2,s2,0))).d1 by EXTPRO_1:3
      .= (Following(S2,s2)).d1
      .= 1 by A26,A32,A29,A33,AMI_3:2;
    dom p misses {IC SCM} by A2,ZFMISC_1:50;
    then
A35: dom p /\ {IC SCM} = {} by XBOOLE_0:def 7;
    take P = S1, Q = S2;
    dom (( d2.--> 0) +* Start-At(il,SCM))
       = dom(( d2.--> 0)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1
      .= dom(( d2.--> 0)) \/ {IC SCM}
      .= {d2} \/ {IC SCM};
    then
    dom p /\ dom (( d2.--> 0) +* Start-At(il,SCM))
       = dom p /\ {d2} \/ {} by A35,XBOOLE_1:23
      .= {} by A8,XBOOLE_0:def 7;
    then dom p misses dom (( d2.--> 0) +* Start-At(il,SCM))
    by XBOOLE_0:def 7;
    then
   p c= p1 by FUNCT_4:32;
    then
A36:  p c= s1 by A11,XBOOLE_1:1;
     dom q misses dom (il .--> (d1:=d2)) by A10,ZFMISC_1:50;
     then q c= q1 by FUNCT_4:32;
    hence q c= P by A12,XBOOLE_1:1;
A37: dom p1 = dom p \/ dom (( d2.--> 0) +* Start-At(
    il,SCM)) by FUNCT_4:def 1;
    dom ((d2.--> 1) +* Start-At(il,SCM))
       = dom(( d2.--> 1)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1
      .= dom(( d2.--> 1)) \/ {IC SCM}
      .= {d2} \/ {IC SCM};
    then
    dom p /\ dom (( d2.--> 1) +* Start-At(il,SCM)) = dom
    p /\ ({d2}) \/ {} by A3,XBOOLE_1:23
      .= {} by A13,XBOOLE_0:def 7;
    then dom p misses
     dom (( d2.--> 1) +* Start-At(il,SCM))
    by XBOOLE_0:def 7;
    then p c= p2 by FUNCT_4:32;
    then
A38: p c= s2 by A15,XBOOLE_1:1;
     dom q misses dom (il .--> (d1:=d2)) by A10,ZFMISC_1:50;
     then q c= q2 by FUNCT_4:32;
    hence q c= Q by A16,XBOOLE_1:1;
    take s1,s2;
    thus  p c= s1 by A36;
    thus  p c= s2 by A38;
    take 1;
A39: dom (( d2.--> 0) +* Start-At(il,SCM))
      = dom (( d2.--> 0)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1;
A41: IC SCM in dom (Start-At(il,SCM)) by TARSKI:def 1;
    then
A42: IC SCM in dom (( d2.--> 0) +* Start-At(il,SCM))
          by A39,XBOOLE_0:def 3;
    then IC SCM in dom p1 by A37,XBOOLE_0:def 3;
    then
A43: IC s1 = p1.IC SCM by A11,GRFUNC_1:2
      .= (( d2.--> 0) +* Start-At(il,SCM)).IC SCM by A42,FUNCT_4:13
      .= (Start-At(il,SCM)).IC SCM by A41,FUNCT_4:13
      .= il by FUNCOP_1:72;
    d2 <> IC SCM by Th2;
    then
A44: not d2 in dom (Start-At(il,SCM)) by TARSKI:def 1;
    d2 in dom ( d2.--> 0) by TARSKI:def 1;
    then
A45: d2 in dom (( d2.--> 0) +* Start-At(il,SCM)) by A39,XBOOLE_0:def 3;
    then d2 in dom p1 by A37,XBOOLE_0:def 3;
    then
A46: s1.d2 = p1.d2 by A11,GRFUNC_1:2
      .= (( d2.--> 0) +* Start-At(il,SCM)).d2 by A45,FUNCT_4:13
      .= (( d2.--> 0)).d2 by A44,FUNCT_4:11
      .= 0 by FUNCOP_1:72;
A47: il in dom(il .--> (d1:=d2)) by TARSKI:def 1;
 dom q1 = dom q \/ dom ((il .--> (d1:=d2))) by FUNCT_4:def 1;
