File size: 99,823 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
:: Principle of Duality in Real Projective Plane: a Proof of the Converse 
:: of {D}esargues' Theorem and a Proof of the Converse of {P}appus' 
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.

environ

 vocabularies INCSP_1, ANPROJ11, REAL_1, XCMPLX_0, ANPROJ_1, ANPROJ_2,
      PENCIL_1, MCART_1, EUCLID_5, ARYTM_1, ARYTM_3, CARD_1, EUCLID, FUNCT_1,
      NUMBERS, PRE_TOPC, RELAT_1, SUBSET_1, SUPINF_2, ANPROJ_9, TARSKI,
      INCPROJ, RVSUM_1, BKMODEL1, CARD_FIL, PROJRED2, PBOOLE, RELAT_2, AFF_2,
      VECTSP_1, ANALOAF;
 notations TARSKI, SUBSET_1, XCMPLX_0, PRE_TOPC, RVSUM_1, COLLSP, INCPROJ,
      ANPROJ_9, XREAL_0, NUMBERS, FUNCT_1, FINSEQ_2, EUCLID, ANPROJ_1,
      BKMODEL1, STRUCT_0, RLVECT_1, EUCLID_5, INCSP_1, PROJRED2, ANPROJ_2;
 constructors MONOID_0, EUCLID_5, ANPROJ_9, BKMODEL1, EUCLID_8, PROJRED2;
 registrations BKMODEL3, ORDINAL1, ANPROJ_1, STRUCT_0, XREAL_0, MONOID_0,
      EUCLID, VALUED_0, ANPROJ_2, FUNCT_1, FINSEQ_1, XCMPLX_0, INCPROJ, PASCAL;
 requirements SUBSET, NUMERALS, ARITHM, BOOLE;
 equalities BKMODEL1, XCMPLX_0, COLLSP, INCPROJ, ANPROJ_9, EUCLID_5;
 expansions TARSKI, XBOOLE_0, STRUCT_0, PROJRED2;
 theorems EUCLID_8, EUCLID_5, ANPROJ_1, ANPROJ_2, EUCLID, XCMPLX_1, RVSUM_1,
      FINSEQ_1, ANPROJ_8, INCPROJ, ANPROJ_9, XBOOLE_0, COLLSP, BKMODEL1,
      EUCLID_4;

begin ::Preliminaries

theorem
  for a,b,c,d,e,f,g,h,i being Real holds
  |{ |[a,b,c]|,
     |[d,e,f]|,
     |[g,h,i]| }| = a * e * i + b * f * g + c * d * h
                    - g * e * c - h * f * a - i * d * b
  proof
    let a,b,c,d,e,f,g,h,i be Real;
    reconsider p = |[a,b,c]|, q = |[d,e,f]|, r = |[g,h,i]| as
      Element of TOP-REAL 3;
A1: p`1 = a & p`2 = b & p`3 = c &
    q`1 = d & q`2 = e & q`3 = f &
    r`1 = g & r`2 = h & r`3 = i by EUCLID_5:2;
    |{ |[a,b,c]|,
       |[d,e,f]|,
       |[g,h,i]| }| = p`1 * q`2 * r`3 - p`3*q`2*r`1 - p`1*q`3*r`2
                      + p`2*q`3*r`1 - p`2*q`1*r`3 + p`3*q`1*r`2 by ANPROJ_8:27;
    hence thesis by A1;
  end;

theorem Th2:
  for a,b,c,d,e being Real holds
  |{ |[a,1,0]|,
     |[b,0,1]|,
     |[c,d,e]| }| = c - a * d - e * b
  proof
    let a,b,c,d,e be Real;
    reconsider p = |[a,1,0]|, q = |[b,0,1]|, r = |[c,d,e]| as
      Element of TOP-REAL 3;
A1: p`1 = a & p`2 = 1 & p`3 = 0 &
    q`1 = b & q`2 = 0 & q`3 = 1 &
    r`1 = c & r`2 = d & r`3 = e by EUCLID_5:2;
    |{ |[a,1,0]|,
       |[b,0,1]|,
       |[c,d,e]| }| = p`1 * q`2 * r`3 - p`3*q`2*r`1 - p`1*q`3*r`2
                      + p`2*q`3*r`1 - p`2*q`1*r`3 + p`3*q`1*r`2 by ANPROJ_8:27;
    hence thesis by A1;
  end;

theorem Th3:
  for a,b,c,d,e being Real holds
  |{ |[1,a,0]|,
     |[0,b,1]|,
     |[c,d,e]| }| = b * e + a * c - d
  proof
    let a,b,c,d,e be Real;
    reconsider p = |[1,a,0]|, q = |[0,b,1]|, r = |[c,d,e]| as
      Element of TOP-REAL 3;
A1: p`1 = 1 & p`2 = a & p`3 = 0 &
    q`1 = 0 & q`2 = b & q`3 = 1 &
    r`1 = c & r`2 = d & r`3 = e by EUCLID_5:2;
    |{ |[1,a,0]|,
       |[0,b,1]|,
       |[c,d,e]| }| = p`1 * q`2 * r`3 - p`3*q`2*r`1 - p`1*q`3*r`2
                      + p`2*q`3*r`1 - p`2*q`1*r`3 + p`3*q`1*r`2 by ANPROJ_8:27;
    hence thesis by A1;
  end;

theorem Th4:
  for a,b,c,d,e being Real holds
  |{ |[1,0,a]|,
     |[0,1,b]|,
     |[c,d,e]| }| = e - c * a - d * b
  proof
    let a,b,c,d,e be Real;
    reconsider p = |[1,0,a]|, q = |[0,1,b]|, r = |[c,d,e]| as
      Element of TOP-REAL 3;
A1: p`1 = 1 & p`2 = 0 & p`3 = a &
    q`1 = 0 & q`2 = 1 & q`3 = b &
    r`1 = c & r`2 = d & r`3 = e by EUCLID_5:2;
    |{ |[1,0,a]|,
       |[0,1,b]|,
       |[c,d,e]| }| = p`1 * q`2 * r`3 - p`3*q`2*r`1 - p`1*q`3*r`2
                      + p`2*q`3*r`1 - p`2*q`1*r`3 + p`3*q`1*r`2 by ANPROJ_8:27;
    hence thesis by A1;
  end;

theorem Th5:
  for u being Element of TOP-REAL 3 holds u is zero iff |( u, u )| = 0
  proof
    let u be Element of TOP-REAL 3;
    reconsider un = u as Element of REAL 3 by EUCLID:22;
    hereby
      assume u is zero;
      then 0.REAL 3 = u by EUCLID:66;
      then |( un,un )| = 0 by EUCLID_4:17;
      hence |( u, u )| = 0;
    end;
    assume |( u, u )| = 0;
    then un = 0.REAL 3 by EUCLID_4:17;
    hence thesis by EUCLID:66;
  end;

theorem
  for u,v,w being non zero Element of TOP-REAL 3 st |{u,v,w}| = 0
  holds ex p being non zero Element of TOP-REAL 3 st
  |(p,u)| = 0 & |(p,v)| = 0 & |(p,w)| = 0
  proof
    let u,v,w be non zero Element of TOP-REAL 3;
    assume
A1: |{u,v,w}| = 0;
    reconsider p = |[u`1,v`1,w`1]|,
               q = |[u`2,v`2,w`2]|,
               r = |[u`3,v`3,w`3]| as Element of TOP-REAL 3;
A2: p`1 = u`1 & p`2 = v`1 & p`3 = w`1 & q`1 = u`2 & q`2 = v`2 & q`3 = w`2 &
      r`1 = u`3 & r`2 = v`3 & r`3 = w`3 by EUCLID_5:2;
A3: |{ p,q,r }| = p`1 * q`2 * r`3 - p`3*q`2*r`1 - p`1*q`3*r`2 + p`2*q`3*r`1 -
      p`2*q`1*r`3 + p`3*q`1*r`2 by ANPROJ_8:27;
    |{u,v,w}| = u`1 * v`2 * w`3 - u`3*v`2*w`1 - u`1*v`3*w`2 + u`2*v`3*w`1 -
      u`2*v`1*w`3 + u`3*v`1*w`2 by ANPROJ_8:27;
    then consider a,b,c be Real such that
A4: a * p + b * q + c * r = 0.TOP-REAL 3 and
A5: a <> 0 or b <> 0 or c <> 0 by A1,A2,A3,ANPROJ_8:42;
A6: |[0,0,0]|
        = |[a * p`1,a * p`2,a * p`3]| + b * q + c * r by A4,EUCLID_5:4,7
       .= |[a * p`1,a * p`2,a * p`3]| + |[b * q`1,b * q`2,b * q`3]| + c * r
         by EUCLID_5:7
       .= |[a * p`1,a * p`2,a * p`3]| + |[b * q`1,b * q`2,b * q`3]|
         + |[c * r`1,c * r`2,c * r`3]| by EUCLID_5:7
       .= |[a * p`1+b*q`1,a * p`2+b*q`2,a * p`3+b*q`3]|
         + |[c * r`1,c * r`2,c * r`3]| by EUCLID_5:6
       .= |[a * p`1+b*q`1+c*r`1,a * p`2+b*q`2+c*r`2,a * p`3+b*q`3+c*r`3]|
         by EUCLID_5:6;
    reconsider p = |[a,b,c]| as non zero Element of TOP-REAL 3 by A5;
    take p;
    thus |(p,u)| = p`1 * u`1 + p`2 * u`2 + p`3 * u`3 by EUCLID_5:29
                .= a * u`1+p`2*u`2+p`3*u`3 by EUCLID_5:2
                .= a * u`1+b*u`2+p`3*u`3 by EUCLID_5:2
                .= a * u`1+b*u`2+c*u`3 by EUCLID_5:2
                .= 0 by A6,A2,FINSEQ_1:78;
    thus |(p,v)| = p`1 * v`1 + p`2 * v`2 + p`3 * v`3 by EUCLID_5:29
                .= a * v`1+p`2*v`2+p`3*v`3 by EUCLID_5:2
                .= a * v`1+b*v`2+p`3*v`3 by EUCLID_5:2
                .= a * v`1+b*v`2+c*v`3 by EUCLID_5:2
                .= 0 by A6,A2,FINSEQ_1:78;
    thus |(p,w)| = p`1 * w`1 + p`2 * w`2 + p`3 * w`3 by EUCLID_5:29
                .= a * w`1+p`2*w`2+p`3*w`3 by EUCLID_5:2
                .= a * w`1+b*w`2+p`3*w`3 by EUCLID_5:2
                .= a * w`1+b*w`2+c*w`3 by EUCLID_5:2
                .= 0 by A6,A2,FINSEQ_1:78;
  end;

theorem Th7:
  for u,v,w being non zero Element of TOP-REAL 3 st
  |(u,v)| = 0 & are_Prop w,v holds |(u,w)| = 0
  proof
    let u,v,w be non zero Element of TOP-REAL 3;
    assume that
A1: |(u,v)| = 0 and
A2: are_Prop w,v;
    consider a be Real such that
    a <> 0 and
A3: w = a * v by A2,ANPROJ_1:1;
    reconsider un = u,vn = v as Element of REAL 3 by EUCLID:22;
    thus |(u,w)| = |(a * vn,un)| by A3
                .= a * |(v,u)| by EUCLID_8:68
                .= 0 by A1;
  end;

theorem Th8:
  for a,u,v being non zero Element of TOP-REAL 3 st not are_Prop u,v &
  |(a,u)| = 0 & |(a,v)| = 0 holds are_Prop a,u <X> v
  proof
    let a,u,v be non zero Element of TOP-REAL 3;
    assume that
A1: not are_Prop u,v and
A2: |(a,u)| = 0 and
A3: |(a,v)| = 0;
    u <X> v is non zero by A1,ANPROJ_8:51;
    then reconsider uv = u <X> v as non zero Element of TOP-REAL 3;
A4: a`1 * u`1 + a`2 * u`2 + a`3 * u`3 = 0 &
      a`1 * v`1 + a`2 * v`2 + a`3 * v`3 = 0 by A2,A3,EUCLID_5:29;
    per cases by EUCLID_5:3,4;
    suppose
A5:   a`1 <> 0;
      then
A6:   u`1 = -a`2/a`1 * u`2 - a`3/a`1 * u`3 &
        v`1 = -a`2/a`1 * v`2 - a`3/a`1 * v`3 by A4,ANPROJ_8:13;
      set p1 = u,p2 = v;
      now
        reconsider r = a`1 as Real;
        thus
A7:     u <X> v = |[ 1 *( p1`2 * p2`3 - p1`3 * p2`2),
                     a`2/a`1 *( p1`2 * p2`3 - p1`3 * p2`2),
                     (a`3/a`1) * (- p1`3*p2`2 + p1`2*p2`3) ]| by A6
         .= ( p1`2 * p2`3 - p1`3 * p2`2) * |[ 1 ,a`2/a`1, a`3/a`1 ]|
           by EUCLID_5:8
         .= ( p1`2 * p2`3 - p1`3 * p2`2) * |[ a`1 / r, a`2 / r, a`3 / r ]|
           by A5,XCMPLX_1:60
         .= ( p1`2 * p2`3 - p1`3 * p2`2) * ((1/a`1) * a) by EUCLID_5:7
         .= (( p1`2 * p2`3 - p1`3 * p2`2) * (1/a`1)) * a by RVSUM_1:49;
        p1`2 * p2`3 - p1`3 * p2`2 <> 0
        proof
          assume p1`2 * p2`3 - p1`3 * p2`2 = 0;
          then u <X> v = |[0 * a`1,0 * a`2,0 * a`3]| by A7,EUCLID_5:7
                      .= 0.TOP-REAL 3 by EUCLID_5:4;
          hence thesis by A1,ANPROJ_8:51;
        end;
        hence (p1`2 * p2`3 - p1`3 * p2`2) * (1/a`1) <> 0 by A5;
      end;
      hence thesis by ANPROJ_1:1;
    end;
    suppose
A8:   a`2 <> 0;
      then
A9:   u`2 = -a`1/a`2 * u`1 - a`3/a`2 * u`3 &
        v`2 = -a`1/a`2 * v`1 - a`3/a`2 * v`3 by A4,ANPROJ_8:13;
      set p1 = u, p2 = v;
      now
        reconsider r = a`2 as Real;
        thus
A10:     u <X> v = |[ (a`1/a`2) *( p1`3 * p2`1 - p1`1 * p2`3),
                      1 *( p1`3 * p2`1 - p1`1 * p2`3),
                      (a`3/a`2) * ( p1`3*p2`1 - p1`1*p2`3) ]| by A9
               .= (p1`3*p2`1-p1`1*p2`3) * |[a`1/a`2,1,a`3/a`2]| by EUCLID_5:8
               .= (p1`3*p2`1-p1`1*p2`3) * |[a`1/r,r/r,a`3/r]| by A8,XCMPLX_1:60
               .= (p1`3*p2`1-p1`1*p2`3) * ((1/a`2) * a) by EUCLID_5:7
               .= ((p1`3*p2`1-p1`1*p2`3) * (1/a`2)) * a by RVSUM_1:49;
        p1`3*p2`1-p1`1*p2`3 <> 0
        proof
          assume p1`3*p2`1-p1`1*p2`3 = 0;
          then u <X> v = |[0 * a`1,0 * a`2,0 * a`3]| by A10,EUCLID_5:7
                      .= 0.TOP-REAL 3 by EUCLID_5:4;
          hence thesis by A1,ANPROJ_8:51;
        end;
        hence (p1`3*p2`1-p1`1*p2`3) * (1/a`2) <> 0 by A8;
      end;
      hence thesis by ANPROJ_1:1;
    end;
    suppose
A11:  a`3 <> 0;
      a`3 * u`3 + a`1 * u`1 + a`2 * u`2 = 0 &
        a`3 * v`3 + a`1 * v`1 + a`2 * v`2 = 0 by A4;
      then
A12:   u`3 = -a`1/a`3 * u`1 - a`2/a`3 * u`2 &
        v`3 = -a`1/a`3 * v`1 - a`2/a`3 * v`2 by A11,ANPROJ_8:13;
      set p1 = u, p2 = v;
      now
        reconsider r = a`3 as Real;
        thus
A13:    u <X> v = |[ (a`1/a`3) * (p1`1 * p2`2 - p1`2 * p2`1),
                      a`2/a`3 * (p1`1 * p2`2 - p1`2 * p2`1),
                      1 * (p1`1 * p2`2 - p1`2 * p2`1) ]| by A12
               .= (p1`1*p2`2-p1`2*p2`1) * |[a`1/a`3,a`2/a`3,1]| by EUCLID_5:8
               .= (p1`1*p2`2-p1`2*p2`1) * |[a`1/r,a`2/r,r/r]|
                 by A11,XCMPLX_1:60
               .= (p1`1*p2`2-p1`2*p2`1) * ((1/a`3) * a) by EUCLID_5:7
               .= ((p1`1*p2`2-p1`2*p2`1) * (1/a`3)) * a by RVSUM_1:49;
        p1`1*p2`2-p1`2*p2`1 <> 0
        proof
          assume p1`1*p2`2-p1`2*p2`1 = 0;
          then u <X> v = |[0 * a`1,0 * a`2,0 * a`3]| by A13,EUCLID_5:7
                      .= 0.TOP-REAL 3 by EUCLID_5:4;
          hence thesis by A1,ANPROJ_8:51;
        end;
        hence (p1`1*p2`2-p1`2*p2`1) * (1/a`3) <> 0 by A11;
      end;
      hence thesis by ANPROJ_1:1;
    end;
  end;

