Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 54,393 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
(* ========================================================================= *)
(* Formal semantics of HOL inside itself.                                    *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Semantics of types.                                                       *)
(* ------------------------------------------------------------------------- *)

let typeset = new_recursive_definition type_RECURSION
  `(typeset tau (Tyvar s) = tau(s)) /\
   (typeset tau Bool = boolset) /\
   (typeset tau Ind = indset) /\
   (typeset tau (Fun a b) = funspace (typeset tau a) (typeset tau b))`;;

(* ------------------------------------------------------------------------- *)
(* Semantics of terms.                                                       *)
(* ------------------------------------------------------------------------- *)

let semantics = new_recursive_definition term_RECURSION
  `(semantics sigma tau (Var n ty) = sigma(n,ty)) /\
   (semantics sigma tau (Equal ty) =
        abstract (typeset tau ty) (typeset tau (Fun ty Bool))
                 (\x. abstract (typeset tau ty) (typeset tau Bool)
                               (\y. boolean(x = y)))) /\
   (semantics sigma tau (Select ty) =
        abstract (typeset tau (Fun ty Bool)) (typeset tau ty)
                 (\s. if ?x. x <: ((typeset tau ty) suchthat (holds s))
                      then ch ((typeset tau ty) suchthat (holds s))
                      else ch (typeset tau ty))) /\
   (semantics sigma tau (Comb s t) =
        apply (semantics sigma tau s) (semantics sigma tau t)) /\
   (semantics sigma tau (Abs n ty t) =
        abstract (typeset tau ty) (typeset tau (typeof t))
                 (\x. semantics (((n,ty) |-> x) sigma) tau t))`;;

(* ------------------------------------------------------------------------- *)
(* Valid type and term valuations.                                           *)
(* ------------------------------------------------------------------------- *)

let type_valuation = new_definition
  `type_valuation tau <=> !x. (?y. y <: tau x)`;;

let term_valuation = new_definition
  `term_valuation tau sigma <=> !n ty. sigma(n,ty) <: typeset tau ty`;;

let TERM_VALUATION_VALMOD = prove
 (`!sigma taut n ty x.
        term_valuation tau sigma /\ x <: typeset tau ty
        ==> term_valuation tau (((n,ty) |-> x) sigma)`,
  REWRITE_TAC[term_valuation; valmod; PAIR_EQ] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* All the typesets are nonempty.                                            *)
(* ------------------------------------------------------------------------- *)

let TYPESET_INHABITED = prove
 (`!tau ty. type_valuation tau ==> ?x. x <: typeset tau ty`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC type_INDUCT THEN REWRITE_TAC[typeset] THEN
  CONJ_TAC THENL
   [ASM_MESON_TAC[type_valuation];
    ASM_MESON_TAC[BOOLEAN_IN_BOOLSET; INDSET_INHABITED; FUNSPACE_INHABITED]]);;

(* ------------------------------------------------------------------------- *)
(* Semantics maps into the right place.                                      *)
(* ------------------------------------------------------------------------- *)

let SEMANTICS_TYPESET_INDUCT = prove
 (`!tm ty. tm has_type ty
           ==> tm has_type ty /\
               !sigma tau. type_valuation tau /\ term_valuation tau sigma
                           ==> (semantics sigma tau tm) <: (typeset tau ty)`,
  MATCH_MP_TAC has_type_INDUCT THEN
  ASM_SIMP_TAC[semantics; typeset; has_type_RULES] THEN
  CONJ_TAC THENL [MESON_TAC[term_valuation]; ALL_TAC] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
   [MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN REWRITE_TAC[] THEN
    REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN
    REWRITE_TAC[BOOLEAN_IN_BOOLSET];
    MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN
    ASM_MESON_TAC[ch; SUCHTHAT; TYPESET_INHABITED];
    ASM_MESON_TAC[has_type_RULES];
    MATCH_MP_TAC APPLY_IN_RANSPACE THEN ASM_MESON_TAC[];
    FIRST_ASSUM(SUBST1_TAC o MATCH_MP WELLTYPED_LEMMA) THEN
    MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN
    ASM_SIMP_TAC[TERM_VALUATION_VALMOD]]);;

let SEMANTICS_TYPESET = prove
 (`!sigma tau tm ty.
        type_valuation tau /\ term_valuation tau sigma /\ tm has_type ty
        ==> (semantics sigma tau tm) <: (typeset tau ty)`,
  MESON_TAC[SEMANTICS_TYPESET_INDUCT]);;

(* ------------------------------------------------------------------------- *)
(* Semantics of equations.                                                   *)
(* ------------------------------------------------------------------------- *)

let SEMANTICS_EQUATION = prove
 (`!sigma tau s t.
        s has_type (typeof s) /\ t has_type (typeof s) /\
        type_valuation tau /\ term_valuation tau sigma
        ==> (semantics sigma tau (s === t) =
             boolean(semantics sigma tau s = semantics sigma tau t))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[equation; semantics] THEN
  ASM_SIMP_TAC[APPLY_ABSTRACT; typeset; SEMANTICS_TYPESET;
               ABSTRACT_IN_FUNSPACE; BOOLEAN_IN_BOOLSET]);;

let SEMANTICS_EQUATION_ALT = prove
 (`!sigma tau s t.
        (s === t) has_type Bool /\
        type_valuation tau /\ term_valuation tau sigma
        ==> (semantics sigma tau (s === t) =
             boolean(semantics sigma tau s = semantics sigma tau t))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SEMANTICS_EQUATION THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `welltyped(s === t)` MP_TAC THENL
   [ASM_MESON_TAC[welltyped]; ALL_TAC] THEN
  REWRITE_TAC[equation; WELLTYPED_CLAUSES; typeof; codomain] THEN
  MESON_TAC[welltyped; type_INJ; WELLTYPED; WELLTYPED_CLAUSES]);;

(* ------------------------------------------------------------------------- *)
(* Quick sanity check.                                                       *)
(* ------------------------------------------------------------------------- *)

let SEMANTICS_SELECT = prove
 (`p has_type (Fun ty Bool) /\
   type_valuation tau /\ term_valuation tau sigma
   ==> (semantics sigma tau (Comb (Select ty) p) =
        if ?x. x <: (typeset tau ty) suchthat (holds (semantics sigma tau p))
        then ch((typeset tau ty) suchthat (holds (semantics sigma tau p)))
        else ch(typeset tau ty))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[semantics] THEN
  W(fun (asl,w) ->
        let t = find_term (fun t ->
           can (PART_MATCH (lhs o rand) APPLY_ABSTRACT) t) w in
        MP_TAC(PART_MATCH (lhs o rand) APPLY_ABSTRACT t)) THEN
  ANTS_TAC THENL
   [CONJ_TAC THENL
     [ASM_MESON_TAC[SEMANTICS_TYPESET; typeset];
      REWRITE_TAC[SUCHTHAT] THEN
      ASM_MESON_TAC[ch; SUCHTHAT; TYPESET_INHABITED]];
    ALL_TAC] THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Semantics of a sequent.                                                   *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("|=",(11,"right"));;

let sequent = new_definition
  `asms |= p <=> ALL (\a. a has_type Bool) (CONS p asms) /\
                 !sigma tau. type_valuation tau /\
                             term_valuation tau sigma /\
                              ALL (\a. semantics sigma tau a = true) asms
                              ==> (semantics sigma tau p = true)`;;