    then il in dom q1 by A47,XBOOLE_0:def 3;
    then
A48: S1.il = q1.il by A12,GRFUNC_1:2
      .= (il .--> (d1:=d2)).il by A47,FUNCT_4:13
      .=(d1:=d2) by FUNCOP_1:72;
A49:  (S1)/.IC s1 = S1.IC s1 by PBOOLE:143;
    Comput(S1,s1,0+1).d1
     = (Following(S1,Comput(S1,s1,0))).d1 by EXTPRO_1:3
      .= 0 by A43,A48,A46,A49,AMI_3:2;
    then (Comput(P,s1,1)|dom  p).d1 = 0 by A4,A5,A20,FUNCT_1:47;
    hence Comput(P,s1,1)|dom  p
      <> Comput(Q,s2,1)|dom  p by A18,A34,A4,A5,FUNCT_1:47;
  end;
  hence contradiction;
end;
   hence thesis by AMISTD_5:3;
  end;
end;

registration
 cluster SCM -> CurIns-recognized;
 coherence
proof
  let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s be State of SCM such that
A1:  p c= s;
  let P be Instruction-Sequence of SCM such that
A2: q c= P;
  let i be Nat;
  set Csi = Comput(P,s,i);
  set loc = IC Csi;
  assume
A3: not IC Comput(P,s,i) in dom q;
  set I = dl.0 := dl.0;
  set q1 = q +* (loc .--> I);
  set q2 = q +* (loc .--> halt SCM);
  reconsider P1 = P +* (loc .--> I)
   as Instruction-Sequence of SCM;
  reconsider P2 = P +* (loc .--> halt SCM)
   as Instruction-Sequence of SCM;
A5: loc in dom (loc .--> halt SCM) by TARSKI:def 1;
A7: loc in dom (loc .--> I) by TARSKI:def 1;
A8: dom q misses dom (loc .--> halt SCM) by A3,ZFMISC_1:50;
A9: dom q misses dom (loc .--> I) by A3,ZFMISC_1:50;
A10: q1 c= P1 by A2,FUNCT_4:123;
A11: q2 c= P2 by A2,FUNCT_4:123;
  set Cs2i = Comput(P2,s,i), Cs1i = Comput(P1,s,i);
  p is not q-autonomic
  proof
    (loc .--> halt SCM).loc = halt SCM by FUNCOP_1:72;
    then
A12:  P2.loc = halt SCM by A5,FUNCT_4:13;
A13:  (loc .--> I).loc = I by FUNCOP_1:72;
    take P1, P2;
    q c= q1 by A9,FUNCT_4:32;
    hence
A14:  q c= P1 by A10,XBOOLE_1:1;
    q c= q2 by A8,FUNCT_4:32;
    hence
A15:  q c= P2 by A11,XBOOLE_1:1;
    take s, s;
    thus  p c= s by A1;
A16: (Cs1i|dom  p) = (Csi|dom  p) by A14,A2,A1,EXTPRO_1:def 10;
    thus  p c= s by A1;
A17: (Cs1i|dom  p) = (Cs2i|dom  p) by A14,A15,A1,EXTPRO_1:def 10;
    take k = i+1;
    set Cs1k = Comput(P1,s,k);
A18: IC SCM in dom p by AMISTD_5:6;
 IC Csi = IC(Csi|dom  p) by A18,FUNCT_1:49;
    then
  IC Cs1i = loc by A16,A18,FUNCT_1:49;
    then
A19: CurInstr(P1,Cs1i) = P1.loc by PBOOLE:143
         .= I by A13,A7,FUNCT_4:13;
A20: Cs1k = Following(P1,Cs1i) by EXTPRO_1:3
      .= Exec(I,Cs1i) by A19;
A21:  IC Exec(I,Cs1i) = IC Cs1i + 1 by AMI_3:2;
A22: IC SCM in dom p by AMISTD_5:6;
A23: IC Csi = IC(Csi|dom  p) by A22,FUNCT_1:49;
    then
A24: IC Cs1k = loc+1 by A20,A21,A16,A22,FUNCT_1:49;
    set Cs2k = Comput(P2,s,k);
A25: Cs2k = Following(P2,Cs2i) by EXTPRO_1:3
      .= Exec (CurInstr(P2,Cs2i), Cs2i);
A26:  P2/.IC Cs2i = P2.IC Cs2i by PBOOLE:143;