theorem Th9:
  for u,v being non zero Element of TOP-REAL 3
  for r being Real st r <> 0 & are_Prop u,v holds are_Prop r * u,v
  proof
    let u,v be non zero Element of TOP-REAL 3;
    let r be Real;
    assume that
A1: r <> 0 and
A2: are_Prop u,v;
    consider a be Real such that
A3: a <> 0 and
A4: u = a * v by ANPROJ_1:1,A2;
    r * u = (r * a) * v by A4,RVSUM_1:49;
    hence thesis by A1,A3,ANPROJ_1:1;
  end;

begin :: Alignment of definitions

definition
  let P being Point of ProjectiveSpace TOP-REAL 3;
  attr P is zero_proj1 means
:Def1:
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds u.1 = 0;
end;

registration
  cluster zero_proj1 for Point of ProjectiveSpace TOP-REAL 3;
  existence
  proof
    take Dir001;
    reconsider p = |[0,0,1]| as non zero Element of TOP-REAL 3;
    now
      let u be non zero Element of TOP-REAL 3;
      assume Dir001 = Dir u;
      then are_Prop u, p by ANPROJ_1:22;
      then consider a be Real such that
      a <> 0 and
A1:   u = a * p by ANPROJ_1:1;
A2:   |[0,0,1]| = |[p.1,p.2,p.3]| by EUCLID_8:1,def 3;
      thus u.1 = a * p.1 by A1,RVSUM_1:44
              .= a * 0 by A2,FINSEQ_1:78
              .= 0;
    end;
    hence thesis;
  end;
end;

registration
  cluster non zero_proj1 for Point of ProjectiveSpace TOP-REAL 3;
  existence
  proof
    set P = Dir100;
    take P;
    reconsider u = |[1,0,0]| as non zero Element of TOP-REAL 3;
    now
      thus P = Dir u;
      |[1,0,0]| = |[u.1,u.2,u.3]| by EUCLID_8:1,def 1;
      hence u.1 <> 0 by FINSEQ_1:78;
    end;
    hence thesis;
  end;
end;

theorem Th10:
  for P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds
  u.1 <> 0
  proof
    let P be non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    assume
A1: P = Dir u;
    consider u9 be non zero Element of TOP-REAL 3 such that
A2: P = Dir u9 and
A3: u9.1 <> 0 by Def1;
    are_Prop u,u9 by A1,A2,ANPROJ_1:22;
    then consider a be Real such that
A4: a <> 0 and
A5: u = a * u9 by ANPROJ_1:1;
    assume u.1 = 0;
    then a * u9.1 = 0 by A5,RVSUM_1:44;
    hence thesis by A3,A4;
  end;

definition
  let P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
  func normalize_proj1(P) -> non zero Element of TOP-REAL 3 means
:Def2:
  Dir it = P & it.1 = 1;
  existence
  proof
    consider u be non zero Element of TOP-REAL 3 such that
A1: P = Dir u and
A2: u.1 <> 0 by Def1;
    reconsider v = |[1, u`2/u.1,u`3/u.1]| as non zero Element of TOP-REAL 3;
    take v;
A3: v`1 = 1 by EUCLID_5:2;
    u.1 * v = |[u.1 * 1, u.1 * (u`2/u.1),u.1*(u`3/u.1)]| by EUCLID_5:8
           .= |[u.1, u`2, u.1*(u`3/u.1)]| by XCMPLX_1:87,A2
           .= |[u`1, u`2, u`3]| by A2,XCMPLX_1:87
           .= u by EUCLID_5:3;
    then are_Prop u,v by A2,ANPROJ_1:1;
    hence thesis by A1,A3,ANPROJ_1:22;
  end;
  uniqueness
  proof
    let u,v be non zero Element of TOP-REAL 3 such that
A4: P = Dir u & u.1 = 1 and
A5: P = Dir v & v.1 = 1;
    are_Prop u,v by A4,A5,ANPROJ_1:22;
    then consider a be Real such that
    a <> 0 and
A6: u = a * v by ANPROJ_1:1;
A7: 1 = a * v.1 by A4,A6,RVSUM_1:44
     .= a by A5;
    a * v = |[a * v`1, a * v`2, a * v`3]| by EUCLID_5:7
         .= v by A7,EUCLID_5:3;
    hence thesis by A6;
  end;
end;

theorem Th11:
  for P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds
  normalize_proj1 P = |[1, u.2/u.1,u.3/u.1]|
  proof
    let P be non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
    let u9 be non zero Element of TOP-REAL 3;
    assume P = Dir u9;
    then Dir u9 = Dir normalize_proj1 P by Def2;
    then are_Prop u9,normalize_proj1 P by ANPROJ_1:22;
    then consider a be Real such that
    a <> 0 and
A1: normalize_proj1 P = a * u9 by ANPROJ_1:1;
A2: normalize_proj1 P = |[a * u9`1,a * u9`2,a * u9`3 ]| by A1,EUCLID_5:7;
A3: 1 = (normalize_proj1 P)`1 by Def2
     .= a * u9`1 by A2,EUCLID_5:2;
    then
A4: u9`1 = 1 / a & a = 1 / u9`1 by XCMPLX_1:73;
    normalize_proj1 P = |[ 1,u9`2 / u9`1,(1 / u9`1) * u9`3]|
                         by A1,A3,A4,EUCLID_5:7
                     .= |[ 1,u9.2 / u9.1,u9.3/u9.1]|;
    hence thesis;
  end;

theorem
  for P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3
  for Q being Point of ProjectiveSpace TOP-REAL 3 st
  Q = Dir normalize_proj1(P) holds Q is non zero_proj1 by Def2;

definition
  let P being Point of ProjectiveSpace TOP-REAL 3;
  attr P is zero_proj2 means
:Def3:
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds u.2 = 0;
end;

registration
  cluster zero_proj2 for Point of ProjectiveSpace TOP-REAL 3;
  existence
  proof
    take Dir001;
    reconsider p = |[0,0,1]| as non zero Element of TOP-REAL 3;
    now
      let u be non zero Element of TOP-REAL 3;
      assume Dir001 = Dir u;
      then are_Prop u, p by ANPROJ_1:22;
      then consider a be Real such that
      a <> 0 and
A1:   u = a * p by ANPROJ_1:1;
A2:   |[0,0,1]| = |[p.1,p.2,p.3]| by EUCLID_8:1,def 3;
      thus u.2 = a * p.2 by A1,RVSUM_1:44
              .= a * 0 by A2,FINSEQ_1:78
              .= 0;
    end;
    hence thesis;
  end;
end;

registration
  cluster non zero_proj2 for Point of ProjectiveSpace TOP-REAL 3;
  existence
  proof
    set P = Dir010;
    take P;
    reconsider u = |[0,1,0]| as non zero Element of TOP-REAL 3;
    now
      thus P = Dir u;
      |[0,1,0]| = |[u.1,u.2,u.3]| by EUCLID_8:1,def 2;
      hence u.2 <> 0 by FINSEQ_1:78;
    end;
    hence thesis;
  end;
end;

theorem Th13:
  for P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds
  u.2 <> 0
  proof
    let P be non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    assume
A1: P = Dir u;
    consider u9 be non zero Element of TOP-REAL 3 such that
A2: P = Dir u9 and
A3: u9.2 <> 0 by Def3;
    are_Prop u,u9 by A1,A2,ANPROJ_1:22;
    then consider a be Real such that
A4: a <> 0 and
A5: u = a * u9 by ANPROJ_1:1;
    assume u.2 = 0;
    then a * u9.2 = 0 by A5,RVSUM_1:44;
    hence thesis by A3,A4;
  end;

definition
  let P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
  func normalize_proj2(P) -> non zero Element of TOP-REAL 3 means
  :Def4:
  Dir it = P & it.2 = 1;
  existence
  proof
    consider u be non zero Element of TOP-REAL 3 such that
A1: P = Dir u and
A2: u.2 <> 0 by Def3;
    reconsider v = |[u`1/u.2, 1,u`3/u.2]| as non zero Element of TOP-REAL 3;
    take v;
A3: v`2 = 1 by EUCLID_5:2;
    u.2 * v = |[u.2 * (u`1/u.2), u.2 * 1,u.2*(u`3/u.2)]| by EUCLID_5:8
           .= |[u`1, u.2, u.2*(u`3/u.2)]| by XCMPLX_1:87,A2
           .= |[u`1, u`2, u`3]| by A2,XCMPLX_1:87
           .= u by EUCLID_5:3;
    then are_Prop u,v by A2,ANPROJ_1:1;
    hence thesis by A1,A3,ANPROJ_1:22;
  end;
  uniqueness
  proof
    let u,v being non zero Element of TOP-REAL 3 such that
A4: P = Dir u & u.2 = 1 and
A5: P = Dir v & v.2 = 1;
    are_Prop u,v by A4,A5,ANPROJ_1:22;
    then consider a be Real such that
    a <> 0 and
A6: u = a * v by ANPROJ_1:1;
A7: 1 = a * v.2 by A4,A6,RVSUM_1:44
     .= a by A5;
    a * v = |[a * v`1, a * v`2, a * v`3]| by EUCLID_5:7
         .= v by A7,EUCLID_5:3;
    hence thesis by A6;
  end;
end;

theorem Th14:
  for P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds
  normalize_proj2 P = |[u.1/u.2,1,u.3/u.2]|
  proof
    let P be non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
    let u9 be non zero Element of TOP-REAL 3;
    assume P = Dir u9;
    then Dir u9 = Dir normalize_proj2 P by Def4;
    then are_Prop u9,normalize_proj2 P by ANPROJ_1:22;
    then consider a be Real such that
    a <> 0 and
A1: normalize_proj2 P = a * u9 by ANPROJ_1:1;
A2: normalize_proj2 P = |[a * u9`1,a * u9`2,a * u9`3 ]| by A1,EUCLID_5:7;
A3: 1 = (normalize_proj2 P)`2 by Def4
     .= a * u9`2 by A2,EUCLID_5:2;
    then
A4: u9`2 = 1 / a & a = 1 / u9`2 by XCMPLX_1:73;
    normalize_proj2 P = |[ u9`1 / u9`2,1,(1 / u9`2) * u9`3]|
                         by A1,A3,A4,EUCLID_5:7
                     .= |[ u9.1 / u9.2,1,u9.3/u9.2]|;
    hence thesis;
  end;

theorem
  for P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
  for Q being Point of ProjectiveSpace TOP-REAL 3 st
  Q = Dir normalize_proj2(P) holds Q is non zero_proj2 by Def4;

definition
  let P being Point of ProjectiveSpace TOP-REAL 3;
  attr P is zero_proj3 means
:Def5:
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds u.3 = 0;
end;

registration
  cluster zero_proj3 for Point of ProjectiveSpace TOP-REAL 3;
  existence
  proof
    take Dir100;
    reconsider p = |[1,0,0]| as non zero Element of TOP-REAL 3;
    now
      let u be non zero Element of TOP-REAL 3;
      assume Dir100 = Dir u;
      then are_Prop u, p by ANPROJ_1:22;
      then consider a be Real such that
      a <> 0 and
A1:   u = a * p by ANPROJ_1:1;
A2:   |[1,0,0]| = |[p.1,p.2,p.3]| by EUCLID_8:1,def 1;
      thus u.3 = a * p.3 by A1,RVSUM_1:44
              .= a * 0 by A2,FINSEQ_1:78
              .= 0;
    end;
    hence thesis;
  end;
end;

registration
  cluster non zero_proj3 for Point of ProjectiveSpace TOP-REAL 3;
  existence
  proof
    set P = Dir001;
    take P;
    reconsider u = |[0,0,1]| as non zero Element of TOP-REAL 3;
    now
      thus P = Dir u;
      |[0,0,1]| = |[u.1,u.2,u.3]| by EUCLID_8:1,def 3;
      hence u.3 <> 0 by FINSEQ_1:78;
    end;
    hence thesis;
  end;
end;

theorem Th16:
  for P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds
  u.3 <> 0
  proof
    let P be non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    assume
A1: P = Dir u;
    consider u9 be non zero Element of TOP-REAL 3 such that
A2: P = Dir u9 and
A3: u9.3 <> 0 by Def5;
    are_Prop u,u9 by A1,A2,ANPROJ_1:22;
    then consider a be Real such that
A4: a <> 0 and
A5: u = a * u9 by ANPROJ_1:1;
    assume u.3 = 0;
    then a * u9.3 = 0 by A5,RVSUM_1:44;
    hence thesis by A3,A4;
  end;

definition
  let P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
  func normalize_proj3(P) -> non zero Element of TOP-REAL 3 means
:Def6:
  Dir it = P & it.3 = 1;
  existence
  proof
    consider u be non zero Element of TOP-REAL 3 such that
A1: P = Dir u and
A2: u.3 <> 0 by Def5;
    reconsider v = |[u`1/u.3, u`2/u.3,1]| as non zero Element of TOP-REAL 3;
    take v;
A3: v`3 = 1 by EUCLID_5:2;
    u.3 * v = |[u.3 * (u`1/u.3), u.3 * (u`2/u.3),u.3*1]| by EUCLID_5:8
           .= |[u`1, u.3 * (u`2/u.3), u.3 ]| by XCMPLX_1:87,A2
           .= |[u`1, u`2, u`3]| by A2,XCMPLX_1:87
           .= u by EUCLID_5:3;
    then are_Prop u,v by A2,ANPROJ_1:1;
    hence thesis by A1,A3,ANPROJ_1:22;
  end;
  uniqueness
  proof
    let u,v be non zero Element of TOP-REAL 3 such that
A4: P = Dir u & u.3 = 1 and
A5: P = Dir v & v.3 = 1;
    are_Prop u,v by A4,A5,ANPROJ_1:22;
    then consider a be Real such that
    a <> 0 and
A6: u = a * v by ANPROJ_1:1;
A7: 1 = a * v.3 by A4,A6,RVSUM_1:44
     .= a by A5;
    a * v = |[a * v`1, a * v`2, a * v`3]| by EUCLID_5:7
         .= v by A7,EUCLID_5:3;
    hence thesis by A6;
  end;
end;

theorem Th17:
  for P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds
  normalize_proj3 P = |[u.1/u.3,u.2/u.3,1]|
  proof
    let P be non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
    let u9 be non zero Element of TOP-REAL 3;
    assume P = Dir u9;
    then Dir u9 = Dir normalize_proj3 P by Def6;
    then are_Prop u9,normalize_proj3 P by ANPROJ_1:22;
    then consider a be Real such that
    a <> 0 and
A1: normalize_proj3 P = a * u9 by ANPROJ_1:1;
A2: normalize_proj3 P = |[a * u9`1,a * u9`2,a * u9`3 ]| by A1,EUCLID_5:7;
A3: 1 = (normalize_proj3 P)`3 by Def6
     .= a * u9`3 by A2,EUCLID_5:2;
    then
A4: u9`3 = 1 / a & a = 1 / u9`3 by XCMPLX_1:73;
    normalize_proj3 P = |[ u9`1 / u9`3,(1 / u9`3) * u9`2,1]|
                        by A1,A3,A4,EUCLID_5:7
                     .= |[ u9.1 / u9.3,u9.2/u9.3,1]|;
    hence thesis;
  end;

theorem
  for P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3
  for Q being Point of ProjectiveSpace TOP-REAL 3 st
  Q = Dir normalize_proj3(P) holds Q is non zero_proj3 by Def6;