(* ------------------------------------------------------------------------- *)
(* Invariance of semantics under alpha-conversion.                           *)
(* ------------------------------------------------------------------------- *)

let SEMANTICS_RACONV = prove
 (`!env tp.
        RACONV env tp
        ==> !sigma1 sigma2 tau.
                type_valuation tau /\
                term_valuation tau sigma1 /\ term_valuation tau sigma2 /\
                (!x1 ty1 x2 ty2.
                        ALPHAVARS env (Var x1 ty1,Var x2 ty2)
                        ==> (semantics sigma1 tau (Var x1 ty1) =
                             semantics sigma2 tau (Var x2 ty2)))
                ==> welltyped(FST tp) /\ welltyped(SND tp)
                    ==> (semantics sigma1 tau (FST tp) =
                         semantics sigma2 tau (SND tp))`,
  MATCH_MP_TAC RACONV_INDUCT THEN REWRITE_TAC[FORALL_PAIR_THM] THEN
  REWRITE_TAC[semantics; WELLTYPED_CLAUSES] THEN REPEAT STRIP_TAC THENL
   [ASM_MESON_TAC[];
    BINOP_TAC THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN MATCH_MP_TAC ABSTRACT_EQ THEN
  ASM_SIMP_TAC[TYPESET_INHABITED] THEN
  X_GEN_TAC `x:V` THEN DISCH_TAC THEN REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC SEMANTICS_TYPESET THEN
    ASM_SIMP_TAC[TERM_VALUATION_VALMOD; GSYM WELLTYPED];
    MATCH_MP_TAC SEMANTICS_TYPESET THEN
    ASM_SIMP_TAC[TERM_VALUATION_VALMOD; GSYM WELLTYPED];
    ALL_TAC] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP]) THEN
  FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN CONJ_TAC) THEN
  ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN
  REWRITE_TAC[ALPHAVARS; PAIR_EQ; term_INJ] THEN
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[VALMOD; PAIR_EQ] THEN
  ASM_MESON_TAC[]);;

let SEMANTICS_ACONV = prove
 (`!sigma tau s t.
        type_valuation tau /\ term_valuation tau sigma /\
         welltyped s /\ welltyped t /\ ACONV s t
        ==> (semantics sigma tau s = semantics sigma tau t)`,
  REWRITE_TAC[ACONV] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM; FORALL_PAIR_THM]
               SEMANTICS_RACONV) THEN
  EXISTS_TAC `[]:(term#term)list` THEN
  ASM_SIMP_TAC[ALPHAVARS; term_INJ; PAIR_EQ]);;

(* ------------------------------------------------------------------------- *)
(* General semantic lemma about binary inference rules.                      *)
(* ------------------------------------------------------------------------- *)

let BINARY_INFERENCE_RULE = prove
 (`(p1 has_type Bool /\ p2 has_type Bool
   ==> q has_type Bool /\
       !sigma tau. type_valuation tau /\ term_valuation tau sigma /\
                   (semantics sigma tau p1 = true) /\
                   (semantics sigma tau p2 = true)
                  ==> (semantics sigma tau q = true))
   ==> (asl1 |= p1 /\ asl2 |= p2 ==> TERM_UNION asl1 asl2 |= q)`,
  REWRITE_TAC[sequent; ALL] THEN STRIP_TAC THEN STRIP_TAC THEN
  ASM_SIMP_TAC[ALL_BOOL_TERM_UNION] THEN REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM_REWRITE_TAC[] THEN UNDISCH_TAC
    `ALL (\a. semantics sigma tau a = true) (TERM_UNION asl1 asl2)` THEN
  REWRITE_TAC[GSYM ALL_MEM] THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM])) THEN
  REWRITE_TAC[] THEN STRIP_TAC THEN STRIP_TAC THEN
  DISCH_THEN(fun th -> X_GEN_TAC `r:term` THEN DISCH_TAC THEN MP_TAC th) THEN
  MP_TAC(SPECL [`asl1:term list`; `asl2:term list`; `r:term`]
    TERM_UNION_THM) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `s:term`) THEN
  DISCH_THEN(MP_TAC o SPEC `s:term`) THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[SEMANTICS_ACONV; welltyped; TERM_UNION_NONEW]);;

(* ------------------------------------------------------------------------- *)
(* Semantics only depends on valuations of free variables.                   *)
(* ------------------------------------------------------------------------- *)

let TERM_VALUATION_VFREE_IN = prove
 (`!tau sigma1 sigma2 t.
        type_valuation tau /\
        term_valuation tau sigma1 /\ term_valuation tau sigma2 /\
        welltyped t /\
        (!x ty. VFREE_IN (Var x ty) t ==> (sigma1(x,ty) = sigma2(x,ty)))
        ==> (semantics sigma1 tau t = semantics sigma2 tau t)`,
  GEN_TAC THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_FORALL_THM] THEN
  GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[semantics; VFREE_IN; term_DISTINCT; term_INJ] THEN
  REPEAT STRIP_TAC THENL
   [ASM_MESON_TAC[];
    BINOP_TAC THEN ASM_MESON_TAC[WELLTYPED_CLAUSES];
    ALL_TAC] THEN
  MATCH_MP_TAC ABSTRACT_EQ THEN ASM_SIMP_TAC[TYPESET_INHABITED] THEN
  X_GEN_TAC `x:V` THEN DISCH_TAC THEN REPEAT(CONJ_TAC THENL
   [ASM_MESON_TAC[TERM_VALUATION_VALMOD; WELLTYPED; WELLTYPED_CLAUSES;
                  SEMANTICS_TYPESET];
    ALL_TAC]) THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[WELLTYPED_CLAUSES]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`] THEN DISCH_TAC THEN
  REWRITE_TAC[VALMOD; PAIR_EQ] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Prove some inference rules correct.                                       *)
(* ------------------------------------------------------------------------- *)

let ASSUME_correct = prove
 (`!p. p has_type Bool ==> [p] |= p`,
  SIMP_TAC[sequent; ALL]);;

let REFL_correct = prove
 (`!t. welltyped t ==> [] |= t === t`,
  SIMP_TAC[sequent; SEMANTICS_EQUATION; ALL; WELLTYPED] THEN
  REWRITE_TAC[boolean; equation] THEN MESON_TAC[has_type_RULES]);;

let TRANS_correct = prove
 (`!asl1 asl2 l m1 m2 r.
        asl1 |= l === m1 /\ asl2 |= m2 === r /\ ACONV m1 m2
        ==> TERM_UNION asl1 asl2 |= l === r`,
  REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  MATCH_MP_TAC BINARY_INFERENCE_RULE THEN STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [ASM_MESON_TAC[EQUATION_HAS_TYPE_BOOL; ACONV_TYPE];
    ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; IMP_CONJ; boolean] THEN
    ASM_MESON_TAC[SEMANTICS_ACONV; TRUE_NE_FALSE; EQUATION_HAS_TYPE_BOOL]]);;

let MK_COMB_correct = prove
 (`!asl1 l1 r1 asl2 l2 r2.
        asl1 |= l1 === r1 /\ asl2 |= l2 === r2 /\
        (?rty. typeof l1 = Fun (typeof l2) rty)
        ==> TERM_UNION asl1 asl2 |= Comb l1 l2 === Comb r1 r2`,
  REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  MATCH_MP_TAC BINARY_INFERENCE_RULE THEN STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
    REWRITE_TAC[EQUATION_HAS_TYPE_BOOL; WELLTYPED_CLAUSES; typeof] THEN
    MESON_TAC[codomain];
    ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; IMP_CONJ; boolean] THEN
    REWRITE_TAC[semantics] THEN
    ASM_MESON_TAC[SEMANTICS_ACONV; TRUE_NE_FALSE; EQUATION_HAS_TYPE_BOOL]]);;