    IC Cs2i = loc by A16,A23,A17,A22,FUNCT_1:49;
    then
A27: IC Cs2k = loc by A25,A12,A26,EXTPRO_1:def 3;
    IC(Cs1k|dom  p) = IC Cs1k & IC(Cs2k|dom  p) = IC Cs2k
     by A22,FUNCT_1:49;
    hence thesis by A24,A27;
  end;
  hence contradiction;
end;
end;

theorem
   for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
  for p being q-autonomic non empty FinPartState of SCM,
      s1, s2 being State of SCM st  p c= s1 &  p c= s2
  for P1,P2 being Instruction-Sequence of SCM
      st q c= P1 & q c= P2
  for i being Nat, da, db being Data-Location,
      I being Instruction of SCM
       st I = CurInstr(P1,Comput(P1,s1,i))
   holds I = da := db & da in dom p implies
    Comput(P1,s1,i).db = Comput(P2,s2,i).db
proof
  let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s1, s2 be State of SCM such that
A1:  p c= s1 &  p c= s2;
  let P1,P2 be Instruction-Sequence of SCM
  such that
A2: q c= P1 & q c= P2;
  let i be Nat, da, db be Data-Location, I be Instruction of SCM
  such that
A3: I = CurInstr(P1,Comput(P1,s1,i));
  set Cs2i1 = Comput(P2,s2,i+1);
  set Cs2i = Comput(P2,s2,i);
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3
    .= Exec (CurInstr(P2,Cs2i), Cs2i);
  assume that
A5: I = da := db and
A6: da in dom p & Comput(P1,s1,i).db <> Comput(P2,s2,
i).db;
  I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7;
  then
A7: Cs2i1.da = Cs2i.db by A4,A5,AMI_3:2;
  set Cs1i1 = Comput(P1,s1,i+1);
  set Cs1i = Comput(P1,s1,i);
A8: da in dom  p implies (Cs1i1|dom  p).da = Cs1i1.da &
  (Cs2i1|dom  p).da = Cs2i1.da by FUNCT_1:49;
  Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3
    .= Exec (CurInstr(P1,Cs1i), Cs1i);
  then Cs1i1.da = Cs1i.db by A3,A5,AMI_3:2;
  hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10;
end;

theorem
  for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
  for p being q-autonomic non empty FinPartState of SCM, s1, s2
  being State of SCM st  p c= s1 &  p c= s2
  for P1,P2 being Instruction-Sequence of SCM
      st q c= P1 & q c= P2
  for i being Nat, da, db
being Data-Location, I being Instruction of SCM st
 I = CurInstr(P1,Comput(P1,
s1,i))
  holds I = AddTo(da, db) & da in dom p implies Comput(P1,s1,i).da
+
  Comput(P1,s1,i).db = Comput(P2,s2,i).da + Comput(
P2,s2,i).db
proof
  let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s1, s2 be State of
  SCM such that
A1:  p c= s1 &  p c= s2;
  let P1,P2 be Instruction-Sequence of SCM
  such that
A2: q c= P1 & q c= P2;
  let i be Nat, da, db be Data-Location, I be Instruction of SCM
  such that
A3: I = CurInstr(P1,Comput(P1,s1,i));
  set Cs2i1 = Comput(P2,s2,i+1);
  set Cs2i = Comput(P2,s2,i);
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3
