Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 12,193 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
(* ========================================================================= *)
(* Bernoulli numbers and polynomials; sum of kth powers.                     *)
(* ========================================================================= *)

needs "Library/binomial.ml";;
needs "Library/analysis.ml";;
needs "Library/transc.ml";;

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* A couple of basic lemmas about new-style sums.                            *)
(* ------------------------------------------------------------------------- *)

let SUM_DIFFS = prove
 (`!a m n. m <= n + 1 ==> sum(m..n) (\i. a(i + 1) - a(i)) = a(n + 1) - a(m)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  REWRITE_TAC[SUM_CLAUSES_NUMSEG] THENL
   [REWRITE_TAC[ARITH_RULE `m <= 0 + 1 <=> m = 0 \/ m = 1`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[ARITH; ADD_CLAUSES; REAL_SUB_REFL];
    SIMP_TAC[ARITH_RULE `m <= SUC n + 1 <=> m <= n + 1 \/ m = SUC n + 1`] THEN
    STRIP_TAC THEN ASM_SIMP_TAC[ADD1] THENL [REAL_ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[REAL_SUB_REFL; ARITH_RULE `~((n + 1) + 1 <= n + 1)`] THEN
    MATCH_MP_TAC SUM_TRIV_NUMSEG THEN ARITH_TAC]);;

let DIFF_SUM = prove
 (`!f f' a b.
        (!k. a <= k /\ k <= b ==> ((\x. f x k) diffl f'(k)) x)
        ==> ((\x. sum(a..b) (f x)) diffl (sum(a..b) f')) x`,
  REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN
  REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[ARITH; DIFF_CONST; SUM_TRIV_NUMSEG;
               ARITH_RULE `~(a <= SUC b) ==> b < a`] THEN
  DISCH_TAC THEN MATCH_MP_TAC DIFF_ADD THEN
  ASM_SIMP_TAC[LE_REFL; ARITH_RULE `k <= b ==> k <= SUC b`]);;

(* ------------------------------------------------------------------------- *)
(* Bernoulli numbers.                                                        *)
(* ------------------------------------------------------------------------- *)

let bernoulli = define
 `(bernoulli 0 = &1) /\
  (!n. bernoulli(SUC n) =
       --sum(0..n) (\j. &(binom(n + 2,j)) * bernoulli j) / (&n + &2))`;;

(* ------------------------------------------------------------------------- *)
(* A slightly tidier-looking form of the recurrence.                         *)
(* ------------------------------------------------------------------------- *)

let BERNOULLI = prove
 (`!n. sum(0..n) (\j. &(binom(n + 1,j)) * bernoulli j) =
       if n = 0 then &1 else &0`,
  INDUCT_TAC THEN
  REWRITE_TAC[bernoulli; SUM_CLAUSES_NUMSEG; GSYM ADD1; ADD_CLAUSES; binom;
              REAL_MUL_LID; LE_0; NOT_SUC] THEN
  SIMP_TAC[BINOM_LT; ARITH_RULE `n < SUC n`; BINOM_REFL; REAL_ADD_LID] THEN
  REWRITE_TAC[ADD_CLAUSES] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
  REWRITE_TAC[ARITH_RULE `SUC(SUC n) = n + 2`] THEN
  MATCH_MP_TAC(REAL_FIELD `x = &n + &2 ==> s + x * --s / (&n + &2) = &0`) THEN
  REWRITE_TAC[ADD1; BINOM_TOP_STEP_REAL; ARITH_RULE `~(n = n + 1)`] THEN
  REWRITE_TAC[BINOM_REFL] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Bernoulli polynomials.                                                    *)
(* ------------------------------------------------------------------------- *)

let bernpoly = new_definition
 `bernpoly n x = sum(0..n) (\k. &(binom(n,k)) * bernoulli k * x pow (n - k))`;;

(* ------------------------------------------------------------------------- *)
(* The key derivative recurrence.                                            *)
(* ------------------------------------------------------------------------- *)

let DIFF_BERNPOLY = prove
 (`!n x. ((bernpoly (SUC n)) diffl (&(SUC n) * bernpoly n x)) x`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM ETA_AX] THEN
  REWRITE_TAC[bernpoly; SUM_CLAUSES_NUMSEG; LE_0] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN
  MATCH_MP_TAC DIFF_ADD THEN REWRITE_TAC[SUB_REFL; real_pow; DIFF_CONST] THEN
  REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC DIFF_SUM THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[ADD1; BINOM_TOP_STEP_REAL] THEN
  DIFF_TAC THEN ASM_SIMP_TAC[ARITH_RULE `k <= n ==> ~(k = n + 1)`] THEN
  REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN
  ASM_SIMP_TAC[ARITH_RULE `k <= n ==> (n + 1) - k - 1 = n - k`] THEN
  ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; ARITH_RULE `k <= n ==> k <= n + 1`] THEN
  UNDISCH_TAC `k <= n:num` THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_LE] THEN
  ABBREV_TAC `z = x pow (n - k)` THEN CONV_TAC REAL_FIELD);;

