Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,619 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
(*  Title:       Inv_Cterms.thy
    License:     BSD 2-Clause. See LICENSE.
    Author:      Timothy Bourke
*)

section "A custom tactic for showing invariants via control terms"

theory Inv_Cterms
imports AWN_Labels
begin

text \<open>
  This tactic tries to solve a goal by reducing it to a problem over (local) cterms (using
  one of the cterms\_intros intro rules); expanding those to consider all process names (using
  one of the ctermsl\_cases destruction rules); simplifying each (using the
  cterms\_env simplification rules); splitting them up into separate subgoals; replacing the
  derivative term with a variable; `executing' a transition of each term; and then simplifying.

  The tactic can stop after applying introduction rule (``inv\_cterms (intro\_only)''), or after
  having generated the verification condition subgoals and before having simplified them
  (``inv\_cterms (vcs\_only)''). It takes arguments to add or remove simplification rules
  (``simp add: lemmanames''), to add forward rules on assumptions (to introduce previously
  proved invariants; ``inv add: lemmanames''), or to add elimination rules that solve any
  remaining subgoals (``solve: lemmanames'').

  To configure the tactic for a set of transition rules:
  \begin{enumerate}
  \item add elimination rules: declare seqpTEs [cterms\_seqte]
  \item add rules to replace derivative terms: declare elimders [cterms\_elimders]
  \end{enumerate}

  To configure the tactic for a process environment (\<open>\<Gamma>\<close>):
  \begin{enumerate}
  \item add simp rules: declare \<open>\<Gamma>\<close>.simps [cterms\_env]
  \item add case rules: declare aodv\_proc\_cases [ctermsl\_cases]
  \item add invariant intros
      declare
        seq\_invariant\_ctermsI [OF aodv\_wf aodv\_control\_within aodv\_simple\_labels, cterms\_intros]
        seq\_step\_invariant\_ctermsI [OF aodv\_wf aodv\_control\_within aodv\_simple\_labels, cterms\_intros]
  \end{enumerate}

\<close>

lemma has_ctermsl: "p \<in> ctermsl \<Gamma> \<Longrightarrow> p \<in> ctermsl \<Gamma>" .

named_theorems cterms_elimders "rules for truncating sequential process terms"
named_theorems cterms_seqte "elimination rules for sequential process terms"
named_theorems cterms_env "simplification rules for sequential process environments"
named_theorems ctermsl_cases "destruction rules for case splitting ctermsl"
named_theorems cterms_intros "introduction rules from cterms"
named_theorems cterms_invs "invariants to try to apply at each vc"
named_theorems cterms_final "elimination rules to try on each vc after simplification"

ML \<open>
fun simp_only thms ctxt =
  asm_full_simp_tac
     (ctxt |> Raw_Simplifier.clear_simpset |> fold Simplifier.add_simp thms)

(* shallow_simp is useful for mopping up assumptions before really trying to simplify.
   Perhaps surprisingly, this saves minutes in some of the proofs that use a lot of
   invariants of the form (l = P-:n --> P). *)
fun shallow_simp ctxt =
  let val ctxt' = Config.put simp_depth_limit 2 ctxt in
    TRY o safe_asm_full_simp_tac ctxt'
  end

fun create_vcs ctxt i =
  let val main_simp_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_env})
      val ctermsl_cases = rev (Named_Theorems.get ctxt @{named_theorems ctermsl_cases})
  in
    dresolve_tac ctxt @{thms has_ctermsl} i
    THEN_ELSE (dmatch_tac ctxt ctermsl_cases i
               THEN
               TRY (REPEAT_ALL_NEW (ematch_tac ctxt [@{thm disjE}]) i)
               THEN
               PARALLEL_ALLGOALS
                 (fn i => simp_only main_simp_thms ctxt i
                  THEN TRY (REPEAT_ALL_NEW (ematch_tac ctxt [@{thm disjE}]) i)), all_tac)
  end

fun try_invs ctxt =
  let val inv_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_invs})
      fun fapp thm =
        TRY o (EVERY' (forward_tac ctxt [thm] :: replicate (Thm.nprems_of thm - 1) (assume_tac ctxt)))
  in
    EVERY' (map fapp inv_thms)
  end

fun try_final ctxt =
  let val final_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_final})
      fun eapp thm = EVERY' (eresolve_tac ctxt [thm] :: replicate (Thm.nprems_of thm - 1) (assume_tac ctxt))
  in
    TRY o (FIRST' (map eapp final_thms))
  end

fun each ctxt =
  (EVERY' ((ematch_tac ctxt (rev (Named_Theorems.get ctxt @{named_theorems cterms_elimders})) ::
    replicate 2 (assume_tac ctxt)))
   THEN' simp_only @{thms labels_psimps} ctxt
   THEN' (ematch_tac ctxt (rev (Named_Theorems.get ctxt @{named_theorems cterms_seqte}))
     THEN_ALL_NEW
       (fn j => simp_only [@{thm mem_Collect_eq}] ctxt j
                  THEN REPEAT (eresolve_tac ctxt @{thms exE} j)
                  THEN REPEAT (eresolve_tac ctxt @{thms conjE} j))))
  ORELSE' (SOLVED' (clarsimp_tac ctxt))

fun simp_all ctxt =
  let val ctxt' =
        ctxt |> fold Splitter.add_split [@{thm if_split_asm}]
  in
    PARALLEL_ALLGOALS (shallow_simp ctxt)
    THEN
    TRY (CHANGED_PROP (PARALLEL_ALLGOALS (asm_full_simp_tac ctxt' THEN' try_final ctxt)))
  end

fun intro_and_invs ctxt i =
  let val cterms_intros = rev (Named_Theorems.get ctxt @{named_theorems cterms_intros}) in
    match_tac ctxt cterms_intros i
    THEN PARALLEL_ALLGOALS (try_invs ctxt)
  end

fun process_vcs ctxt _ =
  ALLGOALS (create_vcs ctxt ORELSE' (SOLVED' (clarsimp_tac ctxt)))
  THEN PARALLEL_ALLGOALS (TRY o each ctxt)
\<close>

method_setup inv_cterms = \<open>
  let
    val intro_onlyN = "intro_only"
    val vcs_onlyN = "vcs_only"
    val invN = "inv"
    val solveN = "solve"

    val inv_cterms_options =
      (Args.parens (Args.$$$ intro_onlyN) >>  K intro_and_invs ||
       Args.parens (Args.$$$ vcs_onlyN) >>  K (fn ctxt => intro_and_invs ctxt
                                                          THEN' process_vcs ctxt) ||
       Scan.succeed (fn ctxt => intro_and_invs ctxt
                                THEN' process_vcs ctxt
                                THEN' K (simp_all ctxt)))
  in
    (Scan.lift inv_cterms_options --| Method.sections
      ((Args.$$$ invN -- Args.add -- Args.colon >>
        K (Method.modifier (Named_Theorems.add @{named_theorems cterms_invs}) \<^here>))
       :: (Args.$$$ solveN -- Args.colon >>
        K (Method.modifier (Named_Theorems.add @{named_theorems cterms_final}) \<^here>))
       :: Simplifier.simp_modifiers)
      >> (fn tac => SIMPLE_METHOD' o tac))
  end
\<close> "solve invariants by considering all (interesting) control terms"

declare
  insert_iff [cterms_env]                                                
  Un_insert_right [cterms_env]
  sup_bot_right [cterms_env]
  Product_Type.prod_cases [cterms_env]
  ctermsl.simps [cterms_env]

end