    .= Exec (CurInstr(P2,Cs2i), Cs2i);
  assume that
A5: I = AddTo(da, db) and
A6: da in dom p & Comput(P1,s1,i).da + Comput(P1,s1,i
).db <>
  Comput(P2,s2, i).da + Comput(P2,s2,i).db;
  I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7;
  then
A7: Cs2i1.da = Cs2i.da + Cs2i.db by A4,A5,AMI_3:3;
  set Cs1i1 = Comput(P1,s1,i+1);
  set Cs1i = Comput(P1,s1,i);
A8: da in dom  p implies
 (Cs1i1|dom  p).da = Cs1i1.da & (Cs2i1|dom  p).da =
  Cs2i1.da by FUNCT_1:49;
  Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3
    .= Exec (CurInstr(P1,Cs1i), Cs1i);
  then Cs1i1.da = Cs1i.da + Cs1i.db by A3,A5,AMI_3:3;
  hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10;
end;

theorem
  for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
  for p being q-autonomic non empty FinPartState of SCM, s1, s2
  being State of SCM st  p c= s1 &  p c= s2
  for P1,P2 being Instruction-Sequence of SCM
      st q c= P1 & q c= P2
  for i being Nat, da, db
being Data-Location, I being Instruction of SCM st
 I = CurInstr(P1,Comput(P1,
s1,i))
  holds I = SubFrom(da, db) & da in dom p implies Comput(P1,s1,i).
da -
  Comput(P1,s1,i).db = Comput(P2,s2,i).da - Comput(
P2,s2,i).db
proof
  let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s1, s2 be State of
  SCM such that
A1:  p c= s1 &  p c= s2;
  let P1,P2 be Instruction-Sequence of SCM
  such that
A2: q c= P1 & q c= P2;
  let i be Nat, da, db be Data-Location, I be Instruction of SCM
  such that
A3: I = CurInstr(P1,Comput(P1,s1,i));
  set Cs2i1 = Comput(P2,s2,i+1);
  set Cs2i = Comput(P2,s2,i);
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3
    .= Exec (CurInstr(P2,Cs2i), Cs2i);
  assume that
A5: I = SubFrom(da, db) and
A6: da in dom p & Comput(P1,s1,i).da - Comput(P1,s1,i
).db <>
  Comput(P2,s2, i).da - Comput(P2,s2,i).db;
  I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7;
  then
A7: Cs2i1.da = Cs2i.da - Cs2i.db by A4,A5,AMI_3:4;
  set Cs1i1 = Comput(P1,s1,i+1);
  set Cs1i = Comput(P1,s1,i);
A8: da in dom  p implies
 (Cs1i1|dom  p).da = Cs1i1.da & (Cs2i1|dom  p).da =
  Cs2i1.da by FUNCT_1:49;
  Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3
    .= Exec (CurInstr(P1,Cs1i), Cs1i);
  then Cs1i1.da = Cs1i.da - Cs1i.db by A3,A5,AMI_3:4;
  hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10;
end;

theorem
  for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
  for p being q-autonomic non empty FinPartState of SCM, s1, s2
  being State of SCM st  p c= s1 &  p c= s2
  for P1,P2 being Instruction-Sequence of SCM
      st q c= P1 & q c= P2
  for i being Nat, da, db
being Data-Location, I being Instruction of SCM
 st I = CurInstr(P1,Comput(P1,s1,i))
  holds I = MultBy(da, db) & da in dom p implies Comput(P1,s1,i).