let EQ_MP_correct = prove
 (`!asl1 asl2 p q p'.
        asl1 |= p === q /\ asl2 |= p' /\ ACONV p p'
        ==> TERM_UNION asl1 asl2 |= q`,
  REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  MATCH_MP_TAC BINARY_INFERENCE_RULE THEN STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [ASM_MESON_TAC[EQUATION_HAS_TYPE_BOOL; WELLTYPED_LEMMA; WELLTYPED;
                  ACONV_TYPE];
    ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; IMP_CONJ; boolean] THEN
    ASM_MESON_TAC[EQUATION_HAS_TYPE_BOOL; TRUE_NE_FALSE; SEMANTICS_ACONV;
                  welltyped]]);;

let BETA_correct = prove
 (`!x ty t. welltyped t ==> [] |= Comb (Abs x ty t) (Var x ty) === t`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[sequent; ALL] THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [REWRITE_TAC[EQUATION_HAS_TYPE_BOOL; typeof; WELLTYPED_CLAUSES] THEN
    REWRITE_TAC[codomain; type_INJ] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  SIMP_TAC[SEMANTICS_EQUATION_ALT] THEN
  DISCH_TAC THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[BOOLEAN_EQ_TRUE; semantics] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `semantics (((x,ty) |-> sigma(x,ty)) sigma) tau t` THEN
  CONJ_TAC THENL [MATCH_MP_TAC APPLY_ABSTRACT; ALL_TAC] THEN
  REWRITE_TAC[VALMOD_REPEAT] THEN
  ASM_MESON_TAC[term_valuation; SEMANTICS_TYPESET; WELLTYPED]);;

let ABS_correct = prove
 (`!asl x ty l r.
        ~(EX (VFREE_IN (Var x ty)) asl) /\ asl |= l === r
        ==> asl |= (Abs x ty l) === (Abs x ty r)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[sequent; ALL] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN
  CONJ_TAC THENL
   [UNDISCH_TAC `(l === r) has_type Bool` THEN
    SIMP_TAC[EQUATION_HAS_TYPE_BOOL; WELLTYPED_CLAUSES; typeof];
    ALL_TAC] THEN
  DISCH_TAC THEN ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; BOOLEAN_EQ_TRUE] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[semantics] THEN
  SUBGOAL_THEN `typeof r = typeof l` SUBST1_TAC THENL
   [ASM_MESON_TAC[EQUATION_HAS_TYPE_BOOL]; ALL_TAC] THEN
  MATCH_MP_TAC ABSTRACT_EQ THEN ASM_SIMP_TAC[TYPESET_INHABITED] THEN
  X_GEN_TAC `x:V` THEN DISCH_TAC THEN
  REPEAT(CONJ_TAC THENL
   [ASM_MESON_TAC[SEMANTICS_TYPESET; TERM_VALUATION_VALMOD;
                  WELLTYPED; EQUATION_HAS_TYPE_BOOL];
    ALL_TAC]) THEN
  FIRST_X_ASSUM(MP_TAC o check (is_forall o concl)) THEN
  ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; BOOLEAN_EQ_TRUE] THEN
  DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN
  SUBGOAL_THEN `ALL (\a. a has_type Bool) asl /\
                ALL (\a. ~(VFREE_IN (Var x ty) a)) asl /\
                ALL (\a. semantics sigma tau a = true) asl`
  MP_TAC THENL [ASM_REWRITE_TAC[GSYM NOT_EX; ETA_AX]; ALL_TAC] THEN
  REWRITE_TAC[AND_ALL] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN
  X_GEN_TAC `p:term` THEN DISCH_TAC THEN REWRITE_TAC[] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN
  MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN
  ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[welltyped]; ALL_TAC] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[VALMOD; PAIR_EQ] THEN ASM_MESON_TAC[]);;

let DEDUCT_ANTISYM_RULE_correct = prove
 (`!asl1 asl2 p q.
        asl1 |= c1 /\ asl2 |= c2
        ==> let asl1' = FILTER((~) o ACONV c2) asl1
            and asl2' = FILTER((~) o ACONV c1) asl2 in
            (TERM_UNION asl1' asl2') |= c1 === c2`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[sequent; o_DEF; LET_DEF; LET_END_DEF; GSYM CONJ_ASSOC] THEN
  MATCH_MP_TAC(TAUT `
    (a1 /\ b1 ==> c1) /\ (a1 /\ b1 /\ c1 ==> a2 /\ b2 ==> c2)
    ==> a1 /\ a2 /\ b1 /\ b2 ==> c1 /\ c2`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[GSYM ALL_MEM; MEM] THEN REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC[EQUATION_HAS_TYPE_BOOL] THEN
    ASM_MESON_TAC[MEM_FILTER; TERM_UNION_NONEW; welltyped; WELLTYPED_LEMMA];
    ALL_TAC] THEN
  REWRITE_TAC[ALL; AND_FORALL_THM] THEN REWRITE_TAC[GSYM ALL_MEM] THEN
  STRIP_TAC THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_SIMP_TAC[SEMANTICS_EQUATION_ALT; BOOLEAN_EQ_TRUE] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC BOOLEAN_EQ THEN
  REPEAT(CONJ_TAC THENL
   [ASM_MESON_TAC[typeset; SEMANTICS_TYPESET]; ALL_TAC]) THEN
  EQ_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  X_GEN_TAC `a:term` THEN DISCH_TAC THENL
   [ASM_CASES_TAC `ACONV c1 a` THENL
     [ASM_MESON_TAC[SEMANTICS_ACONV; welltyped]; ALL_TAC];
    ASM_CASES_TAC `ACONV c2 a` THENL
     [ASM_MESON_TAC[SEMANTICS_ACONV; welltyped]; ALL_TAC]] THEN
  (SUBGOAL_THEN
    `MEM a (FILTER (\x. ~ACONV c2 x) asl1) \/
     MEM a (FILTER (\x. ~ACONV c1 x) asl2)`
   MP_TAC THENL
    [REWRITE_TAC[MEM_FILTER] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
   DISCH_THEN(MP_TAC o MATCH_MP TERM_UNION_THM) THEN
   ASM_MESON_TAC[SEMANTICS_ACONV; welltyped]));;

(* ------------------------------------------------------------------------- *)
(* Correct semantics for term substitution.                                  *)
(* ------------------------------------------------------------------------- *)

let DEST_VAR = new_recursive_definition term_RECURSION
 `DEST_VAR (Var x ty) = (x,ty)`;;

let TERM_VALUATION_ITLIST = prove
 (`!ilist sigma tau.
    type_valuation tau /\ term_valuation tau sigma /\
    (!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty)
    ==> term_valuation tau
         (ITLIST (\(t,x). DEST_VAR x |-> semantics sigma tau t) ilist sigma)`,
  MATCH_MP_TAC list_INDUCT THEN SIMP_TAC[ITLIST] THEN
  REWRITE_TAC[FORALL_PAIR_THM; MEM; PAIR_EQ] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[LEFT_FORALL_IMP_THM; FORALL_AND_THM] THEN
  REWRITE_TAC[LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[DEST_VAR] THEN
  ASM_SIMP_TAC[TERM_VALUATION_VALMOD; SEMANTICS_TYPESET]);;

