Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,619 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
(* Title: Inv_Cterms.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke
*)
section "A custom tactic for showing invariants via control terms"
theory Inv_Cterms
imports AWN_Labels
begin
text \<open>
This tactic tries to solve a goal by reducing it to a problem over (local) cterms (using
one of the cterms\_intros intro rules); expanding those to consider all process names (using
one of the ctermsl\_cases destruction rules); simplifying each (using the
cterms\_env simplification rules); splitting them up into separate subgoals; replacing the
derivative term with a variable; `executing' a transition of each term; and then simplifying.
The tactic can stop after applying introduction rule (``inv\_cterms (intro\_only)''), or after
having generated the verification condition subgoals and before having simplified them
(``inv\_cterms (vcs\_only)''). It takes arguments to add or remove simplification rules
(``simp add: lemmanames''), to add forward rules on assumptions (to introduce previously
proved invariants; ``inv add: lemmanames''), or to add elimination rules that solve any
remaining subgoals (``solve: lemmanames'').
To configure the tactic for a set of transition rules:
\begin{enumerate}
\item add elimination rules: declare seqpTEs [cterms\_seqte]
\item add rules to replace derivative terms: declare elimders [cterms\_elimders]
\end{enumerate}
To configure the tactic for a process environment (\<open>\<Gamma>\<close>):
\begin{enumerate}
\item add simp rules: declare \<open>\<Gamma>\<close>.simps [cterms\_env]
\item add case rules: declare aodv\_proc\_cases [ctermsl\_cases]
\item add invariant intros
declare
seq\_invariant\_ctermsI [OF aodv\_wf aodv\_control\_within aodv\_simple\_labels, cterms\_intros]
seq\_step\_invariant\_ctermsI [OF aodv\_wf aodv\_control\_within aodv\_simple\_labels, cterms\_intros]
\end{enumerate}
\<close>
lemma has_ctermsl: "p \<in> ctermsl \<Gamma> \<Longrightarrow> p \<in> ctermsl \<Gamma>" .
named_theorems cterms_elimders "rules for truncating sequential process terms"
named_theorems cterms_seqte "elimination rules for sequential process terms"
named_theorems cterms_env "simplification rules for sequential process environments"
named_theorems ctermsl_cases "destruction rules for case splitting ctermsl"
named_theorems cterms_intros "introduction rules from cterms"
named_theorems cterms_invs "invariants to try to apply at each vc"
named_theorems cterms_final "elimination rules to try on each vc after simplification"
ML \<open>
fun simp_only thms ctxt =
asm_full_simp_tac
(ctxt |> Raw_Simplifier.clear_simpset |> fold Simplifier.add_simp thms)
(* shallow_simp is useful for mopping up assumptions before really trying to simplify.
Perhaps surprisingly, this saves minutes in some of the proofs that use a lot of
invariants of the form (l = P-:n --> P). *)
fun shallow_simp ctxt =
let val ctxt' = Config.put simp_depth_limit 2 ctxt in
TRY o safe_asm_full_simp_tac ctxt'
end
fun create_vcs ctxt i =
let val main_simp_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_env})
val ctermsl_cases = rev (Named_Theorems.get ctxt @{named_theorems ctermsl_cases})
in
dresolve_tac ctxt @{thms has_ctermsl} i
THEN_ELSE (dmatch_tac ctxt ctermsl_cases i
THEN
TRY (REPEAT_ALL_NEW (ematch_tac ctxt [@{thm disjE}]) i)
THEN
PARALLEL_ALLGOALS
(fn i => simp_only main_simp_thms ctxt i
THEN TRY (REPEAT_ALL_NEW (ematch_tac ctxt [@{thm disjE}]) i)), all_tac)
end
fun try_invs ctxt =
let val inv_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_invs})
fun fapp thm =
TRY o (EVERY' (forward_tac ctxt [thm] :: replicate (Thm.nprems_of thm - 1) (assume_tac ctxt)))
in
EVERY' (map fapp inv_thms)
end
fun try_final ctxt =
let val final_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_final})
fun eapp thm = EVERY' (eresolve_tac ctxt [thm] :: replicate (Thm.nprems_of thm - 1) (assume_tac ctxt))
in
TRY o (FIRST' (map eapp final_thms))
end
fun each ctxt =
(EVERY' ((ematch_tac ctxt (rev (Named_Theorems.get ctxt @{named_theorems cterms_elimders})) ::
replicate 2 (assume_tac ctxt)))
THEN' simp_only @{thms labels_psimps} ctxt
THEN' (ematch_tac ctxt (rev (Named_Theorems.get ctxt @{named_theorems cterms_seqte}))
THEN_ALL_NEW
(fn j => simp_only [@{thm mem_Collect_eq}] ctxt j
THEN REPEAT (eresolve_tac ctxt @{thms exE} j)
THEN REPEAT (eresolve_tac ctxt @{thms conjE} j))))
ORELSE' (SOLVED' (clarsimp_tac ctxt))
fun simp_all ctxt =
let val ctxt' =
ctxt |> fold Splitter.add_split [@{thm if_split_asm}]
in
PARALLEL_ALLGOALS (shallow_simp ctxt)
THEN
TRY (CHANGED_PROP (PARALLEL_ALLGOALS (asm_full_simp_tac ctxt' THEN' try_final ctxt)))
end
fun intro_and_invs ctxt i =
let val cterms_intros = rev (Named_Theorems.get ctxt @{named_theorems cterms_intros}) in
match_tac ctxt cterms_intros i
THEN PARALLEL_ALLGOALS (try_invs ctxt)
end
fun process_vcs ctxt _ =
ALLGOALS (create_vcs ctxt ORELSE' (SOLVED' (clarsimp_tac ctxt)))
THEN PARALLEL_ALLGOALS (TRY o each ctxt)
\<close>
method_setup inv_cterms = \<open>
let
val intro_onlyN = "intro_only"
val vcs_onlyN = "vcs_only"
val invN = "inv"
val solveN = "solve"
val inv_cterms_options =
(Args.parens (Args.$$$ intro_onlyN) >> K intro_and_invs ||
Args.parens (Args.$$$ vcs_onlyN) >> K (fn ctxt => intro_and_invs ctxt
THEN' process_vcs ctxt) ||
Scan.succeed (fn ctxt => intro_and_invs ctxt
THEN' process_vcs ctxt
THEN' K (simp_all ctxt)))
in
(Scan.lift inv_cterms_options --| Method.sections
((Args.$$$ invN -- Args.add -- Args.colon >>
K (Method.modifier (Named_Theorems.add @{named_theorems cterms_invs}) \<^here>))
:: (Args.$$$ solveN -- Args.colon >>
K (Method.modifier (Named_Theorems.add @{named_theorems cterms_final}) \<^here>))
:: Simplifier.simp_modifiers)
>> (fn tac => SIMPLE_METHOD' o tac))
end
\<close> "solve invariants by considering all (interesting) control terms"
declare
insert_iff [cterms_env]
Un_insert_right [cterms_env]
sup_bot_right [cterms_env]
Product_Type.prod_cases [cterms_env]
ctermsl.simps [cterms_env]
end
|