Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,193 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
(* ========================================================================= *)
(* Bernoulli numbers and polynomials; sum of kth powers. *)
(* ========================================================================= *)
needs "Library/binomial.ml";;
needs "Library/analysis.ml";;
needs "Library/transc.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* A couple of basic lemmas about new-style sums. *)
(* ------------------------------------------------------------------------- *)
let SUM_DIFFS = prove
(`!a m n. m <= n + 1 ==> sum(m..n) (\i. a(i + 1) - a(i)) = a(n + 1) - a(m)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG] THENL
[REWRITE_TAC[ARITH_RULE `m <= 0 + 1 <=> m = 0 \/ m = 1`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[ARITH; ADD_CLAUSES; REAL_SUB_REFL];
SIMP_TAC[ARITH_RULE `m <= SUC n + 1 <=> m <= n + 1 \/ m = SUC n + 1`] THEN
STRIP_TAC THEN ASM_SIMP_TAC[ADD1] THENL [REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[REAL_SUB_REFL; ARITH_RULE `~((n + 1) + 1 <= n + 1)`] THEN
MATCH_MP_TAC SUM_TRIV_NUMSEG THEN ARITH_TAC]);;
let DIFF_SUM = prove
(`!f f' a b.
(!k. a <= k /\ k <= b ==> ((\x. f x k) diffl f'(k)) x)
==> ((\x. sum(a..b) (f x)) diffl (sum(a..b) f')) x`,
REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[ARITH; DIFF_CONST; SUM_TRIV_NUMSEG;
ARITH_RULE `~(a <= SUC b) ==> b < a`] THEN
DISCH_TAC THEN MATCH_MP_TAC DIFF_ADD THEN
ASM_SIMP_TAC[LE_REFL; ARITH_RULE `k <= b ==> k <= SUC b`]);;
(* ------------------------------------------------------------------------- *)
(* Bernoulli numbers. *)
(* ------------------------------------------------------------------------- *)
let bernoulli = define
`(bernoulli 0 = &1) /\
(!n. bernoulli(SUC n) =
--sum(0..n) (\j. &(binom(n + 2,j)) * bernoulli j) / (&n + &2))`;;
(* ------------------------------------------------------------------------- *)
(* A slightly tidier-looking form of the recurrence. *)
(* ------------------------------------------------------------------------- *)
let BERNOULLI = prove
(`!n. sum(0..n) (\j. &(binom(n + 1,j)) * bernoulli j) =
if n = 0 then &1 else &0`,
INDUCT_TAC THEN
REWRITE_TAC[bernoulli; SUM_CLAUSES_NUMSEG; GSYM ADD1; ADD_CLAUSES; binom;
REAL_MUL_LID; LE_0; NOT_SUC] THEN
SIMP_TAC[BINOM_LT; ARITH_RULE `n < SUC n`; BINOM_REFL; REAL_ADD_LID] THEN
REWRITE_TAC[ADD_CLAUSES] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
REWRITE_TAC[ARITH_RULE `SUC(SUC n) = n + 2`] THEN
MATCH_MP_TAC(REAL_FIELD `x = &n + &2 ==> s + x * --s / (&n + &2) = &0`) THEN
REWRITE_TAC[ADD1; BINOM_TOP_STEP_REAL; ARITH_RULE `~(n = n + 1)`] THEN
REWRITE_TAC[BINOM_REFL] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Bernoulli polynomials. *)
(* ------------------------------------------------------------------------- *)
let bernpoly = new_definition
`bernpoly n x = sum(0..n) (\k. &(binom(n,k)) * bernoulli k * x pow (n - k))`;;
(* ------------------------------------------------------------------------- *)
(* The key derivative recurrence. *)
(* ------------------------------------------------------------------------- *)
let DIFF_BERNPOLY = prove
(`!n x. ((bernpoly (SUC n)) diffl (&(SUC n) * bernpoly n x)) x`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[bernpoly; SUM_CLAUSES_NUMSEG; LE_0] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN
MATCH_MP_TAC DIFF_ADD THEN REWRITE_TAC[SUB_REFL; real_pow; DIFF_CONST] THEN
REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC DIFF_SUM THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[ADD1; BINOM_TOP_STEP_REAL] THEN
DIFF_TAC THEN ASM_SIMP_TAC[ARITH_RULE `k <= n ==> ~(k = n + 1)`] THEN
REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN
ASM_SIMP_TAC[ARITH_RULE `k <= n ==> (n + 1) - k - 1 = n - k`] THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; ARITH_RULE `k <= n ==> k <= n + 1`] THEN
UNDISCH_TAC `k <= n:num` THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_LE] THEN
ABBREV_TAC `z = x pow (n - k)` THEN CONV_TAC REAL_FIELD);;
(* ------------------------------------------------------------------------- *)
(* Hence the key stepping recurrence. *)
(* ------------------------------------------------------------------------- *)
let INTEGRALS_EQ = prove
(`!f g. (!x. ((\x. f(x) - g(x)) diffl &0) x) /\ f(&0) = g(&0)
==> !x. f(x) = g(x)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`\x:real. f(x) - g(x)`; `x:real`; `&0`] DIFF_ISCONST_ALL) THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let RECURRENCE_BERNPOLY = prove
(`!n x. bernpoly n (x + &1) - bernpoly n x = &n * x pow (n - 1)`,
INDUCT_TAC THENL
[REWRITE_TAC[bernpoly; SUM_SING_NUMSEG; REAL_SUB_REFL; SUB_REFL;
real_pow; REAL_MUL_LZERO];
ALL_TAC] THEN
MATCH_MP_TAC INTEGRALS_EQ THEN CONJ_TAC THENL
[X_GEN_TAC `x:real` THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN
ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
DISCH_THEN(MP_TAC o AP_TERM `(*) (&(SUC n))`) THEN
REWRITE_TAC[REAL_MUL_RZERO] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[REAL_SUB_LDISTRIB] THEN
REPEAT(MATCH_MP_TAC DIFF_SUB THEN CONJ_TAC) THEN
SIMP_TAC[SUC_SUB1; DIFF_CMUL; DIFF_POW; DIFF_BERNPOLY; ETA_AX] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC DIFF_CHAIN THEN REWRITE_TAC[DIFF_BERNPOLY] THEN
DIFF_TAC THEN REAL_ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[bernpoly; GSYM SUM_SUB_NUMSEG] THEN
REWRITE_TAC[REAL_ADD_LID; REAL_POW_ONE; GSYM REAL_SUB_LDISTRIB] THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; SUB_REFL; real_pow] THEN
REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_RID] THEN
SIMP_TAC[ARITH_RULE `i <= n ==> SUC n - i = SUC(n - i)`] THEN
REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_SUB_RZERO; REAL_MUL_RID] THEN
REWRITE_TAC[BERNOULLI; ADD1] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH; real_pow; REAL_MUL_LID] THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN
ASM_REWRITE_TAC[ADD_SUB]);;
(* ------------------------------------------------------------------------- *)
(* Hence we get the main result. *)
(* ------------------------------------------------------------------------- *)
let SUM_OF_POWERS = prove
(`!n. sum(0..n) (\k. &k pow m) =
(bernpoly(SUC m) (&n + &1) - bernpoly(SUC m) (&0)) / (&m + &1)`,
GEN_TAC THEN ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN
ONCE_REWRITE_TAC[GSYM REAL_MUL_SYM] THEN
REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`sum(0..n) (\i. bernpoly (SUC m) (&(i + 1)) - bernpoly (SUC m) (&i))` THEN
CONJ_TAC THENL
[REWRITE_TAC[RECURRENCE_BERNPOLY; GSYM REAL_OF_NUM_ADD] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; SUC_SUB1];
SIMP_TAC[SUM_DIFFS; LE_0] THEN REWRITE_TAC[REAL_OF_NUM_ADD]]);;
(* ------------------------------------------------------------------------- *)
(* Now explicit computations of the various terms on specific instances. *)
(* ------------------------------------------------------------------------- *)
let SUM_CONV =
let pth = prove
(`sum(0..0) f = f 0 /\ sum(0..SUC n) f = sum(0..n) f + f(SUC n)`,
SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0]) in
let econv_0 = GEN_REWRITE_CONV I [CONJUNCT1 pth]
and econv_1 = GEN_REWRITE_CONV I [CONJUNCT2 pth] in
let rec sconv tm =
(econv_0 ORELSEC
(LAND_CONV(RAND_CONV num_CONV) THENC econv_1 THENC
COMB2_CONV (RAND_CONV sconv) (RAND_CONV NUM_SUC_CONV))) tm in
sconv;;
let BINOM_CONV =
let pth = prove
(`a * b * x = FACT c ==> x = (FACT c) DIV (a * b)`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN CONJ_TAC THENL
[POP_ASSUM MP_TAC THEN ARITH_TAC;
POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
SIMP_TAC[LT_NZ; MULT_ASSOC; MULT_CLAUSES] THEN