da *
  Comput(P1,s1,i).db = Comput(P2,s2,i).da * Comput(P2,s2,i).db
proof
  let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s1, s2 be State of
  SCM such that
A1:  p c= s1 &  p c= s2;
  let P1,P2 be Instruction-Sequence of SCM
  such that
A2: q c= P1 & q c= P2;
  let i be Nat, da, db be Data-Location, I be Instruction of SCM
  such that
A3: I = CurInstr(P1,Comput(P1,s1,i));
  set Cs2i1 = Comput(P2,s2,i+1);
  set Cs2i = Comput(P2,s2,i);
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3
    .= Exec (CurInstr(P2,Cs2i), Cs2i);
  assume that
A5: I = MultBy(da, db) and
A6: da in dom p & Comput(P1,s1,i).da * Comput(P1,s1,i
).db <>
  Comput(P2,s2, i).da * Comput(P2,s2,i).db;
  I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7;
  then
A7: Cs2i1.da = Cs2i.da * Cs2i.db by A4,A5,AMI_3:5;
  set Cs1i1 = Comput(P1,s1,i+1);
  set Cs1i = Comput(P1,s1,i);
A8: da in dom  p implies
 (Cs1i1|dom  p).da = Cs1i1.da & (Cs2i1|dom  p).da =
  Cs2i1.da by FUNCT_1:49;
  Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3
    .= Exec (CurInstr(P1,Cs1i), Cs1i);
  then Cs1i1.da = Cs1i.da * Cs1i.db by A3,A5,AMI_3:5;
  hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10;
end;

theorem
  for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
  for p being q-autonomic non empty FinPartState of SCM, s1, s2
  being State of SCM st  p c= s1 &  p c= s2
  for P1,P2 being Instruction-Sequence of SCM
      st q c= P1 & q c= P2
  for i being Nat, da, db
being Data-Location, I being Instruction of SCM
 st I = CurInstr(P1,Comput(P1,s1,i))
  holds I = Divide(da, db) & da in dom p & da <> db implies
   Comput(P1,s1
,i).da div Comput(P1,s1,i).db = Comput(P2,s2,i).da
div Comput(P2,s2,i).db
proof
  let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s1, s2 be State of
  SCM such that
A1:  p c= s1 &  p c= s2;
  let P1,P2 be Instruction-Sequence of SCM
  such that
A2: q c= P1 & q c= P2;
  let i be Nat, da, db be Data-Location, I be Instruction of SCM
  such that
A3: I = CurInstr(P1,Comput(P1,s1,i));
  set Cs2i1 = Comput(P2,s2,i+1);
  set Cs2i = Comput(P2,s2,i);
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3
    .= Exec (CurInstr(P2,Cs2i), Cs2i);
  assume that
A5: I = Divide(da, db) and
A6: da in dom p and
A7: da <> db and
A8: Comput(P1,s1,i).da div Comput(P1,s1,i).db <> Comput(P2,s2,i).
  da div Comput(P2,s2,i).db;
  I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7;
  then
A9: Cs2i1.da = Cs2i.da div Cs2i.db by A4,A5,A7,AMI_3:6;
  set Cs1i1 = Comput(P1,s1,i+1);
  set Cs1i = Comput(P1,s1,i);
A10: da in dom  p implies
(Cs1i1|dom  p).da = Cs1i1.da & (Cs2i1|dom  p).da =
  Cs2i1.da by FUNCT_1:49;
  Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3
    .= Exec (CurInstr(P1,Cs1i), Cs1i);
  then Cs1i1.da = Cs1i.da div Cs1i.db by A3,A5,A7,AMI_3:6;
  hence contradiction by A10,A8,A9,A2,A6,A1,EXTPRO_1:def 10;
end;

theorem
  for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
  for p being q-autonomic non empty FinPartState of SCM, s1, s2
  being State of SCM st  p c= s1 &  p c= s2
  for P1,P2 being Instruction-Sequence of SCM
      st q c= P1 & q c= P2
  for i being Nat, da, db
being Data-Location, I being Instruction of SCM st
 I = CurInstr(P1,Comput(P1,s1,i))
  holds I = Divide(da, db) & db in dom p implies Comput(P1,s1,i).