let ITLIST_VALMOD_FILTER = prove
 (`!ilist sigma sem x ty y yty.
     (!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty)
     ==> (ITLIST (\(t,x). DEST_VAR x |-> sem x t)
           (FILTER (\(s',s). ~(s = Var x ty)) ilist) sigma (y,yty) =
          if (y = x) /\ (yty = ty) then sigma(y,yty)
          else ITLIST (\(t,x). DEST_VAR x |-> sem x t) ilist sigma (y,yty))`,
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[FILTER; ITLIST; COND_ID] THEN
  REWRITE_TAC[FORALL_PAIR_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[MEM; TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; PAIR_EQ] THEN
  REWRITE_TAC[WELLTYPED_CLAUSES; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  MAP_EVERY X_GEN_TAC [`t:term`; `pp:term`; `ilist:(term#term)list`] THEN
  DISCH_TAC THEN REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `s:string` MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `sty:type` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RAND] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RATOR] THEN
  ASM_REWRITE_TAC[ITLIST] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[DEST_VAR] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RATOR] THEN
  REWRITE_TAC[VALMOD] THEN REWRITE_TAC[term_INJ] THEN
  ASM_CASES_TAC `(s:string = x) /\ (sty:type = ty)` THEN
  ASM_SIMP_TAC[PAIR_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;

let ITLIST_VALMOD_EQ = prove
 (`!l. (!t x. MEM (t,x) l /\ (f x = a) ==> (g x t = h x t)) /\ (i a = j a)
       ==> (ITLIST (\(t,x). f(x) |-> g x t) l i a =
            ITLIST (\(t,x). f(x) |-> h x t) l j a)`,
  MATCH_MP_TAC list_INDUCT THEN SIMP_TAC[MEM; ITLIST; FORALL_PAIR_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[PAIR_EQ; VALMOD] THEN MESON_TAC[]);;

let SEMANTICS_VSUBST = prove
 (`!tm sigma tau ilist.
       welltyped tm /\
       (!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty)
       ==> !sigma tau. type_valuation tau /\ term_valuation tau sigma
                       ==> (semantics sigma tau (VSUBST ilist tm) =
                            semantics
                             (ITLIST
                                (\(t,x). DEST_VAR x |-> semantics sigma tau t)
                                ilist sigma)
                             tau tm)`,
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[VSUBST; semantics] THEN
  CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`] THEN
    MATCH_MP_TAC list_INDUCT THEN
    REWRITE_TAC[MEM; REV_ASSOCD; ITLIST; semantics; FORALL_PAIR_THM] THEN
    MAP_EVERY X_GEN_TAC [`t:term`; `s:term`; `ilist:(term#term)list`] THEN
    REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
    SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; PAIR_EQ] THEN
    REWRITE_TAC[WELLTYPED_CLAUSES; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
    DISCH_THEN(fun th ->
      DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC th) THEN
    ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(X_CHOOSE_THEN `y:string` MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `tty:type` MP_TAC) THEN
    DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[DEST_VAR; VALMOD; term_INJ; PAIR_EQ] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[WELLTYPED_CLAUSES] THEN REPEAT STRIP_TAC THEN
    BINOP_TAC THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN
  REWRITE_TAC[WELLTYPED_CLAUSES] THEN
  ASM_CASES_TAC `welltyped t` THEN ASM_REWRITE_TAC[] THEN
  REPEAT STRIP_TAC THEN LET_TAC THEN LET_TAC THEN
  SUBGOAL_THEN
   `!s s'. MEM (s',s) ilist' ==> (?x ty. (s = Var x ty) /\ s' has_type ty)`
  ASSUME_TAC THENL
   [EXPAND_TAC "ilist'" THEN ASM_SIMP_TAC[MEM_FILTER]; ALL_TAC] THEN
  COND_CASES_TAC THENL
   [REPEAT LET_TAC THEN
    SUBGOAL_THEN
     `!s s'. MEM (s',s) ilist'' ==> (?x ty. (s = Var x ty) /\ s' has_type ty)`
    ASSUME_TAC THENL
     [EXPAND_TAC "ilist''" THEN REWRITE_TAC[MEM; PAIR_EQ] THEN
      ASM_MESON_TAC[has_type_RULES];
      ALL_TAC];
    ALL_TAC] THEN
  REWRITE_TAC[semantics] THEN
  MATCH_MP_TAC ABSTRACT_EQ THEN ASM_SIMP_TAC[TYPESET_INHABITED] THEN
  X_GEN_TAC `a:V` THEN DISCH_TAC THEN
  REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC SEMANTICS_TYPESET) THEN
  ASM_SIMP_TAC[TERM_VALUATION_VALMOD; TERM_VALUATION_ITLIST] THEN
  EXPAND_TAC "t'" THEN
  ASM_SIMP_TAC[VSUBST_WELLTYPED; GSYM WELLTYPED; TERM_VALUATION_VALMOD] THEN
  MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN
  ASM_SIMP_TAC[TERM_VALUATION_VALMOD; TERM_VALUATION_ITLIST] THEN
  MAP_EVERY X_GEN_TAC [`u:string`; `uty:type`] THEN DISCH_TAC THENL
   [EXPAND_TAC "ilist''" THEN REWRITE_TAC[ITLIST] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[DEST_VAR; VALMOD; PAIR_EQ] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[semantics; VALMOD];
    ALL_TAC] THEN
  EXPAND_TAC "ilist'" THEN ASM_SIMP_TAC[ITLIST_VALMOD_FILTER] THEN
  REWRITE_TAC[VALMOD] THENL
   [ALL_TAC;
    REWRITE_TAC[PAIR_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC ITLIST_VALMOD_EQ THEN ASM_REWRITE_TAC[VALMOD; PAIR_EQ] THEN
    MAP_EVERY X_GEN_TAC [`s':term`; `s:term`] THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o C MATCH_MP
     (ASSUME `MEM (s':term,s:term) ilist`)) THEN
    DISCH_THEN(X_CHOOSE_THEN `w:string` MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `wty:type` MP_TAC) THEN
    DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
    UNDISCH_TAC `DEST_VAR (Var w wty) = u,uty` THEN
    REWRITE_TAC[DEST_VAR; PAIR_EQ] THEN
    DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN
    MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN
    ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN
    CONJ_TAC THENL [ASM_MESON_TAC[welltyped]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`v:string`; `vty:type`] THEN
    DISCH_TAC THEN REWRITE_TAC[VALMOD; PAIR_EQ] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(CONJUNCTS_THEN SUBST_ALL_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EX]) THEN
    REWRITE_TAC[GSYM ALL_MEM] THEN
    DISCH_THEN(MP_TAC o SPEC `(s':term,Var u uty)`) THEN
    ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    ASM_REWRITE_TAC[] THEN EXPAND_TAC "ilist'" THEN
    REWRITE_TAC[MEM_FILTER] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    ASM_REWRITE_TAC[term_INJ]] THEN
  MP_TAC(ISPECL [`t':term`; `x:string`; `ty:type`] VARIANT) THEN
  ASM_REWRITE_TAC[] THEN EXPAND_TAC "t'" THEN
  REWRITE_TAC[VFREE_IN_VSUBST] THEN
  REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b) = b ==> ~a`] THEN
  DISCH_THEN(MP_TAC o SPECL [`u:string`; `uty:type`]) THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN
   `REV_ASSOCD (Var u uty) ilist' (Var u uty) =
    REV_ASSOCD (Var u uty) ilist (Var u uty)`
  SUBST1_TAC THENL
   [EXPAND_TAC "ilist'" THEN REWRITE_TAC[REV_ASSOCD_FILTER] THEN
    ASM_REWRITE_TAC[term_INJ];
    ALL_TAC] THEN
  UNDISCH_TAC
   `!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty` THEN
  SPEC_TAC(`ilist:(term#term)list`,`l:(term#term)list`) THEN
  MATCH_MP_TAC list_INDUCT THEN
  REWRITE_TAC[REV_ASSOCD; ITLIST; VFREE_IN; VALMOD; term_INJ] THEN
  SIMP_TAC[PAIR_EQ] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[VALMOD; REV_ASSOCD; MEM] THEN
  REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
  SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; PAIR_EQ] THEN
  REWRITE_TAC[WELLTYPED_CLAUSES; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
  MAP_EVERY X_GEN_TAC [`t1:term`; `t2:term`; `i:(term#term)list`] THEN
  DISCH_THEN(fun th ->
   DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC th) THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `v:string` MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `vty:type` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
  ASM_REWRITE_TAC[DEST_VAR; term_INJ; PAIR_EQ] THEN
  SUBGOAL_THEN `(v:string = u) /\ (vty:type = uty) <=> (u = v) /\ (uty = vty)`
  SUBST1_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN
  ASM_SIMP_TAC[TERM_VALUATION_VALMOD; VALMOD] THEN
  REWRITE_TAC[PAIR_EQ] THEN ASM_MESON_TAC[welltyped; term_INJ]);;