registration
  cluster non zero_proj1 non zero_proj2 for Point of
    ProjectiveSpace TOP-REAL 3;
  existence
  proof
    reconsider u = |[1,1,0]| as non zero Element of TOP-REAL 3;
    reconsider P = Dir u as Point of ProjectiveSpace TOP-REAL 3 by ANPROJ_1:26;
    take P;
    reconsider un = u as Element of REAL 3 by EUCLID:22;
    |[1,1,0]| = |[un.1,un.2,un.3]| by EUCLID_8:1;
    then u.1 <> 0 & u.2 <> 0 by FINSEQ_1:78;
    hence thesis;
  end;
end;
registration
  cluster non zero_proj1 non zero_proj3 for Point of
    ProjectiveSpace TOP-REAL 3;
  existence
  proof
    reconsider u = |[1,0,1]| as non zero Element of TOP-REAL 3;
    reconsider P = Dir u as Point of ProjectiveSpace TOP-REAL 3 by ANPROJ_1:26;
    take P;
    reconsider un = u as Element of REAL 3 by EUCLID:22;
    |[1,0,1]| = |[un.1,un.2,un.3]| by EUCLID_8:1;
    then u.1 <> 0 & u.3 <> 0 by FINSEQ_1:78;
    hence thesis;
  end;
end;
registration
  cluster non zero_proj2 non zero_proj3 for Point of
    ProjectiveSpace TOP-REAL 3;
  existence
  proof
    reconsider u = |[0,1,1]| as non zero Element of TOP-REAL 3;
    reconsider P = Dir u as Point of ProjectiveSpace TOP-REAL 3 by ANPROJ_1:26;
    take P;
    reconsider un = u as Element of REAL 3 by EUCLID:22;
    |[0,1,1]| = |[un.1,un.2,un.3]| by EUCLID_8:1;
    then u.2 <> 0 & u.3 <> 0 by FINSEQ_1:78;
    hence thesis;
  end;
end;

registration
  cluster non zero_proj1 non zero_proj2 non zero_proj3 for Point of
    ProjectiveSpace TOP-REAL 3;
  existence
  proof
    reconsider u = |[1,1,1]| as non zero Element of TOP-REAL 3;
    reconsider P = Dir u as Point of ProjectiveSpace TOP-REAL 3 by ANPROJ_1:26;
    take P;
    reconsider un = u as Element of REAL 3 by EUCLID:22;
    |[1,1,1]| = |[un.1,un.2,un.3]| by EUCLID_8:1;
    then u.1 <> 0 & u.2 <> 0 & u.3 <> 0 by FINSEQ_1:78;
    hence thesis;
  end;
end;

definition
  let P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
  func dir1a(P) -> non zero Element of TOP-REAL 3 equals
  |[- (normalize_proj1(P)).2,1,0]|;
  coherence;
end;
definition
  let P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
  func Pdir1a P -> Point of ProjectiveSpace TOP-REAL 3 equals
  Dir (dir1a P);
  coherence by ANPROJ_1:26;
end;

definition
  let P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
  func dir1b(P) -> non zero Element of TOP-REAL 3 equals
  |[- (normalize_proj1(P)).3,0,1]|;
  coherence;
end;

definition
  let P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
  func Pdir1b P -> Point of ProjectiveSpace TOP-REAL 3 equals
  Dir (dir1b P);
  coherence by ANPROJ_1:26;
end;

theorem
  for P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3 holds
  dir1a(P) <> dir1b(P) by FINSEQ_1:78;

theorem Th20:
  for P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3 holds
  Dir dir1a(P) <> Dir dir1b(P)
  proof
    let P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
    assume Dir dir1a(P) = Dir dir1b(P);
    then are_Prop dir1a(P),dir1b(P) by ANPROJ_1:22;
    then consider a be Real such that
A1: a <> 0 and
A2: dir1a(P) = a * dir1b(P) by ANPROJ_1:1;
    0 = (dir1a(P))`3 by EUCLID_5:2
     .= a * (dir1b(P))`3 by A2,RVSUM_1:44
     .= a * 1 by EUCLID_5:2;
    hence contradiction by A1;
  end;

theorem Th21:
  for P being non zero_proj1 Element of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3
  for v being Element of TOP-REAL 3 st u = normalize_proj1 P holds
  |{ dir1a P,dir1b P,v }| = |(u,v)|
  proof
    let P be non zero_proj1 Element of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    let v be Element of TOP-REAL 3;
    assume u = normalize_proj1 P;
    then
A1: u.1 = 1 & P = Dir u by Def2;
    then normalize_proj1 P = |[1, u.2/u.1,u.3/u.1]| by Th11;
    then (normalize_proj1(P))`2 = u.2/u.1 & (normalize_proj1(P))`3 = u.3/u.1
      by EUCLID_5:2;
    then |{ dir1a P,dir1b P,v }| = |{ |[ -u.2/u.1, 1  , 0   ]|,
                                      |[ -u.3/u.1, 0  , 1   ]|,
                                      |[ v`1     , v`2, v`3 ]| }|
                                    by EUCLID_5:3
      .= v`1 - (-u.2/u.1) * v`2 - v`3 * (-u.3/u.1) by Th2
      .= (1/u.1) * (u`1 * v`1 + u`2 * v`2 + v`3 * u`3) by A1
      .= (1/u.1) * |(u,v)| by EUCLID_5:29;
    hence thesis by A1;
  end;

theorem
  for P being non zero_proj1 Element of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st u = normalize_proj1 P holds
  |{ dir1a P,dir1b P,normalize_proj1 P }| = 1 + u.2 * u.2 + u.3 * u.3
  proof
    let P be non zero_proj1 Element of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    assume
A1: u = normalize_proj1 P;
    then
A2: u.1 = 1 by Def2;
    reconsider un = u as Element of REAL 3 by EUCLID:22;
    thus |{ dir1a P,dir1b P,normalize_proj1 P }| = |(un,un)| by A1,Th21
      .= u.1 * u.1 + u.2 * u.2 + u.3 * u.3 by EUCLID_8:63
      .= 1 + u.2 * u.2 + u.3 * u.3 by A2;
  end;

definition
  let P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
  func dir2a(P) -> non zero Element of TOP-REAL 3 equals
  |[1, - (normalize_proj2(P)).1,0]|;
  coherence;
end;
definition
  let P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
  func Pdir2a P -> Point of ProjectiveSpace TOP-REAL 3 equals
  Dir (dir2a P);
  coherence by ANPROJ_1:26;
end;

definition
  let P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
  func dir2b(P) -> non zero Element of TOP-REAL 3 equals
  |[0, - (normalize_proj2(P)).3,1]|;
  coherence;
end;

definition
  let P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
  func Pdir2b P -> Point of ProjectiveSpace TOP-REAL 3 equals
  Dir (dir2b P);
  coherence by ANPROJ_1:26;
end;

theorem
  for P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3 holds
  dir2a(P) <> dir2b(P) by FINSEQ_1:78;

theorem Th24:
  for P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3 holds
  Dir dir2a(P) <> Dir dir2b(P)
  proof
    let P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
    assume Dir dir2a(P) = Dir dir2b(P);
    then are_Prop dir2a(P),dir2b(P) by ANPROJ_1:22;
    then consider a be Real such that
A1: a <> 0 and
A2: dir2a(P) = a * dir2b(P) by ANPROJ_1:1;
    0 = (dir2a(P))`3 by EUCLID_5:2
     .= a * (dir2b(P))`3 by A2,RVSUM_1:44
     .= a * 1 by EUCLID_5:2;
    hence contradiction by A1;
  end;

theorem Th25:
  for P being non zero_proj2 Element of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3
  for v being Element of TOP-REAL 3 st u = normalize_proj2 P holds
  |{ dir2a P,dir2b P,v }| = - |(u,v)|
  proof
    let P be non zero_proj2 Element of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    let v be Element of TOP-REAL 3;
    assume u = normalize_proj2 P;
    then
A1: u.2 = 1 & P = Dir u by Def4;
    then normalize_proj2 P = |[u.1/u.2,1,u.3/u.2]| by Th14;
    then (normalize_proj2(P))`1 = u.1/u.2 & (normalize_proj2(P))`3 = u.3/u.2
      by EUCLID_5:2;
    then |{ dir2a P,dir2b P,v }| = |{ |[ 1,   -u.1/u.2, 0   ]|,
                                      |[ 0,   -u.3/u.2, 1   ]|,
                                      |[ v`1, v`2,      v`3 ]| }|
                                        by EUCLID_5:3
      .= (-u.3/u.2) * v`3 + (-u.1/u.2) * v`1 - v`2 by Th3
      .= -(1/u.2) * (u`1 * v`1 + u`2 * v`2 + u`3 * v`3) by A1
      .= -(1/u.2) * |(u,v)| by EUCLID_5:29;
    hence thesis by A1;
  end;

theorem
  for P being non zero_proj2 Element of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st u = normalize_proj2 P holds
  |{ dir2a P,dir2b P,normalize_proj2 P }| = - (u.1 * u.1 + 1 + u.3 * u.3)
  proof
    let P be non zero_proj2 Element of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    assume
A1: u = normalize_proj2 P;
    then
A2: u.2 = 1 by Def4;
    reconsider un = u as Element of REAL 3 by EUCLID:22;
    thus |{ dir2a P,dir2b P,normalize_proj2 P }| = - |(un,un)| by A1,Th25
      .= - (u.1 * u.1 + u.2 * u.2 + u.3 * u.3) by EUCLID_8:63
      .= - (u.1 * u.1 + 1 + u.3 * u.3) by A2;
  end;

definition
  let P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
  func dir3a(P) -> non zero Element of TOP-REAL 3 equals
  |[1,0,- (normalize_proj3(P)).1]|;
  coherence;
end;

definition
  let P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
  func Pdir3a P -> Point of ProjectiveSpace TOP-REAL 3 equals
  Dir (dir3a P);
  coherence by ANPROJ_1:26;
end;

definition
  let P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
  func dir3b(P) -> non zero Element of TOP-REAL 3 equals
  |[0,1,- (normalize_proj3(P)).2]|;
  coherence;
end;

definition
  let P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
  func Pdir3b P -> Point of ProjectiveSpace TOP-REAL 3 equals
  Dir (dir3b P);
  coherence by ANPROJ_1:26;
end;

theorem
  for P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3 holds
  dir3a(P) <> dir3b(P) by FINSEQ_1:78;

theorem Th28:
  for P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3 holds
  Dir dir3a(P) <> Dir dir3b(P)
  proof
    let P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
    assume Dir dir3a(P) = Dir dir3b(P);
    then are_Prop dir3a(P),dir3b(P) by ANPROJ_1:22;
    then consider a be Real such that
A1: a <> 0 and
A2: dir3a(P) = a * dir3b(P) by ANPROJ_1:1;
    0 = (dir3a(P))`2 by EUCLID_5:2
     .= a * (dir3b(P))`2 by A2,RVSUM_1:44
     .= a * 1 by EUCLID_5:2;
    hence contradiction by A1;
  end;

theorem Th29:
  for P being non zero_proj3 Element of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3
  for v being Element of TOP-REAL 3 st u = normalize_proj3 P holds
  |{ dir3a P,dir3b P,v }| = |(u,v)|
  proof
    let P be non zero_proj3 Element of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    let v be Element of TOP-REAL 3;
    assume u = normalize_proj3 P;
    then
A1: u.3 = 1 & P = Dir u by Def6;
    then normalize_proj3 P = |[u.1/u.3, u.2/u.3, 1]| by Th17;
    then (normalize_proj3(P))`1 = u.1/u.3 & (normalize_proj3(P))`2 = u.2/u.3
      by EUCLID_5:2;
    then |{ dir3a P,dir3b P,v }| = |{ |[ 1,   0,   -u.1/u.3 ]|,
                                      |[ 0,   1,   -u.2/u.3 ]|,
                                      |[ v`1, v`2, v`3 ]| }|  by EUCLID_5:3
      .= v`3 - v`1 * (-u.1/u.3) - v`2 * (-u.2/u.3) by Th4
      .= u`1 * v`1 + u`2 * v`2 + u`3 * v`3 by A1
      .= |(u,v)| by EUCLID_5:29;
    hence thesis;
  end;

theorem
  for P being non zero_proj3 Element of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st u = normalize_proj3 P holds
  |{ dir3a P,dir3b P,normalize_proj3 P }| = u.1 * u.1 + u.2 * u.2 + 1
  proof
    let P be non zero_proj3 Element of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    assume
A1: u = normalize_proj3 P;
    then
A2: u.3 = 1 by Def6;
    reconsider un = u as Element of REAL 3 by EUCLID:22;
    thus |{ dir3a P,dir3b P,normalize_proj3 P }| = |(un,un)| by A1,Th29
      .= u.1 * u.1 + u.2 * u.2 + u.3 * u.3 by EUCLID_8:63
      .= u.1 * u.1 + u.2 * u.2 + 1 by A2;
  end;

definition
  let P being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
  func dual1 P -> Element of ProjectiveLines real_projective_plane equals
  Line(Pdir1a P,Pdir1b P);
  correctness
  proof
    reconsider P1 = Pdir1a P, P2 = Pdir1b P as Point of real_projective_plane;
    reconsider L = Line(P1,P2) as LINE of real_projective_plane
      by Th20,COLLSP:def 7;
    L in {B where B is Subset of real_projective_plane:
      B is LINE of real_projective_plane};
    hence thesis;
  end;
end;

definition
  let P being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
  func dual2 P -> Element of ProjectiveLines real_projective_plane equals
  Line(Pdir2a P,Pdir2b P);
  correctness
  proof
    reconsider P1 = Pdir2a P, P2 = Pdir2b P as Point of real_projective_plane;
    reconsider L = Line(P1,P2) as LINE of real_projective_plane
      by Th24,COLLSP:def 7;
    L in {B where B is Subset of real_projective_plane:
      B is LINE of real_projective_plane};
    hence thesis;
  end;
end;

definition
  let P being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
  func dual3 P -> Element of ProjectiveLines real_projective_plane equals
  Line(Pdir3a P,Pdir3b P);
  correctness
  proof
    reconsider P1 = Pdir3a P, P2 = Pdir3b P as Point of real_projective_plane;
    reconsider L = Line(P1,P2) as LINE of real_projective_plane
      by Th28,COLLSP:def 7;
    L in {B where B is Subset of real_projective_plane:
      B is LINE of real_projective_plane};
    hence thesis;
  end;
end;

theorem
  for P being non zero_proj1 non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds
  normalize_proj1 P = |[1, u.2/u.1, u.3/u.1]| &
  normalize_proj2 P = |[u.1/u.2, 1, u.3/u.2]| by Th11,Th14;

theorem
  for P being non zero_proj1 non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
  for u being non zero Element of TOP-REAL 3 st P = Dir u holds
  normalize_proj1 P = u.2/u.1 * normalize_proj2 P &
  normalize_proj2 P = u.1/u.2 * normalize_proj1 P
  proof
    let P be non zero_proj1 non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
    let u be non zero Element of TOP-REAL 3;
    assume
A1: P = Dir u;
    set r = u.1 / u.2;
A2: u.1 <> 0 & u.2 <> 0 by A1,Th10,Th13;
A3: (u.1/u.2) * (u.2/u.1) = r * (1 / r) by XCMPLX_1:57
                         .= 1 by A2,XCMPLX_1:106;
    Dir normalize_proj1 P = P & Dir normalize_proj2 P = P by Def2,Def4;
    then are_Prop normalize_proj1 P,normalize_proj2 P by ANPROJ_1:22;
    then consider a be Real such that
    a <> 0 and
A4: normalize_proj1 P = a * normalize_proj2 P by ANPROJ_1:1;
    normalize_proj1 P = |[1, u.2/u.1, u.3/u.1]| &
      normalize_proj2 P = |[u.1/u.2, 1, u.3/u.2]| by A1,Th11,Th14;
    then
A5: |[1, u.2/u.1, u.3/u.1]| = |[ a * (u.1 / u.2),a*1,a * (u.3/u.2)]|
      by A4,EUCLID_5:8;
    hence normalize_proj1 P = (u.2/u.1) * normalize_proj2 P by A4,FINSEQ_1:78;
    (u.1/u.2) * normalize_proj1 P
      = (u.1/u.2) * ((u.2/u.1) * normalize_proj2 P) by A4,A5,FINSEQ_1:78
     .= ((u.1/u.2) * (u.2/u.1)) * normalize_proj2 P by RVSUM_1:49
     .= normalize_proj2 P by A3,RVSUM_1:52;
    hence normalize_proj2 P = (u.1/u.2) * normalize_proj1 P;
  end;