da mod
  Comput(P1,s1,i).db = Comput(P2,s2,i).da mod Comput(P2,s2,i).db
proof
  let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s1, s2 be State of
  SCM such that
A1:  p c= s1 &  p c= s2;
  let P1,P2 be Instruction-Sequence of SCM
  such that
A2: q c= P1 & q c= P2;
  let i be Nat, da, db be Data-Location, I be Instruction of SCM
  such that
A3: I = CurInstr(P1,Comput(P1,s1,i));
  set Cs1i1 = Comput(P1,s1,i+1);
  set Cs1i = Comput(P1,s1,i);
  set Cs2i1 = Comput(P2,s2,i+1);
  set Cs2i = Comput(P2,s2,i);
A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3
    .= Exec (CurInstr(P2,Cs2i), Cs2i);
  assume that
A5: I = Divide(da, db) and
A6: db in dom p and
A7: Comput(P1,s1,i).da mod Comput(P1,s1,i).db <>
Comput(P2,s2,i).
  da mod Comput(P2,s2,i).db;
A8: (Cs1i1|dom  p).db = Cs1i1.db &
    (Cs2i1|dom  p).db = Cs2i1.db by A6,FUNCT_1:49;
  I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7;
  then
A9: Cs2i1.db = Cs2i.da mod Cs2i.db by A4,A5,AMI_3:6;
  Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3
    .= Exec (CurInstr(P1,Cs1i), Cs1i);
  then Cs1i1.db = Cs1i.da mod Cs1i.db by A3,A5,AMI_3:6;
  hence contradiction by A7,A8,A9,A2,A1,EXTPRO_1:def 10;
end;

theorem
  for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
  for p being q-autonomic non empty FinPartState of SCM, s1, s2
  being State of SCM st  p c= s1 &  p c= s2
  for P1,P2 being Instruction-Sequence of SCM
      st q c= P1 & q c= P2
  for i being Nat, da being
  Data-Location, loc being Nat, I being Instruction of
SCM st I = CurInstr(P1,Comput(P1,s1,i))
 holds I = da=0_goto loc & loc <> (IC Comput(P1,s1,i)) + 1
  implies ( Comput(P1,s1,i).da = 0 iff Comput(P2,s2,i)
  .da = 0)
proof
  let q be non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s1, s2 be State of
  SCM such that
A1:  p c= s1 &  p c= s2;
  let P1,P2 be Instruction-Sequence of SCM
  such that
A2: q c= P1 & q c= P2;
  let i be Nat, da be Data-Location, loc be Nat
  , I be Instruction of SCM such that
A3: I = CurInstr(P1,Comput(P1,s1,i));
  set Cs2i1 = Comput(P2,s2,i+1);
  set Cs1i1 = Comput(P1,s1,i+1);
  set Cs2i = Comput(P2,s2,i);
  set Cs1i = Comput(P1,s1,i);
A4: Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3
    .= Exec (CurInstr(P1,Cs1i), Cs1i);
A5: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3
    .= Exec (CurInstr(P2,Cs2i), Cs2i);
   IC SCM in dom p by AMISTD_5:6;
   then
A6: (Cs1i1|dom  p).IC SCM = IC Cs1i1 &
    (Cs2i1|dom  p).IC SCM = IC Cs2i1 by FUNCT_1:49;
  assume that
A7: I = da=0_goto loc and
A8: loc <> (IC Comput(P1,s1,i)) + 1;
A9: I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7;
A10: now
    assume
    Comput(P2,s2,i).da = 0 & Comput(P1,s1,i).da <> 0;
    then Cs2i1.IC SCM = loc & Cs1i1.IC SCM = IC Cs1i + 1 by A3,A9,A4,A5,A7,
AMI_3:8;
    hence contradiction by A6,A8,A2,A1,EXTPRO_1:def 10;
  end;
A11: (Cs1i1|dom  p) = (Cs2i1|dom  p) by A2,A1,EXTPRO_1:def 10;
  now
    assume
    Comput(P1,s1,i).da = 0 & Comput(P2,s2,i).da <> 0;
    then Cs1i1.IC SCM = loc & Cs2i1.IC SCM = IC Cs2i + 1 by A3,A9,A4,A5,A7,