(* ------------------------------------------------------------------------- *)
(* Hence correctness of INST.                                                *)
(* ------------------------------------------------------------------------- *)

let INST_correct = prove
 (`!ilist asl p.
        (!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty)
        ==> asl |= p ==> MAP (VSUBST ilist) asl |= VSUBST ilist p`,
  REWRITE_TAC[sequent] THEN REPEAT STRIP_TAC THENL
   [UNDISCH_TAC `ALL (\a. a has_type Bool) (CONS p asl)` THEN
    REWRITE_TAC[ALL; ALL_MAP] THEN MATCH_MP_TAC MONO_AND THEN
    CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN
      GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_THM]] THEN
    DISCH_TAC THEN MATCH_MP_TAC VSUBST_HAS_TYPE THEN ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `welltyped p` ASSUME_TAC THENL
   [ASM_MESON_TAC[welltyped; ALL]; ALL_TAC] THEN
  ASM_SIMP_TAC[SEMANTICS_VSUBST] THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM_SIMP_TAC[TERM_VALUATION_ITLIST] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL_MAP]) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN
  X_GEN_TAC `a:term` THEN DISCH_TAC THEN
  SUBGOAL_THEN `welltyped a` MP_TAC THENL
   [ASM_MESON_TAC[ALL_MEM; MEM; welltyped]; ALL_TAC] THEN
  ASM_SIMP_TAC[SEMANTICS_VSUBST; o_THM]);;

(* ------------------------------------------------------------------------- *)
(* Lemma about typesets to simplify some later goals.                        *)
(* ------------------------------------------------------------------------- *)

let TYPESET_LEMMA = prove
 (`!ty tau tyin.
      typeset (\s. typeset tau (REV_ASSOCD (Tyvar s) tyin (Tyvar s))) ty =
      typeset tau (TYPE_SUBST tyin ty)`,
  MATCH_MP_TAC type_INDUCT THEN SIMP_TAC[typeset; TYPE_SUBST]);;

(* ------------------------------------------------------------------------- *)
(* Semantics of type instantiation core.                                     *)
(* ------------------------------------------------------------------------- *)