theorem Th33:
  for P being non zero_proj1 non zero_proj2 Point of ProjectiveSpace
  TOP-REAL 3 holds dual1 P = dual2 P
  proof
    let P be non zero_proj1 non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
    consider u be Element of TOP-REAL 3 such that
A1: u is not zero and
A2: P = Dir u by ANPROJ_1:26;
    reconsider u as non zero Element of TOP-REAL 3 by A1;
A3: normalize_proj1 P = |[1, u.2/u.1,u.3/u.1]| &
      normalize_proj2 P = |[u.1/u.2,1,u.3/u.2]| by A2,Th11,Th14;
    now
      now
        let x be object;
        assume x in Line(Pdir1a P,Pdir1b P);
        then consider P9 be Point of ProjectiveSpace TOP-REAL 3 such that
A4:     x = P9 and
A5:     Pdir1a P,Pdir1b P,P9 are_collinear;
        consider u9 be Element of TOP-REAL 3 such that
A6:     u9 is non zero and
A7:     P9 = Dir u9 by ANPROJ_1:26;
        set a2 = - (normalize_proj1(P)).2,
            a3 = - (normalize_proj1(P)).3,
            b1 = u9`1, b2 = u9`2, b3 = u9`3;
A8:     a2 = - (normalize_proj1(P))`2
          .= - u.2/u.1 by A3,EUCLID_5:2;
A9:     a3 = - (normalize_proj1(P))`3
          .= - u.3/u.1 by A3,EUCLID_5:2;
        0 = |{ dir1a P,dir1b P,u9 }| by A5,A6,A7,BKMODEL1:1
         .= |{ |[a2, 1 , 0]| ,
               |[a3, 0 , 1]|,
               |[b1, b2, b3]| }| by EUCLID_5:3
         .= b1 - a2 * b2 - a3 * b3 by Th2
         .= b1 + u.2/u.1 * b2 + u.3/u.1 * b3 by A8,A9;
        then
A10:    0 = u.1 * (b1 + u.2/u.1 * b2 + u.3/u.1 * b3)
         .= u.1 * b1 + u.1 * (u.2 / u.1) * b2 + u.1 * (u.3/u.1) * b3
         .= u.1 * b1 + u.2 * b2 + u.1 * (u.3/u.1) * b3
           by A2,Th10,XCMPLX_1:87
         .= u.1 * b1 + u.2 * b2 + u.3 * b3 by A2,Th10,XCMPLX_1:87;
        set c2 = - (normalize_proj2(P)).1,
            c3 = - (normalize_proj2(P)).3;
A11:    c2 = - (normalize_proj2(P))`1
          .= - u.1/u.2 by A3,EUCLID_5:2;
A12:    c3 = - (normalize_proj2(P))`3
          .= - u.3/u.2 by A3,EUCLID_5:2;
        |{ |[1,   c2,  0]|,
           |[0,   c3,  1]|,
           |[u9`1,u9`2,u9`3]| }| = (- u.1/u.2) *  b1 + (-u.3/u.2) * b3 - b2
             by A11,A12,Th3;
        then |{dir2a P,dir2b P,u9}|
          = (- u.1/u.2) *  b1 + (-u.3/u.2) * b3 + (-1) * b2 by EUCLID_5:3
         .= (- u.1/u.2) *  b1 + (-u.3/u.2) * b3 + (-u.2/u.2) * b2
           by XCMPLX_1:60,A2,Th13
         .= (u.1/(-u.2)) *  b1 + (-u.3/u.2) * b3 + (-u.2/u.2) * b2
           by XCMPLX_1:188
         .= (u.1/(-u.2)) *  b1 + (u.3/(-u.2)) * b3 + (-u.2/u.2) * b2
           by XCMPLX_1:188
         .= (u.1/(-u.2)) *  b1 + (u.3/(-u.2)) * b3 + (u.2/(-u.2)) * b2
           by XCMPLX_1:188
         .= (1 / -u.2) * (u.1 * b1 + u.2 * b2 + u.3 * b3)
         .= 0 by A10;
        then Pdir2a P,Pdir2b P,P9 are_collinear by A6,A7,BKMODEL1:1;
        hence x in Line(Pdir2a P,Pdir2b P) by A4;
      end;
      hence Line(Pdir1a P,Pdir1b P) c= Line(Pdir2a P,Pdir2b P);
      now
        let x be object;
        assume x in Line(Pdir2a P,Pdir2b P);
        then consider P9 be Point of ProjectiveSpace TOP-REAL 3 such that
A13:    x = P9 and
A14:    Pdir2a P,Pdir2b P,P9 are_collinear;
        consider u9 be Element of TOP-REAL 3 such that
A15:    u9 is non zero and
A16:    P9 = Dir u9 by ANPROJ_1:26;
        set a2 = - (normalize_proj1(P)).2,
            a3 = - (normalize_proj1(P)).3,
            b1 = u9`1, b2 = u9`2, b3 = u9`3;
        set c2 = - (normalize_proj2(P)).1,
            c3 = - (normalize_proj2(P)).3;
A17:    a2 = - (normalize_proj1(P))`2
          .= - u.2/u.1 by A3,EUCLID_5:2;
A18:    a3 = - (normalize_proj1(P))`3
          .= - u.3/u.1 by A3,EUCLID_5:2;
A19:    c2 = - (normalize_proj2(P))`1
          .= - u.1/u.2 by A3,EUCLID_5:2;
A20:    c3 = - (normalize_proj2(P))`3
          .= - u.3/u.2 by A3,EUCLID_5:2;
A21:    - u.2 <> 0 by A2,Th13;
A22:    0 = |{ dir2a P,dir2b P,u9 }| by A14,A15,A16,BKMODEL1:1
         .= |{ |[1, c2 , 0]| ,
               |[0, c3 , 1]|,
               |[b1, b2, b3]| }| by EUCLID_5:3
         .= c3 * b3 + c2 * b1 - b2 by Th3
         .= (- u.1/u.2) *  b1 + (-u.3/u.2) * b3 + (-1) * b2 by A19,A20
         .= (- u.1/u.2) *  b1 + (-u.3/u.2) * b3 + (-u.2/u.2) * b2
           by XCMPLX_1:60,A2,Th13
         .= (u.1/(-u.2)) *  b1 + (-u.3/u.2) * b3 + (-u.2/u.2) * b2
           by XCMPLX_1:188
         .= (u.1/(-u.2)) *  b1 + (u.3/(-u.2)) * b3 + (-u.2/u.2) * b2
           by XCMPLX_1:188
         .= (u.1/(-u.2)) *  b1 + (u.3/(-u.2)) * b3 + (u.2/(-u.2)) * b2
           by XCMPLX_1:188
         .= (1 / -u.2) * (u.1 * b1 + u.2 * b2 + u.3 * b3);
A23:    u.1/u.1 = 1 by XCMPLX_1:60,A2,Th10;
        |{dir1a P,dir1b P,u9}| = |{ |[a2, 1 , 0]| ,
                                    |[a3, 0 , 1]|,
                                    |[b1, b2, b3]| }| by EUCLID_5:3
         .= b1 - a2 * b2 - a3 * b3 by Th2
         .= (u.1/u.1) * b1 + u.2/u.1 * b2 + u.3/u.1 * b3 by A17,A18,A23
         .= (1/u.1) * (u.1 * b1 + u.2 * b2 + u.3 * b3)
         .= (1 / u.1) * 0 by A22,A21,XCMPLX_1:6
         .= 0;
        then Pdir1a P,Pdir1b P,P9 are_collinear by A15,A16,BKMODEL1:1;
        hence x in Line(Pdir1a P,Pdir1b P) by A13;
      end;
      hence Line(Pdir2a P,Pdir2b P) c= Line(Pdir1a P,Pdir1b P);
    end;
    hence thesis;
  end;

theorem Th34:
  for P being non zero_proj2 non zero_proj3 Point of ProjectiveSpace
  TOP-REAL 3 holds dual2 P = dual3 P
  proof
    let P be non zero_proj2 non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
    consider u be Element of TOP-REAL 3 such that
A1: u is not zero and
A2: P = Dir u by ANPROJ_1:26;
    reconsider u as non zero Element of TOP-REAL 3 by A1;
A3: normalize_proj3 P = |[u.1/u.3,u.2/u.3,1]| &
      normalize_proj2 P = |[u.1/u.2,1,u.3/u.2]| by A2,Th17,Th14;
    now
      now
        let x be object;
        assume x in Line(Pdir2a P,Pdir2b P);
        then consider P9 be Point of ProjectiveSpace TOP-REAL 3 such that
A4:     x = P9 and
A5:     Pdir2a P,Pdir2b P,P9 are_collinear;
        consider u9 be Element of TOP-REAL 3 such that
A6:     u9 is non zero and
A7:     P9 = Dir u9 by ANPROJ_1:26;
        set a2 = - (normalize_proj2(P)).1,
            a3 = - (normalize_proj2(P)).3,
            b1 = u9`1, b2 = u9`2, b3 = u9`3;
A8:     a2 = - (normalize_proj2(P))`1
          .= - u.1/u.2 by A3,EUCLID_5:2;
A9:     a3 = - (normalize_proj2(P))`3
          .= - u.3/u.2 by A3,EUCLID_5:2;
        0 = |{ dir2a P,dir2b P,u9 }| by A5,A6,A7,BKMODEL1:1
         .= |{ |[1, a2, 0]| ,
               |[0, a3, 1]|,
               |[b1, b2, b3]| }| by EUCLID_5:3
         .= a2 * b1 + a3 * b3 - b2 by Th3
         .= -(u.1/u.2 * b1 + b2 + u.3/u.2 * b3) by A8,A9;
        then
A10:    0 = u.2 * (u.1/u.2 *b1 + b2 + u.3/u.2 * b3)
         .= u.2 * b2 + u.2 * (u.1 / u.2) * b1 + u.2 * (u.3/u.2) * b3
         .= u.2 * b2 + u.1 * b1 + u.2 * (u.3/u.2) * b3
           by A2,Th13,XCMPLX_1:87
         .= u.2 * b2 + u.1 * b1 + u.3 * b3 by A2,Th13,XCMPLX_1:87;
        set c2 = - (normalize_proj3(P)).1,
            c3 = - (normalize_proj3(P)).2;
A11:    c2 = - (normalize_proj3(P))`1
          .= - u.1/u.3 by A3,EUCLID_5:2;
A12:    c3 = - (normalize_proj3(P))`2
          .= - u.2/u.3 by A3,EUCLID_5:2;
A13:    u.3 / u.3 = 1 by A2,Th16,XCMPLX_1:60;
        |{ |[1,   0,c2]|,
           |[0,   1,c3]|,
           |[u9`1,u9`2,u9`3]| }| = b3 - b1 * (-u.1/u.3) - b2 * (-u.2/u.3)
             by A11,A12,Th4
                                .= (u.1/u.3) * b1 + (u.2/u.3) * b2 + b3;
        then |{dir3a P,dir3b P,u9}|
          = (u.1 * (1/u.3)) *  b1 + (u.2/(u.3)) * b2 + (u.3/u.3) * b3
            by A13,EUCLID_5:3

         .= (1 /u.3) * (u.1 * b1 + u.2 * b2 + u.3 * b3)
         .= 0 by A10;
        then Pdir3a P,Pdir3b P,P9 are_collinear by A6,A7,BKMODEL1:1;
        hence x in Line(Pdir3a P,Pdir3b P) by A4;
      end;
      hence Line(Pdir2a P,Pdir2b P) c= Line(Pdir3a P,Pdir3b P);
      now
        let x be object;
        assume x in Line(Pdir3a P,Pdir3b P);
        then consider P9 be Point of ProjectiveSpace TOP-REAL 3 such that
A14:    x = P9 and
A15:    Pdir3a P,Pdir3b P,P9 are_collinear;
        consider u9 be Element of TOP-REAL 3 such that
A16:    u9 is non zero and
A17:    P9 = Dir u9 by ANPROJ_1:26;
        set a2 = - (normalize_proj3(P)).1,
            a3 = - (normalize_proj3(P)).2,
            b1 = u9`1, b2 = u9`2, b3 = u9`3;
        set c2 = - (normalize_proj2(P)).1,
            c3 = - (normalize_proj2(P)).3;
A18:    a2 = - (normalize_proj3(P))`1
          .= - u.1/u.3 by A3,EUCLID_5:2;
A19:    a3 = - (normalize_proj3(P))`2
          .= - u.2/u.3 by A3,EUCLID_5:2;
A20:    c2 = - (normalize_proj2(P))`1
          .= - u.1/u.2 by A3,EUCLID_5:2;
A21:    c3 = - (normalize_proj2(P))`3
          .= - u.3/u.2 by A3,EUCLID_5:2;
A22:    0 = |{ dir3a P,dir3b P,u9 }| by A15,A16,A17,BKMODEL1:1
         .= |{ |[1, 0, a2]| ,
               |[0, 1, a3]|,
               |[b1, b2, b3]| }| by EUCLID_5:3
         .= b3 - a2 * b1 - a3 * b2 by Th4
         .= (u.1/u.3) *  b1 + (u.2/u.3) * b2 + 1 * b3 by A18,A19
         .= (u.1/u.3) *  b1 + (u.2/u.3) * b2 + (u.3/u.3) * b3
           by XCMPLX_1:60,A2,Th16
         .= (1 /u.3) * (u.1 * b1 + u.2 * b2 + u.3 * b3);
A23:    u.3 <> 0 by A2,Th16;
        |{dir2a P,dir2b P,u9}| = |{ |[1 ,c2, 0]| ,
                                    |[0 ,c3, 1]|,
                                    |[b1, b2, b3]| }| by EUCLID_5:3
          .= c3 * b3 + c2 * b1 - b2 by Th3
          .= (-u.1/u.2) * b1 + (-1) * b2 + (-u.3/u.2) * b3 by A20,A21
          .= (-u.1/u.2) * b1 + (-u.2/u.2) * b2 + (-u.3/u.2) * b3
            by XCMPLX_1:60,A2,Th13
          .= (u.1/-u.2) * b1 + (-u.2/u.2) * b2 + (-u.3/u.2) * b3
            by XCMPLX_1:188
          .= (u.1/-u.2) * b1 + (u.2/-u.2) * b2 + (-u.3/u.2) * b3
            by XCMPLX_1:188
          .= (u.1/-u.2) * b1 + (u.2/-u.2) * b2 + (u.3/-u.2) * b3
            by XCMPLX_1:188
          .= (1/-u.2) * (u.1 * b1 + u.2 * b2 + u.3 * b3)
          .= (1/-u.2) * 0 by A23,XCMPLX_1:6,A22
          .= 0;
        then Pdir2a P,Pdir2b P,P9 are_collinear by A16,A17,BKMODEL1:1;
        hence x in Line(Pdir2a P,Pdir2b P) by A14;
      end;
      hence Line(Pdir3a P,Pdir3b P) c= Line(Pdir2a P,Pdir2b P);
    end;
    hence thesis;
  end;