(* ------------------------------------------------------------------------- *)
(* Hence the key stepping recurrence.                                        *)
(* ------------------------------------------------------------------------- *)

let INTEGRALS_EQ = prove
 (`!f g. (!x. ((\x. f(x) - g(x)) diffl &0) x) /\ f(&0) = g(&0)
         ==> !x. f(x) = g(x)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`\x:real. f(x) - g(x)`; `x:real`; `&0`] DIFF_ISCONST_ALL) THEN
  ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;

let RECURRENCE_BERNPOLY = prove
 (`!n x. bernpoly n (x + &1) - bernpoly n x = &n * x pow (n - 1)`,
  INDUCT_TAC THENL
   [REWRITE_TAC[bernpoly; SUM_SING_NUMSEG; REAL_SUB_REFL; SUB_REFL;
                real_pow; REAL_MUL_LZERO];
    ALL_TAC] THEN
  MATCH_MP_TAC INTEGRALS_EQ THEN CONJ_TAC THENL
   [X_GEN_TAC `x:real` THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN
    ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
    DISCH_THEN(MP_TAC o AP_TERM `(*) (&(SUC n))`) THEN
    REWRITE_TAC[REAL_MUL_RZERO] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
    REWRITE_TAC[REAL_SUB_LDISTRIB] THEN
    REPEAT(MATCH_MP_TAC DIFF_SUB THEN CONJ_TAC) THEN
    SIMP_TAC[SUC_SUB1; DIFF_CMUL; DIFF_POW; DIFF_BERNPOLY; ETA_AX] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
    MATCH_MP_TAC DIFF_CHAIN THEN REWRITE_TAC[DIFF_BERNPOLY] THEN
    DIFF_TAC THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[bernpoly; GSYM SUM_SUB_NUMSEG] THEN
  REWRITE_TAC[REAL_ADD_LID; REAL_POW_ONE; GSYM REAL_SUB_LDISTRIB] THEN
  REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; SUB_REFL; real_pow] THEN
  REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_RID] THEN
  SIMP_TAC[ARITH_RULE `i <= n ==> SUC n - i = SUC(n - i)`] THEN
  REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_SUB_RZERO; REAL_MUL_RID] THEN
  REWRITE_TAC[BERNOULLI; ADD1] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH; real_pow; REAL_MUL_LID] THEN
  CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN
  ASM_REWRITE_TAC[ADD_SUB]);;

(* ------------------------------------------------------------------------- *)
(* Hence we get the main result.                                             *)
(* ------------------------------------------------------------------------- *)

let SUM_OF_POWERS = prove
 (`!n. sum(0..n) (\k. &k pow m) =
        (bernpoly(SUC m) (&n + &1) - bernpoly(SUC m) (&0)) / (&m + &1)`,
  GEN_TAC THEN ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN
  ONCE_REWRITE_TAC[GSYM REAL_MUL_SYM] THEN
  REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `sum(0..n) (\i. bernpoly (SUC m) (&(i + 1)) - bernpoly (SUC m) (&i))` THEN
  CONJ_TAC THENL
   [REWRITE_TAC[RECURRENCE_BERNPOLY; GSYM REAL_OF_NUM_ADD] THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_SUC; SUC_SUB1];
    SIMP_TAC[SUM_DIFFS; LE_0] THEN REWRITE_TAC[REAL_OF_NUM_ADD]]);;

(* ------------------------------------------------------------------------- *)
(* Now explicit computations of the various terms on specific instances.     *)
(* ------------------------------------------------------------------------- *)

let SUM_CONV =
  let pth = prove
   (`sum(0..0) f = f 0 /\ sum(0..SUC n) f = sum(0..n) f + f(SUC n)`,
    SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0]) in
  let econv_0 = GEN_REWRITE_CONV I [CONJUNCT1 pth]
  and econv_1 = GEN_REWRITE_CONV I [CONJUNCT2 pth] in
  let rec sconv tm =
    (econv_0 ORELSEC
     (LAND_CONV(RAND_CONV num_CONV) THENC econv_1 THENC
      COMB2_CONV (RAND_CONV sconv) (RAND_CONV NUM_SUC_CONV))) tm in
  sconv;;