let SEMANTICS_INST_CORE = prove
 (`!n tm env tyin.
        welltyped tm /\ (sizeof tm = n) /\
        (!s s'. MEM (s,s') env
                ==> ?x ty. (s = Var x ty) /\
                           (s' = Var x (TYPE_SUBST tyin ty)))
        ==> (?x ty. (INST_CORE env tyin tm =
                     Clash(Var x (TYPE_SUBST tyin ty))) /\
                    VFREE_IN (Var x ty) tm /\
                    ~(REV_ASSOCD (Var x (TYPE_SUBST tyin ty))
                                 env (Var x ty) = Var x ty)) \/
            (!x ty. VFREE_IN (Var x ty) tm
                    ==> (REV_ASSOCD (Var x (TYPE_SUBST tyin ty))
                                 env (Var x ty) = Var x ty)) /\
            (?tm'. (INST_CORE env tyin tm = Result tm') /\
                   tm' has_type (TYPE_SUBST tyin (typeof tm)) /\
                   (!u uty. VFREE_IN (Var u uty) tm' <=>
                                ?oty. VFREE_IN (Var u oty) tm /\
                                      (uty = TYPE_SUBST tyin oty)) /\
                   !sigma tau.
                       type_valuation tau /\ term_valuation tau sigma
                       ==> (semantics sigma tau tm' =
                            semantics
                               (\(x,ty). sigma(x,TYPE_SUBST tyin ty))
                               (\s. typeset tau (TYPE_SUBST tyin (Tyvar s)))
                               tm))`,
  MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC term_INDUCT THEN
  ONCE_REWRITE_TAC[INST_CORE] THEN REWRITE_TAC[semantics] THEN
  REPEAT CONJ_TAC THENL
   [POP_ASSUM(K ALL_TAC) THEN
    REWRITE_TAC[REV_ASSOCD; LET_DEF; LET_END_DEF] THEN
    REPEAT GEN_TAC THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[result_DISTINCT; result_INJ; UNWIND_THM1] THEN
    REWRITE_TAC[typeof; has_type_RULES] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[RESULT; semantics; VFREE_IN; term_INJ] THEN ASM_MESON_TAC[];
    POP_ASSUM(K ALL_TAC) THEN
    REWRITE_TAC[TYPE_SUBST; RESULT; VFREE_IN; term_DISTINCT] THEN
    ASM_REWRITE_TAC[result_DISTINCT; result_INJ; UNWIND_THM1] THEN
    REWRITE_TAC[typeof; has_type_RULES; TYPE_SUBST; VFREE_IN] THEN
    REWRITE_TAC[semantics; typeset; TYPESET_LEMMA; TYPE_SUBST; term_DISTINCT];
    POP_ASSUM(K ALL_TAC) THEN
    REWRITE_TAC[TYPE_SUBST; RESULT; VFREE_IN; term_DISTINCT] THEN
    ASM_REWRITE_TAC[result_DISTINCT; result_INJ; UNWIND_THM1] THEN
    REWRITE_TAC[typeof; has_type_RULES; TYPE_SUBST; VFREE_IN] THEN
    REWRITE_TAC[semantics; typeset; TYPESET_LEMMA; TYPE_SUBST; term_DISTINCT];
    MAP_EVERY X_GEN_TAC [`s:term`; `t:term`] THEN DISCH_THEN(K ALL_TAC) THEN
    POP_ASSUM MP_TAC THEN ASM_CASES_TAC `n = sizeof(Comb s t)` THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(fun th -> MP_TAC(SPEC `sizeof t` th) THEN
                         MP_TAC(SPEC `sizeof s` th)) THEN
    REWRITE_TAC[sizeof; ARITH_RULE `s < 1 + s + t /\ t < 1 + s + t`] THEN
    DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o SPEC `t:term`) THEN
                         MP_TAC(SPEC `s:term` th)) THEN
    REWRITE_TAC[IMP_IMP; AND_FORALL_THM; WELLTYPED_CLAUSES] THEN
    REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
    DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
    GEN_REWRITE_TAC I [IMP_CONJ] THEN
    DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
     [DISCH_THEN(fun th -> DISCH_THEN(K ALL_TAC) THEN MP_TAC th) THEN
      DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th) THEN
      REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
      STRIP_TAC THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; IS_CLASH; VFREE_IN];
      ALL_TAC] THEN
    REWRITE_TAC[TYPE_SUBST] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `s':term` STRIP_ASSUME_TAC) THEN
    DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
     [DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th) THEN
      REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
      STRIP_TAC THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; IS_CLASH; VFREE_IN];
      ALL_TAC] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `t':term` STRIP_ASSUME_TAC) THEN
    DISJ2_TAC THEN CONJ_TAC THENL
     [REWRITE_TAC[VFREE_IN] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    EXISTS_TAC `Comb s' t'` THEN
    ASM_SIMP_TAC[LET_DEF; LET_END_DEF; IS_CLASH; semantics; RESULT] THEN
    ASM_REWRITE_TAC[VFREE_IN] THEN
    ASM_REWRITE_TAC[typeof] THEN ONCE_REWRITE_TAC[has_type_CASES] THEN
    REWRITE_TAC[term_DISTINCT; term_INJ; codomain] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN
  DISCH_THEN(K ALL_TAC) THEN POP_ASSUM MP_TAC THEN
  ASM_CASES_TAC `n = sizeof (Abs x ty t)` THEN ASM_REWRITE_TAC[] THEN
  POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
  REWRITE_TAC[WELLTYPED_CLAUSES] THEN STRIP_TAC THEN REPEAT LET_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `sizeof t`) THEN
  REWRITE_TAC[sizeof; ARITH_RULE `t < 2 + t`] THEN
  DISCH_THEN(MP_TAC o SPECL
   [`t:term`; `env':(term#term)list`; `tyin:(type#type)list`]) THEN
  ASM_REWRITE_TAC[] THEN
  ANTS_TAC THENL
   [EXPAND_TAC "env'" THEN REWRITE_TAC[MEM; PAIR_EQ] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [ALL_TAC;
    FIRST_X_ASSUM(K ALL_TAC o SPEC `0`) THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `t':term` STRIP_ASSUME_TAC) THEN
    DISJ2_TAC THEN ASM_REWRITE_TAC[IS_RESULT] THEN CONJ_TAC THENL
     [FIRST_X_ASSUM(fun th ->
       MP_TAC th THEN MATCH_MP_TAC MONO_FORALL THEN
       GEN_TAC THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
       DISCH_THEN(MP_TAC o check (is_imp o concl))) THEN
       EXPAND_TAC "env'" THEN
      REWRITE_TAC[VFREE_IN; REV_ASSOCD; term_INJ] THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[term_INJ] THEN MESON_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[result_INJ; UNWIND_THM1; RESULT] THEN
    MATCH_MP_TAC(TAUT `a /\ b /\ (b ==> c) ==> b /\ a /\ c`) THEN
    CONJ_TAC THENL
     [ASM_REWRITE_TAC[VFREE_IN; term_INJ] THEN
      MAP_EVERY X_GEN_TAC [`u:string`; `uty:type`] THEN
      ASM_CASES_TAC `u:string = x` THEN ASM_REWRITE_TAC[] THEN
      UNDISCH_THEN `u:string = x` SUBST_ALL_TAC THEN
      REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
      AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
      X_GEN_TAC `oty:type` THEN REWRITE_TAC[] THEN
      ASM_CASES_TAC `uty = TYPE_SUBST tyin oty` THEN ASM_REWRITE_TAC[] THEN
      ASM_CASES_TAC `VFREE_IN (Var x oty) t` THEN ASM_REWRITE_TAC[] THEN
      EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
      REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
      FIRST_X_ASSUM(fun th ->
       MP_TAC(SPECL [`x:string`; `oty:type`] th) THEN
       ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN NO_TAC; ALL_TAC]) THEN
      EXPAND_TAC "env'" THEN REWRITE_TAC[REV_ASSOCD] THEN
      ASM_MESON_TAC[term_INJ];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[typeof; TYPE_SUBST] THEN ASM_REWRITE_TAC[] THEN
      ASM_MESON_TAC[has_type_RULES];
      ALL_TAC] THEN
    DISCH_TAC THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
    REWRITE_TAC[semantics] THEN
    ASM_REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN
    MATCH_MP_TAC ABSTRACT_EQ THEN
    CONJ_TAC THENL [ASM_SIMP_TAC[TYPESET_INHABITED]; ALL_TAC] THEN
    X_GEN_TAC `a:V` THEN REWRITE_TAC[] THEN DISCH_TAC THEN CONJ_TAC THENL
     [MATCH_MP_TAC SEMANTICS_TYPESET THEN
      ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN
      ASM_MESON_TAC[welltyped; WELLTYPED];
      ALL_TAC] THEN
    MATCH_MP_TAC(TAUT `(b ==> a) /\ b ==> a /\ b`) THEN CONJ_TAC THENL
     [DISCH_THEN(SUBST1_TAC o SYM) THEN
      MATCH_MP_TAC SEMANTICS_TYPESET THEN
      ASM_SIMP_TAC[TERM_VALUATION_VALMOD];
      ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o SPECL
     [`(x,ty' |-> a) (sigma:(string#type)->V)`; `tau:string->V`]) THEN
    ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN DISCH_TAC THEN
    REWRITE_TAC[GSYM(CONJUNCT1 TYPE_SUBST)] THEN
    MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN CONJ_TAC THENL
     [REWRITE_TAC[type_valuation] THEN ASM_SIMP_TAC[TYPESET_INHABITED];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[term_valuation] THEN
      MAP_EVERY X_GEN_TAC [`y:string`; `yty:type`] THEN
      CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
      REWRITE_TAC[VALMOD; PAIR_EQ] THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN
      ASM_MESON_TAC[term_valuation];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[term_valuation] THEN
      MAP_EVERY X_GEN_TAC [`y:string`; `yty:type`] THEN
      REWRITE_TAC[VALMOD] THEN
      CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
      REWRITE_TAC[VALMOD; PAIR_EQ] THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN
      ASM_MESON_TAC[term_valuation];
      ALL_TAC] THEN
    UNDISCH_THEN
     `!u uty.
         VFREE_IN (Var u uty) t' <=>
         (?oty. VFREE_IN (Var u oty) t /\ (uty = TYPE_SUBST tyin oty))`
     (K ALL_TAC) THEN
    ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`y:string`; `yty:type`] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[VALMOD] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    ASM_CASES_TAC `y:string = x` THEN ASM_REWRITE_TAC[PAIR_EQ] THEN
    ASM_CASES_TAC `yty:type = ty` THEN ASM_REWRITE_TAC[] THEN