MESON_TAC[LT_NZ; FACT_LT]]) in
let match_pth = MATCH_MP pth
and binom_tm = `binom` in
fun tm ->
let bop,lr = dest_comb tm in
if bop <> binom_tm then failwith "BINOM_CONV" else
let l,r = dest_pair lr in
let n = dest_numeral l and k = dest_numeral r in
if n </ k then
let th = SPECL [l;r] BINOM_LT in
MP th (EQT_ELIM(NUM_LT_CONV(lhand(concl th))))
else
let d = n -/ k in
let th1 = match_pth(SPECL [mk_numeral d; r] BINOM_FACT) in
CONV_RULE NUM_REDUCE_CONV th1;;
let BERNOULLIS =
let th_0,th_1 = CONJ_PAIR bernoulli
and b_tm = `bernoulli` in
let conv_1 = GEN_REWRITE_CONV I [th_1] in
let rec bconv n =
if n <= 0 then [th_0] else
let bths = bconv (n - 1)
and tm = mk_comb(b_tm,mk_small_numeral n) in
(RAND_CONV num_CONV THENC conv_1 THENC
LAND_CONV(RAND_CONV SUM_CONV) THENC
ONCE_DEPTH_CONV BETA_CONV THENC
DEPTH_CONV(NUM_RED_CONV ORELSEC BINOM_CONV) THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV bths THENC
REAL_RAT_REDUCE_CONV) tm :: bths in
bconv;;
let BERNOULLI_CONV =
let b_tm = `bernoulli` in
fun tm -> let op,n = dest_comb tm in
if op <> b_tm || not(is_numeral n) then failwith "BERNOULLI_CONV"
else hd(BERNOULLIS(dest_small_numeral n));;
let BERNPOLY_CONV =
let conv_1 =
REWR_CONV bernpoly THENC SUM_CONV THENC
TOP_DEPTH_CONV BETA_CONV THENC NUM_REDUCE_CONV
and conv_3 =
ONCE_DEPTH_CONV BINOM_CONV THENC REAL_POLY_CONV in
fun tm ->
let n = dest_small_numeral(lhand tm) in
let conv_2 = GEN_REWRITE_CONV ONCE_DEPTH_CONV (BERNOULLIS n) in
(conv_1 THENC conv_2 THENC conv_3) tm;;
let SOP_CONV =
let pth = prove
(`sum(0..n) (\k. &k pow m) =
(\p. (p(&n + &1) - p(&0)) / (&m + &1))
(\x. bernpoly (SUC m) x)`,
REWRITE_TAC[SUM_OF_POWERS]) in
let conv_0 = REWR_CONV pth in
REWR_CONV pth THENC
RAND_CONV(ABS_CONV(LAND_CONV NUM_SUC_CONV THENC BERNPOLY_CONV)) THENC
TOP_DEPTH_CONV BETA_CONV THENC
REAL_POLY_CONV;;
let SOP_NUM_CONV =
let pth = prove
(`sum(0..n) (\k. &k pow p) = &m ==> nsum(0..n) (\k. k EXP p) = m`,
REWRITE_TAC[REAL_OF_NUM_POW; GSYM REAL_OF_NUM_SUM_NUMSEG;
REAL_OF_NUM_EQ]) in
let rule_1 = PART_MATCH (lhs o rand) pth in
fun tm ->
let th1 = rule_1 tm in
let th2 = SOP_CONV(lhs(lhand(concl th1))) in
MATCH_MP th1 th2;;
(* ------------------------------------------------------------------------- *)
(* The example Bernoulli bragged about. *)
(* ------------------------------------------------------------------------- *)
time SOP_NUM_CONV `nsum(0..1000) (\k. k EXP 10)`;;
(* ------------------------------------------------------------------------- *)
(* The general formulas for moderate powers. *)
(* ------------------------------------------------------------------------- *)
time SOP_CONV `sum(0..n) (\k. &k pow 0)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 1)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 2)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 3)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 4)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 5)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 6)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 7)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 8)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 9)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 10)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 11)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 12)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 13)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 14)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 15)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 16)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 17)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 18)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 19)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 20)`;;
time SOP_CONV `sum(0..n) (\k. &k pow 21)`;;
|