theorem Th35:
  for P being non zero_proj1 non zero_proj3 Point of ProjectiveSpace
  TOP-REAL 3 holds dual1 P = dual3 P
  proof
    let P be non zero_proj1 non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
    consider u be Element of TOP-REAL 3 such that
A1: u is not zero and
A2: P = Dir u by ANPROJ_1:26;
    reconsider u as non zero Element of TOP-REAL 3 by A1;
A3: normalize_proj1 P = |[1, u.2/u.1,u.3/u.1]| &
      normalize_proj3 P = |[u.1/u.3,u.2/u.3,1]| by A2,Th11,Th17;
    now
      now
        let x be object;
        assume x in Line(Pdir1a P,Pdir1b P);
        then consider P9 be Point of ProjectiveSpace TOP-REAL 3 such that
A4:     x = P9 and
A5:     Pdir1a P,Pdir1b P,P9 are_collinear;
        consider u9 be Element of TOP-REAL 3 such that
A6:     u9 is non zero and
A7:     P9 = Dir u9 by ANPROJ_1:26;
        set a2 = - (normalize_proj1(P)).2,
            a3 = - (normalize_proj1(P)).3,
            b1 = u9`1, b2 = u9`2, b3 = u9`3;
A8:     a2 = - (normalize_proj1(P))`2
          .= - u.2/u.1 by A3,EUCLID_5:2;
A9:     a3 = - (normalize_proj1(P))`3
          .= - u.3/u.1 by A3,EUCLID_5:2;
        0 = |{ dir1a P,dir1b P,u9 }| by A5,A6,A7,BKMODEL1:1
         .= |{ |[a2, 1 , 0]| ,
               |[a3, 0 , 1]|,
               |[b1, b2, b3]| }| by EUCLID_5:3
         .= b1 - a2 * b2 - a3 * b3 by Th2
         .= b1 + u.2/u.1 * b2 + u.3/u.1 * b3 by A8,A9;
        then
A10:    0 = u.1 * (b1 + u.2/u.1 * b2 + u.3/u.1 * b3)
         .= u.1 * b1 + u.1 * (u.2 / u.1) * b2 + u.1 * (u.3/u.1) * b3
         .= u.1 * b1 + u.2 * b2 + u.1 * (u.3/u.1) * b3
           by A2,Th10,XCMPLX_1:87
         .= u.1 * b1 + u.2 * b2 + u.3 * b3 by A2,Th10,XCMPLX_1:87;
        set c2 = - (normalize_proj3(P)).1,
            c3 = - (normalize_proj3(P)).2;
A11:    c2 = - (normalize_proj3(P))`1
          .= - u.1/u.3 by A3,EUCLID_5:2;
A12:    c3 = - (normalize_proj3(P))`2
          .= - u.2/u.3 by A3,EUCLID_5:2;
        |{ |[1,   0, c2 ]|,
           |[0,   1, c3]|,
           |[u9`1,u9`2,u9`3]| }| = b3 - c2 * b1 - c3 * b2 by Th4;
        then |{dir3a P,dir3b P,u9}|
          = (u.1/u.3) * b1 + (u.2/u.3) * b2 + 1 * b3 by A11,A12,EUCLID_5:3
         .= (u.1/u.3) *  b1 + (u.2/u.3) * b2 + (u.3/u.3) * b3
           by XCMPLX_1:60,A2,Th16
         .= (1 / u.3) * (u.1 * b1 + u.2 * b2 + u.3 * b3)
         .= 0 by A10;
        then Pdir3a P,Pdir3b P,P9 are_collinear by A6,A7,BKMODEL1:1;
        hence x in Line(Pdir3a P,Pdir3b P) by A4;
      end;
      hence Line(Pdir1a P,Pdir1b P) c= Line(Pdir3a P,Pdir3b P);
      now
        let x be object;
        assume x in Line(Pdir3a P,Pdir3b P);
        then consider P9 be Point of ProjectiveSpace TOP-REAL 3 such that
A13:    x = P9 and
A14:    Pdir3a P,Pdir3b P,P9 are_collinear;
        consider u9 be Element of TOP-REAL 3 such that
A15:    u9 is non zero and
A16:    P9 = Dir u9 by ANPROJ_1:26;
        set a2 = - (normalize_proj1(P)).2,
            a3 = - (normalize_proj1(P)).3,
            b1 = u9`1, b2 = u9`2, b3 = u9`3;
        set c2 = - (normalize_proj3(P)).1,
            c3 = - (normalize_proj3(P)).2;
A17:    a2 = - (normalize_proj1(P))`2
          .= - u.2/u.1 by A3,EUCLID_5:2;
A18:    a3 = - (normalize_proj1(P))`3
          .= - u.3/u.1 by A3,EUCLID_5:2;
A19:    c2 = - (normalize_proj3(P))`1
          .= - u.1/u.3 by A3,EUCLID_5:2;
A20:    c3 = - (normalize_proj3(P))`2
          .= - u.2/u.3 by A3,EUCLID_5:2;
A21:    0 = |{ dir3a P,dir3b P,u9 }| by A14,A15,A16,BKMODEL1:1
         .= |{ |[1, 0,c2]| ,
               |[0, 1,c3]|,
               |[b1, b2, b3]| }| by EUCLID_5:3
         .= b3 - c2 * b1 - c3 * b2 by Th4
         .= (u.1/u.3) * b1 + (u.2/u.3) * b2 + 1 * b3 by A19,A20
         .= (u.1/u.3) * b1 + (u.2/u.3) * b2 + (u.3/u.3) * b3
           by XCMPLX_1:60,A2,Th16
         .= (1 / u.3) * (u.1 * b1 + u.2 * b2 + u.3 * b3);
A22:    u.3 <> 0 by A2,Th16;
A23:    u.1/u.1 = 1 by XCMPLX_1:60,A2,Th10;
        |{dir1a P,dir1b P,u9}| = |{ |[a2, 1 , 0]| ,
                                    |[a3, 0 , 1]|,
                                    |[b1, b2, b3]| }| by EUCLID_5:3
         .= b1 - a2 * b2 - a3 * b3 by Th2
         .= (u.1/u.1) * b1 + u.2/u.1 * b2 + u.3/u.1 * b3 by A17,A18,A23
         .= (1/u.1) * (u.1 * b1 + u.2 * b2 + u.3 * b3)
         .= (1 / u.1) * 0 by A22,A21,XCMPLX_1:6
         .= 0;
        then Pdir1a P,Pdir1b P,P9 are_collinear by A15,A16,BKMODEL1:1;
        hence x in Line(Pdir1a P,Pdir1b P) by A13;
      end;
      hence Line(Pdir3a P,Pdir3b P) c= Line(Pdir1a P,Pdir1b P);
    end;
    hence thesis;
  end;

theorem
  for P being non zero_proj1 non zero_proj2 non zero_proj3 Point of
  ProjectiveSpace TOP-REAL 3 holds dual1 P = dual2 P & dual1 P = dual3 P &
  dual2 P = dual3 P by Th33,Th34,Th35;

theorem Th37:
  for P being Element of ProjectiveSpace TOP-REAL 3 holds
  P is non zero_proj1 or P is non zero_proj2 or P is non zero_proj3
  proof
    let P be Element of ProjectiveSpace TOP-REAL 3;
    assume that
A1: P is zero_proj1 and
A2: P is zero_proj2 and
A3: P is zero_proj3;
    consider u be Element of TOP-REAL 3 such that
A4: u is not zero and
A5: Dir u = P by ANPROJ_1:26;
    reconsider u as non zero Element of TOP-REAL 3 by A4;
    u`1 = 0 & u`2 = 0 & u`3 = 0 by A1,A2,A3,A5;
    hence thesis by EUCLID_5:3,4;
  end;

definition
  let P being Point of ProjectiveSpace TOP-REAL 3;
  func dual P -> Element of ProjectiveLines real_projective_plane means
:Def22:
   ex P9 being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3 st P9 = P &
   it = dual1 P9
if P is non zero_proj1,
  ex P9 being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3 st P9 = P &
  it = dual2 P9
if (P is zero_proj1 & P is non zero_proj2),
  ex P9 being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3 st P9 = P &
  it = dual3 P9
if (P is zero_proj1 & P is zero_proj2 & P is non zero_proj3);
  correctness
  proof
    per cases by Th37;
    suppose P is non zero_proj1;
      then reconsider P9 = P as
        non zero_proj1 Element of ProjectiveSpace TOP-REAL 3;
      dual1 P9 is Element of ProjectiveLines real_projective_plane;
      hence thesis;
    end;
    suppose
A1:   P is zero_proj1 & P is non zero_proj2;
      then reconsider P9 = P as
        non zero_proj2 Element of ProjectiveSpace TOP-REAL 3;
      dual2 P9 is Element of ProjectiveLines real_projective_plane;
      hence thesis by A1;
    end;
    suppose
A3:   P is zero_proj1 & P is zero_proj2 & P is non zero_proj3;
      then reconsider P9 = P as
        non zero_proj3 Element of ProjectiveSpace TOP-REAL 3;
      dual3 P9 is Element of ProjectiveLines real_projective_plane;
      hence thesis by A3;
    end;
  end;
end;

definition
  let P being Point of real_projective_plane;
  func # P -> Element of ProjectiveSpace TOP-REAL 3 equals P;
  coherence;
end;

definition
  let P being Point of real_projective_plane;
  func dual P -> Element of ProjectiveLines real_projective_plane equals
  dual #P;
  coherence;
end;

theorem Th38:
  for P being Element of real_projective_plane st #P is non zero_proj1 holds
  ex P9 being non zero_proj1 Point of ProjectiveSpace TOP-REAL 3 st
  P = P9 & dual P = dual1 P9
  proof
    let P be Element of real_projective_plane;
    assume
A1: #P is non zero_proj1;
    reconsider P1 = #P as non zero_proj1 Point of ProjectiveSpace TOP-REAL 3
      by A1;
    per cases;
    suppose P1 is non zero_proj2 & P1 is zero_proj3;
      hence thesis by Def22;
    end;
    suppose P1 is zero_proj2 & P1 is non zero_proj3;
      hence thesis by Def22;
    end;
    suppose P1 is zero_proj2 & P1 is zero_proj3;
      hence thesis by Def22;
    end;
    suppose P1 is non zero_proj2 & P1 is non zero_proj3;
      hence thesis by Def22;
    end;
  end;

theorem Th39:
  for P being Element of real_projective_plane st #P is non zero_proj2 holds
  ex P9 being non zero_proj2 Point of ProjectiveSpace TOP-REAL 3 st
  P = P9 & dual P = dual2 P9
  proof
    let P be Element of real_projective_plane;
    assume
A1: #P is non zero_proj2;
    reconsider P1 = #P as non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
      by A1;
    per cases;
    suppose
      P1 is non zero_proj1 & P1 is zero_proj3;
      then reconsider P9 = P1 as
        non zero_proj1 non zero_proj2 Element of ProjectiveSpace TOP-REAL 3;
      dual P1 = dual1 P9 & dual1 P9 = dual2 P9 by Def22,Th33;
      hence thesis;
    end;
    suppose P1 is zero_proj1 & P1 is non zero_proj3;
      hence thesis by Def22;
    end;
    suppose P1 is zero_proj1 & P1 is zero_proj3;
      hence thesis by Def22;
    end;
    suppose P1 is non zero_proj1 & P1 is non zero_proj3;
      then reconsider P9 = P as non zero_proj1 non zero_proj2
        non zero_proj3 Element of ProjectiveSpace TOP-REAL 3;
      dual P1 = dual1 P9 & dual1 P9 = dual2 P9 by Def22,Th33;
      hence thesis;
    end;
  end;

theorem Th40:
  for P being Element of real_projective_plane st #P is non zero_proj3 holds
  ex P9 being non zero_proj3 Point of ProjectiveSpace TOP-REAL 3 st
  P = P9 & dual P = dual3 P9
  proof
    let P be Element of real_projective_plane;
    assume
A1: #P is non zero_proj3;
    reconsider P1 = #P as non zero_proj3 Point of ProjectiveSpace TOP-REAL 3
      by A1;
    per cases;
    suppose
A2:   P1 is non zero_proj2 & P1 is zero_proj1;
      then reconsider P9 = P as non zero_proj2 non zero_proj3
        Element of ProjectiveSpace TOP-REAL 3;
      dual P1 = dual2 P9 & dual3 P9 = dual2 P9 by A2,Def22,Th34;
      hence thesis;
    end;
    suppose
      P1 is zero_proj2 & P1 is non zero_proj1;
      then reconsider P9 = P as non zero_proj1 non zero_proj3
        Element of ProjectiveSpace TOP-REAL 3;
      dual P1 = dual1 P9 & dual1 P9 = dual3 P9 by Def22,Th35;
      hence thesis;
    end;
    suppose P1 is zero_proj2 & P1 is zero_proj1;
      hence thesis by Def22;
    end;
    suppose P1 is non zero_proj2 & P1 is non zero_proj1;
      then reconsider P9 = P as non zero_proj1 non zero_proj2
        non zero_proj3 Element of ProjectiveSpace TOP-REAL 3;
      dual P1 = dual1 P9 & dual1 P9 = dual3 P9 by Th35,Def22;
      hence thesis;
    end;
  end;

theorem Th41:
  for P being non zero_proj1 Element of ProjectiveSpace TOP-REAL 3 holds
  not P in Line(Pdir1a P,Pdir1b P)
  proof
    let P be non zero_proj1 Element of ProjectiveSpace TOP-REAL 3;
    assume P in Line(Pdir1a P,Pdir1b P); then
A1: Pdir1a P,Pdir1b P,P are_collinear by COLLSP:11;
    reconsider u = normalize_proj1 P as non zero Element of TOP-REAL 3;
A2: P = Dir u by Def2;
    |{ dir1a P,dir1b P,u }| = |( u, u )| by Th21;
    then |(u, u)| = 0 by A2,A1,BKMODEL1:1;
    hence thesis by Th5;
  end;

theorem Th42:
  for P being non zero_proj2 Element of ProjectiveSpace TOP-REAL 3 holds
  not P in Line(Pdir2a P,Pdir2b P)
  proof
    let P be non zero_proj2 Element of ProjectiveSpace TOP-REAL 3;
    assume P in Line(Pdir2a P,Pdir2b P); then
A1: Pdir2a P,Pdir2b P, P are_collinear by COLLSP:11;
    reconsider u = normalize_proj2 P as non zero Element of TOP-REAL 3;
A2: P = Dir u by Def4;
    |{ dir2a P,dir2b P,u }| = - |( u, u )| by Th25;
    then |(u, u)| = 0 by A2,A1,BKMODEL1:1;
    hence thesis by Th5;
  end;

theorem Th43:
  for P being non zero_proj3 Element of ProjectiveSpace TOP-REAL 3 holds
  not P in Line(Pdir3a P,Pdir3b P)
  proof
    let P be non zero_proj3 Element of ProjectiveSpace TOP-REAL 3;
    assume P in Line(Pdir3a P,Pdir3b P); then
A1: Pdir3a P,Pdir3b P, P are_collinear by COLLSP:11;
    reconsider u = normalize_proj3 P as non zero Element of TOP-REAL 3;
A2: P = Dir u by Def6;
    |{ dir3a P,dir3b P,u }| = |( u, u )| by Th29;
    then |(u, u)| = 0 by A2,A1,BKMODEL1:1;
    hence thesis by Th5;
  end;

theorem
  for P being Point of real_projective_plane holds not P in dual P
  proof
    let P be Point of real_projective_plane;
    reconsider P9 = P as Element of ProjectiveSpace TOP-REAL 3;
    per cases by Th37;
    suppose P9 is non zero_proj1;
      then reconsider P9 = P as
        non zero_proj1 Element of ProjectiveSpace TOP-REAL 3;
      #P = P9;
      then consider P99 be non zero_proj1 Point of ProjectiveSpace TOP-REAL 3
      such that
A1:   P = P99 and
A2:   dual P = dual1 P99 by Th38;
      assume P in dual P;
      hence contradiction by A1,A2,Th41;
    end;
    suppose P9 is non zero_proj2;
      then reconsider P9 = P as
        non zero_proj2 Element of ProjectiveSpace TOP-REAL 3;
      #P = P9;
      then consider P99 be non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
      such that
A3:   P = P99 and
A4:   dual P = dual2 P99 by Th39;
      assume P in dual P;
      hence contradiction by Th42,A3,A4;
    end;
    suppose P9 is non zero_proj3;
      then reconsider P9 = P as
        non zero_proj3 Element of ProjectiveSpace TOP-REAL 3;
      #P = P9;
      then consider P99 be non zero_proj3 Point of ProjectiveSpace TOP-REAL 3
      such that
A5:   P = P99 and
A6:   dual P = dual3 P99 by Th40;
      assume P in dual P;
      hence contradiction by Th43,A5,A6;
    end;
  end;

definition
  let l being Element of ProjectiveLines real_projective_plane;
  func dual l -> Point of real_projective_plane means
:Def25:
  ex P,Q being Point of real_projective_plane st P <> Q &
  l = Line(P,Q) & it = L2P(P,Q);
  existence
  proof
    consider P,Q be Point of real_projective_plane such that
A1: P <> Q and
A2: l = Line(P,Q) by BKMODEL1:72;
    L2P(P,Q) is Point of real_projective_plane;
    hence thesis by A1,A2;
  end;
  uniqueness
  proof
    let P1,P2 be Point of real_projective_plane such that
A3: ex P,Q be Point of real_projective_plane st P <> Q &
      l = Line(P,Q) & P1 = L2P(P,Q) and
A4: ex P,Q being Point of real_projective_plane st P <> Q &
      l = Line(P,Q) & P2 = L2P(P,Q);
    consider P,Q be Point of real_projective_plane such that
A5: P <> Q and
A6: l = Line(P,Q) and
A7: P1 = L2P(P,Q) by A3;
    consider u,v be non zero Element of TOP-REAL 3 such that
A8: P = Dir u and
A9: Q = Dir v and
A10: L2P(P,Q) = Dir(u <X> v) by A5,BKMODEL1:def 5;
    consider P9,Q9 be Point of real_projective_plane such that
A11: P9 <> Q9 and
A12: l = Line(P9,Q9) and
A13: P2 = L2P(P9,Q9) by A4;
    consider u9,v9 be non zero Element of TOP-REAL 3 such that
A14: P9 = Dir u9 and
A15: Q9 = Dir v9 and
A16: L2P(P9,Q9) = Dir(u9 <X> v9) by A11,BKMODEL1:def 5;
    P,Q,P9 are_collinear & P,Q,Q9 are_collinear by A6,A12,COLLSP:10,11;
    then |{u,v,u9}| = 0 & |{u,v,v9}| = 0 by A8,A9,A14,A15,BKMODEL1:1;
    then
A17: |{u9,u,v}| = 0 & |{v9,u,v}| = 0 by EUCLID_5:33;
A18: now
      now
        assume u <X> v = 0.TOP-REAL 3;
        then are_Prop u,v by ANPROJ_8:51;
        hence contradiction by A8,A9,A5,ANPROJ_1:22;
      end;
      hence u <X> v is non zero;
      now
        assume u9 <X> v9 = 0.TOP-REAL 3;
        then are_Prop u9,v9 by ANPROJ_8:51;
        hence contradiction by A14,A15,A11,ANPROJ_1:22;
      end;
      hence u9 <X> v9 is non zero;
    end;
    then reconsider uv = u <X> v,
                    u9v9 = u9 <X> v9 as non zero Element of TOP-REAL 3;
    not are_Prop u9,v9 by A11,A14,A15,ANPROJ_1:22;
    then are_Prop uv,u9 <X> v9 by A17,Th8;
    hence thesis by A18,ANPROJ_1:22,A7,A13,A10,A16;
  end;
end;