    UNDISCH_THEN `y:string = x` SUBST_ALL_TAC THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`x:string`; `yty:type`]) THEN
    ASM_REWRITE_TAC[] THEN EXPAND_TAC "env'" THEN
    ASM_REWRITE_TAC[REV_ASSOCD; term_INJ]] THEN
  DISCH_THEN(X_CHOOSE_THEN `z:string` (X_CHOOSE_THEN `zty:type`
   (CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC))) THEN
  EXPAND_TAC "w" THEN REWRITE_TAC[CLASH; IS_RESULT; term_INJ] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
   [FIRST_X_ASSUM(K ALL_TAC o SPEC `0`) THEN
    DISCH_THEN(fun th ->
      DISJ1_TAC THEN REWRITE_TAC[result_INJ] THEN
      MAP_EVERY EXISTS_TAC [`z:string`; `zty:type`] THEN
      MP_TAC th) THEN
    ASM_REWRITE_TAC[VFREE_IN; term_INJ] THEN
    EXPAND_TAC "env'" THEN ASM_REWRITE_TAC[REV_ASSOCD; term_INJ] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[INST_CORE] THEN ASM_REWRITE_TAC[] THEN
  ONCE_REWRITE_TAC[letlemma] THEN
  ABBREV_TAC `env'' = CONS (Var x' ty,Var x' ty') env` THEN
  ONCE_REWRITE_TAC[letlemma] THEN
  ABBREV_TAC
   `ures = INST_CORE env'' tyin (VSUBST[Var x' ty,Var x ty] t)` THEN
  ONCE_REWRITE_TAC[letlemma] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `sizeof t`) THEN
  REWRITE_TAC[sizeof; ARITH_RULE `t < 2 + t`] THEN
  DISCH_THEN(fun th ->
    MP_TAC(SPECL [`VSUBST [Var x' ty,Var x ty] t`;
                  `env'':(term#term)list`; `tyin:(type#type)list`] th) THEN
    MP_TAC(SPECL [`t:term`; `[]:(term#term)list`; `tyin:(type#type)list`]
       th)) THEN
  REWRITE_TAC[MEM; REV_ASSOCD] THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `t':term` MP_TAC) THEN STRIP_TAC THEN
  UNDISCH_TAC `VARIANT (RESULT (INST_CORE [] tyin t)) x ty' = x'` THEN
  ASM_REWRITE_TAC[RESULT] THEN DISCH_TAC THEN
  MP_TAC(SPECL [`t':term`; `x:string`; `ty':type`] VARIANT) THEN
  ASM_REWRITE_TAC[] THEN
  GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
   [NOT_EXISTS_THM; TAUT `~(a /\ b) <=> a ==> ~b`] THEN DISCH_TAC THEN
  ANTS_TAC THENL
   [ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [MATCH_MP_TAC VSUBST_WELLTYPED THEN ASM_REWRITE_TAC[MEM; PAIR_EQ] THEN
      ASM_MESON_TAC[has_type_RULES];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC SIZEOF_VSUBST THEN
      ASM_REWRITE_TAC[MEM; PAIR_EQ] THEN ASM_MESON_TAC[has_type_RULES];
      ALL_TAC] THEN
    EXPAND_TAC "env''" THEN REWRITE_TAC[MEM; PAIR_EQ] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th) THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:string` THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `vty:type` THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN
    ASM_REWRITE_TAC[IS_RESULT; CLASH] THEN
    ONCE_REWRITE_TAC[letlemma] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
     [REWRITE_TAC[VFREE_IN_VSUBST] THEN EXPAND_TAC "env''" THEN
      REWRITE_TAC[REV_ASSOCD] THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
      ASM_REWRITE_TAC[] THEN REWRITE_TAC[term_INJ] THEN
      DISCH_THEN(REPEAT_TCL CHOOSE_THEN MP_TAC) THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[VFREE_IN; term_INJ] THEN
      ASM_MESON_TAC[];
      ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [term_INJ]) THEN
    DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
    MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN
    EXPAND_TAC "env''" THEN REWRITE_TAC[REV_ASSOCD] THEN
    ASM_CASES_TAC `vty:type = ty` THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o CONJUNCT1) THEN
    REWRITE_TAC[VFREE_IN_VSUBST; NOT_EXISTS_THM; REV_ASSOCD] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VFREE_IN; term_INJ] THEN
    MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN
    MP_TAC(SPECL [`t':term`; `x:string`; `ty':type`] VARIANT) THEN
    ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `t'':term` STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[IS_RESULT; result_INJ; UNWIND_THM1; result_DISTINCT] THEN
  REWRITE_TAC[RESULT] THEN
  MATCH_MP_TAC(TAUT `b /\ (b ==> c /\ a /\ d) ==> a /\ b /\ c /\ d`) THEN
  CONJ_TAC THENL
   [ASM_REWRITE_TAC[typeof; TYPE_SUBST] THEN
    MATCH_MP_TAC(last(CONJUNCTS has_type_RULES)) THEN
    SUBGOAL_THEN `(VSUBST [Var x' ty,Var x ty] t) has_type (typeof t)`
      (fun th -> ASM_MESON_TAC[th; WELLTYPED_LEMMA]) THEN
    MATCH_MP_TAC VSUBST_HAS_TYPE THEN ASM_REWRITE_TAC[GSYM WELLTYPED] THEN
    REWRITE_TAC[MEM; PAIR_EQ] THEN MESON_TAC[has_type_RULES];
    ALL_TAC] THEN
  DISCH_TAC THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN
  CONJ_TAC THENL
   [ASM_REWRITE_TAC[VFREE_IN] THEN
    MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`]  THEN
    ASM_REWRITE_TAC[VFREE_IN_VSUBST; REV_ASSOCD] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VFREE_IN; term_INJ] THEN
    SIMP_TAC[] THEN
    REWRITE_TAC[TAUT `x /\ (if p then a /\ b else c /\ b) <=>
                      b /\ x /\ (if p then a else c)`] THEN
    REWRITE_TAC[UNWIND_THM2] THEN
    REWRITE_TAC[TAUT `x /\ (if p /\ q then a else b) <=>
                      p /\ q /\ a /\ x \/ b /\ ~(p /\ q) /\ x`] THEN
    REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM1; UNWIND_THM2] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  DISCH_TAC THEN CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN
    REWRITE_TAC[VFREE_IN] THEN STRIP_TAC THEN
    UNDISCH_TAC `!x'' ty'.
           VFREE_IN (Var x'' ty') (VSUBST [Var x' ty,Var x ty] t)
           ==> (REV_ASSOCD (Var x'' (TYPE_SUBST tyin ty')) env''
                           (Var x'' ty') = Var x'' ty')` THEN
    DISCH_THEN(MP_TAC o SPECL [`k:string`; `kty:type`]) THEN
    REWRITE_TAC[VFREE_IN_VSUBST; REV_ASSOCD] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VFREE_IN] THEN
    REWRITE_TAC[VFREE_IN; term_INJ] THEN
    SIMP_TAC[] THEN
    REWRITE_TAC[TAUT `x /\ (if p then a /\ b else c /\ b) <=>
                      b /\ x /\ (if p then a else c)`] THEN
    REWRITE_TAC[UNWIND_THM2] THEN
    REWRITE_TAC[TAUT `x /\ (if p /\ q then a else b) <=>
                      p /\ q /\ a /\ x \/ b /\ ~(p /\ q) /\ x`] THEN
    REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM1; UNWIND_THM2] THEN
    UNDISCH_TAC `~(Var x ty = Var k kty)` THEN
    REWRITE_TAC[term_INJ] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
    EXPAND_TAC "env''" THEN REWRITE_TAC[REV_ASSOCD] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[semantics] THEN
  REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC ABSTRACT_EQ THEN
  CONJ_TAC THENL [ASM_SIMP_TAC[TYPESET_INHABITED]; ALL_TAC] THEN
  X_GEN_TAC `a:V` THEN REWRITE_TAC[] THEN DISCH_TAC THEN CONJ_TAC THENL
   [MATCH_MP_TAC SEMANTICS_TYPESET THEN
    ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN
    ASM_MESON_TAC[welltyped; WELLTYPED];
    ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `(b ==> a) /\ b ==> a /\ b`) THEN CONJ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN
    MATCH_MP_TAC SEMANTICS_TYPESET THEN
    ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN
    SUBGOAL_THEN `(VSUBST [Var x' ty,Var x ty] t) has_type (typeof t)`
      (fun th -> ASM_MESON_TAC[th; WELLTYPED_LEMMA]) THEN
    MATCH_MP_TAC VSUBST_HAS_TYPE THEN ASM_REWRITE_TAC[GSYM WELLTYPED] THEN
    REWRITE_TAC[MEM; PAIR_EQ] THEN MESON_TAC[has_type_RULES];
    ALL_TAC] THEN
  W(fun (asl,w) -> FIRST_X_ASSUM(fun th ->
        MP_TAC(PART_MATCH (lhand o rand) th (lhand w)))) THEN
  ASM_SIMP_TAC[TERM_VALUATION_VALMOD] THEN DISCH_TAC THEN
  REWRITE_TAC[GSYM(CONJUNCT1 TYPE_SUBST)] THEN
  MP_TAC SEMANTICS_VSUBST THEN
  REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
  DISCH_THEN(fun th ->
   W(fun (asl,w) -> MP_TAC(PART_MATCH (lhand o rand) th (lhand w)))) THEN
  ANTS_TAC THENL
   [ASM_REWRITE_TAC[MEM; PAIR_EQ] THEN CONJ_TAC THENL
     [MESON_TAC[has_type_RULES]; ALL_TAC] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[type_valuation] THEN ASM_SIMP_TAC[TYPESET_INHABITED];
      ALL_TAC] THEN
    REWRITE_TAC[term_valuation] THEN
    MAP_EVERY X_GEN_TAC [`y:string`; `yty:type`] THEN
    REWRITE_TAC[VALMOD] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[VALMOD; PAIR_EQ] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN
    ASM_MESON_TAC[term_valuation];
    ALL_TAC] THEN
  DISCH_THEN SUBST1_TAC THEN
  REWRITE_TAC[GSYM(CONJUNCT1 TYPE_SUBST)] THEN
  MATCH_MP_TAC TERM_VALUATION_VFREE_IN THEN CONJ_TAC THENL
   [REWRITE_TAC[type_valuation] THEN ASM_SIMP_TAC[TYPESET_INHABITED];
    ALL_TAC] THEN
  REWRITE_TAC[ITLIST] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[DEST_VAR] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
   [ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
    REWRITE_TAC[term_valuation; semantics] THEN
    MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN
    REWRITE_TAC[VALMOD] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[TYPESET_LEMMA; TYPE_SUBST] THEN
    SIMP_TAC[PAIR_EQ] THEN ASM_REWRITE_TAC[] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[term_valuation];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`k:string`; `kty:type`] THEN DISCH_TAC THEN
  REWRITE_TAC[VALMOD; semantics] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  SIMP_TAC[PAIR_EQ] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* So in particular, we get key properties of INST itself.                   *)
(* ------------------------------------------------------------------------- *)