let BINOM_CONV =
  let pth = prove
   (`a * b * x = FACT c ==> x = (FACT c) DIV (a * b)`,
    REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN CONJ_TAC THENL
     [POP_ASSUM MP_TAC THEN ARITH_TAC;
      POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
      SIMP_TAC[LT_NZ; MULT_ASSOC; MULT_CLAUSES] THEN
      MESON_TAC[LT_NZ; FACT_LT]]) in
  let match_pth = MATCH_MP pth
  and binom_tm = `binom` in
  fun tm ->
    let bop,lr = dest_comb tm in
    if bop <> binom_tm then failwith "BINOM_CONV" else
    let l,r = dest_pair lr in
    let n = dest_numeral l and k = dest_numeral r in
    if n </ k then
      let th = SPECL [l;r] BINOM_LT in
      MP th (EQT_ELIM(NUM_LT_CONV(lhand(concl th))))
    else
      let d = n -/ k in
      let th1 = match_pth(SPECL [mk_numeral d; r] BINOM_FACT) in
      CONV_RULE NUM_REDUCE_CONV th1;;

let BERNOULLIS =
  let th_0,th_1 = CONJ_PAIR bernoulli
  and b_tm = `bernoulli` in
  let conv_1 = GEN_REWRITE_CONV I [th_1] in
  let rec bconv n =
    if n <= 0 then [th_0] else
    let bths = bconv (n - 1)
    and tm = mk_comb(b_tm,mk_small_numeral n) in
    (RAND_CONV num_CONV THENC conv_1 THENC
     LAND_CONV(RAND_CONV SUM_CONV) THENC
     ONCE_DEPTH_CONV BETA_CONV THENC
     DEPTH_CONV(NUM_RED_CONV ORELSEC BINOM_CONV) THENC
     GEN_REWRITE_CONV ONCE_DEPTH_CONV bths THENC
     REAL_RAT_REDUCE_CONV) tm :: bths in
  bconv;;

let BERNOULLI_CONV =
  let b_tm = `bernoulli` in
  fun tm -> let op,n = dest_comb tm in
            if op <> b_tm || not(is_numeral n) then failwith "BERNOULLI_CONV"
            else hd(BERNOULLIS(dest_small_numeral n));;

let BERNPOLY_CONV =
  let conv_1 =
    REWR_CONV bernpoly THENC SUM_CONV THENC
    TOP_DEPTH_CONV BETA_CONV THENC NUM_REDUCE_CONV
  and conv_3 =
    ONCE_DEPTH_CONV BINOM_CONV THENC REAL_POLY_CONV in
  fun tm ->
    let n = dest_small_numeral(lhand tm) in
    let conv_2 = GEN_REWRITE_CONV ONCE_DEPTH_CONV (BERNOULLIS n) in
    (conv_1 THENC conv_2 THENC conv_3) tm;;

let SOP_CONV =
  let pth = prove
   (`sum(0..n) (\k. &k pow m) =
        (\p. (p(&n + &1) - p(&0)) / (&m + &1))
        (\x. bernpoly (SUC m) x)`,
    REWRITE_TAC[SUM_OF_POWERS]) in
  let conv_0 = REWR_CONV pth in
  REWR_CONV pth THENC
  RAND_CONV(ABS_CONV(LAND_CONV NUM_SUC_CONV THENC BERNPOLY_CONV)) THENC
  TOP_DEPTH_CONV BETA_CONV THENC
  REAL_POLY_CONV;;

let SOP_NUM_CONV =
  let pth = prove
   (`sum(0..n) (\k. &k pow p) = &m ==> nsum(0..n) (\k. k EXP p) = m`,
    REWRITE_TAC[REAL_OF_NUM_POW; GSYM REAL_OF_NUM_SUM_NUMSEG;
                REAL_OF_NUM_EQ]) in
  let rule_1 = PART_MATCH (lhs o rand) pth in
  fun tm ->
    let th1 = rule_1 tm in
    let th2 = SOP_CONV(lhs(lhand(concl th1))) in
    MATCH_MP th1 th2;;

(* ------------------------------------------------------------------------- *)
(* The example Bernoulli bragged about.                                      *)
(* ------------------------------------------------------------------------- *)

time SOP_NUM_CONV `nsum(0..1000) (\k. k EXP 10)`;;

(* ------------------------------------------------------------------------- *)
(* The general formulas for moderate powers.                                 *)
(* ------------------------------------------------------------------------- *)

time SOP_CONV `sum(0..n) (\k. &k pow 0)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 1)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 2)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 3)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 4)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 5)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 6)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 7)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 8)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 9)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 10)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 11)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 12)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 13)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 14)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 15)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 16)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 17)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 18)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 19)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 20)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 21)`;;