theorem Th45:
  for P being Point of real_projective_plane holds dual dual P = P
  proof
    let P be Point of real_projective_plane;
    reconsider P9 = P as Point of ProjectiveSpace TOP-REAL 3;
    per cases by Th37;
    suppose P9 is non zero_proj1;
      then reconsider P9 = P as
        non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
      reconsider P = P9 as Point of real_projective_plane;
      consider P99 be non zero_proj1 Point of ProjectiveSpace TOP-REAL 3
      such that
A1:   P = P99 & dual P= dual1 P99 by Th38;
      reconsider l = Line(Pdir1a P9,Pdir1b P9) as
        Element of ProjectiveLines real_projective_plane by A1;
      consider P1,P2 be Point of real_projective_plane such that
A2:   P1 <> P2 and
A3:   l = Line(P1,P2) and
A4:   dual l = L2P(P1,P2) by Def25;
A5:   Line(P1,P2) = Line(Pdir1a P9,Pdir1b P9) & P1 in Line(P1,P2) &
        P2 in Line(P1,P2) by A3,COLLSP:10;
      then consider Q1 be Point of ProjectiveSpace TOP-REAL 3 such that
A6:   P1 = Q1 and
A7:   Pdir1a P9,Pdir1b P9,Q1 are_collinear;
      consider Q2 be Point of ProjectiveSpace TOP-REAL 3 such that
A8:   P2 = Q2 and
A9:   Pdir1a P9,Pdir1b P9,Q2 are_collinear by A5;
      consider u,v be non zero Element of TOP-REAL 3 such that
A10:  P1 = Dir u and
A11:  P2 = Dir v and
A12:  L2P(P1,P2) = Dir(u <X> v) by A2,BKMODEL1:def 5;
      consider w be Element of TOP-REAL 3 such that
A13:  w is not zero and
A14:  P9 = Dir w by ANPROJ_1:26;
      reconsider w as non zero Element of TOP-REAL 3 by A13;
      normalize_proj1 P9 = |[1, w.2/w.1,w.3/w.1]| by A14,Th11;
      then (normalize_proj1(P9))`2 = w.2/w.1 &
        (normalize_proj1(P9))`3 = w.3/w.1 by EUCLID_5:2;
      then
A15:  dir1a P9 <X> dir1b P9
        = |[ (1 * 1) - (0 * 0),
             (0 * (-w.3/w.1)) - ((-w.2/w.1) * 1),
             ((-w.2/w.1) * 0) - ((-w.3/w.1) * 1) ]| by EUCLID_5:15
       .= |[ w`1/w.1, w`2/w.1,w`3/w.1 ]| by A14,Th10,XCMPLX_1:60
       .= 1/w.1 * w by EUCLID_5:7;
      w.1 <> 0 by A14,Th10;
      then reconsider a = 1/w.1 * w as non zero Element of TOP-REAL 3
        by ANPROJ_9:3;
      now
        assume u <X> v = 0.TOP-REAL 3;
        then are_Prop u,v by ANPROJ_8:51;
        hence contradiction by A2,A10,A11,ANPROJ_1:22;
      end;
      then
A16:  u <X> v is non zero;
      now
        now
          thus not are_Prop u,v by A2,A10,A11,ANPROJ_1:22;
          thus 0 = |{ dir1a P9,dir1b P9,u }| by A10,A6,A7,BKMODEL1:1
                .= |{ u, dir1a P9,dir1b P9 }| by EUCLID_5:34
                .= |( a, u )| by A15;
          thus 0 = |{ dir1a P9,dir1b P9,v }| by A11,A8,A9,BKMODEL1:1
                .= |{ v, dir1a P9,dir1b P9 }| by EUCLID_5:34
                .= |( a, v )| by A15;
        end;
        then are_Prop 1/w.1 * w, u <X> v by Th8;
        hence are_Prop w.1 * a,u <X> v by A14,Th10,A16,Th9;
        thus w.1 * a = (w.1 * (1/w.1)) * w by RVSUM_1:49
                    .= 1 * w by A14,Th10,XCMPLX_1:106
                    .= w by RVSUM_1:52;
      end;
      hence thesis by A14,A1,A4,A12,A16,ANPROJ_1:22;
    end;
    suppose P9 is non zero_proj2;
      then reconsider P9 = P as
        non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
      reconsider P = P9 as Point of real_projective_plane;
      consider P99 be non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
      such that
A17:  P = P99 & dual P= dual2 P99 by Th39;
      reconsider l = Line(Pdir2a P9,Pdir2b P9) as
        Element of ProjectiveLines real_projective_plane by A17;
      consider P1,P2 be Point of real_projective_plane such that
A18:  P1 <> P2 and
A19:  l = Line(P1,P2) and
A20:  dual l = L2P(P1,P2) by Def25;
A21:  Line(P1,P2) = Line(Pdir2a P9,Pdir2b P9) & P1 in Line(P1,P2) &
        P2 in Line(P1,P2) by A19,COLLSP:10;
      then consider Q1 be Point of ProjectiveSpace TOP-REAL 3 such that
A22:  P1 = Q1 and
A23:  Pdir2a P9,Pdir2b P9,Q1 are_collinear;

      consider Q2 be Point of ProjectiveSpace TOP-REAL 3 such that
A24:  P2 = Q2 and
A25:  Pdir2a P9,Pdir2b P9,Q2 are_collinear by A21;
      consider u,v be non zero Element of TOP-REAL 3 such that
A26:  P1 = Dir u and
A27:  P2 = Dir v and
A28:  L2P(P1,P2) = Dir(u <X> v) by A18,BKMODEL1:def 5;
      consider w be Element of TOP-REAL 3 such that
A29:  w is not zero and
A30:  P9 = Dir w by ANPROJ_1:26;
      reconsider w as non zero Element of TOP-REAL 3 by A29;
      normalize_proj2 P9 = |[w.1/w.2, 1, w.3/w.2]| by A30,Th14;
      then (normalize_proj2(P9))`1 = w.1/w.2 &
        (normalize_proj2(P9))`3 = w.3/w.2 by EUCLID_5:2;
      then
A31:  dir2a P9 <X> dir2b P9
        = |[ ((-w.1/w.2) * 1) - (0 * (-w.3/w.2)),
             (0 * 0) - (1 * 1),
             (1 * (-w.3/w.2)) - (0 * (-w.1/w.2)) ]| by EUCLID_5:15
       .= |[ -w.1/w.2, -w.2/w.2,-w.3/w.2 ]| by A30,Th13,XCMPLX_1:60
       .= |[ w.1/(-w.2), -w.2/w.2,-w.3/w.2 ]| by XCMPLX_1:188
       .= |[ w.1/(-w.2), w.2/(-w.2),-w.3/w.2 ]| by XCMPLX_1:188
       .= |[ w`1/(-w.2), w`2/(-w.2),w`3/(-w.2) ]| by XCMPLX_1:188
       .= 1/(-w.2) * w by EUCLID_5:7;
A32:  w.2 <> 0 by A30,Th13;
      then reconsider a = 1/(-w.2) * w as non zero Element of TOP-REAL 3
        by ANPROJ_9:3;
      now
        assume u <X> v = 0.TOP-REAL 3;
        then are_Prop u,v by ANPROJ_8:51;
        hence contradiction by A18,A26,A27,ANPROJ_1:22;
      end;
      then
A33:  u <X> v is non zero;
      now
        now
          thus not are_Prop u,v by A18,A26,A27,ANPROJ_1:22;
          thus 0 = |{ dir2a P9,dir2b P9,u }| by A26,A22,A23,BKMODEL1:1
                .= |{ u, dir2a P9,dir2b P9 }| by EUCLID_5:34
                .= |( a, u )| by A31;
          thus 0 = |{ dir2a P9,dir2b P9,v }| by A27,A24,A25,BKMODEL1:1
                .= |{ v, dir2a P9,dir2b P9 }| by EUCLID_5:34
                .= |( a, v )| by A31;
        end;
        then are_Prop 1/(-w.2) * w, u <X> v by Th8;
        hence are_Prop (-w.2) * a,u <X> v by A32,A33,Th9;
        thus (-w.2) * a = ((-w.2) * (1/(-w.2))) * w by RVSUM_1:49
                       .= 1 * w by A32,XCMPLX_1:106
                       .= w by RVSUM_1:52;
      end;
      hence thesis by A30,A17,A20,A28,A33,ANPROJ_1:22;
    end;
    suppose P9 is non zero_proj3;
      then reconsider P9 = P as
        non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
      reconsider P = P9 as Point of real_projective_plane;
      consider P99 be non zero_proj3 Point of ProjectiveSpace TOP-REAL 3
      such that
A34:  P = P99 & dual P= dual3 P99 by Th40;
      reconsider l = Line(Pdir3a P9,Pdir3b P9) as
        Element of ProjectiveLines real_projective_plane by A34;
      consider P1,P2 be Point of real_projective_plane such that
A35:  P1 <> P2 and
A36:  l = Line(P1,P2) and
A37:  dual l = L2P(P1,P2) by Def25;
A38:  Line(P1,P2) = Line(Pdir3a P9,Pdir3b P9) & P1 in Line(P1,P2) &
        P2 in Line(P1,P2) by A36,COLLSP:10;
      then consider Q1 be Point of ProjectiveSpace TOP-REAL 3 such that
A39:  P1 = Q1 and
A40:  Pdir3a P9,Pdir3b P9,Q1 are_collinear;
      consider Q2 be Point of ProjectiveSpace TOP-REAL 3 such that
A41:  P2 = Q2 and
A42:  Pdir3a P9,Pdir3b P9,Q2 are_collinear by A38;
      consider u,v be non zero Element of TOP-REAL 3 such that
A43:  P1 = Dir u and
A44:  P2 = Dir v and
A45:  L2P(P1,P2) = Dir(u <X> v) by A35,BKMODEL1:def 5;
      consider w be Element of TOP-REAL 3 such that
A46:  w is not zero and
A47:  P9 = Dir w by ANPROJ_1:26;
      reconsider w as non zero Element of TOP-REAL 3 by A46;
      normalize_proj3 P9 = |[w.1/w.3, w.2/w.3, 1]| by A47,Th17;
      then (normalize_proj3(P9))`1 = w.1/w.3 &
        (normalize_proj3(P9))`2 = w.2/w.3 by EUCLID_5:2;
      then
A48:  dir3a P9 <X> dir3b P9
        = |[ (0 * (-w.2/w.3)) - ((-w.1/w.3) * 1),
             ((-w.1/w.3) * 0) - (1 * (-w.2/w.3)),
             (1 * 1) - (0 * 0) ]| by EUCLID_5:15
       .= |[ w`1/w.3, w`2/w.3,w`3/w.3 ]| by A47,Th16,XCMPLX_1:60
       .= 1/(w.3) * w by EUCLID_5:7;
      w.3 <> 0 by A47,Th16;
      then reconsider a = 1/(w.3) * w as non zero Element of TOP-REAL 3
        by ANPROJ_9:3;
      now
        assume u <X> v = 0.TOP-REAL 3;
        then are_Prop u,v by ANPROJ_8:51;
        hence contradiction by A35,A43,A44,ANPROJ_1:22;
      end;
      then
A49:  u <X> v is non zero;
      now
        now
          thus not are_Prop u,v by A35,A43,A44,ANPROJ_1:22;
          thus 0 = |{ dir3a P9,dir3b P9,u }| by A43,A39,A40,BKMODEL1:1
                .= |{ u, dir3a P9,dir3b P9 }| by EUCLID_5:34
                .= |( a, u )| by A48;
          thus 0 = |{ dir3a P9,dir3b P9,v }| by A44,A41,A42,BKMODEL1:1
          .= |{ v, dir3a P9,dir3b P9 }| by EUCLID_5:34
          .= |( a, v )| by A48;
        end;
        then are_Prop 1/(w.3) * w, u <X> v by Th8;
        hence are_Prop (w.3) * a,u <X> v by A47,Th16,A49,Th9;
        thus w.3 * a = (w.3 * (1/w.3)) * w by RVSUM_1:49
                    .= 1 * w by A47,Th16,XCMPLX_1:106
                    .= w by RVSUM_1:52;
      end;
      hence thesis by A47,A34,A37,A45,A49,ANPROJ_1:22;
    end;
  end;