let SEMANTICS_INST = prove
 (`!tyin tm.
        welltyped tm
        ==> (INST tyin tm) has_type (TYPE_SUBST tyin (typeof tm)) /\
            (!u uty. VFREE_IN (Var u uty) (INST tyin tm) <=>
                         ?oty. VFREE_IN (Var u oty) tm /\
                               (uty = TYPE_SUBST tyin oty)) /\
            !sigma tau.
                type_valuation tau /\ term_valuation tau sigma
                ==> (semantics sigma tau (INST tyin tm) =
                     semantics
                        (\(x,ty). sigma(x,TYPE_SUBST tyin ty))
                        (\s. typeset tau (TYPE_SUBST tyin (Tyvar s))) tm)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MP_TAC(SPECL [`sizeof tm`; `tm:term`; `[]:(term#term)list`;
                `tyin:(type#type)list`] SEMANTICS_INST_CORE) THEN
  ASM_REWRITE_TAC[MEM; INST_DEF; REV_ASSOCD] THEN MESON_TAC[RESULT]);;

(* ------------------------------------------------------------------------- *)
(* Hence soundness of the INST_TYPE rule.                                    *)
(* ------------------------------------------------------------------------- *)

let INST_TYPE_correct = prove
 (`!tyin asl p. asl |= p ==> MAP (INST tyin) asl |= INST tyin p`,
  REWRITE_TAC[sequent] THEN REPEAT STRIP_TAC THENL
   [UNDISCH_TAC `ALL (\a. a has_type Bool) (CONS p asl)` THEN
    REWRITE_TAC[ALL; ALL_MAP] THEN MATCH_MP_TAC MONO_AND THEN
    CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN
      GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_THM]] THEN
      ASM_MESON_TAC[SEMANTICS_INST; TYPE_SUBST; welltyped; WELLTYPED;
                    WELLTYPED_LEMMA];
    ALL_TAC] THEN
  SUBGOAL_THEN `welltyped p` ASSUME_TAC THENL
   [ASM_MESON_TAC[welltyped; ALL]; ALL_TAC] THEN
  ASM_SIMP_TAC[SEMANTICS_INST] THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL
   [REWRITE_TAC[type_valuation] THEN ASM_MESON_TAC[TYPESET_INHABITED];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[term_valuation] THEN
    REWRITE_TAC[TYPE_SUBST; TYPESET_LEMMA] THEN
    ASM_MESON_TAC[term_valuation];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL_MAP]) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ALL_IMP) THEN
  X_GEN_TAC `a:term` THEN DISCH_TAC THEN
  SUBGOAL_THEN `welltyped a` MP_TAC THENL
   [ASM_MESON_TAC[ALL_MEM; MEM; welltyped]; ALL_TAC] THEN
  ASM_SIMP_TAC[SEMANTICS_INST; o_THM]);;

(* ------------------------------------------------------------------------- *)
(* Soundness.                                                                *)
(* ------------------------------------------------------------------------- *)

let HOL_IS_SOUND = prove
 (`!asl p. asl |- p ==> asl |= p`,
  MATCH_MP_TAC proves_INDUCT THEN
  REWRITE_TAC[REFL_correct; TRANS_correct; ABS_correct;
              BETA_correct; ASSUME_correct; EQ_MP_correct; INST_TYPE_correct;
              REWRITE_RULE[LET_DEF; LET_END_DEF] DEDUCT_ANTISYM_RULE_correct;
              REWRITE_RULE[IMP_IMP] INST_correct] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC MK_COMB_correct THEN
  ASM_MESON_TAC[WELLTYPED_CLAUSES; MK_COMB_correct]);;

(* ------------------------------------------------------------------------- *)
(* Consistency.                                                              *)
(* ------------------------------------------------------------------------- *)

let HOL_IS_CONSISTENT = prove
 (`?p. p has_type Bool /\ ~([] |- p)`,
  SUBGOAL_THEN `?p. p has_type Bool /\ ~([] |= p)`
    (fun th -> MESON_TAC[th; HOL_IS_SOUND]) THEN
  EXISTS_TAC `Var x Bool === Var (VARIANT (Var x Bool) x Bool) Bool` THEN
  SIMP_TAC[EQUATION_HAS_TYPE_BOOL; WELLTYPED_CLAUSES; typeof;
           sequent; ALL; SEMANTICS_EQUATION; has_type_RULES; semantics;
           BOOLEAN_EQ_TRUE] THEN
  MP_TAC(SPECL [`Var x Bool`; `x:string`; `Bool`] VARIANT) THEN
  ABBREV_TAC `y = VARIANT (Var x Bool) x Bool` THEN
  REWRITE_TAC[VFREE_IN; term_INJ; NOT_FORALL_THM] THEN DISCH_TAC THEN
  EXISTS_TAC `((x:string,Bool) |-> false) (((y,Bool) |-> true)
                        (\(x,ty). @a. a <: typeset (\x. boolset) ty))` THEN
  EXISTS_TAC `\x:string. boolset` THEN
  ASM_REWRITE_TAC[type_valuation; VALMOD; PAIR_EQ; TRUE_NE_FALSE] THEN
  CONJ_TAC THENL [MESON_TAC[IN_BOOL]; ALL_TAC] THEN
  REWRITE_TAC[term_valuation] THEN REPEAT GEN_TAC THEN
  REWRITE_TAC[VALMOD; PAIR_EQ] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[typeset; IN_BOOL]) THEN
  CONV_TAC SELECT_CONV THEN MATCH_MP_TAC TYPESET_INHABITED THEN
  REWRITE_TAC[type_valuation] THEN MESON_TAC[IN_BOOL]);;