AMI_3:8;
    hence contradiction by A6,A11,A8,A2,A1,AMISTD_5:7;
  end;
  hence thesis by A10;
end;

theorem
  for q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function
  for p being q-autonomic non empty FinPartState of SCM, s1, s2
  being State of SCM st  p c= s1 &  p c= s2
  for P1,P2 being Instruction-Sequence of SCM
      st q c= P1 & q c= P2
  for i being Nat, da being
  Data-Location, loc being Nat, I being Instruction of
SCM st I = CurInstr(P1,Comput(P1,s1,i))
 holds I = da>0_goto loc & loc <> (IC Comput(P1,s1,i)) + 1
  implies ( Comput(P1,s1,i).da > 0 iff Comput(P2,s2,i)
  .da > 0)
proof
  let q being non halt-free finite
      (the InstructionsF of SCM)-valued NAT-defined Function;
  let p be q-autonomic non empty FinPartState of SCM,
      s1, s2 be State of SCM such that
A1:  p c= s1 &  p c= s2;
  let P1,P2 be Instruction-Sequence of SCM
  such that
A2: q c= P1 & q c= P2;
  let i be Nat, da be Data-Location, loc be Nat
 , I be Instruction of SCM such that
A3: I = CurInstr(P1,Comput(P1,s1,i));
  set Cs2i1 = Comput(P2,s2,i+1);
  set Cs1i1 = Comput(P1,s1,i+1);
A4: Cs1i1|dom  p = Cs2i1|dom  p by A2,A1,EXTPRO_1:def 10;
  set Cs2i = Comput(P2,s2,i);
  set Cs1i = Comput(P1,s1,i);
A5: Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3
    .= Exec (CurInstr(P1,Cs1i), Cs1i);
   IC SCM in dom p by AMISTD_5:6;
   then
A6: (Cs1i1|dom  p).IC SCM = IC Cs1i1 &
    (Cs2i1|dom  p).IC SCM = IC Cs2i1 by FUNCT_1:49;
A7: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3
    .= Exec (CurInstr(P2,Cs2i), Cs2i);
  assume that
A8: I = da>0_goto loc and
A9: loc <> (IC Comput(P1,s1,i)) + 1;
A10: I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7;
A11: now
    assume that
A12: Comput(P2,s2,i).da > 0 and
A13: Comput(P1,s1,i).da <= 0;
    Cs2i1.IC SCM = loc by A10,A7,A8,A12,AMI_3:9;
    hence contradiction by A3,A5,A6,A4,A8,A9,A13,AMI_3:9;
  end;
A14: IC Cs1i = IC Cs2i by A2,A1,AMISTD_5:7;
  now
    assume that
A15: Comput(P1,s1,i).da > 0 and
A16: Comput(P2,s2,i).da <= 0;
    Cs1i1.IC SCM = loc by A3,A5,A8,A15,AMI_3:9;
    hence contradiction by A14,A10,A7,A6,A4,A8,A9,A16,AMI_3:9;
  end;
  hence thesis by A11;
end;

theorem
  for s1,s2 being State of SCM st IC(s1) = IC(s2) &
  (for a being Data-Location holds s1.a = s2.a)
    holds  s1 =  s2
proof
  let s1,s2 be State of SCM such that
A1: IC(s1) = IC(s2);
    IC SCM in dom s1 & IC SCM in dom s2 by MEMSTR_0:2;
    then
A2:  s1 = DataPart s1 +* Start-At (IC s1,SCM) &
     s2 = DataPart s2 +* Start-At (IC s2,SCM) by MEMSTR_0:26;
  assume
A3: for a being Data-Location holds s1.a = s2.a;
   DataPart s1 = DataPart s2
    proof
A4:   dom DataPart s1 = Data-Locations SCM by MEMSTR_0:9;
     hence
    dom DataPart s1 = dom DataPart s2 by MEMSTR_0:9;
     let x be object;
     assume
A5:     x in dom DataPart s1;
      then
A6:   x is Data-Location by A4,AMI_2:def 16,AMI_3:27;
     thus (DataPart s1).x = s1.x by A5,A4,FUNCT_1:49
         .= s2.x by A6,A3
         .= (DataPart s2).x by A5,A4,FUNCT_1:49;
    end;
  hence thesis by A1,A2;
end;