theorem Th46:
  for l being Element of ProjectiveLines real_projective_plane holds
  dual dual l = l
  proof
    let l be Element of ProjectiveLines real_projective_plane;
    consider P,Q be Point of real_projective_plane such that
A1: P <> Q and
A2: l = Line(P,Q) and
A3: dual l = L2P(P,Q) by Def25;
    reconsider P9 = P,Q9 = Q as Point of ProjectiveSpace TOP-REAL 3;
    consider u,v be non zero Element of TOP-REAL 3 such that
A4: P = Dir u and
A5: Q = Dir v and
A6: L2P(P,Q) = Dir(u <X> v) by A1,BKMODEL1:def 5;
    reconsider l2 = Line(P,Q) as LINE of real_projective_plane
      by A1,COLLSP:def 7;
    not are_Prop u,v by A1,A4,A5,ANPROJ_1:22;
    then u <X> v is non zero by ANPROJ_8:51;
    then reconsider uv = u <X> v as non zero Element of TOP-REAL 3;
    reconsider R = Dir uv as Point of ProjectiveSpace TOP-REAL 3
      by ANPROJ_1:26;
    reconsider R9 = R as Element of real_projective_plane;
A7: 0 = |( u <X> v,u )| by ANPROJ_8:44
     .= uv`1 * u`1 + uv`2 * u`2 + uv`3 * u`3 by EUCLID_5:29
     .= uv.1 * u`1 + uv.2 * u`2 + uv.3 * u`3;
A8: 0 = |( u <X> v,v )| by ANPROJ_8:45
     .= uv`1 * v`1 + uv`2 * v`2 + uv`3 * v`3 by EUCLID_5:29
     .= uv.1 * v`1 + uv.2 * v`2 + uv.3 * v`3;
    per cases by Th37;
    suppose
A9:   R is non zero_proj1;
      then reconsider R as non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
      #R9 = R;
      then consider P99 be non zero_proj1 Point of ProjectiveSpace TOP-REAL 3
      such that
A10:  R9 = P99 and
A11:  dual R9 = dual1 P99 by Th38;
A12:  uv.1 / uv.1 = 1 by A9,Th10,XCMPLX_1:60;
      normalize_proj1 P99 = |[1, uv.2/uv.1,uv.3/uv.1]| by A10,Th11;
      then
A13:  (normalize_proj1 P99)`2 = uv.2/uv.1 &
        (normalize_proj1 P99)`3 = uv.3/uv.1 by EUCLID_5:2;
      reconsider l1 = Line(Pdir1a P99,Pdir1b P99) as
        LINE of real_projective_plane by Th20,COLLSP:def 7;
      now
        |{ |[- uv.2/uv.1, 1,  0]|,
           |[- uv.3/uv.1, 0,  1]|,
           |[u`1,         u`2,u`3]| }|
          = u`1 - (-uv.2/uv.1) * u`2 - u`3 * (-uv.3/uv.1) by Th2
         .= (uv.1 / uv.1) * u`1  + (uv.2/uv.1) * u`2 + u`3 * (uv.3/uv.1)
           by A12
         .= (1/uv.1) * (uv.1 * u`1 + uv.2 * u`2 + uv.3 * u`3)
         .= 0 by A7;
        then|{ dir1a P99,dir1b P99,u }| = 0 by A13,EUCLID_5:3;
        then Pdir1a P99,Pdir1b P99, P9 are_collinear by A4,BKMODEL1:1;
        hence P in l1;
        |{ |[- uv.2/uv.1, 1,  0]|,
           |[- uv.3/uv.1, 0,  1]|,
           |[v`1,         v`2,v`3]| }|
          = (uv.1 / uv.1) * v`1 - (-uv.2/uv.1) * v`2 - v`3 * (-uv.3/uv.1)
           by A12,Th2
         .= (1/uv.1) * (uv.1 * v`1 + uv.2 * v`2 + uv.3 * v`3)
         .= 0 by A8;
        then|{ dir1a P99,dir1b P99,v }| = 0 by A13,EUCLID_5:3;
        then Pdir1a P99,Pdir1b P99, Q9 are_collinear by A5,BKMODEL1:1;
        hence Q in l1;
        thus P in l2 & Q in l2 by COLLSP:10;
      end;
      hence thesis by A1,A3,A6,A11,A2,COLLSP:20;
    end;
    suppose
A14:  R is non zero_proj2;
      then reconsider R as non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
      #R9 = R;
      then consider P99 be non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
      such that
A15:  R9 = P99 and
A16:  dual R9 = dual2 P99 by Th39;
A17:  uv.2 / uv.2 = 1 by A14,Th13,XCMPLX_1:60;
      normalize_proj2 P99 = |[uv.1/uv.2,1,uv.3/uv.2]| by A15,Th14;
      then
A18:  (normalize_proj2 P99)`1 = uv.1/uv.2 &
        (normalize_proj2 P99)`3 = uv.3/uv.2 by EUCLID_5:2;
      reconsider l1 = Line(Pdir2a P99,Pdir2b P99) as
        LINE of real_projective_plane by Th24,COLLSP:def 7;
      now
        |{ |[1  , - uv.1/uv.2, 0]|,
           |[0  , - uv.3/uv.2, 1]|,
           |[u`1, u`2,         u`3]| }|
          = (-uv.3/uv.2) * u`3 + (-uv.1/uv.2) * u`1 - u`2 by Th3
         .= -((uv.3/uv.2) * u`3 + (uv.1/uv.2) * u`1 + (uv.2/uv.2) * u`2) by A17
         .= - ((1 / uv.2) * (uv.1 * u`1 + uv.2 * u`2 + uv.3 * u`3))
         .= 0 by A7;
        then|{ dir2a P99,dir2b P99,u }| = 0 by A18,EUCLID_5:3;
        then Pdir2a P99,Pdir2b P99, P9 are_collinear by A4,BKMODEL1:1;
        hence P in l1;
        |{ |[ 1 , - uv.1/uv.2, 0  ]|,
           |[ 0 , - uv.3/uv.2, 1  ]|,
           |[v`1, v`2,         v`3]| }|
          = (-uv.3/uv.2) * v`3 + (-uv.1/uv.2) * v`1 - v`2 by Th3
         .= -((uv.3/uv.2) * v`3 + (uv.1/uv.2) * v`1 + (uv.2/uv.2) * v`2) by A17
         .= - ((1 / uv.2) * (uv.1 * v`1 + uv.2 * v`2 + uv.3 * v`3))
         .= 0 by A8;
        then|{ dir2a P99,dir2b P99,v }| = 0 by A18,EUCLID_5:3;
        then Pdir2a P99,Pdir2b P99, Q9 are_collinear by A5,BKMODEL1:1;
        hence Q in l1;
        thus P in l2 & Q in l2 by COLLSP:10;
      end;
      hence thesis by A3,A6,A16,A2,A1,COLLSP:20;
    end;
    suppose
A19:  R is non zero_proj3;
      then reconsider R as non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
      #R9 = R;
      then consider P99 be non zero_proj3 Point of ProjectiveSpace TOP-REAL 3
      such that
A20:  R9 = P99 and
A21:  dual R9 = dual3 P99 by Th40;
A22:  uv.3 / uv.3 = 1 by A19,Th16,XCMPLX_1:60;
      normalize_proj3 P99 = |[uv.1/uv.3,uv.2/uv.3,1]| by A20,Th17;
      then
A23:  (normalize_proj3 P99)`1 = uv.1/uv.3 &
        (normalize_proj3 P99)`2 = uv.2/uv.3 by EUCLID_5:2;
      reconsider l1 = Line(Pdir3a P99,Pdir3b P99) as
        LINE of real_projective_plane by Th28,COLLSP:def 7;
      now
        |{ |[1  ,0  , - uv.1/uv.3]|,
           |[0  ,1  , - uv.2/uv.3]|,
           |[u`1,u`2, u`3        ]| }|
          = u`3 - u`1 * (-uv.1/uv.3) - u`2 * (-uv.2/uv.3) by Th4
         .= u`1 * (uv.1/uv.3) + u`2 * (uv.2/uv.3) + u`3 * (uv.3 / uv.3) by A22
         .= (1 / uv.3) * (uv.1 * u`1 + uv.2 * u`2 + uv.3 * u`3)
         .= 0 by A7;
        then|{ dir3a P99,dir3b P99,u }| = 0 by A23,EUCLID_5:3;
        then Pdir3a P99,Pdir3b P99, P9 are_collinear by A4,BKMODEL1:1;
        hence P in l1;
        |{ |[1  ,0  ,- uv.1/uv.3]|,
           |[0  ,1  ,- uv.2/uv.3]|,
           |[v`1,v`2,v`3]| }|
          = v`3 - v`1 * (-uv.1/uv.3) - v`2 * (-uv.2/uv.3) by Th4
         .= v`1 * (uv.1/uv.3) + v`2 * (uv.2/uv.3) + v`3 * (uv.3 / uv.3) by A22
         .= (1 / uv.3) * (uv.1 * v`1 + uv.2 * v`2 + uv.3 * v`3)
         .= 0 by A8;
        then|{ dir3a P99,dir3b P99,v }| = 0 by A23,EUCLID_5:3;
        then Pdir3a P99,Pdir3b P99, Q9 are_collinear by A5,BKMODEL1:1;
        hence Q in l1;
        thus P in l2 & Q in l2 by COLLSP:10;
      end;
      hence thesis by A3,A6,A21,A2,A1,COLLSP:20;
    end;
  end;

theorem
  for P,Q being Point of real_projective_plane holds
  (P <> Q iff dual P <> dual Q)
  proof
    let P,Q be Point of real_projective_plane;
    now
      assume
A1:   P <> Q;
      assume dual P = dual Q;
      then P = dual dual Q by Th45;
      hence contradiction by A1,Th45;
    end;
    hence thesis;
  end;

theorem Th48:
  for l,m being Element of ProjectiveLines real_projective_plane holds
  (l <> m iff dual l <> dual m)
  proof
    let l,m be Element of ProjectiveLines real_projective_plane;
    now
      assume
A1:   l <> m;
      assume dual l = dual m;
      then l = dual dual m by Th46;
      hence contradiction by A1,Th46;
    end;
    hence thesis;
  end;

begin

definition
  let l1,l2,l3 being Element of ProjectiveLines real_projective_plane;
  pred l1,l2,l3 are_concurrent means
  ex P being Point of real_projective_plane st P in l1 & P in l2 & P in l3;
end;

definition
  let l being Element of ProjectiveLines real_projective_plane;
  func #l -> LINE of IncProjSp_of real_projective_plane equals l;
  coherence;
end;

definition
  let l being LINE of IncProjSp_of real_projective_plane;
  func #l -> Element of ProjectiveLines real_projective_plane equals l;
  coherence;
end;

theorem Th49:
  for l1,l2,l3 being Element of ProjectiveLines real_projective_plane holds
  l1,l2,l3 are_concurrent iff #l1,#l2,#l3 are_concurrent
  proof
    let l1,l2,l3 be Element of ProjectiveLines real_projective_plane;
    now
      l1 in {B where B is Subset of real_projective_plane:
        B is LINE of real_projective_plane};
      hence ex B be Subset of real_projective_plane st l1 = B &
        B is LINE of real_projective_plane;
      l2 in {B where B is Subset of real_projective_plane:
        B is LINE of real_projective_plane};
      hence ex B be Subset of real_projective_plane st l2 = B &
        B is LINE of real_projective_plane;
      l3 in {B where B is Subset of real_projective_plane:
        B is LINE of real_projective_plane};
      hence ex B be Subset of real_projective_plane st l3 = B &
        B is LINE of real_projective_plane;
    end;
    then reconsider m1 = l1,m2 = l2,m3 = l3 as LINE of real_projective_plane;
    reconsider l91 = #l1, l92 = #l2, l93 = #l3 as
      LINE of IncProjSp_of real_projective_plane;
    hereby
      assume l1,l2,l3 are_concurrent;
      then consider P be Point of real_projective_plane such that
A1:   P in l1 and
A2:   P in l2 and
A3:   P in l3;
      reconsider P as Element of the Points of IncProjSp_of
        real_projective_plane;
      reconsider P9 = P as POINT of IncProjSp_of real_projective_plane;
      P in m1 & P in m2 & P in m3 by A1,A2,A3;
      then P9 on l91 & P9 on l92 & P9 on l93 by INCPROJ:5;
      hence #l1,#l2,#l3 are_concurrent;
    end;
    assume #l1,#l2,#l3 are_concurrent;
    then consider o be Element of the Points of IncProjSp_of
      real_projective_plane
    such that
A4: o on #l1 and
A5: o on #l2 and
A6: o on #l3;
    reconsider o9 = o as Point of real_projective_plane;
    o9 in m1 & o9 in m2 & o9 in m3 by A4,A5,A6,INCPROJ:5;
    hence l1,l2,l3 are_concurrent;
  end;

theorem
  for l1,l2,l3 being LINE of IncProjSp_of real_projective_plane holds
  l1,l2,l3 are_concurrent iff #l1,#l2,#l3 are_concurrent
  proof
    let l1,l2,l3 be LINE of IncProjSp_of real_projective_plane;
    reconsider l91 = #l1, l92 = #l2, l93 = #l3 as
      Element of ProjectiveLines real_projective_plane;
    hereby
      assume l1,l2,l3 are_concurrent;
      then #l91,#l92,#l93 are_concurrent;
      hence #l1,#l2,#l3 are_concurrent by Th49;
    end;
    assume #l1,#l2,#l3 are_concurrent;
    then ##l1,##l2,##l3 are_concurrent by Th49;
    hence l1,l2,l3 are_concurrent;
  end;

theorem
  for P,Q,R being Element of real_projective_plane st P,Q,R are_collinear holds
  Q,R,P are_collinear & R,P,Q are_collinear &
  P,R,Q are_collinear & R,Q,P are_collinear &
  Q,P,R are_collinear by ANPROJ_2:24;

theorem
  for l1,l2,l3 being Element of ProjectiveLines real_projective_plane st
  l1,l2,l3 are_concurrent holds l2,l1,l3 are_concurrent &
  l1,l3,l2 are_concurrent & l3,l2,l1 are_concurrent &
  l3,l2,l1 are_concurrent & l2,l3,l1 are_concurrent;

theorem
  for P,Q being Point of real_projective_plane
  for P9,Q9 being Element of ProjectiveSpace TOP-REAL 3 st
  P = P9 & Q = Q9 holds Line(P,Q) = Line(P9,Q9);

theorem Th54:
  for P being Point of real_projective_plane
  for l being Element of ProjectiveLines real_projective_plane st P in l holds
  dual l in dual P
  proof
    let P be Point of real_projective_plane;
    let l be Element of ProjectiveLines real_projective_plane;
    assume
A1: P in l;
    consider u be Element of TOP-REAL 3 such that
A2: u is not zero and
A3: P = Dir u by ANPROJ_1:26;
    reconsider u as non zero Element of TOP-REAL 3 by A2;
    reconsider P9 = P as Element of ProjectiveSpace TOP-REAL 3;
    reconsider dl = dual l as Point of ProjectiveSpace TOP-REAL 3;
    consider Pl,Ql be Point of real_projective_plane such that
A4: Pl <> Ql and
A5: l = Line(Pl,Ql) and
A6: dual l = L2P(Pl,Ql) by Def25;
    consider ul,vl be non zero Element of TOP-REAL 3 such that
A7: Pl = Dir ul and
A8: Ql = Dir vl and
A9: L2P(Pl,Ql) = Dir(ul <X> vl) by A4,BKMODEL1:def 5;
    reconsider ulvl = ul <X> vl as non zero Element of TOP-REAL 3
      by A4,A7,A8,BKMODEL1:78;
    consider S be Point of real_projective_plane such that
A10: P = S and
A11: Pl,Ql,S are_collinear by A1,A5;
    P,Pl,Ql are_collinear by A10,A11,ANPROJ_2:24;
    then
A12: |{u,ul,vl}| = 0 by A3,A7,A8,BKMODEL1:1;
    per cases by Th37;
    suppose P9 is non zero_proj1;
      then reconsider P9 as non zero_proj1 Point of ProjectiveSpace TOP-REAL 3;
      consider P99 be non zero_proj1 Point of ProjectiveSpace TOP-REAL 3
      such that
A13:  P9 = P99 and
A14:  dual P = dual1 P99 by Th38;
      consider S be Point of real_projective_plane such that
A15:  P = S and
A16:  Pl,Ql,S are_collinear by A1,A5;
      P,Pl,Ql are_collinear by A15,A16,ANPROJ_2:24;
      then
A17:  |{u,ul,vl}| = 0 by A3,A7,A8,BKMODEL1:1;
      Dir normalize_proj1 P9 = Dir u by A3,Def2;
      then
A18:  are_Prop normalize_proj1 P9,u by ANPROJ_1:22;
      |{dir1a P9,dir1b P9, ulvl }| = |(normalize_proj1 P9, ulvl)| by Th21
                                  .= 0 by A17,A18,Th7;
      then Pdir1a P9,Pdir1b P9, dl are_collinear by A6,A9,BKMODEL1:1;
      hence thesis by A13,A14;
    end;
    suppose P9 is non zero_proj2;
      then reconsider P9 as non zero_proj2 Point of ProjectiveSpace TOP-REAL 3;
      consider P99 be non zero_proj2 Point of ProjectiveSpace TOP-REAL 3
      such that
A19:  P9 = P99 and
A20:  dual P = dual2 P99 by Th39;
      Dir normalize_proj2 P9 = Dir u by A3,Def4;
      then
A21:  are_Prop normalize_proj2 P9,u by ANPROJ_1:22;
      |{dir2a P9,dir2b P9, ulvl }| = - |(normalize_proj2 P9, ulvl)| by Th25
                                  .= - 0 by A12,A21,Th7;
      then Pdir2a P9,Pdir2b P9, dl are_collinear by A6,A9,BKMODEL1:1;
      hence thesis by A19,A20;
    end;
    suppose P9 is non zero_proj3;
      then reconsider P9 as non zero_proj3 Point of ProjectiveSpace TOP-REAL 3;
      consider P99 be non zero_proj3 Point of ProjectiveSpace TOP-REAL 3
      such that
A22:  P9 = P99 and
A23:  dual P = dual3 P99 by Th40;
      Dir normalize_proj3 P9 = Dir u by A3,Def6;
      then
A24:  are_Prop normalize_proj3 P9,u by ANPROJ_1:22;
      |{dir3a P9,dir3b P9, ulvl }| = |(normalize_proj3 P9, ulvl)| by Th29
                                  .= 0 by A12,A24,Th7;
      then Pdir3a P9,Pdir3b P9, dl are_collinear by A6,A9,BKMODEL1:1;
      hence thesis by A22,A23;
    end;
  end;

theorem
  for P being Point of real_projective_plane
  for l being Element of ProjectiveLines real_projective_plane st
  dual l in dual P holds P in l
  proof
    let P be Point of real_projective_plane;
    let l be Element of ProjectiveLines real_projective_plane;
    assume dual l in dual P;
    then dual dual P in dual dual l by Th54;
    then P in dual dual l by Th45;
    hence thesis by Th46;
  end;

theorem Th56:
  for P,Q,R being Point of real_projective_plane st P,Q,R are_collinear holds
  dual P,dual Q, dual R are_concurrent
  proof
    let P,Q,R be Point of real_projective_plane;
    assume
A1: P,Q,R are_collinear;
    per cases;
    suppose
A2:  Q = R;
      reconsider lP = dual P,lQ = dual Q as LINE of real_projective_plane
        by INCPROJ:1;
      ex x be object st x in lP & x in lQ by BKMODEL1:76,XBOOLE_0:3;
      hence thesis by A2;
    end;
    suppose
A3:   Q <> R;
A4:  Q,R,P are_collinear by A1,ANPROJ_2:24;
      reconsider l = Line(Q,R) as LINE of real_projective_plane
        by A3,COLLSP:def 7;
      l in {B where B is Subset of real_projective_plane:
        B is LINE of real_projective_plane};
      then reconsider l = Line(Q,R) as Element of ProjectiveLines
        real_projective_plane;
      dual l in dual P & dual l in dual Q & dual l in dual R
        by A4,COLLSP:11,Th54,COLLSP:10;
      hence thesis;
    end;
  end;

theorem Th57:
  for l being Element of ProjectiveLines real_projective_plane
  for P,Q,R being Point of real_projective_plane st
  P in l & Q in l & R in l holds P,Q,R are_collinear
  proof
    let l be Element of ProjectiveLines real_projective_plane;
    let P,Q,R be Point of real_projective_plane;
    assume
A1: P in l & Q in l & R in l;
    l is LINE of real_projective_plane by INCPROJ:1;
    hence thesis by A1,COLLSP:16;
  end;

theorem Th58:
  for l1,l2,l3 being Element of ProjectiveLines real_projective_plane st
  l1,l2,l3 are_concurrent holds dual l1,dual l2,dual l3 are_collinear
  proof
    let l1,l2,l3 be Element of ProjectiveLines real_projective_plane;
    assume l1,l2,l3 are_concurrent;
    then consider P be Point of real_projective_plane such that
A1: P in l1 & P in l2 & P in l3;
    reconsider lP = dual P as Element of ProjectiveLines real_projective_plane;
    dual l1 in lP & dual l2 in lP & dual l3 in lP by A1,Th54;
    hence thesis by Th57;
  end;

theorem Th59:
  for P,Q,R being Point of real_projective_plane holds
  P,Q,R are_collinear iff dual P,dual Q,dual R are_concurrent
  proof
    let P,Q,R be Point of real_projective_plane;
    thus P,Q,R are_collinear implies dual P, dual Q, dual R are_concurrent
      by Th56;
    assume dual P, dual Q, dual R are_concurrent;
    then dual dual P, dual dual Q, dual dual R are_collinear
      by Th58;
    then P, dual dual Q, dual dual R are_collinear by Th45;
    then P, Q, dual dual R are_collinear by Th45;
    hence thesis by Th45;
  end;

theorem Th60:
  for l1,l2,l3 being Element of ProjectiveLines real_projective_plane holds
  l1,l2,l3 are_concurrent iff dual l1, dual l2, dual l3 are_collinear
  proof
    let l1,l2,l3 be Element of ProjectiveLines real_projective_plane;
    hereby
      assume l1,l2,l3 are_concurrent;
      then dual dual l1,l2,l3 are_concurrent by Th46;
      then dual dual l1,dual dual l2,l3 are_concurrent by Th46;
      then dual dual l1,dual dual l2,dual dual l3 are_concurrent by Th46;
      hence dual l1, dual l2, dual l3 are_collinear by Th59;
    end;
    assume dual l1, dual l2, dual l3 are_collinear;
    then dual dual l1, dual dual l2, dual dual l3 are_concurrent by Th59;
    then l1, dual dual l2, dual dual l3 are_concurrent by Th46;
    then l1, l2, dual dual l3 are_concurrent by Th46;
    hence thesis by Th46;
  end;

begin :: Some converse theorems

theorem
  real_projective_plane is reflexive &
  real_projective_plane is transitive &
  real_projective_plane is Vebleian &
  real_projective_plane is at_least_3rank &
  real_projective_plane is Fanoian &
  real_projective_plane is Desarguesian &
  real_projective_plane is Pappian &
  real_projective_plane is 2-dimensional;

::$N Converse reflexive
theorem
  for l,m,n being Element of ProjectiveLines real_projective_plane holds
  l,m,l are_concurrent & l,l,m are_concurrent & l,m,m are_concurrent
  proof
    let l1,l2,l3 be Element of ProjectiveLines real_projective_plane;
    dual l1,dual l2,dual l1 are_collinear &
      dual l1,dual l1,dual l2 are_collinear &
      dual l1,dual l2,dual l2 are_collinear by ANPROJ_2:def 7;
    then dual dual l1,dual dual l2,dual dual l1 are_concurrent &
      dual dual l1,dual dual l1,dual dual l2 are_concurrent &
      dual dual l1,dual dual l2,dual dual l2 are_concurrent by Th59;
    then l1,dual dual l2,dual dual l1 are_concurrent &
      l1,dual dual l1,dual dual l2 are_concurrent &
      l1,dual dual l2,dual dual l2 are_concurrent by Th46;
    then l1,l2,dual dual l1 are_concurrent &
      l1,l1,dual dual l2 are_concurrent &
      l1,l2,dual dual l2 are_concurrent by Th46;
    hence thesis;
  end;

::$N Converse transitive
theorem
  for l,m,n,n1,n2 being Element of ProjectiveLines real_projective_plane st
  l <> m & l,m,n are_concurrent & l,m,n1 are_concurrent &
  l,m,n2 are_concurrent holds n,n1,n2 are_concurrent
  proof
    let l,m,n,n1,n2 be Element of ProjectiveLines real_projective_plane;
    assume that
A1: l <> m and
A2: l,m,n are_concurrent and
A3: l,m,n1 are_concurrent and
A4: l,m,n2 are_concurrent;
    dual l <> dual m & dual l,dual m, dual n are_collinear &
      dual l,dual m, dual n1 are_collinear &
      dual l,dual m, dual n2 are_collinear by A1,A2,A3,A4,Th60,Th48;
    then dual dual n, dual dual n1, dual dual n2 are_concurrent
      by ANPROJ_2:def 8,Th59;
    then n, dual dual n1, dual dual n2 are_concurrent by Th46;
    then n, n1, dual dual n2 are_concurrent by Th46;
    hence thesis by Th46;
  end;

::$N Converse Vebliean
theorem
  for l,l1,l2,n,n1 being Element of ProjectiveLines real_projective_plane st
  l,l1,n are_concurrent & l1,l2,n1 are_concurrent
  ex n2 being Element of ProjectiveLines real_projective_plane st
  l,l2,n2 are_concurrent & n,n1,n2 are_concurrent
  proof
    let l,l1,l2,n,n1 be Element of ProjectiveLines real_projective_plane;
    assume that
A1: l,l1,n are_concurrent and
A2: l1,l2,n1 are_concurrent;
    dual l, dual l1, dual n are_collinear &
      dual l1,dual l2, dual n1 are_collinear by A1,A2,Th60;
    then consider P be Point of real_projective_plane such that
A3: dual l, dual l2, P are_collinear and
A4: dual n, dual n1, P are_collinear by ANPROJ_2:def 9;
    take dual P;
    dual dual l, dual dual l2, dual P are_concurrent &
      dual dual n, dual dual n1, dual P are_concurrent
      by A3,A4,Th59;
    then l, dual dual l2, dual P are_concurrent &
      n, dual dual n1, dual P are_concurrent by Th46;
    hence thesis by Th46;
  end;

::$N Converse at_least_3rank
theorem
  for l,m being Element of ProjectiveLines real_projective_plane holds
  ex n being Element of ProjectiveLines real_projective_plane st
  l <> n & m <> n & l,m,n are_concurrent
  proof
    let l,m be Element of ProjectiveLines real_projective_plane;
    consider r be Point of real_projective_plane such that
A1: dual l <> r and
A2: dual m <> r and
A3: dual l, dual m, r are_collinear by ANPROJ_2:def 10;
    now
      thus l <> dual r & m <> dual r by Th45,A1,A2;
      dual dual l, dual dual m, dual r are_concurrent by A3,Th59;
      then l, dual dual m, dual r are_concurrent by Th46;
      hence l, m, dual r are_concurrent by Th46;
    end;
    hence thesis;
  end;

::$N Converse Fanoian
theorem
  for l1,n2,m,n1,m1,l,n being Element of ProjectiveLines
  real_projective_plane holds
  (l1,n2,m are_concurrent & n1,m1,m are_concurrent & l1,n1,l are_concurrent &
  n2,m1,l are_concurrent & l1,m1,n are_concurrent & n2,n1,n are_concurrent &
  l,m,n are_concurrent implies
  (l1,n2,m1 are_concurrent or l1,n2,n1 are_concurrent or
  l1,n1,m1 are_concurrent or n2,n1,m1 are_concurrent))
  proof
    let l1,n2,m,n1,m1,l,n be Element of ProjectiveLines real_projective_plane;
    assume that
A1: l1,n2,m are_concurrent and
A2: n1,m1,m are_concurrent and
A3: l1,n1,l are_concurrent and
A4: n2,m1,l are_concurrent and
A5: l1,m1,n are_concurrent and
A6: n2,n1,n are_concurrent and
A7: l,m,n are_concurrent;
    dual l1,dual n2,dual m are_collinear &
      dual n1,dual m1,dual m are_collinear &
      dual l1,dual n1,dual l are_collinear &
      dual n2,dual m1,dual l are_collinear &
      dual l1,dual m1,dual n are_collinear &
      dual n2,dual n1,dual n are_collinear &
      dual l,dual m,dual n are_collinear by A1,A2,A3,A4,A5,A6,A7,Th60;
    then dual l1,dual n2,dual m1 are_collinear or
      dual l1,dual n2,dual n1 are_collinear or
      dual l1,dual n1,dual m1 are_collinear or
      dual n2,dual n1,dual m1 are_collinear by ANPROJ_2:def 11;
    hence thesis by Th60;
  end;

::$N Converse Desarguesian
theorem
  for k,l1,l2,l3,m1,m2,m3,n1,n2,n3 being Element of ProjectiveLines
  real_projective_plane st
  k <> m1 & l1 <> m1 & k <> m2 & l2 <> m2 & k <> m3 & l3 <> m3 &
  not k,l1,l2 are_concurrent & not k,l1,l3 are_concurrent &
  not k,l2,l3 are_concurrent &
  l1,l2,n3 are_concurrent & m1,m2,n3 are_concurrent &
  l2,l3,n1 are_concurrent & m2,m3,n1 are_concurrent &
  l1,l3,n2 are_concurrent & m1,m3,n2 are_concurrent &
  k,l1,m1 are_concurrent & k,l2,m2 are_concurrent &
  k,l3,m3 are_concurrent holds n1,n2,n3 are_concurrent
  proof
    let k,l1,l2,l3,m1,m2,m3,n1,n2,n3 be Element of ProjectiveLines
      real_projective_plane;
    assume that
A1: k <> m1 and
A2: l1 <> m1 and
A3: k <> m2 and
A4: l2 <> m2 and
A5: k <> m3 and
A6: l3 <> m3 and
A7: not k,l1,l2 are_concurrent and
A8: not k,l1,l3 are_concurrent and
A9: not k,l2,l3 are_concurrent and
A10: l1,l2,n3 are_concurrent and
A11: m1,m2,n3 are_concurrent and
A12: l2,l3,n1 are_concurrent and
A13: m2,m3,n1 are_concurrent and
A14: l1,l3,n2 are_concurrent and
A15: m1,m3,n2 are_concurrent and
A16: k,l1,m1 are_concurrent and
A17: k,l2,m2 are_concurrent and
A18: k,l3,m3 are_concurrent;
    dual k <> dual m1 & dual l1 <> dual m1 & dual k <> dual m2 &
      dual l2 <> dual m2 & dual k <> dual m3 & dual l3 <> dual m3 &
      not dual k,dual l1,dual l2 are_collinear &
      not dual k,dual l1,dual l3 are_collinear &
      not dual k,dual l2,dual l3 are_collinear &
      dual l1,dual l2,dual n3 are_collinear &
      dual m1,dual m2,dual n3 are_collinear &
      dual l2,dual l3,dual n1 are_collinear &
      dual m2,dual m3,dual n1 are_collinear &
      dual l1,dual l3,dual n2 are_collinear &
      dual m1,dual m3,dual n2 are_collinear &
      dual k,dual l1,dual m1 are_collinear &
      dual k,dual l2,dual m2 are_collinear &
      dual k,dual l3,dual m3 are_collinear
      by A1,A2,A3,A4,A5,A6,Th48,
         A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,Th60;
    then dual n1,dual n2, dual n3 are_collinear by ANPROJ_2:def 12;
    hence thesis by Th60;
  end;

::$N Converse Pappian
theorem
  for k,l1,l2,l3,m1,m2,m3,n1,n2,n3 being Element of ProjectiveLines
    real_projective_plane st
  k <> l2 & k <> l3 & l2 <> l3 & l1 <> l2 & l1 <> l3 & k <> m2 &
  k <> m3 & m2 <> m3 & m1 <> m2 & m1 <> m3 &
  not k,l1,m1 are_concurrent & k,l1,l2 are_concurrent &
  k,l1,l3 are_concurrent & k,m1,m2 are_concurrent &
  k,m1,m3 are_concurrent & l1,m2,n3 are_concurrent &
  m1,l2,n3 are_concurrent & l1,m3,n2 are_concurrent &
  l3,m1,n2 are_concurrent & l2,m3,n1 are_concurrent &
  l3,m2,n1 are_concurrent holds n1,n2,n3 are_concurrent
  proof
    let k,l1,l2,l3,m1,m2,m3,n1,n2,n3 be Element of ProjectiveLines
      real_projective_plane;
    assume that
A1: k <> l2 and
A2: k <> l3 and
A3: l2 <> l3 and
A4: l1 <> l2 and
A5: l1 <> l3 and
A6: k <> m2 and
A7: k <> m3 and
A8: m2 <> m3 and
A9: m1 <> m2 and
A10: m1 <> m3 and
A11: not k,l1,m1 are_concurrent and
A12: k,l1,l2 are_concurrent and
A13: k,l1,l3 are_concurrent and
A14: k,m1,m2 are_concurrent and
A15: k,m1,m3 are_concurrent and
A16: l1,m2,n3 are_concurrent and
A17: m1,l2,n3 are_concurrent and
A18: l1,m3,n2 are_concurrent and
A19: l3,m1,n2 are_concurrent and
A20: l2,m3,n1 are_concurrent and
A21: l3,m2,n1 are_concurrent;
    now
      thus dual k <> dual l2 & dual k <> dual l3 & dual l2 <> dual l3
        by A1,A2,A3,Th48;
      thus dual l1 <> dual l2 & dual l1 <> dual l3 & dual k <> dual m2
        by A4,A5,A6,Th48;
      thus dual k <> dual m3 & dual m2 <> dual m3 & dual m1 <> dual m2 &
        dual m1 <> dual m3 by A7,A8,A9,A10,Th48;
      thus not dual k,dual l1,dual m1 are_collinear &
        dual k,dual l1,dual l2 are_collinear &
        dual k,dual l1,dual l3 are_collinear &
        dual k,dual m1,dual m2 are_collinear &
        dual k,dual m1,dual m3 are_collinear &
        dual l1,dual m2,dual n3 are_collinear &
        dual m1,dual l2,dual n3 are_collinear &
        dual l1,dual m3,dual n2 are_collinear &
        dual l3,dual m1,dual n2 are_collinear &
        dual l2,dual m3,dual n1 are_collinear &
        dual l3,dual m2,dual n1 are_collinear
        by A11,A12,A13,A14,A15,A16,A17,A18,A19,A20,A21,Th60;
    end;
    then dual n1,dual n2, dual n3 are_collinear by ANPROJ_2:def 13;
    hence thesis by Th60;
  end;

::$N Converse 2_dimensional
theorem
  for l,l1,m,m1 being Element of ProjectiveLines
  real_projective_plane holds ex n being Element of ProjectiveLines
  real_projective_plane st l,l1,n are_concurrent &
  m,m1,n are_concurrent
  proof
    let l,l1,m,m1 be Element of ProjectiveLines
      real_projective_plane;
    consider R be Point of real_projective_plane such that
A1: dual l, dual l1, R are_collinear and
A2: dual m, dual m1, R are_collinear by ANPROJ_2:def 14;
    dual dual l, dual dual l1, dual R are_concurrent &
      dual dual m, dual dual m1, dual R are_concurrent by A1,A2,Th59;
    then l, dual dual l1, dual R are_concurrent &
      m, dual dual m1, dual R are_concurrent by Th46;
    then l, l1, dual R are_concurrent &
      m, m1, dual R are_concurrent by Th46;
    hence thesis;
  end;